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PRINCIPAL SERIES REPRESENTATIONS OF
IWAHORI-HECKE ALGEBRAS FOR KAC-MOODY
GROUPS OVER LOCAL FIELDS

by Auguste HEBERT (*)

ABSTRACT. — Recently, Iwahori-Hecke algebras were associated with Kac—
Moody groups over non-Archimedean local fields. We introduce principal series
representations for these algebras. We study these representations and partially
generalize irreducibility criteria of Kato and Matsumoto.

RESUME. — Des algeébres d’Iwahori—-Hecke ont récemment été associées aux
groupes de Kac-Moody sur les corps locaux non-archimédiens. Nous introduisons
les représentations de la série principale pour ces algebres. Nous étudions ces re-
présentations et généralisons partiellement les critéeres d’irréductibilité de Kato et
de Matsumoto.

1. Introduction
1.1. The reductive case

Let G be a split reductive group over a non-Archimedean local field
K. Let T be a maximal split torus of G and Y be the cocharacter lat-
tice of (G,T). Let B be a Borel subgroup of G containing T. Let Ty =
Homg,(Y,C*). Then 7 can be extended to a character 7 : B — C*. If
7 € Tg, the principal series representation I(7) of G is the induction of
762 from B to G, where § : B — R? is the modulus character of B. More
explicitly, this is the space of locally constant functions f : G — C such
that f(bg) = 76%/2(b) f(g) for every g € G and b € B. Then G acts on I(7)
by right translation.

Keywords: Principal series representations, Kac-Moody groups, non-archimedean local
fields, masures, reductive groups.
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188 Auguste HEBERT

To each open compact subgroup K of G is associated the Hecke algebra
Hyr. This is the algebra of functions from G to C which have compact
support and are K-bi-invariant. There exists a strong link between the
smooth representations of G and the representations of the Hecke algebras
of G. Let K be the Iwahori subgroup of G. Then the Hecke algebra H¢
associated with K7 is called the Iwahori—-Hecke algebra of G and plays an
important role in the representation theory of G.

The algebra Hc acts on I, g := I(7)%7 by the formula

o.f = /G (9)g-fdu(g)., ¥ (6, 1) € He x I(r)"1,

where p is a Haar measure on G. This formula can actually be rewritten
as

(L1 of=pKr) D, dlg)g.f, V(¢ f)€HexI(r) .

geG/K1

Then I(7) is irreducible as a representation of G if and only I, ¢ is irre-
ducible as a representation of Hc.

Let W¥ be the vectorial Weyl group of (G, T). By the Bernstein—Lusztig
relations, Hc admits a basis (Z*H, ) ey.wew+ such that Drey CZ* is a
subalgebra of H¢ isomorphic to the group algebra C[Y] of Y. We identify
@D,y CZ* and C[Y]. We regard 7 as an algebra morphism 7 : C[Y] — C.
Then I, ¢ is isomorphic to the induced representation I, = Indgf[g,] (1) and
we refer to [37, Section 3.2] for a survey on this subject.

Matsumoto and Kato gave criteria for the irreducibility of I.. The group
W?" acts on Y and thus it acts on T¢. If 7 € T, we denote by W, the
stabilizer of 7 in W". Let ®" be the coroot lattice of G. Let ¢ be the
residue cardinal of K. Let W) be the subgroup of W, generated by the
reflections r,v, for a¥ € ®¥ such that 7(a¥) = 1. Then Kato proved the
following theorem (see [20, Theorem 2.4]):

THEOREM 1.1. — Let 7 € T¢. Then I, is irreducible if and only if it
satisfies the following conditions:
(]-) W, = M/ET)ﬂ
(2) for all ¥ € Y, 7(aY) # q.

When 7 is regular, that is when W, = {1}, condition (1) is satisfied and
this is a result by Matsumoto (see [25, Théoréme 4.3.5]).
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PRINCIPAL SERIES REPRESENTATIONS OF KAC-MOODY GROUPS 189

1.2. The Kac—Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field
K. We do not know which topology on G could replace the usual topology
on reductive groups over K. There is up to now no definition of smoothness
for the representations of G. However one can define certain Hecke algebras
in this framework. In [5] and [6], Braverman, Kazhdan and Patnaik defined
the spherical Hecke algebra and the Iwahori-Hecke H¢ of G when G is
affine. In [12] and [2], Bardy-Panse, Gaussent and Rousseau generalized
these constructions to the case where G is a general Kac-Moody group.
They achieved this construction by using masures (also known as hovels),
which are analogous to Bruhat-Tits buildings (see [11]). Together with
Abdellatif, we attached Hecke algebras to subgroups slightly more general
than the Iwahori subgroup (see [1]).

Let B be a positive Borel subgroup of G and T be a maximal split torus
of G contained in B. Let Y be the cocharacter lattice of G, W" be the
Weyl group of G and Y™ be the set of dominant cocharacters of Y. The
Bruhat decomposition does not hold on G: if G is not reductive,

Gt= || KK CG.
AEY++

The set GT is a sub-semi-group of G. Then Hc is defined to be the set of
functions from K;\G%/K; to C which have finite support. The Iwahori—
Hecke algebra H¢ of G admits a Bernstein—Lusztig presentation but it
is no longer indexed by Y. Let Y+ = (J,cppo w. Y™ C Y. Then Y7
is the integral Tits cone and we have Y+ = Y if and only G is reduc-
tive. The Bernstein-Lusztig-Hecke algebra of G is the space Bl'H¢ =
D ewv C[Y]H,, subject to some relations (see Section 2.3). Then Hc is
isomorphic to @,,cyv C[Y T|Hy.

Let BY = BN G'. Let T = Homyoen(Y",C) \ {0} and Tx =
Homg, (Y, C*). Let € € {+,0}. If 7¢ € TE we define the space IZZ\E)E
of functions f from G to C such that for every ¢ € G° and b € B¢,
f(bg) = 76Y2(b)f(g). As we do not know which condition could replace
“locally constant”, we do not impose any regularity condition on the func-

—

tions of I/(T\f)6 Then G¢ acts by right translation on I(7€)¢. Let e ge

be the subspace of I(7¢)¢ of functions which are invariant under the ac-
tion of K7 and whose support satisfy some finiteness conditions (see 6.2.1).

Inspired by formula (1.1), we define an action of H¢ on Iy g by

o.f=Y d9gf, V(o f)€Hex Irege.

geG/Ky

TOME 72 (2022), FASCICULE 1



190 Auguste HEBERT

As often in the Kac-Moody theory, the fact that this formula is well-defined
is not obvious. We prove some finiteness results on G to prove that the
formula only involves finite sums and that ¢.f is an element of I.< g (see
Definition/Proposition 6.12).

We regard 7€ as an algebra morphism C[Y¢] — C. Let It. be the rep-
resentation of BLH¢ (where BLH = Hc) defined by induction of 7¢ from
C[Y €] to BlHg.

We prove the following proposition, which seems to indicate that the
representations of H¢ correspond to representations of Gt and that the
representations of B'H¢ correspond to representations of G:

PROPOSITION 1.2 (see Proposition 6.28). — Let 7+ € T

(1) Suppose that 7" is not the restriction to Y+ of an element of Tt For
every f € .ﬁT?) \ {0}, for every G-module M, the restriction of M
to G is not isomorphic to GT.f. For every z € I, \ {0}, for every
BLY c-module M, the restriction of M to Hc is not isomorphic to
He.x.

(2) Suppose that 7% is the restriction to Y+ of a (necessarily unique)
element 7 of Tg. Every element fT of I(/T‘*TJr can be extended
uniquely to an element f of I/(\T) Then f* + f is an isomorphism
of GT-modules. The action of H¢ on I;l extends uniquely to an
action of L on If,. Then I", is naturally isomorphic to I, as
a BLH-module.

Note that the existence of elements of Tg which do not extend to ele-
ments of Tt depends on G. We prove that in some cases (for example when
G is affine or associated with a size 2 Kac-Moody matrix) every element of
Tg is the restriction of an element of 7. We also prove that for some size
3 Kac-Moody matrices, there exists 7 € Tg which is not the restriction of
an element of T¢ (see Lemma 6.20 and Lemma 6.24).

We then restrict our study to the elements 7+ of Tg which are the
restriction of an element 7 of Tg. We prove that IL is irreducible if and
only if I is (see Proposition 2.12). We then study the irreducibility of I.
We prove the following theorem, generalizing Matsumoto’s irreducibility
criterion (see Corollary 4.10):

THEOREM 1.3. — Let 7 be a regular character. Then I is irreducible
if and only if for all &V € ®V,

T(aV) #q.
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PRINCIPAL SERIES REPRESENTATIONS OF KAC-MOODY GROUPS 191

We also generalize one implication of Kato’s criterion (see Lemma 4.5
and Proposition 4.17). Let W, be the subgroup of W generated by the
reflections rov, for ¥ € ®V such that 7(a¥) = 1.

THEOREM 1.4. — Let 7 € T¢. Assume that I is irreducible. Then:

(1) WT = VI/ET)’
(2) for all ¥ € @V, T(a) # q.

We then obtain Kato’s criterion when the Kac—-Moody group G is asso-
ciated with a size 2 Kac-Moody matrix (see Theorem 5.35):

THEOREM 1.5. — Assume that G is associated with a size 2 Kac—Moody
matrix. Let 7 € T¢. Then I, is irreducible if and only if it satisfies the
following conditions:

(1) W‘r = M/ET)ﬂ
(2) for all ¥ € Y, 7(aY) # q.

In order to prove these theorems, we first establish the following irre-
ducibility criterion. For 7 € Tg set I (1) = {z € I, |0.x = 7(0).z, V 0 €
C[Y]}. Then:

THEOREM 1.6 (see Theorem 4.8). — I, is irreducible if and only if:

o 7(aV) # q for all &V € ®V
e dim I (r) = 1.

Remark 1.7. — Suppose that G is an affine Kac-Moody group. Then

by [2, 7], some extension BLH ¢ of BLH ¢ contains the double affine Hecke
algebra introduced in [8]. It would therefore be interesting to find a link
between the representations of Bl and those of this algebra.

Framework

Actually, following [2] we study Iwahori—Hecke algebras associated with
abstract masures. In particular our results also apply when G is an almost-
split Kac—-Moody group over a non-Archimedean local field. The definition
of W) and the statements given in this introduction are not necessarily
valid in this case and we refer to Proposition 4.17, Theorem 5.35 and The-
orem 4.8 for statements valid in this frameworks.

TOME 72 (2022), FASCICULE 1



192 Auguste HEBERT

Organization of the paper

The paper is organized as follows. In a first part (Sections 2 to 5) we
consider “abstract” Iwahori-Hecke algebras. We define them using the
Bernstein—Lusztig presentation and they are a priori not associated with a
group. The techniques used are mainly algebraic, based on the Bernstein—
Lusztig relations. In a second part (Section 6), we introduce Kac—Moody
groups, masures and Iwahori—Hecke algebras associated with groups, and
we associate some principal series representations to these groups. The
techniques involved are mainly building theoretic.

In Section 2, we recall the definition of the Iwahori-Hecke algebras and
of the Bernstein—Lusztig—Hecke algebras, introduce principal series repre-
sentations and define an algebra BLH(T7) containing BXH 7, where F is
the field of coefficients of BV x.

In Section 3, we study the F[Y]-module I, and we study the intertwining
operators from I, to I, for 7,7/ € Tr.

In Section 4, we establish Theorem 1.6. We then apply it to obtain The-
orem 1.3 and Theorem 1.4.

In Section 5 we consider the weight vectors of I and use them to prove
Kato’s irreducibility criterion for size 2 Kac-Moody matrices.

In Section 6, we introduce Kac—-Moody groups over local fields, masures,
and Iwahori—Hecke algebras of these groups. We introduce some principal
series representations of these groups, study them and relate them to the
principal series representations studied in the previous sections.

There is an index of notations at the end of the paper.
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2. Bernstein—Lusztig presentation of Iwahori—Hecke
algebras

Let G be a Kac—Moody group over a non-Archimedean local field. Then
Gaussent and Rousseau constructed a space Z, called a masure on which G
acts, generalizing the construction of the Bruhat-Tits buildings (see [11],
[35] and [36]). Rousseau then gave in [34] an axiomatic definition of ma-
sures inspired by the axiomatic definition of Bruhat-Tits buildings. We
call a masure satisfying these axioms an abstract masure. It is a priori not
associated with any group.

In [2], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke
algebra Hg to each abstract masure satisfying certain conditions and to
each ring R. The algebra Hx is an algebra of functions defined on some
pairs of chambers of the masure, equipped with a convolution product.
Then they prove that under some additional hypothesis on the ring R
(which are satisfied by R and C), Hr admits a Bernstein—Lusztig presen-
tation. In this section, we will only introduce the Bernstein—Lusztig pre-
sentation of Hz and we do not introduce masures (we introduce them in
Section 6). We however introduce the standard apartment of a masure. We
restrict our study to the case where R = F is a field.

2.1. Standard apartment of a masure
2.1.1. Root generating system

A Kac—Moody matrix (or generalized Cartan matrix) is a square matrix
A = (ai ;)i jer indexed by a finite set I, with integral coefficients, and such
that :

(1) VZ S [, am = 2,
(i) V (i,4) € I*, (i # j) = (ai; < 0);

(ii)) ¥ (4,5) € I*, (ai; = 0) & (a;; = 0).

A root generating system is a 5-tuple S = (A, XY, (;)ier, (o) )icr) made
of a Kac—-Moody matrix A indexed by the finite set I, of two dual free Z-
modules X and Y of finite rank, and of a free family («;);cs (respectively
(Y )ier) of elements in X (resp. Y') called simple roots (resp. simple co-
roots) that satisfy a; ; = () for all ¢, j in I. Elements of X (respectively
of Y) are called characters (resp. cocharacters).

Fix such a root generating system & = (A, XY, («;)ier, () )ier) and
set A :=Y ® R. Each element of X induces a linear form on A, hence X

TOME 72 (2022), FASCICULE 1



194 Auguste HEBERT

can be seen as a subset of the dual A*. In particular, the a;’s (with ¢ € I)
will be seen as linear forms on A. This allows us to define, for any i € I,
an involution r; of A by setting r;(v) := v — a;(v)ay for any v € A. Let
& = {r;|i € I} be the (finite) set of simple reflections. One defines the
Weyl group of S as the subgroup W of GL(A) generated by .. The pair
(W?,.7) is a Coxeter system, hence we can consider the length ¢(w) with
respect to ¥ of any element w of W'. If s € ./, s = r; for some unique
i€l Weset as =aq; and o) = ).
The following formula defines an action of the Weyl group W" on A*:

VeechAweW’ achA (wa)z):=alw ).

Let ® := {w.q; | (w,i) € WY x I} (resp. ¥ = {w.o) | (w,i) € WY x I})
be the set of real roots (resp. real coroots): then ® (resp. ®V) is a subset
of the root lattice Q := @,c; Zoy (resp. coroot lattice Q¥ = @, ., Za).
By [22, 1.2.2(2)], one has Ra¥ N ®Y = {+a"} and Ra N ® = {+a} for all
a¥ e ®¥ and a € P.

2.1.2. Fundamental chamber, Tits cone and vectorial faces

As in the reductive case, define the fundamental chamber as C} := {ve
Al Vse S as(v) >0}

Let T := Uyewe w@ be the Tits cone. This is a convex cone (see [22,
1.4]).

For J C .77, set FU(J) = {z € Ala;(z) =0,V j € J and a;(z) > 0,
vV j e \ J}. A positive vectorial face (resp. negative) is a set of the
form w.F¥(J) (—w.F*(J)) for some w € W¥ and J C .¥. Then by [30, 5.1
Théoréme (ii)], the family of positive vectorial faces of A is a partition of
T and the stabilizer of F¥(J) is Wy = (J).

Onesets YT =Y NCjand YT =Y NT.

Remark 2.1. — By [18, Section 4.9] and [18, Section 5.8] the following
conditions are equivalent:

(1) the Kac-Moody matrix A is of finite type (i.e. is a Cartan matrix),
(2) A=T
(3) W7 is finite.

2.2. Recollections on Coxeter groups

ANNALES DE L’INSTITUT FOURIER
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2.2.1. Bruhat order

Let (Wy, %) be a Coxeter system. We equip it with the Bruhat or-
der <y, (see [3, Definition 2.1.1]). We have the following characterization
(see [3, Corollary 2.2.3)): let u, w € Wy. Then u <y, w if and only if every
reduced expression for w has a subword that is a reduced expression for u.
By [3, Proposition 2.2.9], (Wy, <w,) is a directed poset, i.e. for every finite
set B2 C Wy, there exists w € Wy such that v <y, w for all v € E.

We write < instead of <yv. For u,v € WY, we denote by [u,v], [u,v),
...thesets {fw e WY |u<w< v}, {fweW' |u<w<v}, ....

2.2.2. Reflections and coroots

Let Z = {wsw™!|w € W' s € %} be the set of reflections of W".
Let r € Z. Write r = wsw™!, where w € WY, s € . and ws > w
(which is possible because if ws < w, then r = (ws)s(ws)™!). Then one
sets a, = w.ay € 4 (resp. ) = w.a) € ®Y). This is well-defined by the
lemma below.

LEMMA 2.2. — Let w,w’ € W? and s,s € . be such that wsw™! =
w's'w' =t and ws > w, w's’ > w'. Then w.ay = w'.ay € 4 and w.aY =
w'.a) € Y.

Proof. — One has r(z) = z — w.as(v)w.a) = z — w'.ay(z)w'.a), for
all z € A and thus w.a, € R*w'.ay and w.ay € R*w'.a),. As ® and ¢V
are reduced, w.a; = tw'.ay and w.a) = +w'.a). By [22, Lemma 1.3.13],
w.og, w'.ay € P4 and w.ay,w'.o) € @Y, which proves the lemma. O

LEMMA 2.3. — Let r,7" € # and w € W" be such that w.c, = o, or

w.ay = . Then wrw™t =171,

Proof. — Write r = vsv™! and 1’ = v's’v'~! for 5,5’ € . and v,v’ €
Wv. Then v'~lwv.as = ag. Thus by [22, Theorem 1.3.11 (b5)],

v lwesv Tt = ¢

and hence wrw=! =7/, O
Let r € Z. Then for all x € A, one has:

1

r(x) =z — a.(2),.

Let oV € ®Y. One sets rov = wsw™! where (w,s) € W? x . is such
that ¥ = w.«Y. This is well-defined, by Lemma 2.3. Thus o — 7,v and
r +— ay induce bijections ®Y — #Z and Z — ®Y. If r € #Z, r = wsw™ !,
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196 Auguste HEBERT

one sets o, = o4, which is well-defined by assumption on the o;, t € &
(see Section 2.3).
For w € WY, set Nov(w) = {a" € DY |w.a¥ € ®V}.

LEMMA 2.4 ([22, Lemma 1.3.14]). — Let w € W". Then |Ngv(w)| =
l(w) and if w = s1...s, is a reduced expression, then

Nov(w) ={a) ,sp.ay ... 80 ... 800 }.

r-tg 1>
2.2.3. Reflections subgroups of a Coxeter group

If Wy is a Coxeter group, a Coxeter generating set is a set .7y such
that (Wy, #) is a Coxeter system. Let (Wp, .#) be a Coxeter system and
Ry = {wsw ™l |w e Wy,s € )} be its set of reflections. A reflection
subgroup of Wy is a group of the form Wy = (#;) for some %, C Zy. For
w € Wy, set Ng,(w) = {r € %o|rw™! < w='}. By [9, 3.3] or [10, 1], if
S (Wh) ={r € Zo|Ng,(r) "Wy = {r}}, then (W7,.#(W1)) is a Coxeter
system.

Let (Wo, %) be a Coxeter system. The rank of (Wy, %) is |-

Remark 2.5.

(1) The rank of a Coxeter group is not well-defined. For example, by [26,
3], if k € Z>1 and n = 4(2k + 1) then the dihedral group of order n
admits Coxeter generating sets of order 2 and 3. However by [27],
all the Coxeter generating sets of the infinite dihedral group have
cardinal 2.

(2) Using [4, IV 1.8 Proposition 7] we can prove that if (Wp,.%) is a
Coxeter system of infinite rank, then every Coxeter generating set
of Wy is infinite.

(3) Reflection subgroups of finite rank Coxeter groups are not neces-
sarily of finite rank. Indeed, let W} be the Coxeter group generated
by the involutions s1, s, s3, with s;s; of infinite order when i # j €
[1,3]. Let W = (s1, s2) C Wp and Z; = {wszw ™! |w € W{} C Zo.
Then W; = (%) has infinite rank. Indeed, let ¢ : Wy — W be
the group morphism defined by ¢y = Idw; and ¥ (s3) = 1. Then
Z#1 C kertp. Thus sz appears in the reduced writing of every non-
trivial element of Wi. By [3, Corollary 1.4.4] if r € %, then the
unique element of Ng, (r) containing an s3 in its reduced writing is
r. Thus 7 (W1) D %, is infinite.
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2.3. Iwahori—Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra
via its Bernstein—Lusztig presentation, as done in [2, Section 6.6].

Let Ry = Z[(05)se.#, (04)se.], where (05)se, (04)se are two families
of indeterminates satisfying the following relations:

o if a;(Y) =Z, then o5 = ol;
o if s,t € . are such that the order of st is finite and odd (i.e. if
as(a)) = ag(a)y) = —1), then 65 = 0 = o), = 0.

To define the Iwahori-Hecke algebra 7z, associated with A and
(0s,0%)se.7, we first introduce the Bernstein—Lusztig—Hecke algebra. Let
BL{ % be the free R;-vector space with basis (Z’\Hw)Aey’wewu. For short,
one sets H, = Z°H,, for w € W? and Z*» = Z*H; for A € Y. The
Bernstein—Lusztig—Hecke algebra BXHyg, is the module BXHr, equipped
with the unique product * that turns it into an associative algebra and
satisfies the following relations (known as the Bernstein-Lusztig relations):
(BL1) V (\,w) €Y x W¥, Z* x Hy,, = Z*H,;

(BL2) Vse S YweW?,

Hy, if {(sw) = L(w) +1

H,xH, =
{(US —o;Y)Hy + Hyy  if £(sw) = f(w) — 1

(BL3) V (A, ) € Y2, Z* x ZH = Z 0
(BL4) YA€Y, Vie I, Hyx Z* — Z°* « Hy = Q,(Z)(Z> — Z**), where

B e Ve s
Qu(7) = (et s DT

The existence and uniqueness of such a product * comes from [2, Theo-

rem 6.2].

DEFINITION 2.6. — Let F be a field of characteristic 0 and f : R1 — F
be a ring morphism such that f(os) and f(ol) are invertible in F for all s €
.. Then the Bernstein—Lusztig—Hecke algebra of (A, (0s)se.7, (04)se.)
over F is the algebra BYHz = BLHr ®@g, F. Following [2, Section 6.6],
the Iwahori-Hecke algebra H r associated with S and (o, 0%,)sc.o is now de-
fined as the F-subalgebra of BLH x spanned by (Z*Hy) ey + wew (recall
that YT =Y NT with T being the Tits cone). Note that for G reductive,
we recover the usual Iwahori-Hecke algebra of G, since Y N T =Y.

In certain proofs, when F = C, we will make additional assumptions on
the o4 and o, s € .. To avoid these assumptions, we can assume that
os,0, € Cand |og| > 1,|0%| > 1 for all s € ..
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198 Auguste HEBERT

Remark 2.7.

(1) Let s € . Then if o, = o}, Qu(2) = P,

(2) Let s € . and A € Y. Then Q.(Z2)(Z* — Z**) € F[Y]. Indeed,
Q.(2)(2* — Z°*) = Q.(2).Z2M1 — Z~*= (Nl Assume that oy =

ol. Then
L—gmeWel [Vt 7o if s (3) > 0
1— 7Y —zed W T Ziel i ag(V) <0,

and thus Q4(2)(Z*—Z%*) € F[Y]. Assume o/, # 0,. Then a(Y) =
27, and a similar computation enables to conclude.
(3) From (BL4) we deduce that for all s € &, A €Y,

ZN« Hy — Hy + 75 = Qo (2) (2> — Z5).

(4) When G is a split Kac-Moody group over a non-Archimedean lo-
cal field I with residue cardinal ¢, we can choose F to be a field
containing Z[\/ail] and take f(o,) = f(ol) = /g forall s € 7.

(5) By (BL4), the family (H,, * Z*)yewv aey is also a basis of BLH z.

(6) Let w € WY and w = s1...5k, with k € Z3 and s1,...,s;, € &
be a reduced expression of w. We set o, = 0, ...0s,. This is well-
defined, independently of the choice of a reduced expression of w
by the conditions imposed on the oy and by [3, Theorem 3.3.1(ii)].

We equip F[Y] with an action of W". For § = Y,y axZ* € F[Y] and
we W set 0% =3\ y VAR

LEMMA 2.8. — Let 0 € F[Y] and w € W". Then 0% H,, — H, % 0" ' €
<w

BLH;w = @, HoF[Y]. In particular, BLH 7" := D.<., HC[Y] is a
left finitely generated F[Y]-submodule of BXH .

Proof. — We do it by induction on ¢(w). Let 8 € F[Y] and w € W" be
such that u := 0H, — H,0v ' € BLY(T#)<". Let s € . and assume that
(ws) = £(w) + 1. Then by (BL4):

0% Hyy = (Ho0”  +u) * Hy = Hyo0" ' + aH, + uH,,
for some a € F. Moreover, by [22, Corollary 1.3.19] and (BL2), ux H, €

BLY (T)<"s and the lemma follows. O

DEFINITION 2.9. — Let Hrw+ = @, cpv FHw C Hr. Then Hr we
is a subalgebra of Hx. This is the Hecke algebra of the Coxeter group
(W?,.7).
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2.4. Principal series representations

In this subsection, we introduce the principal series representations of
BLH]—'.

We now fix (A, (0s)ser, (04)ser) as in Section 2.3 and a field F as in
Definition 2.6. Let Hr and B » be the Iwahori-Hecke and the Bernstein—
Lusztig Hecke algebras of (A, (05)sec.7, (0%)sc.) over F.

Let Tx = Homg, (Y, F*) be the group of homomorphisms from Y to F*.
Let 7 € Tr. Then 7 induces an algebra morphism 7 : F[Y] — F by the
formula 7(3°, oy aye’) = 32, oy ay7(y), for 3 - aye? € F[Y]. This equips F
with the structure of an F[Y]-module.

BL

Let I, = Ind]_-[zj]’f(ﬂ =By x ®@F[y) F- For example if A € Y, w € W"

and s € ., one has:

Z)\.l Rr 1 :7'()\)1 Q7 17 Hw*Z)\ O 1 :T(A)H“’ ®7—1 and
ZANHy @, 1= Hy % 2° @, 1+ Qu(2)(2* - 2°) @, 1
=7(sNH; @, 1+ T(QS(Z)(ZA - ZS')\)) ®r 1.

Let h € I.. Write h = EAGY,U;EWU hw HwZ* @7 ¢y x, where (R z),
(cwr) € FW™XY) which is possible by Remark 2.7. Thus

h= > hyrcoat(\)H,®,1= > hwacwatr(NH, | 10,1,
AEY,weW? AEY,weW™?

Thus I, is a principal BYH z-module and (H, ®; 1)wew+ is a basis of
I;. Moreover I, = Hywv r.1 ®; 1 (see Definition 2.9 for the definition of
Hw F).

The definition of principal series representations of Hr is very similar:
we replace T by T = Hompon(Y,C) \ {0} and F[Y] by F[Y '] in
the definition above. If 7 € Tj—f , we denote by Iq_ﬁ the principal series
representation of Hr associated with 7+.

Remark 2.10. — Let r € Tr. By Lemma 2.8, ISV and 2" =
Docwrjopn FHo @7 1 are F[Y]-submodules of Ir. In particular F[Y].z
is finite dimensional for all x € I..

LEMMA 2.11. — Let T € T. Let M C I, be a finite dimensional F[Y *]-
submodule of I;. Then M is an F[Y]-submodule of I.

Proof. — Let A € Y*. Let ¢ : M — M be defined by ¢,(z) = Z .z,
for all m € M. Let z € ker(¢y). Then Z=*.Z .z = 0 = x and thus ¢,
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is an isomorphism. Moreover, c;S;l(:c) = Z M.z for all z € M and thus
ZAxeM, forallz € M. AsYT — YT =Y, we deduce the lemma. [

PRrROPOSITION 2.12. — Let 7 € T and M C I.. Then M is an Hr-
submodule of I, if and only if M is an BYH r-submodule of I.. In particular,
I. is irreducible as a BYH r-module if and only if I, is irreducible as an
‘H r-module.

Proof. — Let M C I, be a Hz-submodule. Then M is an F[Y ] sub-
module of I,. Let € M. Then by Remark 2.10, F[Yt].x C F[Y].z is
finite dimensional. Thus M =} _,, F[Y"].z and by Lemma 2.11, M is
an F[Y]-submodule of I.. As BYH r is generated as an algebra by Hr and
F[Y], we deduce the proposition. O

2.5. The algebra BXH »(Tx)

In this subsection, we introduce an algebra BYH(T) containing BYH .
This algebra will enable us to regard the elements of I, as specializations
at 7 of certain elements of BYH(Tx). When F = C, this will enable us
to make 7 € T vary and to use density arguments and basic algebraic
geometry to study the I,.

2.5.1. Description of BYH(Tx)

Let BLH(T'F) be the right F(Y') vector space @,,c o HwF(Y). We equip
axZ®
F(Y) with an action of W?. For § = % € F(Y) and w € W7, set
AEY
011) . Z)\EY GAZ’w'A

= Z)\ey b)\Zw'A .

ProrosITION 2.13. — There exists a unique multiplication * on
BLY(Tx) which equips BY¥H(Tx) with the structure of an associative al-
gebra and such that:

e F(Y) embeds into B2 H(Tx) as an algebra,
o (BL2) is satisfied,
o the following relation is satisfied:

(BL4') foralle F(Y)and s€ ., 0« Hy — Hy % 0° = Q4(Z)(0 — 6°).

The proof of this proposition is postponed to 2.5.2.
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We regard the elements of 7[Y] as polynomial functions on T by setting:

T (Z a,\ZA> = Z axt(A),

AEY AEY

for all (ay) € FO). The ring F[Y] is a unique factorization domain. Let
0 e F(Y)and (f,g9) € F[Y] x F[Y]* be such that § = 5 and f and g are
coprime. Set D(0) = {T € Tx|60(g) # 0}. Then we regard 6 as a map from
D(0) to F by setting 0(7) = gE:; for all 7 € D(6).

For we W?, let ml :BEH (TF) — F(Y) be defined by 7 (3, oy Hub) =
0, for (0,) € (Hwor)"' with finite support. If 7 € T, let
F(Y)r = {Lf,g € Fly]and g(r) # 0} C F(Y). Let PLH(Tx), =
Do HoF(Y)r C BYH(TF). This is a not a subalgebra of PX(Tr)
(consider for example ﬁ « Hy = Hg ﬁ + ... for some well chosen
AeY,se ¥ and 7 € 1Ig). It is however an Hyv r — F(Y), bimodule.
For 7 € Tr, we define ev, : B (Tx), — Hwe r by ev,(h) = h(r) =
Yowewr Huwbw (1) if b =37 cyo Hybyw € H(Y),. This is a morphism of
Hwv 7 — F(Y),-bimodules.

2.5.2. Construction of BLH(T'x)

We now prove the existence of BV (Tx). For this we use the theory of
Asano and Ore of rings of fractions: BXH(Tx) will be the ring BXH 7 *
(FIY]\ {0) .

Let V = BYHr @71y) F(Y) D BEHz, where BEH # is equipped with
its structure of a right F[Y]-module. As a right F(Y')-vector space, V =
@Dpcw HoF(Y). The left action of F[Y] on PEH z extends to an action of
F[Y] on V by setti?g 0.3 wews Hofw = D pewe (0-Hy) fu, for 6 € F[Y]
and (f,) € F(Y)"" with finite support. This equips V with the structure
of an (F[Y] — F(Y))-bimodule.

LEMMA 2.14. — The left action of F[Y] on V extends uniquely to a
left action of F(Y) on V. This equips V with the structure of an (F(Y)-
F(Y))-bimodule.

Proof. — Let w € W and P € F[Y]\{0}. Let VS¥ = Doci ) HoF(Y).
By Lemma 2.8, the map mp : VS¥ — VS defined by mp(h) = P.h is well-
defined. Thus the left action of F[Y] on VS% induces a ring morphism ¢, :
FIY] — End, (VS¥), where End,,_,(V'S?) is the space of endomorphisms
of the F(Y)-vector space VS¥.
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Let us prove that ¢,(P) is injective. Let h € VS¥. Write h =
> veft,w) Hobo, with 6, € F(Y) for all v € [1,w]. Suppose that h # 0.
Let v € [1,w] be such that 6, # 0 and such that v is maximal for
this property for the Bruhat order. By Lemma 2.8, P x h # 0 and thus
¢w(P) is injective. As VS¥ is finite dimensional over F(Y), we deduce
that ¢, (P) is invertible for all P € F[Y]. Thus ¢,, extends uniquely to a
ring morphism (fb; c F(Y) = VS¥. As (W, <) is a directed poset, there
exists an increasing sequence (wy)nez., (for the Bruhat order) such that
Unezgo[l’wn] = W?". Let m,n € Z>o be such that m < n. Let P € F[Y]
and f(m) = 5;(19) and f") = QI,,:(P) Then fl(‘?)@m = f0m) and thus
for all § € F(Y) and & € BYH(Tx), 0.3 := ¢y, (0)(z) is well-defined, inde-
pendently of k € Z>o such that € V<%, This defines an action of F(Y))
onV.

Let h € V, 0 € F(Y) and P € F[Y]\ {0}. Let z = +.h. Then as V
is an (F[Y]-F(Y))-bimodule, (P ) *0 = h 6 = P * (xz % ) and thus

zx0 = L (hx0) = (F+h)x0. Thus V is an (F(Y) — F(Y))-bimodule. O

LEMMA 2.15. — The set F[Y] C BVH z satisfies the right Ore condition:
for all P € F[Y]\ {0} and h € BvH £\ {0}, P« BXHz N hx FY] # {0}.

Proof. — Let P € F[Y]\ {0} and h € Bz \ {0}. Then by definition,
Px($+h) =h € V. Moreover, V =@, cpy» HuF(Y) and thus there exists
6 € F[Y]\ {0} such that 5 * hx6 € BLHz\ {0}. Then Px 5+ hx0 =
h 6 € Px*BYHxr N hx F[Y], which proves the lemma. O

DEFINITION 2.16. — Let R be a ring and r in R. Then r is said to be
regular if for all ¥’ € R\ {0}, rr' # 0 and r'r # 0.

Let R be a ring and X C R a multiplicative set of regular elements. A
right ring of fractions for R with respect to X is any overring S O R such
that:

e FEvery element of X is invertible in S.
e Every element of S can be expressed in the form ax~! for some
a€ Randx € X.

We can now prove Proposition 2.13. The uniqueness of such a product
follows from (BL4'). By Lemma 2.8, the elements of F[Y]\ {0} are regular.
By Lemma 2.15 and [13, Theorem 6.2], there exists a right ring of fractions
BLY(Tx) for BEH z with respect to F[Y]\ {0}. Then BLH(Tx) is an alge-
bra over F and as a vector space, BLH(Tr) = @, ey (Ho F[Y])(FIY]\
(0" = @ews HuF (V).
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Let (f,g) € F[Y] x (F[Y]\ {0}). Then it is easy to check that g« (H, *
L +Qs(2))(2 — %)) = Hy and thus L« Hy = (Hy x %+ Qs(2)(: — L),
Let f € F[Y]. A straightforward computation yields the formula 5 x Hy =

H, * (5)s + QS(Z)(g — (5)5) which finishes the proof of Proposition 2.13.

Remark 2.17.

e Inspired by the proof of [2, Theorem 6.2] we could try to define
x on V as follows. Let 61,05 € F[Y] and wy,wy € W?. Write
01 % Huy = > pewe Hobw, with (0,) € FY)W. Then (H,, *
01) * (Hy, * 02) = 3 e (Hw, ¥ Hy) * (020,,). However it is not
clear a priori that the so defined law is associative.

e Suppose that H  is the Iwahori—-Hecke algebra associated with some
masure defined in [2, Definition 2.5]. Using the same procedure as
above (by taking S = {Y*|\ € Y*}), we can construct the algebra
BL3{ » from the algebra Hr. In this particular case, this gives an
alternative proof of [2, Theorem 6.2].

3. Weight decompositions and intertwining operators

Let 7 € T'z. In this section, we study the structure of I as a F[Y]-module
and the set Homevyy . _oq(Ir, I) for 7/ € Tr.

In Section 3.1, we study the weights of I, and decompose every BLH z-
submodule of I, as a sum of generalized weight spaces (see Lemma 3.2).

In Section 3.2, we relate intertwining operators and weight spaces. We
then prove the existence of nontrivial intertwining operators I, — I, , for
all w e We.

In Section 3.3, we prove that when W" is infinite, then every nontrivial
submodule of I is infinite dimensional. We deduce that contrary to the
reductive case, there exist irreducible representations of B¥# » which does
not embed in any I.

3.1. Generalized weight spaces of I,

Let 7 € Tr. Let x € I;. Write = > ypo TwHy ®7 1, with (z) €
FW Set supp(zr) = {w € W¥ |z, # 0}. Equip W? with the Bruhat
order. If E is a finite subset of W, max(F) is the set of elements of F that
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are maximal for the Bruhat order. Let R be a binary relation on W* (for
example R =“<”, R=“#",...) and w € W". One sets

I — @ FH,®:1, Hyo s = @]-"HU,
veEW" |[vRw vRw
BT = D HF(Y)
vRw
and
BLH;EU’ = BLy(Tr)Bw Bl x = @ H,F[Y].
vRw
Let V be a vector space over F and E C End(V). For 7 € FF set
Vir)={veV]ev =17(e)v,Vee€ E} and V(r,gen) = {v € V| I k €
Zso|(e —7(e)Id)*.v =0, Ve € E}. Let Wt(E) = {r € FF|V(7) # {0}}.
The following lemma is well known.

LEMMA 3.1. — Let V be a finite dimensional vector space over F. Let
E C End(V) be a subset such that for all e,e’ € E,

(1) e is triangularizable
(2) ee =¢ée.

Then V =@, cwim V(7. gen) and in particular Wt(E) # 0.

For 7 € Tr, set W, = {w e W? |w.t =1}
Let M be a B r-module. For 7 € T, set

M(r) = {m e M| Pm =r(P).m, ¥ P € F[Y]}

and

M(r,gen) = {m € M |3k € Zso| ¥ P € F[Y],(P — 7(P))*.m = 0}

> M(7).
Let
Wit(M) = {r € Tr | M(7) # {0}}
and
Wt(M,gen) = {7 € T | M(7,gen) # {0} }.
LEMMA 3.2.

(1) Let 7,7" € Tr. Let « € I (7', gen). Then if x # 0,
max supp(z) C {w € W' |w.r = 7'}
In particular, if I (7', gen) # {0}, then 7" € W".T and thus
Wt(I,) C W.r.
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(2) LetT € Tr. Let M C I be a F[Y]-submodule of I.. Then Wt(M) =
Wt(M,gen) C W¥.r and M = EBXeWt(M) M (x, gen). In particular,
Wt(M) # 0.

Proof.
(1). — Let « € I.(7',gen) \ {0}. Let w € maxsupp(x). Write & =
awHy, ®; 1+ y, where a,, € F\ {0} and y € I?w. Then by Lemma 2.8,

Z g = apHyZ% > 9,1+ Y =1(w  NawHy, @, 1+

where 3’ € I?w. Therefore w.7 = 7'.

(2). — Let w € W¥. Let P € F[Y] and mp : ISY — IS¥ be de-
fined by mp(z) = P for all z € ISY. Then by Lemma 2.8, (mp —
w.T(P)1d)(IS¥) C I=*. By induction on ¢(w) we deduce that mp is tri-
angularizable on IS¥ and Wt(IS%) C [1,w].7 C W".T.

Let x € M and M, = F[Y].z. By the fact that (W", <) is a directed
poset and by Lemma 2.8, there exists w € WV such that M, C ISY.
Therefore, for all P € F[Y], mp : M, — M, is triangularizable. Thus by
Lemma 3.1,

FlY]x = @ (X, gen) @ M, (x, gen).
XEWt(M;,gen) XEWv.T
Consequently, M = > s Mo = @, cwi(ar,gen) M (X, gen) and Wt(M) C
Upenws WHISY) C WV.r.

Let x € Wt(M, gen). Let © € M(x,gen) \ {0} and N = F[Y].z. Then
by Lemma 2.8, N is a finite dimensional submodule of I-. By Lemma 3.1,
Wt(N) # 0. As Wt(N) C {x}, x € Wt(M). Thus Wt(M,gen) C Wt(M)
and as the other inclusion is clear, we get the lemma. O

PROPOSITION 3.3 (see [25, 4.3.3 Théoréme (iii)]). — Let 7,7 € Tx
and M (resp. M') be a BYH r-submodule of I, (resp. I,/). Assume that
Homeryy, —moa(M, M') \ {0}. Then 7" € W".T.

Proof. — Let f € Homsry, . (M, M’)\{0}. Then by Lemma 3.2(2), there
exists w € W?/W, such that f(M(w.7,gen)) # {0}. Then w.r € Wt(I/)
and by Lemma 3.2(1) the proposition follows. O

An element 7 € T is said to be regular if w.T # 7 for all w € W\ {1}.
We denote by T=* the set of regular elements of Tr.

PROPOSITION 3.4 (see [20, Proposition 1.17]). — Let 7 € Tr.
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(1) There exists a basis (& )weww of I such that for all w € W?:
o {, €ISV and Tl (¢,) =1
o &, € I.(w.T,gen).
Moreover, if w € WV is minimal for < among {v € W"|v.T1 = w.T},
then &, € I (w.T). In particular, Wt(I;) = W".r.
(2) If 7 is regular, then I, (w.T,gen) = I.(w.T) is one dimensional for
allw e W¥ and I, = I (w.T).

Proof.
(1). — Let w € W". Then by Lemma 2.8, Lemma 3.1 and Lemma 3.2,

ISV = @ ISY(T.7, gen).
TEW /W,

weWv

Write Hy ®r 1 = 3 5cyoyy, T5, Where a3 € IS¥(v.r,gen) for all v €
Wv/W,. Let v € W¥/W, be such that 7 (z5) # 0. Then max supp(zy) =
{w} and by Lemma 3.2, w.r = v.7. Set &, = %xg Then (£4)uewe
is a basis of I, and has the desired properties. Let w € WY be minimal
for < among {v € W¥lv.r = w.t}. Let A € Y. Then by Lemma 2.8,
(Z* —w.r(\).&w) € I (w.t,gen) N I=. By Lemma 3.2, we deduce that
(Z* —w.T()\)).£w = 0 and thus that &, € I (w.7). Thus w.r € Wt(I,) and
by Lemma 3.2, Wt(I;) = I,.

(2). — Suppose that 7 is regular. Let w € WY, A € Y and « € I, (7, gen).
Then by Lemma 3.2 (1), x —n 2 (2)&, € I (1,gen)NI= = {0}. By (1), &, €
I (w.r) and thus I.(7) = I (7, gen) is one dimensional. By Lemma 3.2, we
deduce that I, = @, cpo Ir(w.T). O

3.2. Intertwining operators and weight spaces

In this subsection, we relate intertwining operators and weight spaces
and study some consequences. Let 7 € Tx. Using Section 3.1, we prove the
existence of nonzero morphisms I, — I, , for all w € W". We will give a
more precise construction of such morphisms in Section 4.4.

Let M be a BYH z-module and 7 € Tx. For x € M(7) define Y, : I, — M
by Yo (u.1®; 1) = u.z, for all u € B¥Hx. Then T, is well-defined. Indeed,
let u € BYH z be such that u.1 ®, 1 = 0. Then u € F[Y] and 7(u) = 0.
Therefore u.x = 0 and hence T, is well-defined. The following lemma is
then easy to prove.

LEMMA 3.5 (Frobenius reciprocity, see [20, Proposition 1.10]). — Let
M be a B¥H z-module, T € Tx and x € M (7). Then the map Y : M (1) —
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Homsvyy , —pmoa(Ir, M) mapping each x € M(7) to Y, is a vector space
isomorphism and Y~!(f) = f(1 ®, 1) for all f € Homery . _pea(Lr, M).

PROPOSITION 3.6 (see [25, (4.1.10)]). — Let M be a BYH z-module such
that there exists £ € M satisfying:
(1) there exists T € Tr such that £ € M (1),
(2) M =BLyrg.

Then there exists a surjective morphism ¢ : I, — M of B¥H r-modules.
Proof. — One can take ¢ = T¢, where T is as in Lemma 3.5. O

PROPOSITION 3.7 (see [25, Théoréme 4.2.4]). — Let M be an irreducible
representation of BLH x containing a finite dimensional F[Y]-submodule
M’ # {0}. Then there exists T € Tx such that there exists a surjective
morphism of BYH x-modules ¢ : I, — M.

Proof. — By Lemma 3.1, there exists £ € M’ \ {0} such that Z*.€ € F.£
for all p € Y. Let 7 € T be such that £ € M(7). Then we conclude with
Proposition 3.6. g

Remark 3.8. — Let Z(BYH x) be the center of BXH . When W is finite,
it is well known that BLYH z is a finitely generated Z(BYHz) module and
thus every irreducible representation of % r is finite dimensional. Assume
that W7 is infinite. Using the same reasoning as in [1, Remark 4.32] we
can prove that BYH r is not a finitely generated Z(B“H z)-module. As we
shall see (see Remark 4.11), when F = C, there exist irreducible infinite
dimensional representations of B% . However we do not know if there
exist an irreducible representation V of BLH = such that for all z € V'\ {0},
F[Y].z is infinite dimensional or equivalently, a representation which is not
a quotient of a principal series representation.

PROPOSITION 3.9 (see [20, (1.21)]). — Let 7 € Tr and w € W?. Then

HomBLHF,mod(I‘r; Ium') 7é {0}

Proof. — By Proposition 3.4 w.7 € Wt(I,) and we conclude with Lem-
ma 3.5. O

3.3. Nontrivial submodules of I. are infinite dimensional

In this subsection, we prove that when W" is infinite, then every sub-
module of I, is infinite dimensional. We then deduce that there can exist
an irreducible representation of B¢ such that V' does not embed in any
I, for 7 € T¢.
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LEMMA 3.10. — Assume that WV is infinite. Let w € W?. Then there
exists s € . such that sw > w.

Proof. — Let Dp(w) = {s € ¥ |sw < w}. By the proof of [3, Lem-
ma 3.2.3], . € Dp(w), which proves the lemma. O

PROPOSITION 3.11 (compare [25, 4.2.4]). — Let 7 € Tr. Let M C I,
be a nonzero Hw r-submodule. Then the dimension of M is infinite. In
particular, if V is a finite dimensional irreducible representation of BV H x,
then Homsry . poa(V, 1) = {0} for all T € Tr.

Proof. — Let m € M \ {0}. Let ¢(m) = max{f(v)|v € supp(m)}. Let
w € supp(m) be such that ¢(w) = £(m). By Lemma 3.10 there exists
(8,) € %21 such that if w; = w and wy, 41 = s,wy, for all n € Zx1, one
has ¢(wp41) = €(wy,) +1 for all n € Zxq. Let my = m and my,41 = Hy,.m,,
for all n € Z>1. Then for all n € Z>1, w, € max (supp(my)), which proves
that M is infinite dimensional. O

As we shall see in Appendix A, there can exist finite dimensional repre-
sentations of BlHc.

4. Study of the irreducibility of -

In this section, we study the irreducibility of I..

In Section 4.1, we describe certain intertwining operators between I; and
I, ,, for s € . and T € Tx. For this, we introduce elements F, € BLH(T%)
such that Fs(x) ®, 1 € I, (s.x) for all x € Tr for which this is well-defined.

In Section 4.2, we establish that the condition (2) appearing in Theo-
rems 1.1, 1.3 and 1.4 is a necessary condition for the irreducibility of I .
This conditions comes from the fact that when I is irreducible, certain
intertwinners have to be isomorphisms.

In Section 4.3, we prove an irreducibility criterion for I involving the
dimension of I (7) and the values of 7 (see Theorem 4.8). We then deduce
Matsumoto criterion.

In Section 4.4 we introduce and study, for every w € WV, an element
F,, € BUH(TF) such that F,,(x) ®, 1 € I, (w.x) for every x € Tt for which
this is well-defined.

In Section 4.5 we prove one implication of Kato’s criterion (see Proposi-
tion 4.17).

The definition we gave for I is different from the definition of Matsumoto
(see [25, (4.1.5)]). It seems to be well known that these definitions are
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equivalent. We justify this equivalence in Section 4.6. We also explain why
it seems difficult to adapt Kato’s proof in our framework.

4.1. Intertwining operators associated with simple reflections

Let s € . In this subsection we define and study an element F, €
BLY(TF) such that Fs(x) ®, 1 € L (s.x) for all x such that Fs(y) is well-
defined.

Let s€ % and Ts = 0,H,. Let w € WY and w = s;1... 8, be a reduced
writing. Set T, = T, ...Ts,. This is independent of the choice of the
reduced writing by [2, 6.5.2].

Set By = Ts — 02 € Hwv 7. One has B2 = —(1 + 02)B,. Let (s =
—0,Qs(Z) + 02 € F(Y) C BN (TF). When o, = o), = \/q for all s € .7,
we have ¢, = 1= qZ > e F(Y). Let Fy = By + (, € BYH(T%).

Let oV € CDV erte a’ = wa) for w € WY and s € .. We set

Cav = (Cs)w'
Let oV € ®V. Write o = w.a), with w € WV and s € .. We set
o0qv = 05 and o/v = w.o,. This is well-defined by Lemma 2.4 and by the

relations on the oy, t € .7 (see Section 2.3).

<

ER
¢coum

The ring F[Y] is a unique factorization domain. For oY, write (,v = P
aV

where gggm,ggsn € F[Y] are pairwise coprime. For example if o¥ € ®V is
such that o,v = 0/, we can take (%" =1 — Z=" and in any case we will
choose (39" among {1 — Z=' 14272 1— Zfzav}.

Remark 4.1. — Let 7 € Tr and r = rov € Z. Suppose that r.7 # 7.
Then ¢I°(7) # 0. Indeed, let A € Y be such that 7(r.\) # 7(\). Then
T(rA=X) = 7(aY)* ™) +£ 1. Suppose gov = 0’y , then ¢I" = 1—Z~" and
thus 7(¢4") # 0. Suppose o, = o... Then a,.(\) € 2Z thus 7(ay) ¢ {—1,1}
and hence 7(¢") # 0.

LEMMA 4.2. — Let s € . and 0 € F(Y). Then
0xF, =F,*0°.

In particular, for all T € T such that 7(¢3%) # 0, Fy(1) ®, 1 € I.(s.7)
and Fs(17) Q.. 1 € I (7).

Proof. — Let A € Y. Then
Z % By — By % Z°> = 0,(Z* « Hy — Hy + Z°) + (25 — Z7)
= —0,Qs(2)(2°* = 2*) + 02(2°* = 7
— (25N — 7).
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Thus Z* x Fy = Z* % (Bs + () = Fy * Z** and hence 0 x F, = F, % §* for
all 9 € F[Y].

Let 6 € F[Y]\ {0}. Then 6 % (F x 5-) = F, and thus § * Fy = Fy 2.
Lemma follows. O

LEMMA 4.3. — Let s € .. Then F? = (5 € F(Y) C BVH(T¥).

Proof. — By Lemma 4.2, one has:
F2 = (Bs+ () + F,
=B, xF,+ F, « (¢
= B2+ Bu(s + BiGS + (G
= By(—1 =07+ G+ G + G5
= (sCs- O

4.2. A necessary condition for irreducibility

In this subsection, we establish that the condition (2) appearing in The-
orems 1.1, 1.3 and 1.4 is a necessary condition for the irreducibility of I..
Recall the definition of T from Section 3.2.

LEMMA 4.4. — Let 7 € Tr and s € .% be such that 7(¢3°")7((¢d")®) #
0. Let ¢(1,5.7) = Tp,(n@, 1 Ir = Is7 and ¢(s.7,7) = Vg (1)@, 1 ¢ Lsr —
I.. Then

d(s.1, 7)o p(T,8.7) = 7(¢:¢) Idy, and ¢(7,8.7) 0 p(s.7,7) = 7((sC5) Idy, .

Proof. — By Lemma 4.2 and Lemma 3.5, ¢(s.7,7) and ¢(r,s.7) are
well-defined. Let f = ¢(s.7,7) 0 ¢(7,5.7) € Endery . _moa(Lr). Then by
Lemma 4.2 and Lemma 4.3:

FA®:1) = 6(s.7,7) (Fs(T) ®s.r 1)
= Fy(1).¢(5.7,7) (1 ®s.7 1)
= F,(1)*®,1
= 7(CC3) @r 1.
By symmetry, we get the lemma. O

Let Uz be the set of 7 € T'x such that for all ¥ € Y, 7(¢2V™) # 0. When
o, =0, =,/q forall s € 7, then Ur = {17 € Tr|7(a¥) #¢, Va’ € &'}
We assume that for all s € .7, 0, ¢ {0;1, —04, —0o;1}. Under this condi-
tion, if oV € ®V and 7 € T are such that 7(¢I%") = 0, then 7(¢2U™) # 0.
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LEMMA 4.5.

(1) Let 7 € Ur. Then for all w € WY, I, and I,,, are isomorphic as
BLY r-modules.
(2) Let T € T'r be such that I, is irreducible. Then T € Ur.

Proof. — Let 7 € Ur. Let w € WY and 7 = w.7. Let s € .. Assume that
5.7 # 7. Then by Remark 4.1, ¢3°%(7) # 0 and ¢3°"(s.7) # 0. Therefore
Cs(7), (s(s.T) are well-defined and hence Fy(7), F;(7T) are well-defined. Let
¢(7~',s7~') = TFS(;.)®S_7__1 : I;- — IS,; and qb(s?, ?) = TFS(-T—)®;1 : IS_7- — I;.
Then by Lemma 4.4,

d(s.7,7) 0 d(T,8.7) = T((sC2) Iy,
and  @(7,s.7) o p(s.7,7) =7T(¢:C0) Wy, -

By definition of Ur, 7((sCZ) = T(¢s)T(CE) # 0 and thus ¢(7,s.7) and
¢(s.7,T) are isomorphisms. Consequently I is isomorphic to I 7 and (1)
follows by induction.

Let 7 € T'r be such that I, is irreducible. Let s € ..

Suppose 7(¢4*") = 0. Then by assumption, 7({2"™) # 0. Moreover by
Remark 4.1, I, . = I,.
Suppose now 7(¢%°%) # 0. Then (with the same notations as in Lem-
ma 4.4), ¢(s.7,7) # 0 and Im (¢(s.7,7)) is a BLYH r-submodule of I:
Im (gb(s.T, 7')) = I.. Therefore ¢(7, s.7)op(s.7,7) # 0. Thus by Lemma 4.4,
¢(7,s.7) is an isomorphism and 7((;(?) # 0. In particular, 7(¢2™) # 0.

Therefore in any cases, I, is isomorphic to I, and 7(¢™™) # 0. By
induction we deduce that I, - is isomorphic to I.. Thus I, , is irreducible
for all w € W?. Thus w.r({M™) # 0 for all w € W" and s € ., which

proves that 7 € Ur. d

LEMMA 4.6. — Let 7 € T be such that I, ; ~ I, (as a B*H-module)
for all w € W". Then for all w € W7, there exists a vector space isomor-
phism I.(7) ~ I (w.T).

Proof. — Let w € W". Then by hypothesis, Homsry, _moa (L7, I7) =~
Homsryy, —mod(Lw.7s Lw.r). Let ¢ : I — I, be a BL3{ r-module iso-
morphism. Then ¢ induces an isomorphism of vector spaces I,(w.T) ~
Iy (w.T). By Lemma 3.5,

I (1) ~ Homsry , —mod (L7, I7) ~ Homsryy . —mod (Lw.r> Lw.r)
~ Ly-(wr) =L (wr). O
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4.3. An irreducibility criterion for I

In this subsection, we give a characterization of irreducibility for I, for
T elt.
If B is a C-algebra with unity e and a € B, one sets

Spec(a) = {\ € C| a — Ae is not invertible}.
Recall the following theorem of Amitsur (see Théoréme B.I of [31]):

THEOREM 4.7. — Let B be a C-algebra with unity e. Assume that the
dimension of B over C is countable. Then for all a € B, Spec(a) # 0.

Recall that Uc is the set of 7 € T such that for all ¥ € @Y, 7(¢C2V™) # 0.

THEOREM 4.8. — Let 7 € T¢. Then the following are equivalent:
(1) I is irreducible,
(2) I;(1) =C.1®, 1 and T € Ug,
(3) EndBL/HC_InOd(IT) =C.Id and 7 € Uc.

Proof. — Assume that B = EndsLy;._moa(lr) # CId. By Lemma 3.5
and the fact that I has countable dimension, B has countable dimension.
Let ¢ € B\CId. Then by Amitsur Theorem, there exists v € Spec(¢). Then
¢ — v1d is non-injective or non-surjective and therefore Ker(¢ — vId) or
Im(¢— Id) is a non-trivial BHc-module, which proves that I, is reducible.
Using Lemma 4.5 we deduce that (1) implies (3).

By Lemma 3.5, (2) is equivalent to (3).

Let 7 € T¢ satisfying (2). Then by Lemma 4.5 and Lemma 4.6,
dim I (w.r) = 1 for all w € W". By Lemma 4.5, for all w € W7, there ex-
ists an isomorphism of BMHc-modules f,, : Lyr — I;. As C.f,(1®4,.,1) C
I (w.T) we deduce that I.(w.7) = C.f,(1 ® .- 1) for all w € W?.

Let M # {0} be a BY¥c-submodule of I,. Let + € M \ {0}. Then
M’ = C[Y].z is a finite dimensional C[Y]-module. Thus by Lemma 3.1),
there exists ¢ € M’ \ {0} such that Z*.¢ € C.¢ for all A\ € Y. Then
¢ € I.(7") for some 7/ € Ty. By Lemma 3.2, 7/ = w.T, for some w € W".
Thus € € C* f,(1 4. 1). One has

BLHC'E = fw(BLH(C-l Quw.r 1) = fw(Iw.T) - IT C M.
Hence I is irreducible, which finishes the proof of the theorem. O

Remark 4.9. — Actually, our proof of the equivalence between (2) and
(3), and of the fact that (2) implies (1) is valid when F is a field, without
assuming F = C.
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Recall that an element 7 € T'r is called regular if w.7 # 7 for all w € W".

COROLLARY 4.10 (see [25, Théoreme 4.3.5]). — Let 7 € Tr be regular.
Then I, is irreducible if and only if T € Ur.

Proof. — By Lemma 4.5, if I, is irreducible, then 7 € Ux.
Assume that 7 € Ur. Then by Proposition 3.4(2), dim I (7) = 1 and we
conclude with Theorem 4.8 and Remark 4.9. g

Remark 4.11. — Assume that 7 = C and that o, = 0f = /g for all
s € 7, for some q € Zxs. Let (y;)jcs be a Z-basis of Y. Then the map
Te — (C*)7 defined by 7 € Tt + (7(y;));es is a group isomorphism. We
equip T¢ with a Lebesgue measure through this isomorphism. Then the set
of measurable subsets of Tt having full measure does not depend on the
choice of the Z-basis of Y. Then Ue = (\,veov{T € Tc|7(aY) # ¢} has
full measure in Tc. Moreover T¢™® O ((ycy\ (o317 € Tr | 7(A) # 1} has full
measure in Tt and thus {7 € T¢ | I is irreducible} has full measure in T¢.

Recall that Z = {wsw™! |w € W, s € .} is the set of reflections of W.
For 7 € Tg, set Wy = {w € WY |wr =7}, @) ={a’ € Y | ¢den () = 0},
%(T) = {’r’ =Trqv € %|OZV S @2/7_)} and

Wiry = (Z(r)) = ({r = rav € Z| (5 (1) = 0}) C W,

By Remark 4.1, W) C W. It is moreover normal in W,.. When o, (Y') = 7Z
for all s € ., then W,y = (W, NZ).

COROLLARY 4.12. — Let 7 € Tx be such that W, = W) = {1,t} for
some reflection t. Then I is irreducible if and only if 7 € Ur.

Proof. — By Lemma 4.5, if I- is irreducible, then 7 € Ux. Conversely, let
T € Ur be such that W, = W)= {1,t}, for some t € Z. Write t = v 'sv
for s € . and v € W". Let T = v.7. One has s.7 =7 and W; = {1, s}. By
Lemma 3.2, Ir(7) C IS°.

Let A € Y. Then Z) Hy®:1 =T\ Hs®: 1+7(Qs(Z)(Z* — Z5*))1®5 1.

Suppose oy = o,. Then as W(z) = v.Wv™" = {1, s}, one has 7(ay) =
1. By Remark 2.7, 7((Qs(2)(Z* — Z**)) = (05 — 07 )as(\). As there ex-
ists A € Y such that as(\) # 0, we deduce that Hs ®; 1 ¢ I:(7) and thus
I:(7) = F.1 ®; 1. Similarly, if o5 # o/ then I+:(7) = F.1 ®: 1. By Theo-
rem 4.8 and Remark 4.9, we deduce that I; is irreducible. By Lemma 4.5
we deduce that I is isomorphic to Iz and thus I, is irreducible. O
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4.4. Weight vectors regarded as rational functions

In this subsection, we introduce and study elements F,, € BYH (Tx), w €
W7, such that for all x € T'r such that F,,(x) is well-defined, Fy,(x) ®, 1 €
L (w.x).

For w € WY, let 7l : BLH(Tx) — F(Y) be the right F(Y)-module
morphism defined by 71 (T,) = 6,., for all v € W".

LEMMA 4.13. — Let F’' be an uncountable field containing F. Let P €
F[Y] be such that P(t) =0 for all T € T?. Then P = 0.

Proof. — Let Fy C F be a countable field (one can take Fyp = Q or
Fo = Iy for some prime power £). Write P = ), _y arZ*, with ay € F
for all A € Y. Let (y;);cs be a Z-basis of Y and X; = Z¥% for all j € J.
Let F; = Folax|A € Y). Let (z;)jes € (F')7 be algebraically independent
over Fi. Let 7 € T be defined by 7(y;) = x; for all j € J.

Let us prove that 7 € Tx®. Let w € WY \ {1}. Let A € Y be such
that w™" A — X # 0. Write w™" A — X = 37 ;n;y; with n; € Z for
all j € J. Let @ = [, Z;-Lj € FilZ;,5 € J]. Then @Q # 1 and thus
T(w A=) = Q((z)jes) # 1. Thus w.r # T and 7 € T8, Thus P(1) =0
and by choice of (z;);ecs this implies P = 0. O

Let w € WV. Let w = s1...s, be a reduced expression of w. Set F,, =
F, ...Fy, = (Bs, +()...(Bs, + () € BYH(T#). By the lemma below,
this does not depend on the choice of the reduced expression of w.

LEMMA 4.14 (see [29, Lemma 4.3]). — Let w € W".

(1) The element F,, € BYH(Tx) is well-defined, i.e. it does not depend
on the choice of a reduced expression for w.

(2) One has F,, — T,, € BVH(Tx)<™.

(3) If6 € F(Y), then 0 % F,, = Fyy % 0% .

(4) If 7 € Tx is such that (gv € F(Y), for all ¥ € Ngv(w), then
F, € B"H(TF), and F,(7).1 ®, 1 € I (w.T).

(5) Let T € Tx®. Then F,, € BYH(TF),.

Proof. — Let us prove (4) by induction on ¢(w). By Lemma 4.2, 6 x
Fy = Fu % 0% for all @ € F(Y). Let n € Zso and assume that (4)
is true for all w € WY such that {(w) < n. Let w € W? be such that
l(w) < n+ 1. Write w = sv, with s € . and ¢(v) < n. By Lemma 2.4,
Ngv(sv) = Ngv(v) U{v t.aY}. Let 7 € T'r be such that {,v € F(Y), for
all @ € Ngv(w). One has F,, = (Bs + () * Fy,. As F, € BY'H(Tx), and
BLY(Tx), is a left Hyv r-submodule of BYH(Tx), B, x F, € BLH(Tx),.
One has (; * F, = F, * C;fl € BLY(Tr), and hence F,, € BVH(TF),.
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Let 7 € Tr be such that (,v € F(Y), for alla¥ € Ngv(w). Let 6 € F[Y].

Then
(6% Fu)(7) = (Fu x 6" ) (1) = 7(6" " )r(Fu(r)),
which finishes the proof of (4).

Let 7 € Tx® and a¥ € ®Y. Write a¥ = w.o) for w € W? and s € ..
Then s.w™!.7 # w~l.7 and by Remark 4.1, w=1.7(¢4°") # 0 or equivalently
7(¢4S") # 0. By (4) we deduce that F,, € BEH(Tx), for all 7 € T5~#, which
proves (5).

Let us prove (2). Let v € WV be such that h := F, — T, € BVH(Tx)<v
and s € . be such that sv > v. Then

Fyp = (Ts—02+C) % (Ty+h) = Toy+ (=02 +C) ¥ Ty + (=02 + () kh+ Ty xh.
By Lemma 2.8,
(=02 +¢) * Ty, (=02 + C) * h € BEH(TF)SV.

By [22, Corollary 1.3.19], s.[1,v) C [1,sv) and thus Ty * h € BLH (Tx)<s®
thus Fy, — Ty, € BEH(TF)<*. By induction we deduce (2).

Let w =87...8, = s} ...5s. bereduced expressions of w. Let F, be asso-
ciated to sy ... s, and F), be associated to s] ... s.. Let 7' be a uncountable
field containing F. Then by Proposition 3.4(2), for all 7 € T%/ there ex-
ists (1) € F* such that F,(7) = 6(7)F/,(7). Let v € W? be such that
T(F}) # 0 and 0, = Zir5=} € F(Y). Then 6,(r) = 0(r) for all 7 € TRE.
But by (2), 0(7) = 1 for all T € T#. Thus by Lemma 4.13, § = 1 = 6,, and
F =F,. 0

Remark 4.15. — When o, = o/, for all s € ., the condition (4) is
equivalent to 7(8Y) # 1 for all 3 € Ngv(w).

4.5. One implication of Kato’s criterion

Recall the definition of W) from Section 4.3.
In this subsection, we prove that if I, is irreducible, then W, = W,

LEMMA 4.16. — Let 7 € T be such that Wr # W, Let w € W\ W,y
be of minimal length. Then F,, € BY*H(Tr),.

Proof. — Write w = s, ...s1, where k = ¢(w) and s1,...,s; € %. Let
Jj € [0,k —1]. Set w; = s;...s1. Suppose that w;. ;iffl(T) = 0. Then

Twi;ayY = 81...88j418j...51 € W(;). Moreover as W,y C W, we have
sj41

Sj41...51.T = 8 ...51.7. Therefore

T=WT=5k...5...51.T =8k ...5j41...51.T,
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and w' = sp...5511...51 € W;. By definition of w, w' € W) Conse-
quently

— A. . . . — / .
W=S5p...541...51.51...585.8j41.5j...51 =W rw]._a:jﬂ € Wiy:

a contradiction. Therefore w;. Sj"fl (1) # 0 and by Lemma 2.4 and Lem-

ma 4.14, F,, € BLH(Tx),. O
PROPOSITION 4.17. — Let 7 € Tt be such that W, # W,). Then I is
reducible.

Proof. — Let w € W, \ W, be of minimal length. Then by Lemma 4.16
and Lemma 4.14, F,(7) ®, 1 € I.(7). Moreover, 7. (ED(T) Q0 1) =1 and

w

thus F,(7) ®, 1 ¢ C1 ®; 1. We conclude with Theorem 4.8. O

4.6. Link with the works of Matsumoto and Kato

Assume that WV is finite. Then He = BYHc. Let 7 € Te. Then by
Section 2.4, dimc I, = |[W?|. One has Z*1®, 1 =7(A\)1®, 1 forall A €Y
and Hc.1 ®, 1 = I;. Thus by [25, Théoréme 4.1.10] the definition we used
is equivalent to Matsumoto’s one.

Assume that Hc is associated with a split reductive group over a field
with residue cardinal . Then by (BL2), one has:

(w) +1
-1

Tow if £(sw) = L(w
(q— DTy + qTs  if L(sw) = L(w)

Set 17 = > cwv Tw @ 1. Then if s € .7, Ti.1, = ql’.. Then by [20,
(1.19)], 17 is proportional to the vector 1, defined in [20]. Kato proves
Theorem 1.1 by studying whether the following property is satisfied: “for
all w e WY, He. 1), . = I,.+” (see [20, Lemma 2.3]). When W is infinite,
we do not know how to define an analogue of 1/ and thus we do not know
how to adapt Kato’s proof.

Vse. s VweW, TS*Tw:{

5. Description of generalized weight spaces

In this section, we describe I (7,gen), when 7 € Tt is such that Wi, =
W.. We then deduce Kato’s criterion for size 2 matrices.

Let us sketch our proof of this criterion. By Theorem 4.8 and Proposi-
tion 4.17, it suffices to study I (7) when 7 € Uc is such that W, = W,
For this, we begin by describing I (7, gen). Let 7 € T¢ satisfying the above
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condition. By Dyer’s theorem, (W,),.77) is a Coxeter system, for some
S C Wy Let r € . We study the singularity of F,. at 7, that is,
we determine an (explicit) element § € C(Y) such that F, — 6 is defined
at 7 (see Lemma 5.19). Using this, we then describe (7, gen). We then
deduce that when W, = W/, is the infinite dihedral group then I.(7) is
irreducible. After classifying the subgroups of the infinite dihedral group
(see Lemma 5.34), we deduce Kato’s criterion for size 2 matrices.

In Section 5.1, we study the torus T¢.

In Section 5.2, we introduce a new basis of Hy» ¢ which enables us to
have information on the poles of the coefficients of the F,.

In Section 5.3, we give a recursive formula which enables us to have
information on the poles of the coefficients of the F,.

In Section 5.4, we study the singularity of F,. at 7, for r € 7.

In Section 5.5, we give a description of I,.(7, gen), when W, = Wiry.

In Section 5.6, we prove that when W, = W, is the infinite dihedral
group and T € Ug, then I is irreducible.

In Section 5.7, we prove Kato’s criterion for size 2 Kac—Moody matrices.

This section is strongly inspired by [29].

In certain proofs, when F = C, we will make additional assumptions on
the o5 and o, s € .. To avoid these assumptions, we can assume that
os,0, € Cand |og| > 1,|0%] > 1 for all s € ..

5.1. The complex torus T¢

We assume that |os| € Rsq for all s € .. Let (y;);es be a Z-basis of Y.
The map Tc — (C*)7 mapping each 7 € Tc on (7(y;)),es is a bijection.
We identify Tc and (C*)”7. We equip Tc with the usual topology on (C*)7.
This does not depend on the choice of a basis (y;);es.

LeEMMA 5.1. — The set {1 € Tc |V (w,A) € W*\ {1} x (C} NY),
w.T(X) # 7(A\)} is dense in Tg. In particular, T¢™® is dense in Tg.

Proof. — Let A € CyNY. By [4, V.Chap 4 Section 6 Proposition 5], for all
we WY\ {1}, wA # X Let (v;)jes € (C*)” be algebraically independent
over Q and 7, € T¢ be defined by 7, (y;) = ~, for all j € J. Then w.7,(\) #
7,(\) for all w € WV \ {1}. Let 7 € Tc. Let (7)) € ((C*)J)Z20 be such
that (") is algebraically independent over Q for all n € Z( and such that
7™ = (7(y;))jes- Then 7. — 7 and we get the lemma. O

Let A C R be a ring. We set Q4 = @, Ay CA.
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LEMMA 5.2. — Let (vs) € (C*)?. Then there exists T € Tc such that
T(a)) =, for all s € 7.

Proof. — Let us prove that there exists n € Zx; such that 1Qy >
Y N QY- The module Y N Qg is a Z-submodule of the free module Y.
Thus it is a free module and its rank is lower or equal to the rank of Y.
Let (yj)jes be a Z-basis of Y N Qg. As o) € Y N Qg for all s € .7, we
have we have vectg(Y N Q) = Qg Therefore for all j € J, there exists
(mj.s) € Q7 such that y; = > jesmyse and thus there exists n € Zx1
such that 2QY DY N QY-

1
Let S be a complement of Y N Qé in Y ®Q. For s € ., choose 75+ € C*
1
such that (7)™ = 7,. Let 7 : 2QY ®S — C* be defined by 7(3 ., “ay +

1
z) = [T e (79 )% for all (as) € Z7 and z € S. Let 7 = 7|y Then 7 € T¢
and 7(a)) = v, for all s € .7. O

5.2. A new basis of Hyv ¢

In [21], Kazhdan and Lusztig defined the Kazhdan-Lusztig basis
(Cw)wewr of Hyw ¢ in the case where o, = o for all s € .. This ba-
sis is defined by its properties with respect to some involution of Hy ¢
and by the fact that C, — T, € D, ., CT,, for w € W (see [21, Theo-
rem 1.1] for a precise statement). This basis was then defined in the general
case (where the o5, s € .7 need not be all equal) see [24, 6] for example. We
now define a basis (By)wewv of Hwv ¢ from the Kazhdan-Lusztig basis
(Cw)wewr and then compute the coeflicient in front of B; of the expansion
of F,, in the basis (By)yewv, for w € WY (see Lemma 5.4). This will en-
able us to have information on the coefficient 7 (F,,) € C(Y), for w € W?
(see Lemma 5.4 and Lemma 5.19). Our computation relies on certain mul-
tiplicative properties of (B,,) (see Lemma 5.3) and we will not need the
precise definition of the Kazhdan—Lusztig basis.

Let (Cy)wewr be the basis introduced in [24, 6]. For w € WY, we set
B, = (-1)!™g,C,, where o, is defined in Remark 2.7(6). Then for
s€.%,one has B, =T, — 03 and thus this notation is coherent with the
notation B, introduced in Section 4.1.

LEMMA 5.3. — The basis (B, )wewe satisfies:

(1) Bs =T, — o2 forall s € .,
(2) By —Tw € Myt ¢ for allw € W,
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(3) For allw € WY and s € . we have:

BB, — —(1+02)B,, if ws < w
Bus + 3 pscven V0, w) B,y if ws > w,

for some b(v,w) € C.

Proof.
(2). — It is a consequence of [24, 2. Proposition].

(3). — Let w € W" and s € . be such that ws < w. By [24, 6.4],
Cw(Hs+071) =0, thus (—1)“")g,,Cy(Ts +1) = 0 and hence By, (Ts +1—
02 —1)=B,Bs = —(02 +1)B,.

Let w € WY and s € . be such that ws > w. Then by [24, 6.3], one has
Cuw(—Cs) € Cus + P per, CO, and thus

(=)™, Coy(—05C) = By B, € (-1)" )"0, Cos + € CB,
vs<v<w
=Bu.+ @ CB,
vs<v<w
which proves the lemma. O

As (By)wewr is a C-basis of Hyv ¢, (By)wewr is a C(Y)-basis of the
right module BYH (T¢).

Let w € WY. Write Fyy = >, cppro Bobvw, Where (py) € C(Yy)W"),
By an induction on £(w) using Lemma 5.3(2) we have P, ,, H.C(Y) =
@D, < BoC(Y) for all w € W". Thus for all v € W such that v £ w, one
has p, . = 0. In [29, 5.3], Reeder gives recursive formulae for the p, .. The
following lemma is a particular case of them.

For v € W, define 7 : BLH(Tg) — C(Y) by 72 (X e Bufu) = fo
for all (f,) € C(Y)W"),

LEMMA 5.4. — Let w € W". Then Plw = Cw = HBVENq)v (w) CBV'

Proof. — We prove it by induction on £(w).
Let v € W and assume that p; , = (,. Let s € . be such that vs > v.
By Lemma 4.2 one has

Fos =F, * F,
= < Z Bupu,v) *FS
ueWwwv
= Y BuxFpi,= Y BuxBypl,+ Y Bupj (s
ueWw uewv wew®
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By Lemma 5.3, we have

g ( > B *Bspfw> =0

ueWv
and 7T{3 ( Z BuPi,st) :pivcs‘
ueWwv
By Lemma 2.4, Ngv(vs) = s.Nav(v) U {a)} and thus 7 (Fys) = pres =
D1 .,Cs = Cus Which proves the lemma. ]

Remark 5.5. — In the proof of Lemma 5.4, we only used the properties
of (By)wewv described in Lemma 5.3 and not its precise definition. In [29,
Lemma 5.2], Reeder gives an elementary proof of the existence of a basis
(Bw)weww satisfying Lemma 5.3. Its proof can be adapted to our framework
to construct a basis (B,,) without using Kazhdan—Lusztig basis.

5.3. An expression for the coefficients of the F, in the basis (T,)

In this subsection, we give a recursive formula for the coefficients of the
F,, in the basis (T,)ycwe (see formula (5.1) below and Lemma 5.7). We
will deduce information concerning the elements v € WV such that 7 (F,)
is well-defined at 7, for a given 7 € Tt (see Lemma 5.8).

Let A € Y and w € W". By (BL4), Remark 2.7(2) and an induction
on £(w), there exists (PywA(Z))vew~ € C[Y]™") such that Z*  T,, =
Y vewy LoxPyw x(Z). Moreover Py, x = Zv "X and for all v € W\ [1, w],
Pywr = 0.

Let A € O NY. Then by [4, V.Chap 4 Section 6 Proposition 5], for
all v,w € WY such that v # w, one has v.A # w.A. Let w € W". Let
w = $1...8; be a reduced expression. Set Quwr(Z) = 1 € C(Y). For
ve WY\ [1,w], set Quuw(Z) = 0. Define (Qu wr(Z))vepi,w) by decreasing
induction by setting:

1
(5.1) Quuw(Z) = Zw A Zo T Z Qu,waPoux € CY).

w2u>v
LEMMA 5.6. — Let A € C}NY, w € WY and 7 € T¢™ be such that
v.7(\) # 7(A) for allv € WP\{1}. Let z € I, be such that Z*.x = w.T(\).x.
Then x € I (w.T).

Proof. — By Proposition 3.4 (2), we can write x = ) ;v T, where x,, €
I (v.r) for all v € WY. One has Z*.z —w.r(A).x = 0=Y, o (v.7(A) —
w.T(A))xy. As v.7(\) # w.r(A) for all v # w, we deduce that z = z,,. O
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LEMMA 5.7. — Let v,w € W". Then nl(F,) = Qu,w,\, for any X\ €
C’}’ NY. In particular, Qy,» does not depend on the choice of \.

Proof. — Let A € C} and h = Y vews LoQuw € BLY(T¢). One has:

ZA xh = Z)\ * Z Tva,w,)\
veW®

Z TuPu,u,/\Qv,w,A

u,veEW?

Z Tu Z Pu,v,/\Qv,w,)w

ucWv veWw

Let v € W". Then:
Z Pu,v,/\Qv,w,)\ = Pu,u,)\Qu,w,)\ + Z Pu,'u,)\Q'u,w,)\
veW? v>u
_ Zufl.)\ + (wal.)\ _ ZU?I)\)Qu,w,)\
= Zwil')\Qu,w,)\a
and therefore Z*.h = h.Z% A,
Let A € Oy NY and 7 € T:™ be such that w.m(A) # 7(A) for all u €
W@\{1}. Then ev,(Z*xh) = ev,(h*Z" " -*) = w.r(\).h(r). By Lemma 5.6
we deduce that h(7) € I;(w.7). By Proposition 3.4(2) and Lemma 4.14 we

deduce that h(r) = Fi, (7). By Lemma 5.1, we deduce that h = F,,, which
proves the lemma. O

LEMMA 5.8. — Let w € WY, 7 € T¢ and v € [1,w]. Assume that for all
u € [v,w), u.T # w.T. Then for all u € [v,w], 7L (F,) € C(Y),.

Proof. — We do it by decreasing induction on v. Suppose that for all
u € (v,w), TL(F,) € C(Y),. Let A € C¥NY besuch that v.7(\) # w.T(A),
which exists because C'y NY generates Y. By Lemma 5.7 we have

1

WUT(FUJ) = Qv,w,)\ = W Z Qu,w,)\Pv,u,)\-
w2u>v
We deduce that 71 (F,) € C(Y), because by assumption Q, ., x € C(Y),
for all u € (v, w]. Lemma follows. O

5.4. 7t-simple reflections and intertwining operators

Let 7 € T¢. Following [29, 14], we introduce 7-simple reflections (see
Definition 5.9). If .7 is the set of 7-simple reflections, then (W(,), &%) is a
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Coxeter system. We study, for such a reflection r, the singularity of F,. at
7: we prove that F,. — ¢, is in BYH(T¢), (see Lemma 5.19). This enables
us to define K, (1) = (F; — ¢;)(7) € Hww c. This will be useful to describe
I (7, gen).

We now define 7-simple reflections. Our definition slightly differs from
[29, Definition 14.2]. These definitions are equivalent (see Lemma 5.13).

DEFINITION 5.9. — Let 7 € T¢. A coroot 8V € ®Y and its corresponding
reflection rgv are said to be T-simple if Nz (rgv) Wy = {rgv}. We denote
by . the set of T-simple reflections.

Recall that <I>(VT) ={a¥ € ®Y [({"(1) =0} and Z(r) = {rav |V € o0}

5.4.1. Coxeter structure of W, and comparison of the definitions of
T-simplicity

We use the same notation as in Section 2.2.3. Then .7 = .%(W(;)) and
thus (W), .77) is a Coxeter system.
Let <; and ¢, be the Bruhat order and the length on (W, 7).

LEMMA 5.10. — Let z,y € W5y be such that x <; y. Then x < y.

Proof. — By definition, if z,y € W(;y, then x <; y (resp. < y) if there
exist n € Zzo and xg = x,21,...,2, =y € Wiy (vesp. W) such that
(2, x;41) is an arrow of the graph of [10, Definition 1.1] for all ¢ € [0, n—1].
We conclude with [10, Theorem 1.4] O

Remark 5.11. — The orders < and <, can be different on Wery: there
can exist v,w € W(;) such that v and w are not comparable for <, and
v < w. For example if W? = {s1, s2} is the infinite dihedral group, r1 = s1
and 19 = $98152 (see Lemma B.2), then r; < ry but 71 and ro are not
comparable for <.

Set, CI)E/T),Jr = <I>E/T) N ®Y and <I>(VT)17 = <I>2/T) N®Y. For w € Wy, set
Nq;.(vT)(U}) = N@\/ (’LU) n (I)E/"')

LEMMA 5.12. — Let w € W(;). Then w.CI)E/T) = @E’T) and w.,%’(T).wfl =
R(ry-

Proof. — Let o € ®(,. One has den (¢4¢") and hence

G (7) = (I (r) = (&) (w ™ r) = 0

because w € Wiy C W;. Thus w.av € (I>2/T) and 7y.qv = vrevoTl € K (r)s
which proves the lemma. O

ANNALES DE L’INSTITUT FOURIER



PRINCIPAL SERIES REPRESENTATIONS OF KAC-MOODY GROUPS 223

We now prove that our definition of 7-simplicity is equivalent to the
definition of [29, 14.2]. This equivalence will be useful in our study of the
weight spaces of I, and thus in the study of the irreducibility of 1. Indeed,
our definition of 7-simplicity is well adapted to the study of the Coxeter
structure of W,y whereas Reeder’s one is well adapted to the study of the
singularity F;. at 7.

LEMMA 5.13.

(1) One has /7 C Z N\ W)= Z(r).

(2) Letr =rj € #. Thenr € ; ifand only if Nev (rgv)N®(y = {8"}.

(3) Let w € W7y Let w = ry...7) be a reduced writing of W, with
k=40 (w)andry,...,T; € 5” . Then

[Ny (w)| = {o sriea ook
and [Nov(w) N @[\ | =k = {r(w).

Proof. — We begin by proving a part of (3). By Lemma 5.10 and [22,
Lemma 1.3.13], for v € W,y and r € &7, one has £,(vr) > {.(v) if and
only if vr >, v if and only if vr > v if and only if v.a;/ € @Y if and only if
v, € CI)(T) Iy

One has Noy | (w) ={aY €@,  |Jw.a’ € @/, } Then using the same
proof as in [22, Lemma 1.3.14], one has Ncp(v)(w) D {a)
g ..roa) and [{og)  reea oo Tk ro) H = k= L (w).

We now prove (1) and (2). Let f : ®Y — % be the map defined by
f(@) = rqv for oY € ®Y. Then by Section 2.2, f is a bijection. Let
r = rgv € . One has f(Ngv(r) N <I>(VT)) = Ng(r) N %(7y. Moreover,
,@(T) - VVET)Q%. Thus

FH(Na(r) Y Wr) = {8} 2 f7 (N (r) N %)) = Now (r) N @,
Moreover, |Ngv (r) N (7_)| 1 and thus |Ngv(r)N (T)| = {BV}. In partic-
ular, BV € @E/T) and 7 € #(-). Thus & C Z(r).

By [9, Theorem 3.3 (i)], Z N W,y = UweW(T)ULVTw_1 and thus by Lem-
ma 5.12, Z N W) C UMGW(T)w.%’(T).w—l = (). As by definition, Z(;) C
WiryNZ, we deduce that Z(,;) = W(;yN %, which proves (1).

Let r =7y € %. Suppose that Nev(rgv) N @[,y = {8"}. Then

f(Nq>v (’1"5\/) N <I> ) = {7"5\/} = Ng(?‘@v) ﬂ%@-) = Ng(?‘@v) N VVE.,.),

rio ke ark IEEREE]

which proves (2).
Let o € Nq)(v)(w). Then there exists j € [2, k] such that r;...r.a¥ €

@(VT)’JF and rj_q...rp.aY € ‘I)(VT)’; Thus rj_1...1p.0"Y € Nq,(vT)(rj) =
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\%
ri)

oY } and hence av = 71...7;_1.a’ , which concludes the proof of the
T J
lemma. O

5.4.2. Singularity of F,. at 7 for a 7-simple reflection

LEMMA 5.14. — Let 7 € TI¢ and rgv € . Then there exists h' €

BLY(T¢), such that Fr= h’.(CgSn)_l.

Proof. — Using [3, 1. Exercise 10], we write rgv = wsw™ ! with w € W,
s €. and {(wsw™') = 20(w) + 1. One has Y = w.a. Let rgv = 8y, ... 51
be a reduced expression of rgv, with m € Z>q and s1,...,5, € 7. Let
k € [0,m —1] and v = s ...s;. Suppose that F, = h%.((g%“)*"(k) where

hj, € BYH(T¢), and n(k) € Zso. Then Fy,,,, = Fy,,, * F, = (B, +
Coris) * Fy. One has C,,,, * F, = F,.CY_ by Lemma 4.14.
By Lemma 5.13 if (;’;1 is not defined in 7 then k& = ¢(w). As By, ,, €

Hwo ¢ and BLU(Te), is a left Hwe c-module, we can write F,  , =
Py -(C5") 71+ where hy € BEH(Tt), and n(k+1) < n(k) if k # ((w)
and n(k+1) < n(k) + 1 if k = £(w), which proves the lemma. O

LEMMA 5.15. — Let h € BYH(T¢) and 7 € Tc. Then
max{u € W |75 (h) ¢ C(Y),} = max{u € W° |72 (h) ¢ C(Y),}.
Proof. — Let v € max{u € W" |rwZ(h) ¢ C(Y),}. By 5.3(2),

my (h) = ) (Hom! (h) = ) (Ho)m) () + Y wl (Hu)m,! (h).

u=v u>v

Moreover, by Lemma 5.3 (1), 72 (H,) € C*. Thus 75 (h) ¢ C(Y). Similarly
if v € max{u € W% u > v|nB(h) ¢ C(Y),}, then 72 (h) ¢ C(Y),. Hence
v € max{u € WV |7w2(h) ¢ C(Y),} and consequently

max{u € W |72 (h) ¢ C(Y),} C max{u € W*|x2(h) ¢ C(Y),}.
By a similar reasoning we get the other inclusion. O

LEMMA 5.16. — Let w € W". Suppose that for some s € ., we have
wA—A€RaY forall A\ €Y. Then w € {Id, s}.

Proof. — Let 3¥ € Ngv(w). Write 3¥ =3, o, ny, with ny € Zxg for
allt € .. Then w.8Y € ®¥ and by assumption, n; = 0 for all t € .\ {s}.
Therefore 8¥ € Zzoa; N®Y = {a)}. We conclude with Lemma 2.4. O
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LEMMA 5.17. — Let x € Tc. Assume that there exists ¥ € ®Y such
that rgv € W,,.. Then there exists (xn) € (Ic)?>° such that:

® Xn - X
o W,, = (rgv) for alln € Z>y,
o Xn(BY) = x(8Y) for all n € Zxy.

Proof. — We first assume that 8¥ = «, for some s € .. Let (y;) ey be
a Z-basis of Y. For all j € J, choose z; € C such that x(y;) = exp(z;). Let
g : A — C be the linear map such that g(y;) = z; forall j € J. Let V be a
complement of Qy in A. Let n € Z>;. Let b = g(ay) and (b,(fn)) € Cr\s}
be such that |b£n) — g(ey)| < % and such that the exp(bgn)), te S\ {s}
are algebraically independent over Q. Let g, : A — C be the linear map
such that g,(ay) = b§") for all t € . and g, (v) = g(v) for all v € V. For
n € Zo set xn = (expogy))y € Tc. For all € A, g,,(z) — g(z) and thus
Xn = X-

Let n € Zs;. Then x(o)) = xn(e)) and thus s € W,,, . Let w € W, .
Then w™'. X — X € ZayY for all A € Y. By Lemma 5.16 we deduce that
w € {Id, s}. Therefore W, = {Id, s}.

We no more assume that ¥ = a/ for some s € .. Write ¥ = w.a) for
some w € W and s € .. Let Y = w~'.x. Then s € Wy. Thus there exists
(Xn) € (Tc)?>° such that Y, — X and Wy, = {Id, s} for all n € Zx. Let
(Xn) = (w.Xn). Then x,, — x and W, = {1,rgv} for all n € Z>,.

Moreover, x(8Y) € {—1,1} and x,(8Y) € {—1,1} for all n € Z>,. Maybe
considering a subsequence of (x,), we may assume that there exists € €
{—1,1} such that x,(B8Y) =€ for all n € Z>p. As xn = X, Xn(8Y) =€ —
x(BY), which proves the lemma. O

Let ClQy] = @/\EQ; CZ* c C[Y]. This is the group algebra of Qy.
Let C(QY) C C(Y) be the field of fractions of C[QY] and H(QY) =
Do HoC(Qy) C BEH(T¢). This is a (Hwwc — C(Qy))-bimodule of
BLY(Tc) and a left C(Qy)-submodule of BV (T¢). Consequently F, €
H(Qy) for all w € WY

Let A= C[Z* |s € %] C C[QY]. This is a unique factorization domain
and C(Qy) is the field of fractions of A.

LEMMA 5.18. — Let 8 € ®V. Then Z#  —1 and Z#" +1 are irreducible
in A.

Proof. — Write 8Y = w.a, where w € W and s € .%. Then 28 =

Qg

(793w, O
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LEMMA 5.19 (see [29, Proposition 14.3]). — Let 7 € Ty and r = rgv €
7. Then Fry — (v € BLY(Tc),.

Proof. — One has Frg — (v € H(Qy). Write FTX —Cav = D uew Hug—:,
with fy,9, € Aand f, Ag, =1 for all u € W¥. Let u € (1,75v). Let us
prove that Cg@“ A g, = 1. Suppose that Cg@’“ A gy, # 1. Then there exists
n € {—1,1} such that Z°  + 7 divides g,.

Let x € Tc be such that x(58Y) = —n. By Remark 4.1, rgv € W,. Let
(xn) € (Tc)%>0 be such that x,, — x and W, = {1,rgv} for all n € Z>o,
and x,(8Y) = —n for all n € Zx( (the existence of such a x is provided by
Lemma 5.17). One has g, (x») = 0 for all n € Z>,. Moreover by Lemma 5.8,
f(Frg) = % € C(Y)y, for all n € Zo. Therefore, f,(xn) = 0 for all
n € Zxo and thus f,(x) = 0.

By the Nullstellensatz (see [23, IX, Theorem 1.5] for example), there
exists n € Zsg such that Z% 4+ divides f” in A. By Lemma 5.18, Z%" 41
is irreducible in A and thus Z8" + 1 divides fy,: a contradiction. Therefore
¢dm A g, = 1. By Lemma 5.14, g, (7) # 0.

Therefore {u € W |z[/(F.,, = () ¢ C(Y)-} C {1}. By Lemma 5.15
we deduce that {u € W" Iﬁf(Frﬁv —Grpv) & C(Y)7} C {1}. Using Lem-
ma 5.4 we deduce that {u € W? |7rf(Fr/iv — () ¢ C(Y),} = 0. By
Lemma 5.15, {u € W |x[l(F,,, — ¢, ) ¢ C(Y),} = 0, which proves the
lemma. O

71'

5.5. Description of generalized weight spaces

In this subsection, we describe Ir(7,gen) for 7 € Uc when Wi,y = W,
using the K., ... K, (1), for ri,...,r; € % (see Theorem 5.27).
For r € Z, one sets K, = F,. — (v € BL(T¢). By Lemma 4.14 we have:

(5.2) 0+ K, =K, x0"4+ (0" —0)(, for all 6 € C(Y).
LEMMA 5.20. — Let wy,wy € WY. Then there exists P € C(Y)* such

that Fy, * Fyy, = Fiyyw, * P. If moreover 7 € Uc, then one can write P = 5
with f,g € C[Y]* and f(w.T) # 0 for all w € W".

Proof. — Let u,v € W". Let us prove that if x € T, then F, x F, €
BLU(T¢)y. Write F, = > <y Huwby, where 0, € C(Y) for all v’ < u.
Then by Lemma 4.14,

FuxF,=Y Hyby+F,=Y Hy*F,x (0.)"

u' <u u' <u
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1

By Lemma 4.14, 0, € BVH(T¢), for all x € T¢™ and thus (6,/)” €
BLH(T¢), for all x € T8 Let x € T, As BLH(T¢)y is an Hyvo c—C(Y)y,
bimodule, we deduce that F, * F, € BEH(T¢),.

Let uw,v € Wv. Let us prove that there exists @ € C(Y) such that
F,+xF, =F,,*xQ. Let A € Y. Then by Lemma 4.14, one has Z F,+ F, =
Fy % F, % Z@) "X Therefore for all y € T&®, there exists a(x) € C such
that F, * Fy,(x) = a(x)Fus(x). Write Fy, * F, = > o Hy * 0y and
Fuv =3 pewe Ho * gw, where (6,), (gw) e C(YYW"), Let Q = %2 = 0,,.

Ouw
Let w € W be such that ,, = 0. Then for all x € =%, 0 (x) = 0 and
by Lemma 5.1, 6, = 0 = ng. Let w € WV be such that 6,, # 0. Then
U :={x € Tt |0, € B¥H(Tt)y and 0,,(x) # 0} is open and dense in T¢.
By Remark 4.11, 7™ has full measure in T¢ and thus U NT® is dense in
Te. Moreover 6,,(x) = Q(x)8(x) for all x € U NTEE and thus 0, = Q0.
Consequently, there exists @ € C(Y) such that Fy, * F, = Fy, % Q.

Let 7 € Uc. Let wy € WP, Let u € WY be such that there exists 6 = g €
C(Y)* such that F,,, * F, = Fy,4 %0, with f(w.T) # 0 for all w € W?. Let
s € % be such that us > u. Then by Lemma 4.3,

— _ s
F‘wl*Fus* wlu*g*Es*Eulu*Es*a .

Suppose wius > wiu. Then Fyy, % Fs = Fy, s and thus Fy,, « Fis = Fiy us *
0% and f*(w.r) # 0 for all w € W". Suppose wyus < wyu. Then F,,, ,*Fs =
Fyus * (F5)? and thus by Lemma 4.3, Fy,, * Fys = Fy,us * (0°¢C5). By
definition of Uc, one can write Fy, * Fys = Fiyus * % with f,ﬁ e Cly|®

such that f(w.7) # 0 for all w € W¥ and the lemma follows. O

Remark 5.21. — In [29, Lemma 4.3 (2)], Reeder gives an explicit expres-
sion of F,, x F,,, for u,v € W".

Let r € Z. Let Q,. : C(Y) — C(Y) be defined by Q,.(0) = ¢-(6" — 0) for
all § € C(Y).

LEMMA 5.22. — Let r € ;. Then Q,.(C(Y),) C C(Y),.

Proof. — Write r = rgv, where ¥ € ®V. Then one has r(\) = X —
BN)BY for all A € Y. Let A € Y. Then with the same computation as in
Remark 2.7(2), we have that ,.(Z*) € C(Y),. Thus ,.(9) € C(Y), for all
0 € C[Y].

Let 0 € C(Y),. Write § = 5, where f,g € C[Y] and g(7) # 0. Then
(0" —0) = C’"(W)' Moreover, ¢"(7) = g(r.7) = g(7) # 0 and as

f"g € C[Y], we have that (.(0" —6) € C(Y),. O
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We now assume that 7 € Uc.

For each w € W(;) we fix a reduced writing w = ry ..., with k = {(w)
and ri,...,7, € % and we set w = (r1,...,7%). Let Ky = K, ... K,, €
BLAU(T¢).

LEMMA 5.23. — Let r € ;. Then BYH(T¢), + K, C BUYH(T¢),. In
particular, K,, € BLY(T¢), for all w € Wiry.

Proof. — Let w € WY and 6§ € C(Y),. Then H,0 « K, = H,K.0" +
H,, %$,.(0). Using Lemma 5.19, Lemma 5.22 and the fact that BH (T¢), is
a Hwo.c — C(Y),-bimodule, we deduce that H,,0* K, € BLH(T¢),. Hence
BLYU(T¢), * K, C BVH(TC),. O

LEMMA 5.24. — Let w € W;). Then maxsupp (K(7)) = {w}, where
max is defined with respect to the order < on W7,

Proof. — Write w = (r1,...,7) with r1,..., 7, € . Then

Ky=(F, —C,)- - (Fry =G ) =P #F x...xF,, + Y F,P,
v<,w

for some P, € C(Y). By Lemma 5.20, there exist f,g € C[Y]* such that
Fo % Fp % % F, = Fyx 5 and f(7) # 0. One has 7L (F,) = 1 and
by Lemma 5.10, 71 (F,) = 0 for all v € [1,w)<, . Thus using Lemma 5.23,
one can moreover assume g(7) # 0. Therefore 71 (K,,) = 5 € C(Y), and
f(7) # 0, which proves the lemma. O

Let K(W,)) = @wew(f) F,C(Y). By Lemma 5.20 and Lemma 4.14,
K(Ws) is a subalgebra of BYH(T¢). Let K, = K(W) N BYH(T¢)-.
For w € Wy, set K(W)<™ = @vewm,v@w F,C(Y) and Ks* =
Doe. v KuC(Y)r.

LEMMA 5.25. — Let 6 € C(Y); and w € W;. Then there exists k(0) €
K= such that 0 % Ky = Ky % 0% + ky(0).

Proof. — If w = 1, this is clear. Suppose w >, 1. Write w = vr with v €
Wiryand r € ., such that v <, w. Suppose that 0+ K, = KE*HV1 +ky(0)
with k,(0) € K=7. One has

0% Ky=0%K,+ K, = (K,0° +ky(0)* K,
=Ky # 0% + Ky % Q0" ) + ky(6) * K,

The sets K(W(,) S = D. <., FrC(Y) and BLYU(Tt), are right C(Y),-
submodules of BYH(T¢) and thus by Lemma 5.23 and Lemma 5.22, K, *

1

Q.(0° ) e KSU C ke,
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By Lemma 5.23, k,(0) * K, € BYH(T¢),. By Lemma 4.14 and [22,
Corollary 1.3.19], kyF, € K(W,)) <rmax(vrv) = (W) <7 Consequently
ky * K, € K& and KEQT(GU_l) + ky(0)K, € Ks7*, which proves the
lemma. O

LEMMA 5.26. — One has K, = @ K,C(Y).

wEW(r)

Proof. — By Lemma 5.23, K, D @wemeEC(Y)T. For w € W,
set K(Wir)S™ = @yc_ FuCY) C K(Wiry). Let w € W Suppose
that for all v € [l,w)<,, one has KS™U = @U/e[l,v]@ K,C(Y),. By
Lemma 5.24, one can write 7. (K,) = 57 with f,g € C[Y] such that
f(m)g(t) # 0. Let z € KS** and § = 7l (x) € C(Y),. By Lemma 5.23,
04Ky € BLY(T¢),. Moreover, = — 04Ky € Zve[l,w)gr KS7v. Therefore,
x € Gave[lmf]gr K,C(Y), and the lemma follows. O

THEOREM 5.27. — Let 7 €Uc be such that W(;y=W.. Then I (7, gen) =
ev,(K;) ®; 1.

Proof. — Let w € W(;yand 6 € C(Y),. As w € W, v ¢ CY)wr =
C(Y), and 7(#* ") = 7(f). Then by Lemma 5.25, (0 — 7(6)) K, () ®,
1 € K<**(7) ®, 1. By an induction using Lemma 5.26 we deduce that
K+ (1) ®- 1 C I.(7,gen).

Letw e WY and E,, = (evT(ICT)®T 1) NISY. By Lemma 5.24, dim E,, =
[Wiryn {v € W"|v < w}|. By Proposition 3.4, dim I (7, gen)S* = [{v €
W, v < w}| = dim B, As (W?, <) is a directed poset, Ir = e ISY,
which proves the theorem. O

5.6. Irreducibility of I, when W, = W, is the infinite dihedral
group

In this subsection, we prove that if 7 € Uc is such that W, = W,
and W) is isomorphic to the infinite dihedral group, then I is irreducible
(see Lemma 5.33). Let us sketch the proof of this lemma. We prove that
I (1) = C1®; 1. For w € Wiy, let m& : I.(r,gen) — C be defined as
K (Y ewe Ku(T)zw) = @y, for all (z,) € CW), which is well-defined
by Lemma 5.24 and Theorem 5.27. We suppose that I.(7) \ C1 ®, 1 is
nonempty and we consider one of its elements . We reach a contradiction
by computing 75 (x), where w € W,y is such that ¢, (w) = max{/;(v)|v €
supp(z) N Wir} — 1.
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Let 7 € Uc. Assume that (W[, .#;) is isomorphic to the infinite dihedral
group (in particular, || = 2 and every element of W[,y admits a unique
reduced writing).

The following lemma, is easy to prove.

LEMMA 5.28. — Let w € W,y and r € & be such that {;(wr) =
L (w)+ 1. Let u € [1,w)<,. Then ur # w.

LEMMA 5.29. — Let 7 € Uc. Let r = rgv € 7, where 3¥ € ®V. Then
there exists a € C* such that for all A € Y,

T((Z7 = Z)¢) = ar(NB(N).
Proof. — One has
1 num 1
CT = dsn ’ H aV o H Cdgn :
aveNgv (r) a¥ENgv (M\{BV} >
By Lemma 5.13 and by definition of U,

T 11 den ) 20 and 7 IT ] #o

aveNgy (M\{B¥} aVeNgy ()
o ZrA_gh _ grA_gh )\Zfﬁ(A)BV_l
If ogv = ojv, one has S 47 &——75v—. By Lem-

ma 5.13, r € %, and thus 7(8") = 1. Thus by the same computation as

in Remark 2.7, T(%) = B(A)T(N). Using a similar computation when

opv # 0y, we deduce the lemma. a

LEMMA 5.30. — Let w € W,y and r € ., be such that {.(wr) =
£ (w) + 1. Then there exists a € C* such that for all A € Y, one has:

75 (27 % Kyr (1) @7 1) = ar(N) e (w™hN).

Proof. — Let A € Y. Write ZA*KH = KH*Z“’A'A—I—k, where k € K%,
which is possible by Lemma 5.25. One has

2% Kyr = (K % 2% X + k) + K,
= Ky 2 Ky (27 = 27N ke K
Therefore, using Lemma 5.28 and Lemma 5.29 we deduce
T (2 Ky (1) @ 1) = (27 = 277 2)G) = ar(W)B(w™ '),
for some a € C*. O

LEMMA 5.31. — Let w € W,y and r € ./ be such that {.(rw) =
(- (w) + 1. One has w& (K, * K(W)S™) = {0}.
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Proof. — Let u € W,y and r € ., be such that ru >, u. Then by
Lemma 5.20 and [22, Corollary 1.3.19], Fy-#/C(W,)) S7% C (W) Srmax(wru)
and thus K, * K(W;) ST C (W) Srmax(wre),

Let v € [1,w)<.. If rv >, v, then by Lemma 5.20, there exists @ € C(Y)
such that F,. * F, = F,., * Q and thus K, x F,, € F,., x Q + F,C(Y). By
Lemma 5.28, rv # w. Using Lemma 5.24 and the fact w and rv have the
same length, we deduce that 7% (K, x F,) = 0.

If rv <; v, then K, x F, € K(I/I/(T))<T” and thus 7% (K, * F,) = 0 which
finishes the proof of the lemma. O

LEMMA 5.32. — Let w € W, r € ., be such that {(rw) = {;(w) + 1.
Then there exists b € C* such that for all \ € Y:

TE(ZA Ky (7) @7 1) = b1 (V)i (N).
Proof. — One has

2 Ky = (2 * Kp) x Ky = (K. 27 + (27 — Z2)G) * Ky (7).

w

K,,) = 0. Moreover, by Lemma 5.29, there exists b € C* such that

One has Z™* x Ky, € K(W;))S™™. Thus by Lemma 5.31, w5 (K,.Z™* *

TR (27 = ZM G Kw(T) @, 1) = w.r((Z7 = ZM)¢) = br(Nay(N),
which proves the lemma. O

LEMMA 5.33. — Let 7 € Uc be such that W, = W, and such that there
exists 11,7 € /5 such that (W, {r1,r2}) is isomorphic to the infinite
dihedral group. Then I, is irreducible.

Proof. — Let us prove that I, (7) =C.1®, 1. Let x € I, \ C.1 ®, 1 and
assume that x € I.(7). Let n = max{{,(w)|w € supp(z)}. Let w € W,
be such that ¢,(w) = n — 1. Then there exist r,7’ € . such that {v €
Win| €7 (v) = n} = {rw,wr'}. By Theorem 5.27, z € ZUQVM CK,(r)®, 1.
Let v = &, (z) and 7' = 7& , ().

Set v, = 7X(x). Then by Lemma 5.30 and Lemma 5.32, there exist
a,a’ € C* such that forall A € Y,

5 (2 2) = T(\) (ayar (N) + a/Yw.a (A) + V) = T(A) Y-

Therefore {a,,w.a,} is linearly dependent and hence w.a, € {*a,.} =
{ay,r.a;}. By Lemma 2.3 we deduce rw = wr’: a contradiction because
[{rw,wi'} = [{o € Win)| £ (0) = n}| =2

Therefore I. = C1 ®, 1 and by Theorem 4.8, I is irreducible. (I
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5.7. Kato’s criterion when the Kac—-Moody matrix has size 2

In this subsection, we prove Kato’s irreducibility criterion when || = 2
(see Theorem 5.35). As the case where W" is finite is a particular case of
Kato’s theorem [20, Theorem 2.2] we assume that W7 is infinite.

This is equivalent to assuming that the Kac-Moody matrix of the root
generating system S is of the form (?¢), with a,b € Z.o and ab > 4
([22, Proposition 1.3.21]). The system (W?,.7) is then the infinite dihedral
group. Write . = {s1,s2}. Then every element of W? admits a unique
reduced writing involving s; and ss.

Let G be a group and a,b € G. For k € Z>(, we define Py(a,b) = aba ...

where the products has k terms.

LEMMA 5.34. — The subgroups of WV are exactly the ones of the fol-
lowing list:
(1) {1}
(2) (r)y ={1,r}, for somer € #
(3) Zy = <P2k(81782)> = <P2k(82, 81)> ~ 7 for k € Zx1
(4) Rk:,m = <P2k+1(817 82), PQﬁ.LJrl(SQ7 81)> ~ WV for k,m € ZZO'

Proof. — Let {1} # H C W" be a subgroup. Let n = min{/(w) |w €
HA\{1}}.

First assume that n is even and set & = 5. Then P(si,s2,n) =
P(s9,s1,n)"! and as these are the only elements having length n in W?,
H D Zy. Let w = P,(s1,s2). Let h € H \ {1}. Write £(h) = an + 7
with a € Z3;1 and r € [0, — 1]. Then there exists ¢ € {—1,1} such that
h = w.h', with (k') = r. Moreover, h' € H and thus ' = 1. Therefore
H = Z.

We now assume that n is odd. Maybe considering vHv ™! for some v €
W?" and exchanging the roles of s; and s, we may assume that s; € H.
Assume H # (s1). Let n’ = min{l(w)|lw € H\ (s1)}. Let w € H \ (s1)
be such that ¢(w) = n’/. Then the reduced writing of w begins and ends
with so. Thus n' = 2n” + 1 for some n” € Z>o. Then it is easy to see that
H = Ry ,», which finishes the proof. O

We prove in Appendix B that there exist size 2 Kac—-Moody matrices
such that for each subgroup of W7, there exists 7 € Tc such that Wi, is
isomorphic to this subgroup.

THEOREM 5.35. — Assume that the matrix of the root generating sys-
tem S is of size 2. Let T € Tg. Then I is irreducible if and only if T € Ug
and W = Wy,
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Proof. — If W" is finite, this is a particular case of Kato’s theorem (]20,
Theorem 2.2]). Suppose that W7 is infinite. By Lemma 4.5 and Proposi-
tion 4.17, if I, is irreducible, then 7 € Uc and W, = W/, Reciprocally,
suppose 7 € Uc and W, = Wj;). Then by Lemma 5.34, either W)= {1},
or Wiy = (r) for some r € # or W,y = (ri,rs) for some ri,ro € #
and (W), {r1,72}) is isomorphic to the infinite dihedral group. In the first
two cases, I, is irreducible by Corollary 4.10 or Corollary 4.12. Suppose
Wiy = (r1,72). Then by Remark 2.5(1), (W,),-7;) is isomorphic to the
infinite dihedral group and I, is irreducible by Lemma 5.33. g

Comments on the proofs of Kato’s criterion. There are several
proofs of Kato’s criterion in the literature. In [28], Reeder proves this
criterion (see Corollary 8.7 therein). In his proof, he uses the R-group
Ry ={w e W; |w(®,n®Y) =&/ N &Y} This group is reduced to {1}
when W, = W(;). His proof uses Harish-Chandra completeness theorem,
which (under certain hypothesis on 7) majorizes the dimension of the space
of intertwining operators of I.. Unfortunately, it seems that there exists up
to now no equivalent of Harish—-Chandra completeness theorem available
in the Kac—-Moody framework.

In [32], Rogawski gives a proof of a particular case of Kato’s criterion
(see Corollary 3.2 therein). However, it seems that its proof uses the fact
that every element z of I (7) can be written as a sum z = ZjeJ x; where
J is a finite set and for all j € J, |maxsupp(z;)| =1 and z; € I;(7). I do
not know how to prove such a property.

In [29], Reeder gives two proofs of Kato’s criterion or of weak versions of
it (see Corollary 4.6 and Theorem 14.7 therein). Our proof of Theorem 5.35
is strongly inspired by the proof of [29, Theorem 14.7].

6. Towards principal series representations of G

Suppose that H¢ is associated with a reductive group G. Then for every
open compact subgroup K’ of G and every smooth representation V, VZ '
is naturally equipped with the structure of an H g+ ¢ module, where Hg' ¢
is the Hecke algebra associated with K’ with coefficients in C. Moreover,
the assignment V s VE " induces a bijection between the following sets:

e equivalence classes of irreducible smooth representations V' of G
such that VE" #£ {0},

e isomorphism classes of simple Hg:c-modules (see [7, 4.3] for
example).
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In the Kac—Moody case, we do not know how to define “smooth” for a
representation of G. We know that for any topological group structure on
G, K7 is not compact open (see [1, Theorem 3.1]). The hope is that there
should be a link between representations of G satisfying some regularity
conditions and representations of H¢ or Bl Hc.

Let € € {+,0}. In this section, we associate to every 7 € T% a repre-

sentation I?'\GY of G¢. The principal series representation associated with
7 should correspond to the space of elements of @ which satisfy some
regularity condition. We define an action of Hr on some subspace I < ge
of (m\f)f)]ﬁ. We then prove that I ge is isomorphic (as an Hr-module)
to the representation I:Z‘GJr introduced in Section 2. We then study the

L —

extendability of I(7¢)¢ and I, g to representations of G' and BLH z.

For simplicity, we only introduce split Kac—-Moody groups, although
our results also apply to almost-split Kac—-Moody groups over local fields,
see [36].

In Section 6.1, we introduce split Kac-Moody groups over local fields,
masures, their Iwahori—Hecke algebras and principal series representations.

In Section 6.2 we prove that the actions of Hr on I, o+ and I, g are
well-defined and prove that I, g+ is isomorphic to I.

In Section 6.3 we study under which condition I, g+ and IF extend
to representations of G and of BLH x, for 7 € T#. We give examples of
7 € Tr (for particular choices of G) such that I, g+ and I} do not extend
to representations of G' and of BI'H x.

6.1. Kac—-Moody groups over local fields and masures
6.1.1. Split Kac—-Moody groups over local fields and masure

Let G be the group functor associated in [38] with the generating root
datum S, see also [30, 8]. Let (K, w) be a non-Archimedean local field where
w: K = ZU{+0o0} is a valuation. Let G = Gs(K) be the split Kac-Moody
group over K associated with §. The group G is generated by the following
subgroups:

e the fundamental torus T' = T(K), where T = Spec(Z[X]),
e the root subgroups U, = U,(K), each isomorphic to (K,+) by an
isomorphism z,,.
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In [11] and [35] (see also [36]) the authors associate a masure Z on which
the group G acts. We recall briefly the construction of this masure. Let
N be the normalizer of T' in G. Then they define an action of N on A,
see [11, 3.1]. For n € N denote by v(n) : A — A the affine automorphism
of A induced by the action of N on A. Then v(¢) is a translation, for every
t €T and ¥(N) = WY x Y. For every w € W x Y, we choose ny € N
such that v(ny) = w.

The masure Z is defined to be the set G x A/ ~, for some equivalence
relation ~ (see [11, Definition 3.15]). Then G acts on Z by g.[h, x] = [gh, x]
for g,h € G and x € A, where [h, 2] denotes the class of (h,z) for ~. The
map = — [1, ] is an embedding of A in Z and we identify A with its image.
Then N is the stabilizer of A in G and it actson Aby v. If « € ® and a € K,
then z,(a) € U, fixes the half-apartment D, ) = {y € Al a(y) +w(a) >
0} and for all y € A\ Dy oy(a), Tala).y & A.

An apartment is a set of the form g.A, for g € G. We have 7 = UQGG g.A.
Then 7 satisfies axioms (MA1i), (MAii) and (MAiii) of [15, Appendix A]
or [16].These axioms describe the following properties.

(MA1i) Let A be an apartment of Z. Then A = g.A, for some g € G.
We can then transport every notion which is preserved by v(N) =
WY XY to A (in particular, we can define a segment, a hyper-
plane,...in A).

(MAii) This axiom asserts that if A and A’ are two apartments such that
AN A is “large enough”, then A N A’ is a finite intersection of
half-apartments (i.e. of sets of the form h.D, j, for a € @, k € Z,
if A= h.A) and there exists g € G such that A’ = g.A and g fixes
AN A". When G is an affine Kac-Moody group, this is true for
every pair of apartments A, A’, without any assumption on ANA’.

(MAiii) This axiom asserts that for some pairs of filters on Z, there ex-
ists an apartment containing them. This axiom is the building
theoretic translation of some decompositions of G (e.g. Iwasawa
decomposition).

A filter on a set E is a nonempty set V of nonempty subsets of F such
that, for all subsets S, S’ of E, if S, 5’ € V then SNS" € V and, if S’ C 5,
with S” € V then S € V.

Let E,E’ be sets, £/ C E and V be a filter on E’. One says that a set
2 C E contains V if there exists ' € V such that Q' C Q (or equivalently
ifQeVif E=F). Let f: E — E. One says that f fixes V if there exists
Q' €V such that f fixes .
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6.1.2. Cartan decomposition, Tits preorder on Z and sub-semi-group G

Let K = Ggs(O), where O is the ring of integers of K. Then K is the
fixator of 0 € A C Z in G. For A € Y, choose ny € T such that nj
induces the translation on A by the vector A. Unless G is reductive, the
Cartan decomposition of G does not hold: |_|)\€Y+Jr KnyK C G, where
Y+t = CT?HY. For z,y € A, one writes ¢ < y if y — x € T (where T
is the Tits cone). If z,y € Z, one writes x < y if there exists g € G such
that g.z,g.y € A and g.x < g.y. This defines a G-invariant preorder on 7
by [34, Théoréme 5.9]. We call it the Tits preorder on Z. Let G+ = {g €
Glg.0 = 0} (see [6, 1.2.2] for a more explicit description of G*, when G is
affine). Then G is a sub-semi-group of G (as < is transitive) and we have
Gt = |l ey ++ KnaK: the Cartan decomposition holds on G*. Note that
when G is reductive, G = GT since 7 = A. A type 0 vertex is a point of
the form ¢.0 for some g € G. We set Zp = G.0. Then the map g — ¢.0
induces a bijection between G/K and Zj.

Let x,y € Z be such that x < y. Let A, Ay be apartments containing x
and y. Let [z, y]a, (resp. [z,y]a,) be the segment in Ay (resp. As) joining
x to y. Then by [34, Proposition 5.4], [z,y]4, = [*,y]a, and there exists
g € G such that g.A; = Ay and g fixes [z, y]4,. We thus simply write [z, y].
Let h € G be such that h.A; = A. Then as < is G-invariant, h.x < h.y and
thus h.y — h.z € T. Replacing h by nh for some n € N, we may assume
that h.y — h.x € Ci}’ One sets d¥ " (z,y) = hy—hx € Ci}’ We thus get
a G-invariant vectorial distance d¥" ' : T X< — Ci}’, where 7 X< 7 is
the set of pairs x,y € Z such that < y. It is denoted d¥ in [12]. When
moreover x,y € Iy, then dY++(:r,y) € Y+, This distance parametrizes
the K double cosets: if g € G and A € Y, then g € Kny K if and only if
dY7(0,9.0) = .

6.1.3. Local faces and chambers

Recall the definition of vectorial faces from Section 2.1. A local face of
A (we omit the adjective “local” in the sequel) is a filter on A associated
with a point x and with a vectorial face F'¥. The point x is the vertex of F’
and F" is its direction. More precisely the chamber F' = F, p. associated
to x and F" is the filter on A consisting of the sets QN (x + F"), where Q
is a neighborhood of z in A. We call F' positive (resp. negative) if F is.
When F" is a vectorial chamber (resp. a vectorial panel, that is when F" is
a codimension one face of a vectorial chamber), we call F' a chamber (resp.
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panel). As the sets of local faces, of positive faces, of local chambers,. .. are
stable under the action of W? xY | we extend these notions to Z: a local face
F (resp. positive, negative) is a filter on Z generated by g.F for some local
face (resp. positive, negative) Fy and some g € G. Its vertex is vert(F) =
g.\, where X is the vertex of Fy. This does not depend on the choices of g
and Fy such that F' = g.Fy.

We denote by CO+ the local positive chamber associated with 0 and C}’.
A type 0 positive local chamber is a filter of the form g.C’ar for some g € G.
Equivalently, this is a positive chamber based at a type 0 vertex. We denote
by ‘KJ‘ the set of positive type 0 chambers of Z.

We say that a chamber C' of A dominates a panel P of A if C' and P
are based at the same vertex and if P' C C?, where C* and P’ are the
vectorial faces defining C' and P.

We say that a chamber C of Z dominates a panel P of T if there exists
g € G such that g.C,¢g.P C A and such that g.C' dominates g.P. Then
every type 0 local panel is dominated by exactly ¢+ 1 chambers, where ¢ is
the cardinal of the residue cardinal of K. In particular, Z has finite thick-
ness: every panel is dominated by finitely many chambers. This property
is crucial in order to apply the finiteness results of [12] and [2].

Let W+ = W¥x Y™, Then W is a sub-semi-group of WY x Y .If C,(C" €
o, we write C < C7 if vert(C) < vert(C”). Let 6,7 x< 6,7 = {(C,C") €
E,71C < C'}. Let (C,C") € 6" x< 6,7 Then by [34, Proposition 5.5]
or [16, Proposition 5.17], there exists an apartment A = ¢.A containing
C and C'. Then ¢g.C' C A and thus there exists w € W? x Y such that
g.C = w.Cy . Maybe replacing g by ny'g, we may assume that g.C = C;.
Then ¢g.C’ > C and thus there exists v € W such that g.C’ = v.C;". One
sets dW" (C,C") = v. By [34, Proposition 5.5] or [15, Theorem 4.4.17], v
does not depend on the choice of A. This defines a G-invariant “WW-distance”
AV G X< G - W

Let C, C’ be two chambers of the same sign and based at the same vertex.
We say that C' and C’ are adjacent if they dominate a common panel. A
gallery T between C' and C’ is a finite sequence I' = (C4, ..., C,) such that
n € Zso,C1 = C, C,, = C" and C;, C; 41 are adjacent for every i € [1,n—1].
The gallery T is called minimal if n is the minimum length among all the
lengths of the galleries joining C to C’. If the vertex of C and C’ is in
Ty, then the length of a minimal gallery between C' and C” is £(w), where
w=d"" (C,C") e W".
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6.1.4. Iwahori subgroup and Iwahori-Hecke algebras associated with G

Let K1 be the fixator of C'O+ in G. This is the Iwahori subgroup of G (see
also [6, (3.8)] for a more explicit description in the affine case). The map
g — g.Cy induces a bijection between G/K; and €, . For w € W' x Y,
we choose ny, € N such that ny, induces w on A. Then we have the Bruhat
decomposition (see [2, 1.11]):

G+ = I_I K[TLWK[.
weWw+

In terms of masures, this decomposition has the following interpretation:
for every C,C" € €, such that vert(C) < vert(C’), there exists an apart-
ment containing C' and C’. Note that avr parametrizes the K double
cosets: if g € GT, then g € K;nw K if and only if w = dWJr(C’J,g.CSF).

Let #Z be a ring. For w € W™, we denote by T3, the indicator function
of KinwKj;. Then the Iwahori—-Hecke algebra of G with coefficients in
Z is the free Z-module Hg » with basis (Tw)wew+ equipped with the
product * such that Ty * Tw = D, cpp+ Ay w, With af o = [(Kmy K7 N
nuK gt Kr)/ K| for u,v,w € WT. The fact that such an algebra is well-
defined is [2, Theorem 2.4] (the definition of the Ty in [2, 2] is slightly
different but we obtain the same algebra).

Let F be a field as in Definition 2.6. Let ¢ be the residue cardinal of /C.
As in [2, 5.7], we assume that there exists 6'/2 € Tx such that §'/%(aY) =
V/q for every s € . If F = C, such a map exists by Lemma 5.2. For
we W' c W, set Hy, = ¢ 2T, € Hgr. For A € YTF, set 2> =
672 (\)Ty € He.r. By [2, 5], we have the following proposition.

PROPOSITION 6.1. — Let ¢ : {ZM X € YTt} U {Ty|w € W'} C
Ha,r — BUHz be defined by «(Z*) = Z* and «(T,) = T, for A € Y+
and w € W". Then ¢ extends uniquely to an algebra morphism ¢ : Hg 5 —
BLY 7. Moreover, 1(Hg,7) = Hr and ¢ is injective.

6.1.5. Iwasawa decomposition and retractions centered at eco

Let € € {—,4+} and U, = (U, | o € D). We denote by ecco the germ of
eC}’ at infinity: this is the filter on Z composed with the sets containing a
translate of eC}}. Then U, fixes eco, which means that for every u € Uk,
there exists © € A such that u fixes z + eC}.

Let C be a chamber of Z. Then there exists an apartment containing C
and eco. This means that there exists Q2 € C, y € A and an apartment
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containing Q2 U y + eC’}’. In particular for every x € Z, there exists an
apartment containing x and eco. When C € ‘KOJF and x € 7y, these results
correspond to the following decompositions:

G= || UmnwK;andG=||Un\K.

weWvxY A€Y

Let x € 7. Let A be an apartment containing x and eco. Then by (MA i),
there exists h € G such that h.A = A and h fixes AN A. We set peso(z) =
h.x. This is well-defined, independently of the choices of A and h. Then
Peco () is the unique element of U..z MA. Then peo : T — A is a retraction
called the retraction onto A centered at eoco.

6.1.6. Towards principal series representations of G* and G

Let B = TU, be the positive standard Borel subgroup of G. In term of
masures, B is stabilizer of +00 in G (by [15, Lemma 3.4.1]), which means
that B is the set of ¢ € G such that there exists a,a’ € A such that
g-(a+C%) = (a’ + C}) and such that there exists a translation f of A such
that g.x = f(z) for every z € a+C}. Let BY = G*NBand TT =TNG.

LEMMA 6.2. — We have TT C Bt C TTU,.

Proof. — Let g € BT. Write g = tu with t € T and v € U,. Then as
t normalizes Uy (by [30, 8.3.3]), there exists u’ € U, such that g = u't.
Then p4o0(g.0) = ¢.0. Moreover by [34, Corollaire 2.8], p1o(g.0) = 0 and
thus £.0 > 0, which proves the lemma. O

Remark 6.3. — Unless G is reductive, TTU, 2 B™T. Indeed, let us prove
that U, is not contained in G*. Let s € .. Take a € K such that w(a) =
—2.Set u = x4, (a) € Us. Let A’ = u.A. Then A’NA is the half-apartment
Dy, —2 = {z € Alas(x) —2 > 0}. Let Das be the half-apartment of A’
opposite to Dq. _o. By [34, Proposition 2.92)], A := D_,_5U D4 is an
apartment of Z. As 0 ¢ D, _o, u.0 € D 4. Then A>3 0,u.0. Let g € G be
such that g.g = A and such that g fixes D_,_ 2. Let r : A — A be defined by
r(z) = s.x+2ay for z € A. Then by [17, Lemma 3.4], g.u.0 = 7.0 = 2a). By
the lemma below, g.u.0 and 0 = ¢.0 are not comparable for <. We deduce
that «.0 and 0 are not comparable for <, which proves that u ¢ G+.

Recall the definition of indecomposable Kac-Moody matrices from [18,
Section 1.1].

TOME 72 (2022), FASCICULE 1



240 Auguste HEBERT

LEMMA 6.4. — Assume that G is associated with an indecomposable
Kac—Moody matrix A which is not a Cartan matrix. Then for all s € .,
al e A\ (TU-T).

Proof. — We first assume that A is of affine type (see [18, Theorem 4.3]
for the definition). Then there exists 0 € @,., Ryas such that T =
SHRE) U Nyer @5 H({0}) (see [15, Corollary 2.3.8]). By [18, Proposi-
tion 5.2a) and Theorem 5.6b)], w.d = ¢ for every w € W". Let € A
be such that 6(z) = 0 and z > 0. Then there exists w € W7 such that
w.r € Ci}’ Then §(z) = d(w.x) = 0. Thus w.z € (N, as'({0}). As
as(al)=2,a) ¢ T. As s.a) = —a) we have oy € A\ (TU-T).

We now assume that A is of indefinite type. Then by [18, Proposi-
tion 5.8¢)] and [12, 2.9 Lemma], o) € A\ T. As s.ay = —aY we deduce
that oY € A\ (T U-T). O

Let T4 = Homwion(Y, F*). Let 7 € Tx (resp. 7 € T%). We regard 7
as a homomomorphism 7" — F* (resp. as a monoid morphism 7% — F)
by setting 7(t) = 7(t.0) for every t € T (resp. t € T"). We extend T to a
homomorphism B — F* (resp. to a monoid morphism BT — F) by setting
7(tu) = 7(t), for every t € T and u € Uy (resp 7(tu) = 7(t) for every t € T
and u € U, such that tu € BT). By [33, Proposition 1.5(DR5)] (note that
there is a misprint in this proposition, Z is in fact T'), TN U, = {1}. This
implies that 7 : B — F* is well-defined. The fact that 7 is a homomorphism
follows from the fact that ¢ normalizes U for every t € T (by [30, 8.3.3]).

LEMMA 6.5.

(1) Letg € G andv € W¥. Then g € Bn, K ifand only if p1 0 (9.Cy ) €
v.Cy +Y. In particular G = Lyew» BnoKr.
(2) We have Gt = | ],cpyo BTno K.

Proof. — There exists v € WY and A € Y such that pyo(9.C5) =
v.C{ + A. Thus there exists t € T and v € WV such that p;(9.C) =
tnU.Cgr. Hence g.C’Sr = uzfnU.C’O+ and g € utn,K; C Bn,Kj, for some
u € Uy. Conversely if g € Bn, Ky, then pio(9.C5) € v.Cf7 + Y, which
proves (1).

As Gt is a sub-semi-group of G, | |,cyyo B noK; C GT. Let g € G*.
By (1), we can write g = bnyk, with b € B, v € W" and k € Kj. Then
b.0 = g.0 > 0 and hence b € BT, which proves (2). O

6.2. Action of Hr on I, o+ and I, ¢
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6.2.1. Well-definedness of the action

—

Let € € {+,0}. For 7 € T%, we define I(7)¢ to be the set of func-
tions f from G€¢ to F such that for all b € B¢ and g € G¢, one has
f(bg) = (6*/27)(b) f(g). The group G (resp. semi-group G*) acts on I/(\T)
(resp. I/(7-)\+) by right translation. When G is reductive, the principal se-
ries representation associated with 7 is the subset I(7) of functions of I/(\T)
which are locally constant. Then I, = I(7)%7. When G is not reductive,
we do not know which condition could replace “locally constant”. The hope
is that the principal series representation of GG associated with 7 should be
the set of functions of I/(\T) satisfying some “regularity condition”.

Let 7 € T%. Let IZ’)\Eﬁn be the set of f € IT\T)6 such that there exists a fi-
nite set ' C W such that supp(f) C U, cp Bno K. Let I ge = (I(T/)\fﬁn)Kf

be the set of elements of I(7)g, which are invariant under the action of K.
For v,w € W7, define f,, € I; ge by fuw(n,) =1 if and only v = w. Then
by Lemma 6.5, (fuw)wewr is a basis of I ge.

Fix 7 € T Following [7, 4.2.2], we would like to define an action of Hr
on I, ge by

o.f= D ¢9)gf V(6 f)€HF X L

geGtT /Ky

However, we need to prove that such an action is well-defined. The main
difficulties are to prove that if ¢ € Hr, f € I, g- and h € G, then:

> lg)f(hg)

geGt /Ky

only involves finitely many terms and that ¢.f also has finite support. The
aim of this section is to prove these results. For this, we use the masure Z,
finiteness results of [11] and [12] and the theory of Hecke paths introduced
by Kapovich and Millson in [19]. In [11] and [12], the authors mainly use
P—oo- As We use pioo, we adapt their results to our framework.

Let A € YT+, A M-path of A is a continuous piecewise linear map 7 :
[0,1] = A such that for every ¢ €]0,1[, 7’ (t), 7, (t) € W".X (where 7’ (1)
and 7/, (t) denote the left-hand and right-hand derivatives of 7 at t) and
7 (0), 7. (1) € W¥.A. A Hecke path of A of shape A with respect to C7}
is a A-path satisfying [12, 1.8 Definition], with 3; satisfying 3;(C}) < 0.
Hecke paths are the images by retractions of preordered segments in Z.
More precisely:
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THEOREM 6.6 (see [11, Theorem 6.2]). — Let z,y € T be such that <
yand A\=d"" " (z,y) € CY. Let v :[0,1] — A be an affine parametrization
of the segment x,y. Then py, o7 is a Hecke path of shape A with respect
to Cf from pioo() t0 piyoo(y)-

By definition of Hecke paths and by [22, Lemma 1.3.13], we have the
following lemma.

LEMMA 6.7. — Let X € Ci}’ and 7 : [0,1] — A be a Hecke path of
shape A with respect to C’}’. For t € [0,1] where it makes sense, we write
7' (t) = w/ (t).\ and ©’_(t) = w’ (t).\, where w’ (t),w’ (t) € W have
minimal lengths for these properties. Then for all t,t' € [0,1] such that
0<t<t <1, wehavew (t) < w! (t) <w'_(t') < w! (t'), where we delete
the derivatives that do not make sense (fort =0 ort' =1).

THEOREM 6.8 (see [12, 5.2]). — Let x € Zop, A\ € YT and u € Y. Then

++
{yeTyly=z, d° (v,y) =X and pioo(y) = u}
is finite.

LEMMA 6.9. — Let y € Zy and C be a type 0 positive local chamber of
A. Then
[C" € % | vert(C') = y and p1c(C') = C}

is finite.

Proof. — Let A be an apartment containing y and +oco. Then by (MA i),
there exists g € G such that g.A = A and g fixes A N A. Maybe working
With pioc,4 = ¢ .pioo instead of pioo, we can thus assume that y is in
A. Let C' € 6, be such that vert(C’) = y and p1o(C’) = C. Let A’ be
an apartment containing C’ and 4+00. Then A’ contains y and by (MAii),
A’ contains y + Cf . Let h € G be such that h fixes A’ N A and h.A’ = A.
Then p;o0(C') = h.C’. Therefore

(6.1) dV' (Cy+Cf) = A" (hC h(y+C)) = dV ' (Cy+CF) € W,
Using [1, Lemma 5.5] we deduce that {C’ € %, | vert(C’) = y and
P+00(C) = C} is finite. O
Let 2 € Iy and C € €, be such that C > x (i.e. vert(C) > x). By [16,
Proposition 5.17], there exists an apartment A containing « and C. Then
there exists g € G such that g.A = A, go = 0 and g.Cf € Y + Cf.
Then g.vert(C) > ¢.0 and thus g.vert(C) € Y*. One sets d¥ (0,C) =
g.vert(C). This does not depend on the choices we made by [15, Theo-
rem 4.4.17]. This defines a G-invariant “distance” AR X< 6ot = YT,
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LEMMA 6.10. — Let v € WY, A€ Y*. Then
E:={C €€ |C>0pi0(C) €v.CT+Y and d*" (0,C) = A}

is finite.
Suppose moreover that A\ € Y** and that v = 1. Then E = {\ + Cy }.

Proof. — In order to prove that F is finite, we begin by proving that
vert(E) = {vert(C)|C € E} is finite. To that end, our idea is to study,
for each C' € E, the path @ = pyo 07 : [0,1] — A, where 7 is the
segment joining 0 to vert(C'). We want to prove that 7’_(1) lies in a finite set
depending only on v and A. In order to use the assumption that pi(C) €
Y+ U.C’O+ , it is convenient to extend slightly the segment 4 and this is why
we consider a segment 7 : [0, 1] = Z such that v(0) = 0 and v(3) = vert(C).

Let C' € E. Let A be an apartment containing 0 and C. Let g € G be
such that g.A = A4, g.0 = 0 and g.(A+ Cf) = C. Let v : [0,1] — A be
defined by ~y(t) = g.2tA. Then m = pi 0y is a Hecke path with respect
to 400 of shape 2X. Let wy € W? be such that (wy)~!1.\ € YT and such
that wy has minimum length for this property. Set Cy = g.(A + wy.Cy).
Then:

4V (C,C\) = dV (g.(A + CF ), 9. (A + wa.CY))
—dV A+ CH A+ wa.CF) = wy.
Take a minimal gallery T' from C to C). Then I' has length ¢(w)) and
P+oo(D) is a gallery from pioo(C) t0 proo(Ch). Therefore
wi=d"" (p1oo(C), proo(Cr)) €W and  £(w) < £(wy).

Moreover, by definition of E, p;(C) = v+ v.C{, for some v € Y. Conse-
quently, pyoe(Cx) = v + vw.Cy . Therefore for € € ]0, 1] small enough,
(3,3 +¢) Ccv+ vw.@ and thus 7/, (1) = 2vw.A. By Lemma 6.7,
7 (3) = u.\ for some u € W such that £(u) < £(v) + L(wy).

Let now 7 : [0,1] — A be defined by 7(t) = g.tA for t € [0,1] and 7T =
Ptoo ©7. Then by what we proved above, 7_(0) = u.A. By [2, Lemma 1.8]
we have

ud =7_(1) <qv 7(1) = T(0) = pioo(vert(C)) <gv AT,
(u) < L(v) + L(wy),
where AT is the unique element of Y+ N W?.\. We deduce that
F = pioc(vert(E)) = {pioo(vert(C)) |C € E}

is finite.
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Let v € F. Let E, = {C € E|p4oe(C) = v+0.Cf}. If C € E,, then
PG (0,vert(C)) = AT and pioc(vert(C)) = v. Using Theorem 6.8 we
deduce that {vert(C)|C € E,} is finite. By Lemma 6.9, E, is finite and
thus E = {J,cp B, is finite.

Suppose now that v = 1 and that A € YT, Take C € E. We use the
same notation as in the beginning of the proof. Then we have 7’ (%) =
A = 1.\ and by Lemma 6.7 we deduce that there exists e > 0 such that
m(t) = 2tA for every t € [0, + ¢]. Moreover ¥(0) € A and thus by [14,
Lemma 3.4] we deduce that v([0,3 + €]) C A. Therefore C' C A. Thus
Pioo(C) = C = v+ Cf for some v € Y. Moreover v’ 0,0) = A+ Cf
and thus v = X, which proves that £ = {\ + C’O+ } and completes the proof
of the lemma. d

In the next lemma, we use the projection of a chamber on a vertex
introduced in [2, 1.9]. Let € A and C be a positive chamber of A such that
y = vert(C) > x. Let C" be the positive vectorial chamber of A such that
C = F, cv. Take £ € C". Then there exists a positive vectorial chamber
C? C A such that 2 + C? > conv(z,|y,y + €£]), for € > 0 small enough,
where conv denotes the convex hull. Then the chamber pr,(C) = F, &, is
the projection of C' on z. Let now x € Z and C be a positive chamber of
7 such that vert(C) > x. Then there exists g € G such that g.z,g.C C A.
We set pr,(C) = gfl.(prg.z(g.C)). This is the projection of C on z. Then
by [15, Theorem 4.4.17], pr,(C) does not depend on the choice of g, every
apartment containing x and C' contains pr,(C) and every h € G fixing =
and C fixes pr,(C).

LEMMA 6.11. — Let w € W1 and v € W". Then:

(1) Upewr (nuKnw K N Bn,Kr) /K is finite,
(2) {u € WY |n,KrnwK; N Bn,K; # 0} is finite.

Proof. — Set F' = |J,cyo (nuKinwK; N Bn,Ky)/K;. Let u € W and
g € nyKingKyr. Set C = g.C’gr. Then dW+(u.Car,C) = w. Thus there
exists h € G such that h~1.A contains u.C;",C and such that h.u.Cj =
Ci h.C = w.Cl. Write w = Aw (i.e. wz = A+ w.x for every x € A).
Set h' = n,-1h. Then A'~1.A = h~1.A contains 0,C, ’.0 = 0 and h'.C =
w™L A+ Cf. Thus avr (0,C) = w~L.\. Therefore

FCf c{C €% |C20,p4i00(C) €v.CH +Y and d¥ (0,C) = w ' A},

By Lemma 6.10, F.CSr is finite, which proves that F is finite.
Let u € W7 be such that there exists ¢ € n,KinwK; N Bn,K;. Let
P = {pry(C")|C" € F.C}}. Let C = ¢.Cf. Then as dV " (u.Cl,C) = w,
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there exists h € G such that h~!'.A contains u.CS‘,C’, h.u.C’S‘ = C’ar and
h.C = w.C. Then h.pry(C) = pry(w.Cy ). Therefore

w' i=d"" (hu.Cy , h.pry(C))
=d"" (u.Cqf , pro(C))
— v (C’J,pro(w.C’a‘)) e Wwv.

Consequently there exists C’ € P such that dW " (u.C,C") = w'. Conse-
quently,
_ wt + o)) <« / w1+
O(u) = £(d"V (u.Cq,CH)) < L(w') + g}g)}g@(d (', cy)).

This proves (2). O

DEFINITION 6.12. — Let ¢ € {+,0} and 7 € T%. Let ¢ € Hr and
f €l g Define ¢.f € I, ¢ by

¢.f= > ¢9gf.

gEG+/K1

Then . is well-defined and induces an action of Hr on I ge.

Proof. — To prove that ¢.f is a well-defined element of I, g, it suffices
to prove it for ¢ = T4 and f = f,, for v € WY and w € WT. Let
g € Gt and h € G*. Suppose that Ty (g)f,(hg) # 0. Then g € Kiny K N
h='Bn,K;. Write h = bnyk, with b € B¢ and k € K;. Then Kinw K N
k='n;'Bn,K; # 0. Therefore

(6.2) g€ KmmwKrnk™'n,'Bn,K; =k Y (KmwKrNk™'n;'Bn,K).
By Lemma 6.11,

Y Tw(9)fulhg) = > Tw(9)fo(hg)

geEGT /K gEKmwKiNk—1ng ' Bn,K1/Kr

is well-defined. Thus Ty.f, is a well-defined map G¢ — F. The fact that
it is right Kj-invariant and that Ty.f(bh) = 6'/27(b)Ty.f(h), for B € B¢
are clear.

Let u € W". Suppose that Tw.f,(n,) # 0. Then by (6.2), KinwK; N
n, ' Bn, K # (. By Lemma 6.11 we deduce that {u € WY | Ty, f,(n,) # 0}
is finite, which proves that Ty,.f, is an element of I ge.

The fact that (¢ * ¢').f = ¢.(¢'.f) for every f € I; g, ¢,¢' € Hr is an
easy consequence of the fact that ¢ x ¢/(h) = Zg€G+/KI #(g)¢' (g~ 1h) for
every h € GT /K. 0O
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6.2.2. Isomorphism between It and I ge

Let 7 : YT — F be a monoid morphism. Then 7 induces an algebra
morphism 7 : F[Y ] — F and thus this defines a representation I =
Indﬁ[f;ﬂ(ﬂ = Hr @r[y+) F- Let € € {+,0}. The aim of this section is to
prove that if 7 € (T'x)¢ then the map It — I, g defined by h.1®,1 — h.f1,
for h € Hx is well-defined and is an isomorphism of Hr-modules (see
Proposition 6.17). To that end, we prove that Z*.f; = 7(A\)f, for A € Y.
For this we begin by proving that if A\ € Y™+, then Z*.f; = 7(\) f1. In the
reductive case, this is sufficient to deduce the result for any A € Y = Y+
since Z* is invertible for A € Y**. In the Kac-Moody case however, Z* is
not necessarily invertible for A € Y**. We thus prove that if f € I, ge is
such that Z*.f = 0 for A € Y+ sufficiently dominant, then f = 0.

LEMMA 6.13. — Let w € WY. Then T,.f1 = fy-1.

Proof. — Let v € W*.Then Ty,.f1(n,) = deG+/K1 Tw(9) f1(nyg). Sup-
pose that Ty,.f1(n,) # 0. Then there exists g € Kn,Kr Nn;'BK; and
thus 17, Kn.K; N BK; # (.

Let b € nyKmnywK; N BK; and C = h.Cyf. Then dV" (v.Cf,C) = w
and p1o(C) € Y + Cf . Therefore vert(C) = 0 and hence py.(C) = C .
By formula (6.1) of the proof of Lemma 6.9, we have C = C;. Conse-
quently C' = Cy , v =w"!, supp(Ty.f1) C Bny-1 K1 and Ty f(ny-1) = 1.
Therefore T,.f1 = fi,-1. O

LEMMA 6.14. — Let we WV and A€ Y N C’}’. Then:

(1) supp(Ty.fw) C Uvgw Bn, K.
(2) T fuw(ny) #0.

Proof. — Let v € W". Suppose that T).f,(n,) # 0. Then
X = n,Km)K;N Bn,K;

is non-empty. Let g € X. Let v : [0,1] — Z be defined by () = g.t.A for

€ [0,1]. Let @ = pjoo ©y. Then 7 is a Hecke path of shape A from 0 to
P+oo(vert(C)). For ¢ € [0, 1] where it makes sense, write 7/_(t) = w_(t).),
7, (t) = w! (t).\, where w’ (t) and w/, () have minimum lengths for these
properties. By the proof of Lemma 6.10, w’ (1) < w (we have wy = 1 in
this case). Using Lemma 6.7 we deduce that w’, (0) < w. Let Cr(o+) (resp.
Cy(o+)) be the local chamber based at 0 and containing 7(t) (resp. (t))
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for t € [0, 1] near 0. Then

+ +
dW (C(Tac'y(OJr)) = dW (p+oo(c(3'—)7p+oo(cw(0+)))
= dW+ (Cé", Cﬂ(0+))
= w! (0).

Let us prove that Cy+) = U.C’Sr . Let A be an apartment containing
v.C’ar and C. Let h € G be such that h.A = A and such that h fixes v.C’S‘.
Then

dV(CE N+ CH) =dV (RO R A+ CF))

=A

= dV (0.CF,h LA+ CY))

=d"" (v.Cf,0).
As A contains v.C;, C and h=1.(A+Cy), we deduce that h~1.(A+Cy ) = C.
In particular, 1.\ = g.\ and thus by [34, Proposition 5.4, y(t) = h=1.t.\
for all t € [0,1]. Let Q' be a neighborhood of 0 in A such that h pointwise
fixes @ = Q' Nv.CY. Then for ¢ € [0,1] small enough, y(t) € Q and thus
Cyot) = U.CS_. Consequently, v(t) € A for ¢t € [0,1] small enough, thus

Cyo+) C A, thus C oty = Cro+) = v.0f and hence v = w! (0) < w.
Therefore:

supp(Tx.fw) C U Bn,Ky.

vw
Suppose now that v = w. Then with the same notation as above, one
has w/ (0) = w. Therefore w < w’ (t) < w and w < W/, (t) < w for
every ¢ € [0,1] and hence 7 is the line segment from 0 to w.A. Therefore if
g € Ny KK N Bny, Kz, then pyoo(9.Cy) = w.(A + CF ). Consequently
N K Kr N Bn,K; C UJFTLw‘)\TLwK[,
and n, x € T. Thus
T fu(nw) = > fu(nwg)
geKmxKinng'Bn, K1 /Kr
= [noKnaK; N B, K/ Ki|m6Y?(w.\).
Moreover nyny € n, KinyK; N Bn, Ky, which proves that Ty.fu,(n,) #
0. O

LEMMA 6.15. — Let f € I, g<. Suppose that for some p € Y N CY%,
T,.f=0. Then f = 0.
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Proof. — Write f = Yy Guwfu, where (ay) € FW" has finite sup-
port. Suppose that f # 0. Let w € supp ((av)) be maximal for the Bruhat
order. Then by Lemma 6.14, T),.f(nw) = awTy. fw(ne) # 0. We reach a
contradiction and thus f = 0. g

LEMMA 6.16. — Let A € Y*. Then Z*.f; = 7()\).f1.

Proof. — First assume that A € Y*+. Then Z* = 6= /2(\)Ty, by [2,
5.7 and Theorem 5.5]. By Lemma 6.14, supp(T).f1) = BK; and thus
Tx.f1 € Ffi.

We have nyK; € KinyK; N BK;. Let g € KinyK; N BK;. Let C =
g.Cf. Then p, o (C) €Y + Cf and d¥"(0,C) = A. Thus by Lemma 6.10,
C =X+ C(]L. Hence g € nyK; and KnyK; N BK; = n)K;. Therefore
Tr.f1(1) = f1(N) = 6Y27(\). Hence Ty.f1 = 6/27(\)f1 and Z*.f; =
T()\)fl

Let now A € YT. Then by [2, Theorem 5.5] and the fact that Z* =
STY2(N) XA, one has T,.Z> f1 = 6 Y 2(N) Ty fr = TN+ )62 (u) fr =
T,.(t(N).f1) for p € Y+T sufficiently dominant. Thus by Lemma 6.15,
Z*.f1 = 7(A\).f1, which proves the lemma. O

PROPOSITION 6.17. — Let € € {+,0}. Let 7 € T%. Then the map ¢ :
It — I, g defined by ¢(h.1®; 1) — h.f1 for h € Hr is well-defined and is
an isomorphism of Hr-modules.

Proof. — By Lemma 3.5 and Lemma 6.16, ¢ is well-defined. Let x € I¢
be such that ¢(z) = 0. Writex = > v a0 Ty ®,1, with (a,) € FW" Then
¢(x) = > cwo @Iy f1. Suppose that 2 # 0. Let w € WV be such that
a,y # 0 and such that w is maximal for this property (for the Bruhat order).
Then by Lemma 6.14 and Lemma 6.13, ¢(x)(ny-1) = Ty f1(n,-1) # O:
a contradiction. Therefore z = 0 and ¢ is injective. By Lemma 6.13 and
Lemma 6.5, (T f1)wewr is a basis of I ge. Consequently ¢ is surjective,
which proves the proposition. O

6.3. Extendability of representations of Gt and Hr

In this subsection, we study the extendability of I.+ g+ (resp. ITt) to
a representation of G (resp. BXH x), for 7 € T}r. We obtain a criterion
depending on the extendability of 77 to an element of T (see Proposi-
tion 6.28).
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6.3.1. Extendability of elements of T]'_-Ir

Recall that if 7: YT — F is a monoid morphism I = Ind¥£,+](7) =
Hr QFpy+) F is a representation of Hzx. If I is not the restriction of a
representation of B¥H z we call I} a non-extendable principal series repre-
sentation of Hr. In this section we study the existence of non-extendable
principal series representations of Hzx. We prove that in some cases (for
example when H r is associated with an affine root generating system or to
a size 2 Kac-Moody matrix) every principal series representations of Hx
can be extended to a representation of BH  (see Lemma 6.20). We prove
that there exist Kac-Moody matrices such that H r admits non-extendable
principal series representations (see Lemma 6.24).

Let resy+ : Hompgon (Y, F) — Hompon (Y T, F) be defined by resy+(7) =
Ty + for all 7 € Homypon (Y, F).

LEMMA 6.18. — The map resy+ : Homg, (Y, F*) = Hompon (Y, F*) —
Homyon (YT, F*) is a bijection.

Proof. — Let 7 € Homypon (Y, F*). Let v € C%. Let A€ Y and n € Zxg
be such that A+nv € T. Then 7()\) = T(TA(::)”) and thus res|y+ is injective.

Let 7+ € Hompyon(Y ™, F*). Let A € Y. Write A = Ay — A_, with
A, A €Y. Set 7(N\) = :8“:;, which does not depend on the choices of
A_ and A;. Then 7 € Homppon (Y, F*) is well-defined and resjy+(7) = 77,
which finishes the proof. O

LEMMA 6.19. — Let 7 € Homyon (Y1, F) and x € Tr.

(1) Suppose Homy, , —moa(I;,I,) # {0}. Then there exists w € W"
such that 7 = w.x|y+.

(2) Suppose Homy, , —mod(Iy, ;) # {0}. Then there exists w € W"
such that 7 = w.x |y +.

Proof.

(1). — Let ¢ € Homy,—moa(L;, Iy) \ {0}. Let 2 = ¢(1 ®,+ 1). Then
ZAx = 7(\).z for all A € Y*. By Lemma 2.8, Z*.x # 0 for all A € Y+,
Thus 7(A\) # 0 forall A € Y.

Let p € Y. Let v € Cy NY be such that p+v € Y*. Then ZF.x =

T(Tﬂ(j)u)x Therefore there exists x' € T such that x € I,(x’). By Lem-

ma 3.2, ¥’ € W".x. Moreover, X1Y+ = 7, which proves (1).

(2). — Let ¢ € Homp,—moa(Ly, ;) \ {0}. Let # = ¢(1 ®, 1). Then
Z x = x(\).x for all A € Y*. By a lemma similar to Lemma 3.2 we
deduce that x|y+ € W".7, which proves the lemma. O
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One has Homyon (Y, (F,.)) = Homg(Y,F*) U {0}. Set A; =
Nse.o ker(as). Let 7 be the interior of the Tits cone.

LEMMA 6.20. — Let 7" € Homwon (Y, (F,.)). Assume that there exists
XA € Yt such that 77(\) = 0. Then 7H(7 NY) = {0}. In particular, if
T =T UA;,, then Homyjon (Y*, (F,. )) = Homyon (Y, F*) U {0}.

Proof. — Let p € T NY. Then for n > 0, np € \+T. Indeed, np — \ =
n(u - %) € T for n > 0. Hence T+('n,’u) — (7—+(’u))n —0. -

A face FV C T is called spherical if its fixator in W7 is finite.
Remark 6.21.

(1) If A is associated to an affine Kac-Moody matrix, then 7 = 7°‘UA,»”
(see [15, Corollary 2.3.8] for example).

(2) If A is associated to a size 2 indefinite Kac-Moody matrix, then
T =T UAs. Indeed, by [30, Théoréme 5.2.3], 7 is the union of the
spherical vectorial faces. By [34, 1.3], if J C . and w € W7, the
fixator of w.F? is w.W"(J).w™t. Therefore the only non-spherical
face of T is Ay, and hence T =T U Ay,

(3) Let A = (ai ;)i jeq.3 be a Kac-Moody matrix such that for all
i # j, a;ja;j; = 4. Then by [22, Proposition 1.3.21], WV is the free
group with 3 generators si, s2, s3 of order 2. Thus for all J C .
such that |.J| = 2, F(J) is non-spherical. Hence 7 2 T U Ayy,.

6.3.2. Construction of an element of Homyon (Y, F) \ Hompion (Y, F)

We now prove that there exist Kac—-Moody matrices for which
Homygon (Y, F) # Homypon (Y, F).

Assume that A is associated to an invertible indefinite size 3 Kac—Moody
matrix (see [18, Theorem 4.3] for the definition of indefinite). Then one has
A =A"® Ay, where A’ = @,.; Rey'. Maybe considering A/A;,, we may
assume that A;, = {0}.

Recall that 7T is the disjoint union of the positive vectorial faces of A.

LEMMA 6.22. — Assume that there exists a non-spherical vectorial face
F* #£{0}. Let v € T andy € T \ F*. Then [z,y] N F* C {z}.

Proof. — Assume that y € 7. Then (z,y] C 7 and thus [z, y|NF? C {z}.
Assume that y ¢ 7. For a € T, we denote by F the vectorial face of
T containing a. If ) = F/, then [v,y] C F}. As F] # F", we deduce

ANNALES DE L’INSTITUT FOURIER



PRINCIPAL SERIES REPRESENTATIONS OF KAC-MOODY GROUPS 251

that [z,y] N F” = (. We now assume that F # F;. As W" is countable,
the number of positive vectorial faces is countable and thus there exist
u # u € [z,y] such that F! = F!,. Then the dimension of the vector
space spanned by F) is at least 2. Thus there exists w € W" such that
FY = w.F?(J), for some J C . such that |J| < 1. Then the fixator of F/
is w. W .w™!, where W; = (J). Then W is finite and thus F)V is spherical.
Consequently, (z,y) = (z,u] U [u,y) C T and the lemma follows. O

LEMMA 6.23. — Assume that there exists a non-spherical vectorial face
FY #£{0}. Then T \ F¥ and T \ {0} are convex.

Proof. — Let z,y € T\ F". Suppose that [z,y]NF" # . By Lemma 6.22,
y € FV = F*U{0} and hence y = 0. Let F? be the vectorial face containing
x. Then [z,y) C F? and hence [z,y) N FY = (): a contradiction. Thus T\ F"*
is convex.

By [12, 2.9 Lemmal, there exists a basis (J5)scs of @, Ray such
that §5(7) > 0 for all s € .%. Thus T \ {0} is convex and hence T \ F¥ =
T\F'NT\ {0} is convex. O

LEMMA 6.24. — Assume that A is associated with an indefinite Kac—
Moody matrix of size 3 such that there exists a non-spherical face dif-
ferent from A;,. Assume moreover that (a))se is a basis of A. Then
Homyton (Y1, (F,.)) 2 Homyon (Y, F*) U {0}

Proof. — Let 7+ = 14 : T — F. Let us prove that 77 € Homyon (7,
(F,.)). Letx,y e T.Ifx,y € T\ F?, thenz+y=2.3(x+y) € T\ F" by
Lemma 6.23 and thus 7+ (z +y) = 0= 7" (x)7 " (y).

Suppose z € FV andy € T\ FV, then x +y = 2.3(x +y) € T \ F" by
Lemma 6.22. Thus 77 (z +y) =0 =7 (2)7T (y).

Suppose # = {0} and y € T\ F*. Let F, be the vectorial face containing
y. Then (z,y] C F; and hence z +y € F): 74 (z +y) = 0= 71 (2)77 (y).
Consequently, 77 € Homwon (7, (F,.)).

Maybe considering w.F", for some w € WV, we can assume FV C C’i}’
Then there exist s1,$82,s3 € . such that ¥ = {s1, 89,53} and F¥ =
ot {0)Na ({0} N (RY ). Let A € A be such that a, (A) = as,(A) =0
and a,,(A) = 1. There exists n € Zx1 such that A € 1V. Thus Tl-;+ €
Hompyon (Y, (F,.)) \ (Homyon (Y, F*) U {0}). O

6.3.3. Extension of the representations from G* to G

We now study under which condition the representation I, g+ of Gt
extends to a representation of G, for 7 € Tji .
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LEMMA 6.25. — Let g € G. Then for t € T such that t.0 is sufficiently
dominant, tg € G™T.

Proof. — Let g € G and = = ¢g.0. There exists an apartment containing
—oo and z, i.e. there exists g € G such that g.A N A contains a — C7}, for
some a € A. For q € C}’- sufficiently dominant, a — ¢ < z. In particular,
there exists y € A such that y < z. For A € YT+ sufficiently dominant,
y+ A >0. Then ny.y =y + A > 0. As < is G-invariant, ny.y < ny.z and
thus 0 < ny.z = n,g.0. Therefore nyg € G*. O

Let x,y € Z. We write z <y (resp. x < ) if there exists g € G such that
gr,gy € Aandy—x €T (resp. y —x € T U{0}). This does not depend
on the choice of g.

If G is reductive, then = < y for every z,y € Z. We now assume that G
is not reductive. Then for every = € A, for every y € z + C¥%, one has v <y
and y € x.

LEMMA 6.26. — Let x,y,z € Z. Suppose that z <y, y < z and z £ v.
Then z < z.

Proof. — Let A be an apartment containing y and z. Let F, be a positive
face of A based at y and containing [y, 3] for 3/ € [y, z] near y. Then by [15,
Theorem 4.4.17], there exists an apartment A’ containing F, and z. Then
A’ contains [y, y'] for some ¢y’ € [y, z] near y. In the apartment A’, one has
y <y and x < y. Consequently z <y (because T + T C 'T) We thus have
r< y and 3/ <z Using [34, Théoréme 5.9] we deduce that x <z Asz < Yy
and z € y, we have x # z, which proves the result. O

LEMMA 6.27.

(1) Let 7 € TF be such that 7 is the restriction of some element of T'x
(still denoted 7') Then every element of I ( )t uniquely extends to

an element of I ( ).
(2) Let 7 € T be such that T is not the restriction of some element of
Tr. Then for every f : G — F such that for allg € GT and b € BY,

f(bg) = (6"/27)(b)f(g), one has f = 0.
(3) Let T € T}' be such that T is not the restriction of some element of
Tr. Then there exists t € T such that for every f € I, g+, t.f = 0.

Proof.

(1). — Let f € I( )*. Suppose that there exists f € I(7 ) extending f.
Let g € G. Let ¢ € T be such that tg € GT. Then f(tg) = (6*/27)(t)f(g) =
f(tg) and thus f(g) = (6/27(t))"1 f(tg). Thus f is unique if it exists.
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We now set f'(g) = (6'/27(t)) "1 f(tg), for t € T such that .0 is dominant
and such that tg € G*, which exists by Lemma 6.25. Let us prove that
f' is well-defined. Let ¢, € T be such that tg,t'g € G and such that
t.0,#.0 € Y. Then

f(tt'g) = (r6'/2)(t') f(tg) = (r6'/%)(t) f(¢'g)
so that f(t'g) (751/2(75’))_1 = f(tg) (7(51/2(25))_1. This prove that f’ is well-
defined. In particular, f’ extends f.
Let now t € T and g € G. Let us prove that f’(tg) = 76'/2(t)f'(g). Let
t' € T be such that t'g,t'tg € GT. Then
f'(g) = f(tt'g)(8"/2r(2t'))

1 1

=182 () f(tg) (62 (tt)))
= ['(tg)(8/°(1)) ",
which proves that f’(tg) = 76'/2(t)f'(g).

Let now g € G and u € U,. Let t € T be such that tg,tu € G*. Then
f'(tug) = 78'2(t)f'(ug) and f'(tug) = 76"/*(tu)f'(g) = 78'/2(t)f(g)-
Thus

62 (t)f (9) = 7612 (1) f' (ug)
and hence f’'(ug) = f'(g) for every u € Uy and g € G*.

Let now g € G and u € Uy. Let t € T be such that tug,tg € G*. As t
normalizes U, , we can write tu = u't for some u’ € U,. Then

F'(ug) = f'(tug) (r"/2(1)) " = f'(u'tg) (62 (1)) "
= ['(tg) (r0"2(®)) " = F'(9)-
Let b € B and g € G. Write b = tu, with ¢t € T and v € U;. Then we
have
f'(bg) = f'(tug) = 76"2(t) f'(ug) = 76" 2(t) f'(9) = 76"/*(b) ' (9)

—

and thus f’ € I(7) and f’ extends f. This proves (1).

(2). — Let T € T;f be such that 7 is not the restriction of some element
of Tr. Then by Lemma 6.18, there exists ¢ € T such that 7(¢t) = 0. Let
f: G — F besuch that for all g € G and b € BT, f(bg) = (6'/27)(b) f(g).
Let g € G. Then f(g) = f(tt™g) = 76*/2(t) f(t1g) = 0, which proves (2).

(3). — By Lemma 6.20, one has 7(t') = 0 for every ¢’ € T such that
#.0 € T. Let t € T be such that t.0 € Cy. Let g € Gt and f € I g+.
Then ¢.0 >0 and ¢t.0 € 0. Therefore gt.0 > ¢.0 and gt.0 £ g.0. Moreover
9.0 > 0 and thus by Lemma 6.26 we have gt.0 > 0. Using Lemma 6.5 we
write gt = bn.k, with b € BT, v € W? and k¥ € K;. Then gt.0 = b.0,
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which proves that 5.0 > 0. Write b = u/t/, with /' € Uy and t' € T.
Then by Theorem 6.6, pyoo(b.0) = /.0 > 0 and thus 7(¢') = 0. Therefore
f(gt) =t.f(g) = 7612(t") f(n,k) = 0, which proves (3). O

PROPOSITION 6.28. — Let 7+ € T5.

(1) Suppose that 77 is not the restriction to Y+ of an element of Tx. For
every f € I/(T-?) \ {0}, for every G-module M, the restriction of M
to G is not isomorphic to GT.f. For every z € I, \ {0}, for every
BLY r-module M, the restriction of M to Hr is not isomorphic
to Hr.x.

(2) Suppose that T is the restriction to Yt of a (necessarily unique)
element 7 of Tr. Every element ft of Im+ can be extended
uniquely to an element f ofI/(\T). Then f+ + f is an isomorphism
of G*t-modules. The action of Hr on ITﬁ extends uniquely to an

action of BYH r on I:Q. Then I:r+ is naturally isomorphic to I, as
a BYH r-module.

Proof.

(1). — By Lemma 6.18, there exists A € Y such that 71 (\) = 0. Then
if v € I, \ {0}, Z .2 = 0. If M is a BLH z-module, one has Z=*.Z .y =
y # 0 for every y € M\ {0}. The similar statement for G is a consequence
of Lemma 6.27(3).

(2). — The statement for Iﬁ* follows from Lemma 6.27(1). The
statement for I follows from Proposition 2.12. By Proposition 6.17, the
actions of Hr on I, g+ and I, ¢ extend to actions of BLY{r on I o+
and I, g. O

Appendix A. Existence of one dimensional representations
of BLH

In this section, we prove the existence of one dimensional representations
of B¢, when o, = ol =0, forall s € .7.

LEMMA A.1. — Assume that F = C and that there exists o € C such
that o5 = o, = o for all s € ./ and such that |o| # 1. Let e € {—1,1}
and 7 € Tc be such that (o)) = o2¢ for all s € .. Then I, admits
a unique maximal proper submodule M. Moreover, I, = M @& Cl ®, 1
and if € I,/M, then Z*.x = 7(\).x and Hy,.x = (ec®)" ™).z for all
(w,\) e WY x Y.
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Proof. — By Lemma 5.2, such a 7 exists. Let ¢ = 02. Let ht : ¥ — Q
be a Z-linear map such that ht(aY) = 1 for all s € .. Then one has
r(aY) = ¢e™ @) for all ¥ € V.

Let s € .. With the same notation as in Lemma 4.4, let ¢ = ¢(s.7,7) :
Is; — I.. Then by Lemma 4.4 M, := Im(¢s) is a proper submodule of I.
Moreover, H, —e0®,1 € M. Let M =3, M,. Let w € W"\ {1} and
w = 81 ...5s be a reduced expression. Let v = wsy. Then H,.(H,, —eo€) =
H, —eo®H, € M, . Therefore, for all w € W@ \ {1}, there exists z,, € M
such that 78 (z,,) = 1 and z,, € M NIS™. By induction on £(w) we deduce
that M +Cl®, 1 =1I,.

By [12, Lemma 2.4a)], 7 € T~®. Moreover, by Proposition 3.4(2),

and if we choose &, € I.(v.T) \ {0} for all v € W7, then (& )vew~ is a
basis of I,. For w € WY, let 75 : I, — C be the linear map defined by
7 (£) = Gy for all v € WP, As & € C1 @, 1, one has 7§ (M,) = {0} for
all s € .. Thus I, = M & C1 @, 1. Moreover, M C (7%)~1({0}) and by
dimension M = 7$({0}). We deduce that M is the unique maximal proper
submodule of I and the lemma follows. O

Remark A.2. — Actually, the representations constructed in Lemma A.1
generalize the well known trivial representation (when € = 1) and Steinberg
representation (when e = —1). For simplicity, we assumed all the oy, o, to
be equal, but this is not necessary. We can also construct these representa-
tions directly by setting triv(H,) = o, triv(Z2%:) = o407, St(H,) = —o ',
St(Z%) = o710/, Using the fact that the relations (BL1) to (BL4) are
preserved by triv and St, we can extend them to representations of BlH¢
over C.

Appendix B. Examples of possibilities for W, for size 2
Kac—Moody matrices

In this section, we prove that there exist size 2 Kac—Moody matrices
such that for each subgroup H of W, there exist 7 € T¢ such that W is
isomorphic to H. We assume that as(Y') = Z for all s € .#" and thus W) =
W... We already proved the existence of regular elements in Lemma 5.1.
If 7 € Tc is such that 7(ay,) = 1 and 7(ay,) is not a root of 1, then
WT = {1, 51}.
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LeEMMA B.1. — Let A = (ai ;)@ j)ef,2)2 be a Kac-Moody matrix. As-
sume that a1 2 and as; are even and such that ai a0 1 is greater than 6.

1
Let 2 be a primitive (aj2a21 — 4)-th root of 1. Let v, = 72“"?. Let
7:Y =ZaY & Zay — C* be the group morphism defined by (o)) = ~;

for both i € {1,2}. Then W, = (s152) ~ Z.

Proof. — Let 7/ € T¢ and v, = 7/(a’) for both i € {1,2}. For A € Y,
one has (s2 — s1).A = a1 (A\)ay — az(N)ay. Thus

51.7 = 850.7 = VA€V, 7 (a1(N)a] —aa(N)ay) =1

= VA Y,y =yl
< (1) = (9)"* and (13)* = (v])".
Thus $1.82.7 = 7. Moreover so.7 # 7 and hence W, = (s1532). d

Ifr=1:Y — {1}, then W, = 1. The following lemma proves that W,
can be a proper subgroup of W7 isomorphic to the infinite dihedral group.

LEMMA B.2. — Let A = (a; ;) j)e[,2)> be an irreducible Kac-Moody
matrix which is not a Cartan matrix. One has ajaz; > 4 and maybe
considering A, one may assume a1,2 < —2. Write WV = (s, s2). Let v2 be
an aip-th primitive root of 1 and 7 € Tc be defined by 7(ay,) = 1 and
7(ay,) = 2. Then W, = (s1, s25152).

Proof. — Let 7 = s5.7. Let us prove that s;.7 =7, i.e. that 7(ay ) = 1.
One has 7(ay) = 7(s2.ay,) = 7(a), — as, (o)) = 7(a),)” "2 = 1.

Thus W, > {s1,828182}. Therefore W? /W, = {W,,t.W.}. Moreover t ¢
W, thus [W? : W.] = 2 and hence W, = (s1, $25152). d
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K, 236
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Ky, 226

Ko, 228
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Ngv (w), 196
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QY, 217
Qs(2), 197

T, 234

TX®, 205

Tr, 199

Tw, 238

Tw, 209
Uy,U_, 238
Uy, 234

W, 237

Wv, 194

W, 213

Y, 193

Y+, Y+t 194
Z>, 197

A, 193

BLy £, 197
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0, 236
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S, 194
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Ur, 210
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Wt (M), 204
W), 213
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51/2 238
¥t 236
AWt 237
d¥™", 242
0r, 222

<, 236

<r, 222

S, 193

v, 235

w, 234

w2, 219
w201

ml 214
Peco; 239
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vert, 237
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Cw, 219
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Jv, 241
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