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DIFFEOMORPHIC SOULS AND DISCONNECTED
MODULI SPACES OF NONNEGATIVELY CURVED

METRICS

by Igor BELEGRADEK & David GONZÁLEZ-ÁLVARO (*)

Abstract. — We give examples of open manifolds that carry infinitely many
complete metrics of nonnegative sectional curvature such that they all have the
same soul, and their isometry classes lie in different connected components of the
moduli space. All previously known examples of this kind have souls of codimension
one. In our examples the souls have codimensions three and two.
Résumé. — Nous donnons des exemples de variétés ouvertes qui admettent une

infinité de métriques complètes à courbure sectionnelle non négative telles que
leurs âmes soient identiques et que leurs classes d’équivalence se trouvent dans des
composantes connexes différentes de l’espace de modules. Tous les exemples de ce
genre, connus auparavant, ont une âme de codimension un. Dans les exemples que
nous présentons, les âmes sont de codimension trois et deux.

1. Motivation and results

There has been considerable recent interest in studying spaces of metrics
with various curvature restrictions, such as nonnegative sectional curvature,
to be denoted K > 0, see [36] and references therein. For a manifold V let
RK>0(V ) denote the space of complete Riemannian metrics on V of K > 0
with the topology of smooth (= C∞) uniform convergence on compact sets,
and MK>0(V ) be the corresponding moduli space, the quotient space of
RK>0(V ) by the Diff(V )-action via pullback.
The soul construction [10] takes as the input a complete metric of K > 0

on an open connected manifold V , and a basepoint of V , and produces a
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totally convex compact boundaryless submanifold S of V , called the soul,
such that V is is diffeomorphic to a tubular neighborhood of S. If we
fix a metric and vary the basepoint, the resulting souls are ambiently iso-
topic [39] and isometric [34]. Consider the map soul that sends an isometry
class of a complete metric of K > 0 on V to the isometry class of its soul:

soul : MK>0(V )→
∐
S∈V
MK>0(S)

where the co-domain is given the topology of disjoint union, and V is a set
of pairwise non-diffeomorphic manifolds such that S ∈ V if and only if S is
diffeomorphic to a soul of a complete metric of K > 0 on V .

A tantalizing open problem is to decide if the map soul is continuous;
the difficulty is that the soul is constructed via asymptotic geometry which
is not captured by the compact-open topology on the space of metrics. The
following is immediate from [5, Theorem 2.1].

Theorem 1.1. — If V is indecomposable, then the map soul is conti-
nuous.

An open manifold is indecomposable if it admits a complete metric of
K > 0 such that the normal sphere bundle to a soul has no section. It fol-
lows from [39] that for indecomposable V the soul is uniquely determined
by the metric (and not the basepoint). Moreover, [5] implies that the souls
of nearby metrics are ambiently isotopic by a small compactly supported
isotopy. In particular, metrics with non-diffeomorphic souls in an indecom-
posable manifold lie in different connected components ofMK>0(V ).
There are many examples where the diffeomorphism (or even homeo-

morphism) type of the soul depends on the metric, see [4, 6, 7, 19, 25, 32],
and if the ambient open manifold V is indecomposable, this gives examples
where MK>0(V ) is not connected, or even has infinitely many connected
components.
If V has a complete metric with K > 0 with soul of codimension one,

then soul is a homeomorphism, see [6]. Thus if for some soul S the space
MK>0(S) has infinitely many connected components, then so does
MK>0(V ); for example, this applies to V = S × R.

Examples of closed manifolds S for whichMK>0(S) has infinitely many
connected components can be found in [12, 13, 14, 15, 21, 25]. These met-
rics on S have K > 0 and scal > 0, and the connected components are
distinguished by index-theoretic invariants that are constant on paths of
scal > 0.
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The papers mentioned in the previous paragraph only prove existence of
infinitely many path-components. We take this opportunity to note that
they actually get infinitely many connected components.

Theorem 1.2. — LetM be a closed manifold. If two points in the same
connected component ofMK>0(M) have scal > 0, then they can be joined
by a path of isometry classes of scal > 0.

In this paper we show that some of these S as above can be realized as
souls of codimensions 2 or 3 in indecomposable manifolds. The codimen-
sion 2 case is a fairly straightforward consequence of results in [15, 27, 37].

Theorem 1.3. — For every positive integer n there are infinitely many
homotopy types that contain a manifold M such that

(a) M is a simply-connected manifold that is the total space of a prin-
cipal circle bundle over S2 × CP 2n, and

(b) if V is the total space of a non-trivial complex line bundle over M ,
then V has infinitely many complete metrics of K > 0 whose souls
equal the zero section, and whose isometry classes lie in different
connected components ofMK>0(V ).

The codimension 3 case requires a bit more work. Recall that if M is
the total space of a linear S3-bundle over S4, then M admits a metric of
K > 0 [23], and moreover, if the bundle has nonzero Euler number, then
MK>0(M) has infinitely many connected components [12, 21]. We prove:

Theorem 1.4. — Let M be the total space of a linear S3-bundle ξ over
S4 with Pontryagin number p1(ξ) and nonzero Euler number e(ξ). If p1(ξ)

2e(ξ)
is not an odd integer, then M is diffeomorphic to a codimension three
submanifold S of an indecomposable manifold V that admits infinitely
many complete metrics of K > 0 with soul S whose isometry classes lie in
different connected components ofMK>0(V ).

Milnor famously showed that some S3-bundles over S4 are exotic spheres
[29]. In fact, M is a homotopy sphere if and only if e(ξ) = ±1. Unfortu-
nately, if e(ξ) = ±1, then p1(ξ)

2 is an odd integer, so no M in Theorem 1.4
is a homotopy sphere. On the other hand, for every integer n with n > 2
there is M as in the conclusion of Theorem 1.4 with H4(M) ∼= Zn, see
Section 7.
To prove Theorem 1.4 we use results of Grove-Ziller [23] and some topo-

logical considerations to find an indecomposable V with a codimension
three soul, and then we observe that the metric on the soul can be moved
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112 Igor BELEGRADEK & David GONZÁLEZ-ÁLVARO

by Cheeger deformation to metrics in [12, 21] that represent infinitely many
connected components.
Let us conclude by mentioning that other results on connected compo-

nents of moduli spaces corresponding to various nonnegative or positive
curvature conditions can be found in [8, 20, 27, 35, 38].

Structure of the paper

Theorems 1.1 and 1.2 are proved in Section 2. Theorem 1.3 is established
in Section 3. Theorem 1.4 is proved in Section 7, and the needed background
is reviewed in Sections 4, 5, 6.

Acknowledgements

The authors are grateful to Luis Guijarro for hospitality during Bele-
gradek’s visit to Madrid where this project was started.

2. Continuity of souls, connectedness and
path-connectedness

Proof of Theorem 1.1. — Theorem 2.1 in [5] says that the map that
sends a complete metric of K > 0 on V to its soul, considered as a point
in the space of smooth compact submanifolds of V with smooth topology,
is continuous. Two nearby submanifolds are ambiently isotopic by a small
isotopy with compact support. Hence, the isometry classes of the induced
metrics on these submanifolds are close in the moduli space. Thus we get
a continuous map

RK>0(V )→
∐
S∈V
MK>0(S)

that takes a metric to the isometry class of its soul, where the co-domain
is given the disjoint union topology, i.e., the set in the co-domain is open
if and only if its intersection with eachMK>0(S) is open. Finally, by the
definition of quotient topology the above continuous map descends to a
continuous map defined onMK>0(V ). �

Let X denote the the space of isometry classes of Riemannian metrics
on a closed manifold M with smooth (= C∞) topology, and let Xscal>0,
Xscal>0 be the subspaces of X of isometry classes of metrics of nonnegative
and positive scalar curvature, respectively.
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Lemma 2.1. — X is metrizable.

Proof. — This is well-known, but we cannot find a proof in the litera-
ture, and hence present it here for completeness. The smooth topology on
the space of all Riemannian metrics on M is induced by a metric whose
isometry group contains Diff(M) [16, Proposition 148], and every Diff(M)-
orbit is closed [16, Proposition 142]. The corresponding pseudometric on
the set of orbits induces the quotient topology, and the pseudodistance is
simply the infimum of distances between the orbits [24, Theorem 4]. Since
the orbits are closed, the quotient space is T1, so that the pseudometric is
actually a metric. �

Also X is locally path-connected (because this property is inherited by
quotients, and X is the quotient of the space of metrics, which is an open
subset in the Fréchet space of 2-tensors on M). In fact, every point of X
has a contractible neighborhood (as follows from the smooth version of
Corollary 7.3 in [17] which can be deduced from the discussion after the
corollary) but we do not need it here.

Theorem 2.2. — If C is a connected subset of Xscal>0 that contains
no Ricci-flat metrics, then any two points y, z ∈ C can be joined by a path
in {y, z} ∪Xscal>0.

Proof. — By continuous dependence of Ricci flow on initial metric, see
e.g. [2, Theorem A], for every point x ∈ X there is a neighborhood Ux and
a positive constant τx such that the Ricci flow that starts at any point of
Ux exists in [0, τx].
Being a metrizable space X is paracompact Hausdorff, and hence has

a locally finite open cover {Rxi
}i∈I such that Rxi

⊂ Uxi
for all i, and

there is a continuous function τ : X → (0,∞) with τ(x) 6 τxi
for all

x ∈ Rxi
, see [31, Theorem 41.8]. Since C contains no Ricci-flat metrics,

for every x ∈ C the Ricci flow of x has scal > 0 for all times in (0, τ(x)],
see [9, Proposition 2.18]. By continuous dependence of the Ricci flow on
initial metric the map T : X → X that sends x to the Ricci flow of x at
time τ(x) is continuous. Hence, if C is a connected subset of Xscal>0 that
contains y, z, then T (C) is a connected subset of Xscal>0.
Since Xscal>0 is an open subset in the locally path-connected space X,

every connected component of Xscal>0 is path-connected. Hence the con-
nected component of Xscal>0 that contains T (C) also contains a path
from T (y) to T (z). Concatenating the path with Ricci flows from y, z

to T (y), T (z), respectively, we get a path from y to z with desired pro-
perties. �

TOME 72 (2022), FASCICULE 1
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Proof of Theorem 1.2. — No flat manifold admits a metric of scal > 0
[22, Corollary A]. Hence M admits no flat metric. Since Ricci-flat metrics
of K > 0 are flat, MK>0(M) contains no Ricci-flat metrics. Applying
Theorem 2.2 to the connected component ofMK>0(M) that contains y, z
finishes the proof. �

3. Codimension two

Proof of Theorem 1.3. — If S2t+1 → CP t is the circle bundle obtained by
restricting the diagonal circle action on Ct+1, where t is a positive integer,
then its Euler class generates H2(CP t) as follows from the Gysin sequence
and 2-connectedness of S2t+1. Consider the product of two such circle bun-
dles with t = 1 and t = 2n. Then the argument [37, p. 227] implies that any
M as in (a) is the quotient of the Riemannian product of two unit spheres
S3×S4n+1 by the free isometric circle action eiφ(x, y) = (eilφ x, e−ikφ y) for
some coprime integers k, l. This gives a Riemannian submersion metric on
M with K > 0 and Ric > 0.

Sometimes it happens that the quotients corresponding to different pairs
(k, l) are diffeomorphic. In fact, H4(M) is a cyclic group of order l2, so
up to sign l is determined by the homotopy type of M , but for a given
l the quotients fall into finitely many diffeomorphism types [15, Proposi-
tion 2.2]. Their diffeomorphism classification was studied in [27, 37] and
finally in [15] where it was shown that for each n there are infinitely many
homotopy types that contain M as in (a) and such that the Riemannian
submersion metrics as above represent infinitely many connected compo-
nents ofMK>0(M).
Similarly, since S3 × S4n+1 is 2-connected, any complex line bundle over

M is the quotient of S3 × S4n+1 × C by the circle action eiφ(x, y, z) =
(eilφ x, e−ikφ y, eim z), cf. [7, Lemma 12.3]. In particular, V carries a com-
plete Riemannian submersion metric of K > 0 with soul equal to the zero
section, which is the quotient of S3×S4n+1×{0} by the above circle action,
and hence is diffeomorphic to M .
If we fix l and the Euler class of the line bundle in H2(M) ∼= Z, there

are only finitely many possibilities for the diffeomorphism type of the pair
(V, soul) for the above metrics. By varying k appropriately, then we get
a sequence of complete metrics of K > 0 on each V as above such that
the metrics on the soul represent infinitely many connected components of
MK>0(M).
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If the line bundle is non-trivial, then V is indecomposable, and the map
soul is continuous by Theorem 1.1. Thus MK>0(V ) has infinitely many
connected components. �

4. Equivariant Cheeger deformation

The purpose of this section is to review the Cheeger deformation, and
note that it passes to quotients by free isometric actions.

Let G be a compact Lie group with a bi-invariant metric Q that acts
isometrically on a Riemannian manifold (M, q0). Consider the diagonal G-
action on M ×G given by

a · (p, g) = (ap, ag), p ∈M, a, g ∈ G.

Its orbit space is commonly denoted byM×GG. The map π : M×G→M

given by π(p, g) = g−1p descends to a diffeomorphism φ : M ×G G→M .
For any positive scalar t the G-action is isometric in the product metric

q0 + Q
t , which induces a metric qt on M that makes π into a Riemannian

submersion. Similarly, φ becomes an isometry between qt, t > 0, and the
Riemannian submersion metric on M ×G G induced by q0 + Q

t .
The map t→ gt is continuous for t > 0; this is the Cheeger deformation

of q0, see e.g. [1, p. 140] or [40]. The key property is that if q0 has K > 0,
then so does qt for all t.
Fix a closed subgroup H of G such that the H-action on M is free.

For t > 0 let qt be the metric on M/H that makes the H-orbit map into
a Riemannian submersion χ : (M, qt) → (M/H, qt). The map t → qt is
continuous for t > 0.

The H-action on M × G given by h · (p, g) = (p, gh−1) commutes with
the diagonal G-action, and hence descends to a free H-action on M ×G G.
For this action the maps π and φ are H-equivariant, and descend to a Rie-
mannian submersionM×(H\G)→M/H and an isometryM×G(H\G)→
M/H, respectively, where t > 0 and H\G is given the Riemannian sub-
mersion metric induced by Q

t .
Thus in the following diagram all maps are Riemannian submersions for

t > 0

M ×G

yy

//

π

��

M ×H\G

�� ''
M ×G G

φ // M
χ // M/H M ×G H\Goo
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and χ is also a Riemannian submersion for t = 0. In this diagram M

and M/H are the only spaces where the metric corresponding to t = 0 is
defined.

5. Some algebra and geometry of the 3-sphere

In this section we specialize the discussion of Section 4 to the case when
G = S3 × S3, where S3 is thought of as unit quaternions, and H is the
diagonal subgroup of G, i.e., H = {(g, g) : g ∈ G}.
Consider the diffeomorphism ψ : S3 → H\G given by ψ(c) = (c, 1)H;

thus ψ−1 sends the coset (a, b)H to ab−1. With this identification the (left)
G-action on H\G becomes (a, b) · c = acb−1, where a, b, c ∈ S3; indeed

(a, b)(c, 1)H = (ac, b)H = (acb−1, 1)H.

Since (−1,−1) acts trivially, the G-action on H\G descends to an SO(4)
action with isotropy subgroups isomorphic to SO(3).

It follows that any G-invariant Riemannian metric on H\G is isometric
to a round 3-sphere (i.e., a metric sphere in R4). Indeed, SO(3) acts transi-
tively on every tangent 2-sphere, so G acts transitively on the unit tangent
bundle, and hence the metric has constant Ricci curvature, which on the
3-sphere makes the metric round.

The discussion in Section 4 immediately gives the following.

Proposition 5.1. — Let H be the diagonal subgroup of G = S3 × S3.
Given an isometric G-action on a Riemannian manifold (M, q0) of K > 0
that restricts to a free H-action there is path of Riemannian metrics (M, qt)
of K > 0, defined for t > 0, such that

• for every t > 0 the G-action is qt-isometric, and the Riemannian
submersion metric (M/H, qt) induced by qt has K > 0, and t→ qt

is a continuous path of metrics on M/H,
• if t > 0 and H\G is given the Riemannian submersion metric in-
duced by a bi-invariant metric on G, then H\G is isometric to a
round sphere, and (M/H, qt) is isometric to the Riemannian sub-
mersion metric on (M, qt)×G H\G.

6. Bundle theoretic facts

This section reviews several well-known bundle theoretic facts.

ANNALES DE L’INSTITUT FOURIER
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Lemma 6.1. — Let C 6 G be an order two normal subgroup of a
topological group G. If P → X is a non-trivial principal G-bundle over
a finite cell complex with H1(X;Z2) = 0, then the associated principal
G/C-bundle P/C → X is non-trivial.

Proof. — The surjection G→ G/C = H induces a fibration of classifying
spaces BC → BG → BH where BC is a homotopy fiber of BG → BH,
see [28]. As explained in [30, p. 139], for any finite complex X we get an
exact sequence of pointed sets

[X,BC]→ [X,BG]→ [X,BH]

with constant maps as basepoints. Since [X,BC] = H1(X;Z2) = 0, the
rightmost arrow is injective. �

A k-plane bundle is a vector bundle with fiber Rk.

Lemma 6.2. — Let X be a paracompact space with H1(X;Z2) = 0 =
H2(X). If a 3-plane bundle over X has a nowhere zero section, then it is
trivial.

Proof. — A nowhere zero section gives rise to a splitting of the bun-
dle into the Whitney sum of a line and a 2-plane subbundles, which are
orientable since H1(X;Z2) = 0, and in fact, trivial because a line bun-
dle is determined by its first Stiefel-Whitney class in H1(X;Z2), and an
orientable 2-plane bundle is determined by its Euler class in H2(X). �

Lemma 6.3. — If X is a finite cell complex with H1(X;Z2) = 0 =
H4(X;Q), then the number of isomorphism classes of 3-plane bundles over
X is finite.

Proof. — Since H1(X;Z2) = 0, any vector bundle over X is orientable.
There are only finitely many isomorphism classes of orientable 3-plane bun-
dles with a given first rational Pontryagin class [3, Theorem A.0.1], which
lies in H4(X;Q) = 0. �

7. Codimension three

This section ends with a proof of Theorem 1.4. First, we recall some
results and notations from [23].

Following [23, p. 349] let Pk,l denote the principal S3×S3-bundle over S4

classified by the map q → (qk, q−l) in π3(S3 × S3) ∼= Z× Z, where q ∈ S3.
Let Mk,l be the the associated bundle Pk,l×S3×S3 S3 where the action on

S3 is as in Section 5, see [23, p. 352]. Equivalently [33, Proposition 8.27],
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the action is given by the universal covering S3 × S3 → SO(4) where the
SO(4)-action on S3 is standard. Hence, Mk,l is a linear S3-bundle over S4.
The Euler number and the Pontryagin number of the S3-bundle Mk,l →

S4 are ±(k + l) and ±2(k − l), see [26, p. 159, 169]. The Gysin sequence
shows thatH4(Mk,l) ∼= Zk+l if k+l 6= 0, and thenH4(Mk,l) ∼= Z if k+l = 0.

Remark 7.1. — Somewhat confusingly, the notationMm,n is also used in
the literature to denote the total space of another S3-bundle over S4 based
on a different choice of generators in π3(S3 × S3). This usage goes back to
James and Whitehead, and more to the point, appears in works quoted
below. Thus Mk,l of [23] equals Mm,n of [11, 21] when m = −l, n = k + l.
In what follows all results are rephrased in notations of [23].

According to Section 4, Mk,l can be described as Pk,l/H where H is the
diagonal subgroup in S3×S3, cf. also Key Observation in [18]. ThusMk,l is
the base of a principal S3-bundle with total space Pk,l. Our strategy hinges
on the following:

Problem. — Find all k, l such that the principal H-bundle Pk,l →
Pk,l/H = Mk,l is non-trivial.

Some partial solutions are presented below. An especially interesting case
(which we could not resolve in this paper) is when |k+l| = 1, or equivalently,
Mk,l is a homotopy sphere.

Lemma 7.2. — If kl = 0, the principal H-bundle Pk,l →Mk,l is trivial.

Proof. — The principal S3 × S3-bundle Pk,0 is isomorphic to P × S3 for
some principal S3-bundle P over S4. The inclusion i : P → P × S3 given
by i(p) = (p, 1) is transverse to the H-orbits, hence it descends to an
immersion i : P → (P × S3)/H, which is a diffeomorphism because both
domain and co-domain are closed manifolds of the same dimension. Then
i ◦ i−1 is a section of P ×S3 → (P ×S3)/H, and any principal bundle with
a section is trivial. �

Lemma 7.4 below sheds some light on why the assumption “p1(ξ)
2e(ξ) is not

odd” is relevant. Let us first restate the assumption:

Lemma 7.3. — k−l
k+l is an odd integer if and only if k

k+l ∈ Z.

Proof. — k−l
k+l is odd if and only if k−l

k+l + 1 = 2k
k+l is even if and only if

k
k+l ∈ Z. �

Lemma 7.4. — If kl 6= 0 and the principal H-bundle Pk,l → Pk,l/H =
Mk,l is trivial, then k + l 6= 0 and k

k+l ∈ Z.
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DIFFEOMORPHIC SOULS AND DISCONNECTED MODULI SPACES 119

Proof. — If the bundle is trivial, Pk,l is diffeomorphic to S3 ×Mk,l. By
the Künneth formula H4(Pk,l) ∼= H4(Mk,l) which is Zk+l if k + l 6= 0,
and Z if k + l = 0. As was mentioned on [23, p. 349], the quotient of the
principal S3×S3-bundle Pk,l by the subgroup 1×S3 can be identified with
Pk, the principal S3-bundle over S4 with Euler number k. Since k 6= 0,
we get H4(Pk) ∼= Zk [23, p. 346]. The Gysin sequence for the S3-bundle
Pk,l → Pk reads

Zk ∼= H4(Pk) // H4(Pk,l) // H1(Pk) = 0,

which shows that k + l is a nonzero integer that divides k. �

Remark 7.5. — The asymmetry in the conclusion of Lemma 7.4 is an
illusion: k

k+l ∈ Z if and only if l
k+l ∈ Z because k

k+l + l
k+l = 1.

Proof of Theorem 1.4. — By Proposition 3.11 of [23] each Pk,l admits a
cohomogeneity one action by S3 × S3 × S3 with codimension two singular
orbits, and such that the action of the subgroup G := S3×S3×{1} coincides
with the principal bundle action. Hence by [23, Theorem E] the space Pk,l
carries a G-invariant metric γk,l of K > 0.

Let S3(r) be the round 3-sphere of radius r on which S3 × S3 acts as
in Section 5. Let hk,l,r be the Riemannian submersion metrics on Mk,l =
Pk,l ×S3×S3 S3 induced by the product of γk,l and S3(r). Then hk,l,r has
K > 0 and scal > 0 by [21, Theorem 2.1].

An essential point is that there are infinitely many ways to represent M
as Mk,l. Indeed, by assumption M = Mk,l for some k, l ∈ Z with k + l 6= 0
and such that k−lk+l is not an odd integer. The latter is equivalent to k

k+l /∈ Z
by Lemma 7.3. For i ∈ Z let

li = l − 56(k + l)i and ki = k + l − li = −l + (k + l)(56i+ 1).

Then Mki,li are orientation-preserving diffeomorphic to M [11, Corollary
1.6]. By [21, Section 3.1] there is r and infinitely many values of i for which
the metrics hki,li,r lie in different connected components ofMK>0(M).

Let gk,l be the Riemannian submersion metric of K > 0 induced on
Mk,l = H\Pk,l by γk,l. Proposition 5.1 implies that gk,l and hk,l,r lie in the
same path-component of MK>0(Mk,l). Thus for ki, li as in the previous
paragraph gki,li lie in different connected components ofMK>0(M).
Consider the associated vector bundle Pk,l×HR3 overMk,l whereH = S3

acts on R3 via the universal covering S3 → SO(3). We give Pk,l ×H R3 the
Riemannian submersion metric induced by the product of γk,l and the
standard Euclidean metric. This is a complete metric of K > 0 with soul
Pk,l ×H {0} which is isometric to (Mk,l, gk,l).
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Since ki

ki+li /∈ Z, the principal S3-bundle Pki,li → Mki,li is non-trivial
by Lemma 7.4. Consider the associated 3-plane bundle Pki,li ×S3 R3 over
Mki,li where S3 acts on R3 via the universal covering S3 → SO(3). Any such
vector bundle is non-trivial by Lemma 6.1, and hence by Lemma 6.2 its total
space is indecomposable. Pull back the vector bundles via diffeomorphisms
M → Mki,li . The pullback bundles fall into finitely many isomorphism
classes by Lemma 6.3, so after passing to a subsequence we can assume
that the bundles are isomorphic, and hence share the same ten-dimensional
total space, which we denote V .
In summary, V is an indecomposable manifold with infinitely many com-

plete metrics of K > 0 whose souls are all equal to the zero section, and
diffeomorphic to M , and such that the induced metrics on the souls lie
in different connected components ofMK>0(M). Theorem 1.1 finishes the
proof. �
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