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AUTOMORPHISMS OF REAL DEL PEZZO SURFACES
AND THE REAL PLANE CREMONA GROUP

by Egor YASINSKY (*)

Abstract. — We study automorphism groups of real del Pezzo surfaces, con-
centrating on finite groups acting with invariant Picard number equal to one. As
a result, we obtain a vast part of classification of finite subgroups in the real plane
Cremona group.
Résumé. — On étudie les groupes d’automorphismes des surfaces de del Pezzo

réelles, en se concentrant sur les groupes finis qui agissent avec un nombre invariant
de Picard égal à 1. En conséquence, on obtient une bonne part de la classification
des sous-groupes finis du groupe de Cremona du plan réel.

1. Introduction

1.1. The classification problem

This paper is devoted to the study of finite automorphism groups of real
del Pezzo surfaces. Our main motivation is the classification of finite sub-
groups of the real plane Cremona group; hence this paper may be viewed as
a follow-up paper to [39]. Recall that the Cremona group Crn(k) = Bir(Pnk )
is the group of birational automorphisms of the n-dimensional projective
space over a field k. The finite subgroups of Cr1(k) ∼= PGL2(k) have been
known since Klein’s time (see Lemma 2.5 and [2]). By contrast, the com-
plete classification of finite subgroups of Cr2(k) for k = k was obtained by
I. Dolgachev and V. Iskovskikh only in 2009 and involves different hard
techniques of modern birational geometry, such as Mori theory, equvariant

Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real
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832 Egor YASINSKY

resolution of singularities, etc. For the exposition of these results, as well
as some historical notes, we refer the reader to the original papers [4] (case
of abelian subgroups) and [13].
Much less is known for algebraically non-closed fields or n > 3. Classifica-

tion of finite subgroups of Cr2(R) was initiated by the author in [39] where
subgroups of odd order were classified up to conjugacy. The goal of this pa-
per is to extend these results much further and to classify all finite groups
acting minimally on real del Pezzo surfaces (see below). As will be explained
below, this gives a vast part of classification of finite subgroups in Cr2(R).
As for the case n > 3, k = C, the classification seems out of reach at the

moment. There are some partial results, see e.g. [24, 25]. Alternatively, one
can try looking at things from a different point of view using the notion
of Jordan property introduced in [23]. Recall that an abstract group Γ
is called Jordan if there exists a positive integer m such that every finite
subgroup G ⊂ Γ contains a normal abelian subgroup A/G of index at most
m. The minimal such m is called the Jordan constant of Γ and is denoted
by J(Γ). There is a remarkable result(1) [27]:

Theorem 1.1 (Yu. Prokhorov, C. Shramov). — Let char k = 0. Then
Crn(k) is Jordan for each n > 1.

This theorem allows, at least theoretically, to classify finite subgroups of
Cremona groups “up to abelian subgroups”. Indeed, we know that for each
extension

1→ A→ G→ G/A→ 1,

where A ⊂ G is a normal abelian subgroup, the sizes of G/A are uniformly
bounded by a universal constant depending only on n and k. How large
can be the list of possible G/A, i.e. what are precise values of J(Crn(k))?
There are some results in this direction.

Theorem 1.2 ([40, Theorems 1.9, 1.10]). — One has

J(Cr2(C)) = 7200, J(Cr2(R)) = 120.

Theorem 1.3 ([28, Theorem 1.2.4]). — Suppose that the field k has
characteristic 0. Then one has

J(Cr3(k)) 6 107 495 424.

(1) It was initially proved modulo so-called Borisov–Alexeev–Borisov conjecture, which
was settled in any dimension in [3].
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1.2. G-surfaces

Let us briefly recall a general strategy of classification of finite subgroups
in Cr2(k). Throughout this paper G denotes a finite group. Let k be a
perfect field. We use the standard language of G-varieties (see e.g. [13]
or [39]). The modern approach to classification is based on the following
observations:

• For any finite subgroup G ⊂ Cr2(k) there exists a k-rational smooth
projective surface X, an injective homomorphism ι : G→ Autk(X)
and a birational G-equivariant k-map ψ : X 99K P2

k, such that

G = ψ ◦ ι(G) ◦ ψ−1

This process of passing from a birational action of G on P2
k to a

regular action on X is usually called the regularization of the G-
action. On the other hand, for a k-rational G-surface X a birational
map ψ : X 99K P2

k yields an injective homomorphism

iψ : G→ Cr2(k), g 7→ ψ ◦ g ◦ ψ−1.

Moreover, two subgroups of Cr2(k) are conjugate if and only if the
corresponding G-surfaces are birationally equivalent. So, there is a
natural bijection between the conjugacy classes of finite subgroups
G ⊂ Cr2(k) and birational isomorphism classes of smooth k-rational
G-surfaces (X,G).

• For any projective geometrically smooth G-surface X over k there
exists a birational G-equivariant k-morphism X → Xmin where the
G-surface Xmin is G-minimal. The latter means that any birational
G-equivariant k-morphism Xmin → Z is an isomorphism. If the sur-
faceX is additionally k-rational, then one of the following holds [14,
Theorem 5]:
(1) Xmin admits a conic bundle structure with Pic(X)G ∼= Z2;
(2) Xmin is a del Pezzo surface with Pic(X)G ∼= Z.

So, the classification of finite subgroups of Cr2(k) is equivalent to bira-
tional classification of minimal pairs (X,G) described above. The goal of
this paper is to describe all the minimal pairs (X,G) withX a real del Pezzo
surface, i.e. to complete the study of the first case in the previous dichotomy.
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1.3. Some comments on the conic bundle case

The reader may wonder why do we focus only on the case of del Pezzo
surfaces in this paper. The following example can serve as a partial explana-
tion (or rather an excuse). Namely, it shows that there exist infinitely many
pairwise non-conjugate involutions in Cr2(R), which are all conjugate over
C. So, the classification of finite subgroups up to conjugacy in Cr2(R) is a
much more subtle question. For the philosophy of k-birational unbounded-
ness of conic bundles quotients standing behind this example see [32].

Example 1.4. — Consider the surface

Zn : x2
2n∏
k=1

(t20 + k2t21) + y2t4n0 + z2t4n1 = 0

in ProjR[x, y, z] × ProjR[t0, t1] ∼= P2
R × P1

R. The projection to P1
R-factor

defines a structure of a conic bundle on π : Zn → P1. Its geometrically
singular fibers lie over the points pk = [ik : 1], pk = [−ik : 1] (here
i =
√
−1) and are given by y2 + z2 = 0.

Let gn ∈ Aut(P1
R) be the involution [t0 : t1] 7→ [−t0 : t1]. The complex

involution σ and the automorphism gn act on Zn as shown on Figure 1.1.
Note that

Figure 1.1. Involutions on Zn.

(1) Irreducible components of all singular fibers of Zn can be Γ-equiva-
riantly contracted on a conic bundle without singular fibers, hence
Zn is rational over R. In particular, gn ∈ Cr2(R).

ANNALES DE L’INSTITUT FOURIER
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(2) Zn is 〈gn〉-minimal. On the other hand, Zn⊗C is not 〈gn〉-minimal
over C, as we can contract disjoint irreducible components of all
singular fibers onto some Hirzebruch surface equivariantly. Using
elementary transformations between Hirzebruch surfaces (or just [4,
Theorem 1]), we observe that all gn are conjugate in Cr2(C).

(3) The surface Xn = Zn/〈gn〉 has a structure of a conic bundle with
2n singular fibers, and irreducible components in each fiber are
complex conjugate. In particular Xn is R-minimal. Thus Xn is not
rational over R when n > 3 (e.g. by Iskovskikh’s rationality crite-
rion, see [17, § 4]).

Consider two finite subgroupsG1, G2⊂Cr2(R) with regularizations (Y1, G1)
and (Y2, G2) respectively. Assuming that G1 is conjugate to G2, there exists
a common equivariant resolution Y → Y1, Y → Y2 such that the actions of
G1 and G2 coincide on Y . Therefore, Y1/G1 is birational to Y2/G2. How-
ever, for n,m > 3 the conic bundles Xn and Xm are not pairwise birational
to each other (see e.g. [16, Theorem 1.6] or [19, Theorem 4.3]). Therefore,
involutions gn and gm are not conjugate in Cr2(R).

This paper is organised as follows. Section 2 recalls some basic facts
about del Pezzo surfaces, their topology and relation to Weyl groups; it also
gathers some auxiliary results about Sarkisov program and classical linear
groups that will be used later. The reader may skip this section and return
to it later, if needed. In Sections 3–9 we study groups acting on real del
Pezzo surfaces X with K2

X > 3, K2
X 6= 7, 9. The cases K2

X = 9 and K2
X = 7

are trivial. Indeed, a del Pezzo surface of degree 7 is never G-minimal, and
a real del Pezzo surface X of degree 9 with X(R) 6= ∅ is isomorphic to P2

R,
so finite groups acting on it are well known, see Lemma 2.5.
In comparison with the case k = C, we have to deal with real forms of del

Pezzo surfaces (i.e. non-isomorphic real surfaces that become isomorphic
over C). Here we face an additional difficulty, since the complete classifi-
cation of possible automorphism groups of del Pezzo surfaces is available
only over the field of complex numbers; in fact, this classification was heav-
ily used in the work of Dolgachev and Iskovskikh. So, in Sections 3–6 (i.e.
K2
X > 4) we generally adapt the following strategy to classification: for each

(R-rational) real form of a del Pezzo surface X, we study the group Aut(X)
(giving its precise description in many cases), and then determine possi-
ble finite groups G ⊂ Aut(X) that can act minimally on X. To find such
groups G, we usually investigate the action of Gal(C/R)×G on X⊗C; for
high degree del Pezzo surfaces, we look directly at the intersection graph of
(−1)-curves, which is easy to analyze in these cases. For low degree surfaces

TOME 72 (2022), FASCICULE 2
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(K2
X 6 3), our approach becomes more combinatorial. Both real structure

σ on X and automorphisms G ⊂ Aut(X) can be considered as elements
of the Weyl group W associated to X (see Section 2.1). Using the classifi-
cation of conjugacy classes in W , we determine possible pairs (σ,G) such
that the action of 〈σ〉 × G on X ⊗ C is minimal. In many cases we work
with explicit equations of X and G (for example, in Section 7 we adapt for
our purposes Sylvester’s classical approach to cubic surfaces).
In Appendixes A and B we focus on some special classes of finite sub-

groups in Cr2(R) (being motivated by the study of those in [24, 26, 35]) and
in particular classify non-solvable finite groups acting on real geometrically
rational surfaces. Our goal is to demonstrate that:

(1) this classification can be obtained independently of the “complete”
classification of all finite subgroups and

(2) the corresponding list is considerably shorter than in the case k = C.
Finally, for the reader’s convenience, some technical information
about real invariants of some finite groups is included in Appen-
dix C.

1.4. Notation and conventions

We use the following notation and conventions.
• In this paper, we say that a real del Pezzo surface X is G-minimal,

or simply G is minimal (when it acts on X), if and only if any bira-
tional G-morphism X → Y of G-surfaces is an isomorphism. Fur-
ther, we say that X is strongly(2) G-minimal, or G is strongly min-
imal, if and only if rk Pic(X)G = 1. Clearly, strong G-minimality
implies G-minimality, but not vice versa (consider e.g. X = P1

R×P1
R

with G acting preserving the factors).
• Moreover, all del Pezzo surfaces are assumed to be R-rational (if

not stated otherwise), and in particular their real loci X(R) are not
empty. The latter condition implies that

Pic(XC)Γ = Pic(X), hence Pic(XC)Γ×G = Pic(X)G,

where XC = X ⊗C, and Γ is the Galois group Gal(C/R) generated
by the involution σ. Therefore, a real del Pezzo surfaceX is strongly
G-minimal if and only if XC is strongly Γ×G-minimal.

(2)This term is not conventional. We use it only for brevity.

ANNALES DE L’INSTITUT FOURIER
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• We denote by Qr,s the smooth quadric hypersurface

{[x1 : . . . : xr+s] : x2
1 + . . .+ x2

r − x2
r+1 − . . .− x2

r+s = 0} ⊂ Pr+s−1
R .

• For a real del Pezzo surface X, we denote by X(a, b) the blow-up
of X at a real points and b pairs of complex conjugate points. We
shall mostly use P2

R, Q3,1 or Q2,2 as X.
• Z/n or simply n is a cyclic group of order n;
• Dn is a dihedral group of order 2n;
• BDn = 〈a, x | a2n = 1, x2 = an, xax−1 = a−1〉 is the binary

dihedral group of order 2n;
• Sn is a symmetric group on n-letters.
• A4DB is the diagonal product of A and B over their common

homomorphic imageD, i.e. the subgroup of A×B of pairs (a, b) such
that α(a) = β(b) for some epimorphisms α : A→ D, β : B → D.

• A•B is an extension of B by A;
• When running the Sarkisov program (e.g. as in Proposition 3.4) we
denote by Dd (resp. Cd) a del Pezzo surface (resp. a conic bundle)
of degree d (resp. with d = 8−K2

X singular fibers).
• I or In denotes the identity matrix of size n× n.

Acknowledgments

The author would like to thank Andrey Trepalin for numerous useful
discussions and explanation of the results of [34], and the anonymous referee
whose suggestions helped to improve both the exposition and the results
of this paper. The author is also grateful to Jérémy Blanc, Yuri Prokhorov
and Constantin Shramov for their valuable comments.

2. Some auxiliary results

2.1. A quick look at (real) del Pezzo surfaces

Let us briefly overview some important tools that shall be used in this
paper. For a more comprehensive account see e.g. [11] or [20]. For the
Minimal Model Program over R and its relation to the topology of real
rational surfaces see [19].
In this paper we are interested in the embedding of finite groups into

Cr2(R), hence we focus on R-rational surfaces in the first place. When X is
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a non-singular real projective algebraic surface its set of real points X(R)
will be always regarded as a compact two-dimensional C∞-manifold with
the usual Euclidean topology. The following characterization of R-rational
del Pezzo surfaces will be useful for us.

Proposition 2.1. — Let X be a smooth real del Pezzo surface. Then
X is R-rational if and only if X(R) is nonempty and connected.

Proof. — The result is classical and follows from [19, Theorem 1.9, The-
orem 2.2, Lemma 3.2]. �

Remark 2.2. — In fact, for an R-rational del Pezzo surface X, its real
locus X(R) is diffeomorphic to one of the following manifolds:

(1) S2 if X ∼= Q3,1(0, b);
(2) T2 if X ∼= Q2,2(0, b);
(3) Ng = #gRP2 if X ∼= P2

R(a, b) where g = a+ 1 and 1 6 g 6 9.
See [19] for details.

Another powerful tool for studying del Pezzo surfaces is the Weyl groups.
Let XC be a complex del Pezzo surface of degree d 6 6, obtained by blow-
ing up P2

C in r = 9 − d points. The group PicXC ∼= Zr+1 has a basis
e0, e1, . . . , er, where e0 is the pull-back of the class of a line on P2

C, and ei
are the classes of exceptional curves. Put

∆r = {s ∈ Pic(XC) : s2 = −2, s ·KXC = 0}.

Then ∆r is a root system in the orthogonal complement toK⊥XC
⊂Pic(XC)⊗

R. As usual, one can associate with ∆r the Weyl group W (∆r). Depending
on degree d, the type of ∆r and the size of W (∆r) are the following:

Table 2.1. The Weyl groups

d 1 2 3 4 5 6
∆r E8 E7 E6 D5 A4 A1×A2

|W (∆r)| 214 · 35 · 52 · 7 210 · 34 · 5 · 7 27 · 34 · 5 27 · 3 · 5 23 · 3 · 5 12

Moreover, there are natural homomorphisms

ρ : Aut(XC)→ W (∆r), η : Γ = Gal(C/R)→ W (∆r),

where ρ is an injection for d 6 5. We denote by g∗ the image of g ∈ Γ×G
in the corresponding Weyl group.
Denote by Er the sublattice of Pic(XC) generated by the root system ∆r.

For an element g∗ ∈ W (∆r) denote by tr(g∗) its trace on Er. To determine

ANNALES DE L’INSTITUT FOURIER
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whether a finite group Γ × G acts strongly minimally on XC, we use the
well-known formula from the character theory of finite groups

(2.1) rk Pic(XC)Γ×G = 1 + 1
|Γ×G|

∑
g∈Γ×G

tr(g∗).

Thus the group Γ×G acts strongly minimally on XC if and only if∑
g∈Γ×G

tr(g∗) = 0.

On the other hand, by the Lefschetz fixed point formula for any h ∈ G we
have,

(2.2) Eu(Xh
C) = tr(h∗) + 3.

Remark 2.3. — Note that a cyclic group always has a fixed point on
a complex rational variety. This follows from the holomorphic Lefschetz
fixed-point formula.

In this paper we shall use the known classification of conjugacy classes in
the Weyl groups. These classes are indexed by Carter graphs, named e.g.
A1, A2

1, etc. Here we follow the terminology of [8] (used in [13]). Among
other things, a Carter graph determines the characteristic polynomial of
an element from a given class and its trace on K⊥XC

, see [13, Table 2].
Another useful source of information about involutions in Weyl groups and
real structures on del Pezzo surfaces is [38]. Note that Wall labels the
conjugacy classes by Dynkin diagrams; in the situation where it can be
confusing for the reader, we give the precise correspondence between these
two different notations (e.g. in Table 9.1).

2.2. Sarkisov links

The main tool for exploring conjugacy in Cremona groups is the Sarkisov
program. Here we very briefly recall how this tool looks like. For details
see [13], [17] or [22] for the theory developed over R.
We work in the category of G-surfaces over a perfect field k. Similarly to

the classical case of trivial G, any birational G-map between two G-surfaces
can be decomposed into a sequence of birational G-morphisms and their
inverses. A birational G-morphism X → Y can be thought of as a blow-
up of a closed G-invariant 0-dimensional subscheme p of Y . Recall that
deg(p) = h0(Op). When p is reduced and consists of closed points y1, . . . , yn
with residue fields κ(yi), one has deg p =

∑
deg yi with deg yi = [κ(yi) : k].

TOME 72 (2022), FASCICULE 2
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If p is G-invariant, then it is a union of G-orbits. So, over the field of reals
one can blow up orbits of real points and pairs of complex conjugate points.
In this paper we shall work with G-minimal del Pezzo surfaces and conic

bundles (in the sense defined above). From the Mori theory’s point of view,
these are rational Fano–Mori G-fibrations of dimension two (extremal con-
tractions π : X → C, where C is a point in the del Pezzo case, and C

is a curve in the conic bundle case). A birational G-map f between Mori
fibrations is a diagram of G-equivariant maps

X
f //

π

��

X ′

π′

��
C C ′

Now, according to Sarkisov program, every birational map f : X 99K X ′ of
rational minimal G-surfaces is factorized into a composition of elementary
Sarkisov links of four types. For complete description of all such possible
links we refer to [17].

2.3. Topological bounds

For a finite group G ⊂ Aut(XC), the representation

ρ : G→ W (∆r)

obviously restricts the order of G when K2
X < 6, which makes the classifi-

cation of finite subgroups of Cr2(k) possible. It seems curious to us, that
for real del Pezzo surfaces one can get some bounds on |G| independently of
the Weyl groups. We shall not use the following result, but in our opinion
it is worth mentioning.

Proposition 2.4. — LetX be an R-rational del Pezzo surface of degree
d and G ⊂ Aut(X) be a finite group. Then one of the following holds.

• If X ∼= P2
R(a, b), then

|G| 6 84(8− d)

for a > 2. For a = 0 the group G is isomorphic to

(2.3) Z/n, Dn, A4, S4 or A5.

For a = 1 one has G ∼= (n×m)•k, where k ∈ {1, 2, 3, 4, 6}.
• If X ∼= Q3,1(0, b), then G ∼= H•2r, where r ∈ {0, 1} and H belongs

to the list (2.3).

ANNALES DE L’INSTITUT FOURIER
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• If X ∼= Q2,2(0, b), then G ∼= ((n ×m)•k)•2r, where r ∈ {0, 1} and
k ∈ {1, 2, 3, 4, 6}.

Proof. — We may assume that G faithfully acts on X(R) by diffeomor-
phisms. Let X ∼= P2

R(a, b). Then X(R) ≈ #a+1RP2. Denote its orientable
double cover by Σa. By [6, Corollary 9.4] we may assume that G acts faith-
fully on Σa by orientation-preserving diffeomorphisms. Take any Riemann-
ian metric on Σa and average it with respect to G action. The resulting
G-invariant metric gives a complex G-invariant structure on Σa, and G can
be regarded as a group of automorphisms of a Riemann surface of genus a.

Therefore, for a = 0 the group G embeds into Aut(Σ0) ∼= PSL2(C). We
recall its subgroups in Lemma 2.5 below. For a = 1 the claim follows from
a well-known classification of automorphisms of elliptic curves. Finally, for
a > 1 the Hurwitz theorem implies

|G| 6 84(a− 1),

so a + 2b = 9 − d gives the result. Let X ∼= Q3,1(0, b) or X ∼= Q2,2(0, b).
Again, G faithfully acts by diffeomorphisms of X(R). Passing to an in-
dex 2 subgroup, we may assume that the action is orientation-preserving.
Applying the same arguments as above, we finish the proof(3) . �

2.4. Classical linear groups

The next result is classical and will be used throughout all the paper (see
e.g. [2] or [5] for a modern treatment).

Lemma 2.5. — The following assertions hold.
(1) Any finite subgroup of PGL2(C) is one of the following:

(2.4) Z/n, Dn, n > 1, A4, S4, A5.

Any finite subgroup of GL2(R) and PGL2(R) is either cyclic or
dihedral.

(2) One has PGL3(R) ∼= SL3(R). Any finite subgroup of PGL3(R) is
among the ones listed in (2.4).

Despite its simplicity, Lemma 2.5 has important consequences for clas-
sification of finite subgroups of Cr2(R) and, more generally, groups acting
on real geometrically rational surfaces. For example, it “kills” almost all
simple finite subgroups of Cr2(R), see Appendix A.

(3)See also Remark 3.1.

TOME 72 (2022), FASCICULE 2
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3. Del Pezzo surfaces of degree 8

In this section X denotes a real del Pezzo surface of degree 8. We shall
assume that XC ∼= P1

C × P1
C (the other surface of degree 8, the blow up of

P2
R at one point, is never G-minimal), so either X ∼= Q3,1 or X ∼= Q2,2 [19,

Lemma 1.16]. We treat these two cases separately.
Let X = Q3,1. Since Q3,1 is R-minimal, any G ⊂ Aut(X) acts strongly

minimally on X. By definition, Aut(X) = PO(3, 1), where

PO(3, 1) = O(3, 1)/{±I}.

On the other hand,

O(3, 1) = O(3, 1)↑ × {±I},

where O(3, 1)↑ is the subgroup preserving the future light cone. In partic-
ular, O(3, 1)↑ ∼= PO(3, 1) and we may identify subgroups of PO(3, 1) with
subgroups of the Lorentz group O(3, 1). Finite subgroups of O(3, 1) were
classified in [21]. The authors also indicated the smallest of the five locally
isomorphic Lorentz groups which contains each finite subgroup. The group
O(3, 1)↑ was denoted O1(3, 1). To list the finite subgroups of O(3, 1)↑ we
then have to look at finite subgroups belonging to O1(3, 1) and DO(3, 1)
in the notation of [21]. In turns out that all our subgroups belong to class
(i) in the cited paper, i.e. we may assume that they consist of elements
of the form g ⊕ 1, where g ∈ O3(R) and 1 is the identity acting on the
time coordinate. The classification of finite subgroups of O3(R) (or point
groups in three dimensions) is a very classical topic and we do not give
the whole list here (one can consult [10, II] or apply Goursat’s lemma to
O3(R) = SO3(R) × {±I}). For an explicit description of these groups by
matrices we refer the reader to [21].

Remark 3.1. — One can give a topological explanation of the embedding
G ↪→ O3(R). Indeed, the group G faithfully acts by diffeomorphisms of
Q3,1(R) ≈ S2. By the classical theorem of Brouwer–Kerekjarto–Eilenberg,
every such action is equivalent (i.e. conjugate) to a linear one, see e.g. [41,
§ 2].

Now let X = Q2,2. Then X ∼= P1
R × P1

R and

Aut(X) ∼=
(

PGL2(R)× PGL2(R)
)
o (Z/2).

Proposition 3.2. — Let G ⊂ Aut(Q2,2) be a finite subgroup such that
Pic(Q2,2)G ∼= Z. Then G is isomorphic to one of the following groups (which
are all strongly minimal):

(Z/n4DZ/n)•2 ∼= (Z/m× Z/k)•Z/2,
(
Dn4DDn

)
•2.

ANNALES DE L’INSTITUT FOURIER
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Proof. — The group Ĝ = G ∩ (PGL2(R) × PGL2(R)) naturally acts on
the factors of X = P1

R × P1
R preserving them. Let Ĝ1 and Ĝ2 be the im-

ages of Ĝ under the projections of PGL2(R) × PGL2(R) onto its factors.
By Goursat’s lemma, Ĝ = Ĝ14DĜ2 for some D. As Z/2-component of
Aut(Q2,2) acts on P1

R × P1
R by switching the factors, the groups Ĝ1 and

Ĝ2 must be isomorphic: otherwise G = Ĝ and Pic(X)G ∼= Z2, a contra-
diction. Thus Ĝ ∼= H4DH, where H is either cyclic, or dihedral. Note
that a subgroup of a direct product of two cyclic groups is itself a direct
product of at most two cyclic groups. Thus for H cyclic one can also write
G ∼= (Z/m × Z/k)•Z/2, m, k > 1. For some isomorphic presentations of
Dn4DDn see [13, Theorem 4.9]. �

Remark 3.3. — Let X be a real del Pezzo surface of degree 8 with
XC ∼= P1

C × P1
C, and G ⊂ Aut(X). If G has a real fixed point p on X,

then G is linearizable. Indeed, blowing up p and contracting the strict
transforms of the lines passing through p, we conjugate G to a subgroup of
Aut(P2

R).

Proposition 3.4. — Let X be a real del Pezzo surface of degree 8
and G ⊂ Aut(X) be a finite group with Pic(X)G ' Z. Then G is lin-
earizable if and only if either G has a real fixed point on X, or G ' D5
acts on X = Q2,2. In particular, a linearizable group is either cyclic, or
dihedral.

Proof. — If G has a real fixed point on X, then G is linearizable by
Remark 3.3. Assume there is a birational map f : (X,G) 99K (P2

R, G) and
run the Sarkisov program on X to decompose f into a product of Sarkisov
links; in what follows we refer to [17, Theorem 2.6] for description of these
links (including group action in the picture is straightforward). The first
link can connect D8 either with some D∗ (link of type II) or with C2 (link
of type I; recall that here 2 stands for the number of singular fibers). In
the latter case we can continue making the links in the class C (e.g. of
type II or IV), without creating new singular fibers, but at some point
we have to link a conic bundle with a del Pezzo surface S. Same theorem
shows that S ∈ D8. Since we do not want to return back to D8, we may
assume that the first link was actually of type II. In the diagram below
we list all possibilities (regardless the base field or group action). We stop
drawing arrows if we have to link our surface with some D∗ which already
occurred in the diagram. The labels denote the degrees of points which we
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blow up.

D9 ' P2

D8
7,6,4 //

5

&&
3

��

1
99

D8 D5

D5
2 //

4,3
77

1

''

D8

D6

5,4,3,2

��

1

''

D9 ' P2

D6 D8

So, we see that we have only two possibilities to connect (X,G) with
some (P2

R, G). The first one assumes that the link starts at a G-invariant
point, which have to be real in our case. The second possibility is a com-
bination of links of type II, namely D8

5−→ D5
1−→ D9. In particular, G

must have a real fixed point on D5, and hence either G ' Z/5 or G ' D5
(see Proposition 5.2). In the first case G must have a fixed point on X and
X ' Q3,1 (see e.g. [39, 4.4]). Let G ' D5, and the link D8 → D5 is as
follows: X f←− Z

g−→ Y , where X ∈ D8, Y ∈ D5, f is a blow up of the
point η, deg η = 5, and g is a contraction to a point ξ; note that deg ξ = 2
by [17, Theorem 2.6]. We now use the linearization argument given in Sec-
tion 5 below (or [39, § 4.6]). If X ' Q3,1, then g contracts two conjugate
G-orbits, so ξ is a pair of conjugate G-fixed points, and we cannot proceed
to P2

R. If X ' Q2,2, then g contracts two real G-orbits, so ξ is a pair of real
G-fixed points. Such a group indeed can be further linearized.
Finally, if G has a fixed point p ∈ X(R) then there is a faithful lin-

ear representation G ↪→ GL2(TpX), so G is either cyclic or dihedral by
Lemma 2.5. �

4. Del Pezzo surfaces of degree 6

Let X be a real del Pezzo surface of degree 6. Then XC can be obtained
by blowing up P2

C in three noncollinear points p1, p2, p3. The set of (−1)-
curves on XC consists of six curves: the exceptional divisors of blow-up
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ei = π−1(pi) and the strict transforms of the lines dij passing through
pi, pj . In the anticanonical embedding XC ↪→ P6

C these exceptional curves
form a “hexagon” Σ. This yields a homomomorphism to the symmetry
group of this hexagon

ρ : Aut(XC)→ Aut(Σ) ∼= W (A1×A2) ∼= D6,

Since the set of all (−1)-curves onXC is defined over R, its complement T
is isomorphic to a torus over C. But X(R) 6= ∅, so T is in fact an algebraic
R-torus. One can view it as the connected component of the identity of
Aut(X). There exist only 4 real forms of R-rational del Pezzo surfaces of
degree 6: P2

R(3, 0), P2
R(1, 1), Q3,1(0, 1), and Q2,2(0, 1). They correspond to

real forms of T described by V. E .Voskresenkii [36, 10.1].

Table 4.1. Real forms of R-rational del Pezzo surfaces of degree 6

Γ : Σ id Fig. 4.1a Fig. 4.1b Fig. 4.1c

X P2
R(3, 0) Q2,2(0, 1) P2

R(1, 1) Q3,1(0, 1)

X(R) #4RP2 T2 #2RP2 S2

(a) (b) (c)

Figure 4.1. Action of Γ on Σ

Proposition 4.1. — Let X be a real del Pezzo surface of degree 6 and
G ⊂ Aut(X) be a finite group acting minimally on X. Then one of the
following holds:

(1) The surface X is isomorphic to Q2,2(2, 0) ∼= P2
R(3, 0) and can be

given as{
([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2

R × P2
R : x0y0 = x1y1 = x2y2

}
Its automorphism group fits into the short exact sequence

1→ Ker ρ→ Aut(X) ρ→ D6 → 1.
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Here Ker ρ ∼= (R∗)2 is the diagonal subgroup of PGL3(R), and
ρ(Aut(X)) ∼= D6 is generated by the rotation r = ρ(α1) and the
reflection s = ρ(α2), where

α1 : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([y2 : y0 : y1], [x2 : x0 : x1]),
α2 : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([x1 : x0 : x2], [y1 : y0 : y2]).

The group G is of the form

(1a) H•〈r〉 ∼= H•6, (1b) H•〈r2, s〉 ∼= H•S3, or (1c) H•〈r, s〉 ∼= H•D6,

where H ⊂ Ker ρ is isomorphic to a subgroup of Z/2× Z/2.
(2) The surface X is isomorphic to Q2,2(0, 1) and can be given as{
([x0 : x1], [y0 : y1], [z0, z1]) ∈ P1

R × P1
R × P1

R :
x0y0z1 + x0y1z0 + x1y0z0 − x1y1z1 = 0

}
Its automorphism group fits into the short exact sequence

1→ Ker ρ→ Aut(X) ρ→ D6 → 1.

Here Ker ρ ∼= SO2(R)× SO2(R), and ρ(Aut(X)) ∼= D6 is generated
by the rotation r = ρ(α1) and the reflection s = ρ(α2), where

α1 : ([x0 : x1], [y0 : y1], [z0 : z1]) 7→ ([z1 : z0], [x0 : −x1], [y1 : y0]),
α2 : ([x0 : x1], [y0 : y1], [z0 : z1]) 7→ ([y0 : y1], [x0 : x1], [z0 : z1]).

The group G is one of the following:

(2a) H•〈r〉 ∼= H•6, (2b) H•〈r2〉 ∼= H•3, (2c) H•〈r2, s〉 ∼= H•S3,

(2d) H•〈r2, rs〉 ∼= H•S3, (2e) H•〈r, s〉 ∼= H•D6,

where H ⊂ Ker ρ is a direct product of at most 2 cyclic groups of
an arbitrary large order.

All listed groups do act minimally on the corresponding real surfaces.

Proof. — All statements about automorphism groups of real del Pezzo
surfaces of degree 6 and their equations can be found in [30, Section 3].
Moreover, for X = Q3,1(0, 1) or P2

R(1, 1) the pair (X,Aut(X)) is not min-
imal, so we may assume that X = Q2,2(0, 1) or X = P2

R(3, 0). Up to
conjugacy, the group ρ(G) ⊂ D6 = 〈r, s : r6 = s2 = 1, srs−1 = r−1〉 is one
of the following:

• cyclic: 〈rk〉, 〈s〉, 〈rs〉, k = 0, 1, 2, 3;
• dihedral: 〈r, s〉, 〈r2, s〉, 〈r2, rs〉, 〈r3, s〉.
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Case X = P2
R(3, 0). — All (−1)-curves on X are real. Thus a cyclic group

ρ(G) ∼= 〈rk〉 acts minimally on X if and only if k = 1 (otherwise one can G-
equivariantly contract an orbit which consists of disjoint (−1)-curves and
is defined over R). Following the same argument, it is easy to check that in
the dihedral case only 〈r2, s〉, and hence 〈r, s〉, act minimally on X. As any
nontrivial finite subgroup of R∗ is isomorphic to Z/2, we get the result.

Case X = Q2,2(0, 1). — The action of Γ on the hexagon is shown on
Figure 4.1. Examining the action of G on Σ, one easily gets that only the
groups 〈r〉, 〈r2〉, 〈r2, s〉, 〈r2, rs〉, 〈r, s〉 act minimally on X. �

Proposition 4.2. — Let X be a real del Pezzo surface of degree 6,
and G ⊂ Aut(X) be a finite group acting minimally on X. Assume that G
is linearizable. Then G is one of the following groups (in the notation of
Proposition 4.1):

• isomorphic to S4: (1b) and (2c), where H is a Klein 4-group;
• isomorphic to A4: (2b), where H is a Klein 4-group;
• dihedral:

D3 ∼= S3: (1b), (2c), (2d);
D6: (1c), (1b), (2c), (2d), (2e);
D12: (1c), (2c), (2d), (2e);
D3k, k > 2: (2c), (2d);
D6k, k > 2: (2e).

• cyclic:
(1a): Z/6 and Z/12;
(2a): Z/6k;
(2b): Z/3k.

Proof. — This is an elementary group theory. As A5 is simple, none of
the groups from Proposition 4.1 is isomorphic to A5. Let G ∼= S4. Note
that S4 has no normal subgroups H with G/H isomorphic to Z/3, Z/6
or D6. If S4/H ∼= S3, then H = {e, (12)(34), (13)(24), (14)(23)} is a Klein
group. Let G ∼= A4. Note that A4 has no normal subgroups H with quotient
isomorphic to Z/6, S3 or D6. If A4/H ∼= Z/3, then H is a Klein group.
Let G ∼= Dn. We know that G has a normal subgroup H with G/H

isomorphic to Z/3, Z/6, S3 or D6. In particular H is cyclic (otherwise
[G : H] 6 2). On the other hand, a quotient of a dihedral group is again
dihedral. In the case (1) of Proposition 4.1 we get that for H = id the
group G is D3 (1b) or D6 (1c), while for H ∼= Z/2 the group G is D6 (1b)
or D12 (1c). In the case (2) the cyclic group H can be of any order k, so
either G ∼= D3k and is of type (2c), (2d), or G ∼= D6k and is of type (2e).
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Finally, let G ∼= Z/n. Then H is cyclic. In the case (1) of Proposition 4.1
one has |H| 6 2, and G/H ∼= Z/6. Thus G ∼= Z/6 or Z/12. In the case (2)
the order of H can be arbitrary large, hence G is isomorphic to Z/3k or
Z/6k. �

Remark 4.3. — As was shown in [39, § 4.5] there exist infinitely many
non-linearizable subgroups of type (2b) acting minimally on Q2,2(0, 1).
Moreover, we exhibited two non-conjugate embeddings of G = (Z/3)2 into
Cr2(R): the one is a trivial extension of type (2b), and the other comes
from the fiberwise G-action on the conic bundle X = Q2,2 ∼= P1

R × P1
R with

rk Pic(X)G = 2.

5. Del Pezzo surfaces of degree 5

Each real del Pezzo surface X of degree 5 is isomorphic to P2
R(a, b), where

(a, b) ∈ {(4, 0), (2, 1), (0, 2)} [19, Corollary 5.4]. There are 10, 4 or 2 real
lines on X respectively. It is clear from the blow-up model of X that the
configuration of Γ-orbits of exceptional curves is uniquely determined by
the pair (a, b). The incidence graph of such a configuration is the colored
Petersen graph, where the lines in one Γ-orbit have the same color (and we
additionally label by ∗ the real ones). We assume that X is the blow-up
of P2

R at four points p1, p2, p3, p4 in general position, ei is the exceptional
divisor over the point pi and dij is the proper transform of the line passing
through the points pi and pj , see Figure 5.1.
Let us do some extra work and find all possibilities for Aut(X).

Proposition 5.1. — Let X be a real del Pezzo surface of degree 5.
Then

• Aut(X) ∼= S5 if X ∼= P2
R(4, 0),

• Aut(X) ∼= Z/2× Z/2 if X ∼= P2
R(2, 1),

• Aut(X) ∼= D4 if X ∼= P2
R(0, 2).

Proof. — The “split” case X ∼= P2
R(4, 0) is classical and can be found

e.g. in [11, Theorem 8.5.8]. Denote by Πa,b the colored incidence graph
of (−1)-curves on XC = P2

R(a, b) ⊗ C. As Aut(X) naturally acts on the
exceptional lines preserving incidence relations, we have a homomorphism
ψ : Aut(X)→ Aut(Πa,b). It is injective, as any automorphism of XC which
fixes all (−1)-curves comes from an automorphism of P2

R that fixes 4 closed
points pi’s, so it must be trivial.
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d∗
12

e∗2

d23d14

e∗1

d∗
34

d24

e3e4

d13

d∗
12

e2

d23d14

e1

d∗
34

d24

e3e4

d13

(a) X = P2
R(2, 1)

d∗
12

e∗2

d23d14

e∗1

d∗
34

d24

e3e4

d13

d∗
12

e2

d23d14

e1

d∗
34

d24

e3e4

d13

(b) X = P2
R(0, 2)

Figure 5.1. Graph of (−1)-curves on del Pezzo surface X of degree 5

Note that for each ϕ ∈ Aut(Πa,b) and any two vertexes v1 and v2 we
must have:

(1) if {v1, v2} is Γ-invariant then {ϕ(v1), ϕ(v2)} is Γ-invariant;
(2) if v1 and v2 are incident then ϕ(v1) and ϕ(v2) are incident.

Put

α : e1 ↔ e2, d13 ↔ d24, d14 ↔ d23, e3 ↔ e4,

β : e1 ↔ e2, d13 ↔ d23, d14 ↔ d24,

ς : e3 ↔ e4, d14 ↔ d13, d24 ↔ d23,

% : d12 ↔ d34, e1 7→ e3, e2 7→ e4, e3 7→ e2, e4 7→ e1,

d14 7→ d13, d23 7→ d24, d13 7→ d23, d24 7→ d14.

(if a line is not indicated then it is stabilized). Note that α, β ∈ Aut(Π2,1)
and ς, % ∈ Aut(Π0,2). Then

Aut(Π2,1) = 〈α〉2 × 〈β〉2 ∼= Z/2× Z/2,

Aut(Π0,2) = 〈ς, % | %4 = ς2 = id, ς−1%ς = %−1〉 ∼= D4.

Indeed, in the case of Π0,2 one can use that Aut(Π0,2) acts on the set
{e1, e2, e3, e4} and the kernel of this action is obviously trivial. On the other
hand, Aut(Π0,2) cannot be isomorphic toS4, as any automorphism of order
3 would fix d12 (hence e1 and e2), d34 (hence e3 and e4). Since Aut(Π0,2)
contains D4, we get Aut(Π0,2) ∼= D4. The case of Π2,1 is easy as well.
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To show that ψ is surjective we explicitly construct the corresponding
geometric actions. For this set

α′ : [x : y : z] 7→ [x : y : −z], β′ : [x : y : z] 7→ [−x : y : z], ς ′ = α′,

%′ : [x : y : z] 7→ [z : y : −x].

We may also assume (after applying a suitable transformation from
PGL3(R)) that the blown up points are

p1 = [1 : 0 : 1], p2 = [1 : 0 : −1], p3 = [0 : 1 : i], p4 = [0 : 1 : −i],

when X = P2
R(2, 1),

p1 = [1 : i : 0], p2 = [1 : −i : 0], p3 = [0 : 1 : i], p4 = [0 : 1 : −i],

when X = P2
R(0, 2).

Then the lifts of α′, β′, ς ′ and %′ act as α, β, ς and % respectively on the
corresponding Πa,b. �

Proposition 5.2. — Let X be a real del Pezzo surface of degree 5 and
G ⊂ Aut(X) be a finite group acting minimally onX. ThenX is isomorphic
to P2

R(4, 0), and the group G is one of the following:

S5, A5, Z/5o Z/4 = 〈a, b | a5 = b4 = 1, bab−1 = a2〉, D5, Z/5.

All listed groups do act minimally on X.

Proof. — In the case X = P2
R(4, 0) we argue exactly as if k = C, see [13,

Theorem 6.4]. Assume that X ∼= P2
R(2, 1). Note that the curve d12 is the

only line on X intersecting 3 real lines. Thus it is stabilized by Aut(X)
and can be equivariantly contracted, implying that the pair (X,Aut(X)) is
not minimal. Now let X ∼= P2

R(0, 2). Then every automorphism in Aut(X)
preserves the set {e1, e2, e3, e4} consisting of 2 pairs of complex conjugate
lines which are pairwise disjoint, and hence can be equivariantly contracted.
So, (X,Aut(X)) is not minimal. �

Let S = P2
R(4, 0). It follows from the classification of Sarkisov links

that for G = S5 or A5 the pair (S,G) is superrigid, see [13, Proposi-
tion 7.12,7.13]. Let G = 〈a〉 ∼= Z/5. Then S(C)a consists of 2 points, whose
blow-up is a del Pezzo surface Y of degree 3 with two skew lines `1 and `2,
either real or complex conjugate [39, § 4.6]. One can use the G-birational
map

`1 × `2 99K Y, (p1, p2) 7→ q, where Y ∩ p1p2 = {p1, p2, q}

to conjugate G to a group acting on a quadric surface Q. If σ(`1) = `2,
then Q ∼= Q3,1 and G can be further linearized [39, Proposition 4.18]. Now
let G be Z/5 o Z/4 = 〈a, b | a5 = b4 = 1, bab−1 = a2〉 or Z/5 o Z/2 =
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〈a, b | a5 = b2 = 1, bab−1 = a−1〉 ∼= D5. Then S(C)a consists of 2 points
and this set is b-invariant. Therefore, we can again use the same birational
map as above to conjugate G to a group acting on a quadric surface (this
is a Sarkisov link of type II).

6. Del Pezzo surfaces of degree 4

6.1. Topology and equations

Throughout this section X denotes a real del Pezzo surface of degree 4.
It is well-known that the linear system |−KX | embeds X into P4

R as a
complete intersection of two quadrics, which we denote Q0 and Q∞. If no
confusion arises, we denote by the same letter a quadric, the corresponding
quadratic form and its matrix. Let Q be the pencil

λQ0(x0, . . . , x4) + µQ∞(x0, . . . , x4).

Its discriminant ∆(µ, λ) ≡ det(λQ0 + µQ∞) is a binary form of degree 5.
Since we assume X smooth, the equation ∆ = 0 has five distinct roots
[λi : µi], i = 1, . . . , 5. Equivalently, the matrix Q−1

0 Q∞ (we may suppose
Q0 nonsingular) has five distinct eigenvalues −λi/µi ∈ C . They correspond
to the singular members of Q, which we denote by Qi, i = 1, . . . , 5.

Note that eigenspaces corresponding to different eigenvalues are orthog-
onal with respect to both Q0 and Q∞. Over C, we can find a basis of
eigenvectors, making both Q0 and Q∞ diagonal, so the pencil takes the
form

4∑
i=0

(λai + µbi)x2
i

with bi/ai = −λi/µi.
The complex conjugation permutes the eigenspaces. In a Γ-invariant one,

we can pick a real vector for our basis, so the corresponding part of the
pencil’s equation has real coefficients ai and bi. For two complex conjugate
eigenspaces, we get a two-dimensional real subspace W orthogonal to the
other eigenspaces. If we pick an orthogonal basis {w,w} in W ⊗ C, where
w is an eigenvector with eigenvalue −b/a, then

Q(z1w + z2w) = (λa+ µb)z2
1 + (λa+ µb)z2

2 .

Clearly, z1w + z2w ∈W if and only if z1 = z2. Put

z1 = u+ iv, a = a1 + ia2, b = b1 + ib2.
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to get
2(λa1 + µb1)(u2 − v2)− 4(λa2 + µb2)uv.

Set
−b/a = α+ iβ, a = i/2

to obtain the normal form

µβ(u2 − v2) + 2(λ− αµ)uv.

Let us summarize this discussion by stating the following classification
result.

Proposition 6.1. — A real del Pezzo surface of degree 4 can be reduced
to one of the following normal forms

(1)
{
a0x

2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0

b0x
2
0 + b1x

2
1 + b2x

2
2 + b3x

2
3 + b4x

2
4 = 0

in ProjR[x0, x1, x2, x3, x4];

(2)
{
a0x

2
0 + a1x

2
1 + a2x

2
2 + 2u1v1 = 0

b0x
2
0 + b1x

2
1 + b2x

2
2 + β1(u2

1 − v2
1)− 2α1u1v1 = 0

in ProjR[x0, x1, x2, u1, v1];

(3)
{
a0x

2
0 + 2u1v1 + 2u2v2 = 0

b0x
2
0 + β1(u2

1 − v2
1)− 2α1u1v1 + β2(u2

2 − v2
2)− 2α2u2v2 = 0

in ProjR[x0, u1, v1, u2, v2],
where −bi/ai and −(αi ± iβi) are eigenvalues of Q.

Now let us describe how the topology of X(R) depends on the equation
of X. Nonsingular real pencils of quadrics were classified by C. T. C. Wall
in [37] by an invariant called characteristic. In the notation of Proposi-
tion 6.1 set

ak = rk cos θk, bk = rk sin θk, rk > 0.
and define points on the circle

Pk = (cos θk, sin θk), Qk = −Pk.

These points can be grouped in blocks: as we proceed anticlockwise around
the circle we meet a block of m1 points Pt, then a block of n1 points Qt,
then a block of m2 points Pt and so on. When we are half way round, we
meet an opposite block of m1 points Qt, so one has m1 = ng+1 for some
g > 0. This g is called the genus and the sequence (m1, . . . ,m2g+1) in cyclic
order the characteristic Ξ(Q) of our pencil. Below we list some information
about the topology and real lines on X, following [19, 37, 38] (we list only
those surfaces which are rational over R). Using Proposition 6.1, for each
real form we also indicate the type of equation of X.
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Table 6.1. Real forms of R-rational del Pezzo surfaces of degree 4

Class of
σ∗ ∈W (D5)

Eigenvalues
of σ∗

Ξ(Q) Equation
type

X X(R) # real
lines

id 15 (1,1,1,1,1) I P2
R(5, 0) #6RP2 16

A1 −1, 14 (1,1,1) II P2
R(3, 1) #4RP2 8

A2
1 −12, 13 (1) III P2

R(1, 2) #2RP2 4

A2
1
′ −12, 13 (2,2,1) I Q2,2(0, 2) T2 0

A3
1 −13, 12 (3) II Q3,1(0, 2) S2 0

Remark 6.2. — Note that the sum of entries in Ξ(Q) equals to the num-
ber of real eigenvalues of Q. In particular, there is no one-to-one correspon-
dence between the numbers of real eigenvalues of Q and the real structures
on X.

6.2. Automorphisms

Let vi and Qbi denote the vertex and the base of the singular quadric Qi
respectively. Since Γ acts on the set {v1, v2, v3, v4, v5}, there can be 1, 3
or 5 real vi’s. As Qbi ⊗ C has two pencils of lines, each Qi has two pencils
of planes, whose intersections with XC give two complementary pencils of
conics Ci and C ′i on XC. These pencils satisfy the conditions Ci · C ′i = 2,
Ci · Cj = Ci · C ′j = 1 for i 6= j, and Ci + C ′i ∼ −KX . Two complementary
pencils define a double cover πi : XC → P1

C × P1
C, which coincides with the

projection of X from vi. Depending on the type of real locus Qbi (R) (i.e.
on the realness of two pencils of lines on Qbi ) one has either σ(Ci) = Ci,
σ(C ′i ) = C ′i (if Qbi ∼= Q2,2), or σ(Ci) = C ′i (if Qbi ∼= Q3,1).
The Galois involution of the double cover πi induces an automorphism

τi ∈ Aut(XC). For real vi both πi and τi are defined over R. As was ex-
plained in the beginning of this section, in a suitable system of complex
coordinates both Q0 and Q∞ can be brought to diagonal form, so the
equations of X can be written in the form

4∑
i=0

x2
i =

4∑
i=0

θix
2
i = 0,

and then τi are given by xi 7→ −xi. These five commuting involutions
generate a normal abelian subgroup A ⊂ Aut(XC) with a unique relation
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τ1τ2τ3τ4τ5 = id, hence

A = {1, τk, τiτj : 1 6 k 6 5, 1 6 i < j 6 5}, A ∼= (Z/2)4.

In what follows it will be convenient for us to use the following description
of this group, see [4, Lemma 9.11]:

A =
{
a = (a1, a2, a3, a4, a5) ∈ (Z/2)5 :

5∑
i=1

ai = 0
}
,

where an element (a1, . . . , a5) exchanges the two conic bundles Ci and C ′i if
ai = 1 and preserves each one if ai = 0. In this terminology, the automor-
phism a = (a1, a2, a3, a4, a5) corresponds to the projective transformation

(6.1) [x1 : x2 : x3 : x4 : x5]
7→ [(−1)a1x1 : (−1)a2x2 : (−1)a3x3 : (−1)a4x4 : (−1)a5x5],

so τ1 corresponds to (0, 1, 1, 1, 1), τ2 corresponds to (1, 0, 1, 1, 1) etc.
Further, the groups Aut(X) and Aut(XC) act on the pencil Q preserving

the set of five degenerate quadrics or, equivalently, the set of pairs Ri =
{Ci,C ′i }. Thus we have two homomorphisms

(6.2) ρ1 : Aut(XC)→ PGL2(C), ρ2 : Aut(XC)→ S5

with ker ρ1 = ker ρ2 = A. In fact, the exact sequence

id→ A→ Aut(XC)→ Im ρ2 → id

splits, and Aut(XC) ∼= A o Im ρ2. One can easily see [13, Section 6] that
Aut(XC)/A is one of the following groups:

(6.3) id, Z/2, Z/3, Z/4, Z/5, S3, D5.

Denote by ρ the restriction of ρ2 on the real automorphism group Aut(X).
Set

Ao = Ker ρ = A ∩Aut(X), A′ = Im(ρ).

Convention. — In this paragraph every permutation τ ∈ S5 should
be understood as a permutation of the set {Ri : i = 1, . . . , 5}. For an
automorphism (a, τ) ∈ Aut(XC) we denote it simply by a if τ = id, and
by τ if a = 0.

ANNALES DE L’INSTITUT FOURIER



THE REAL PLANE CREMONA GROUP 855

6.3. Groups acting minimally on real del Pezzo quartics

We now start to enumerate the groups acting minimally on real del Pezzo
surfaces of degree 4. For each real form listed in Table 6.1, we first get some
restrictions on the groups Ao and A′, and then list possible minimal groups
G ⊂ Aut(X). In all the cases we describe the structure of G, giving an
explicit way of listing all its elements (a, τ) (or even list them ourselves, if
it is not too long). It is straightforward to write down these automorphisms
in coordinates using (6.1). To write down the equation of X, one may
use Proposition 6.1 choosing coefficients in accordance with characteristic
Ξ(Q), see Table 6.1.
The split case X ∼= P2

R(5, 0) immediately follows from the work of Dol-
gachev and Iskovskikh [13], as σ∗ = id and the whole groups (Z/2)4 and
S5 act by real transformations of P4

R.

Proposition 6.3 ([13, Theorem 6.9]). — Let X = P2
R(5, 0) be a real

del Pezzo surface of degree 4, and G ⊂ Aut(X) be a group acting strongly
minimally on X. Then G is isomorphic to one of the following:

(Z/2)k, k = 2, 3, 4; Z/2× Z/4, D4, L16, (Z/2)4 o Z/2, Z/8, M16,

(Z/2)4 o Z/4, (Z/2)2 o Z/3, Z/2× A4, (Z/2)4 o Z/3,

Z/3o Z/4, (Z/2)k oS3, k = 2, 3, 4;

L16 o Z/3, (Z/2)4 oD5, (Z/2)4 o Z/5,

where L16 = 〈a, b, c | a4 = b2 = c2 = [c, a]b = [a, b] = [c, b] = 1〉 and
M16 = 〈a, b, c | a8 = b2 = [a, b]a4 = 1〉 are non-abelian groups of order 16.
Moreover, all listed groups act strongly minimally on X.

We now proceed with non-trivial real forms of del Pezzo quartics. Let
X = Q3,1(0, 2) be the blow up of Q3,1 at four points p, p, q, q. Denote
by Ex the exceptional divisor over a point x ∈ Q3,1, and by F the strict
transform of a fiber. Then, in the notation as above, one has

{C1,C
′
1} = {F + F − Ep − Ep, F + F − Eq − Eq},

{C2,C
′
2} = {F + F − Ep − Eq, F + F − Ep − Eq},

{C3,C
′
3} = {F + F − Ep − Eq, F + F − Eq − Ep},

{C4,C
′
4} = {F, F + 2F − Ep − Ep − Eq − Eq},

{C5,C
′
5} = {F , 2F + F − Ep − Ep − Eq − Eq}.

Note that in each pair one has Ci+C ′i = −KX = 2F+2F−Ep−Ep−Eq−Eq.
In what follows we shall depict the action of σ on five pairs of conic bundles
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like this:

C1• C2•OO

��

C3•OO

��

C4• oo // •C5

C ′1• C ′2• C ′3• C ′4• oo // •C ′5

This example corresponds to description of pairs Ri = {Ci,C ′i } for X =
Q3,1(0, 2) given above. No arrow means that the corresponding conic bundle
is σ-invariant. We shall omit the bullets’ labels in the future. Now it is easy
to see that A′ ⊂ {id, (23), (45), (23)(45)} (however this inclusion is strict, as
one can see from the list (6.3)), and any element (a1, a2, a3, a4, a5) ∈ Ker ρ
has a4 = a5, so Ao embeds into (Z/2)3 (here and below we often use the
fact that Γ commutes with automorphism).

Proposition 6.4. — Let X ∼= Q3,1(0, 2) be a real del Pezzo surface
of degree 4, and G ⊂ Aut(X) be a group acting strongly minimally on X.
Then the kernel Ao of ρ : Aut(X)→ S5 is isomorphic to (Z/2)3, and gener-
ated by elements γ1 = (0, 1, 1, 0, 0), γ2 = (1, 0, 1, 0, 0) and γ3 = (0, 0, 0, 1, 1).
Further, the image A′ of ρ is either 〈(23)(45)〉 or trivial. Finally, the group
G is one of the following:

Z/2, (Z/2)2, (Z/2)3, Z/4, (Z/2)2 o Z/2, (Z/2)3 o Z/2.

More precisely, the first group Z/2 is generated by either (γ2 + γ3, id),
or (γ1 + γ2 + γ3, id). All other groups, except Z/4, contain at least one of
these elements. The group Z/4 is generated by

(
(1, 0, 1, 1, 1), (23)(45)

)
. The

first three groups lie in Ker ρ. Finally, all listed groups indeed act strongly
minimally on X.

More information about the structure of the last three groups is given in
the proof.

Remark 6.5. — The case when X ∼= Q3,1 and G is a group of prime order
was investigated in [29, § 4.3]. It was shown that

(1) X can be given by the equations{
(µ− µµ+ µ)x2

1 − 2x1x2 + x2
2 + (1− µ+ µµ− µ)x2

3 + x2
4 = 0,

µµx2
1 − 2µµx1x2 + (µ− 1 + µ)x2

2 + µµx2
4 + (1− µ+ µµ− µ)x2

5.

(2) Ao is isomorphic to (Z/2)3, and generated by elements γ1, γ2 and
γ3.

(3) A′ is either 〈(23)(45)〉 or trivial. Moreover, the former happens if
and only if |µ| = 1.
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To save some space, we shall use these results below referring to [29] for
their proofs .

Proof of Proposition 6.4. — In the light of the previous Remark, we
may proceed with determining minimal groups. In what follows we denote
the elements of Ker ρ as a ≡ (a, id), where a = (a1, . . . , a5) ∈ (Z/2)5, and
the elements of Im ρ are denoted as τ ≡ (0, τ), τ ∈ S5. Below we shall use
the following trivial observation several times. Assume that elements of G

• either all have a1 = 0;
• or all have a4 = a5 = 0.

Then G is not strongly minimal. Indeed, in the first case G fixes σ-invariant
C1 and C ′1, hence we have rk Pic(X)G > 1. In the second case G fixes F+F ,
which is not a multiple of KX ; hence rk Pic(X)G > 1. For brevity, we will
call any of the two conditions above a ?-condition (it will be always clear
from the context which one we actually mean).

Case G ⊂ Ker ρ. — Assume G = 〈g = (a, id)〉 acts strongly minimally.
By the previous remark a1 = 1 and a4 = a5 = 1. We see that g is one
of the following elements: α1 = (1, 0, 1, 1, 1) or α2 = (1, 1, 0, 1, 1). One can
easily write down these automorphisms in homogeneous coordinates of P4

R,
see [29, Proposition 4.11]. In particular, the whole group G = Ker ρ acts
strongly minimally on X.

Now assume G ∼= (Z/2)2. We need to consider only those G which do
not contain α1 or α2. Denote by β1 = (0, 1, 1, 1, 1) and β2 = (1, 1, 0, 0, 0)
remaining non-trivial elements of Ker ρ. Then G is one of the following:

G1 = 〈β1, γ1〉 = {id, β1, γ1, γ3}, G2 = 〈β2, γ1〉 = {id, γ1, γ2, β2}.

Each element of G1 has a1 = 0, so G1 is not strongly minimal. On the other
hand, each element of G2 has a4 = a5 = 0, G2 is not strongly minimal
either.

Case G * Ker ρ. — We start with the case of a cyclic group. G = 〈g〉.
Set τ = (23)(45). Clearly, g = (0, τ) does not act strongly minimally, so we
may suppose g = (a, τ), a 6= 0. Again we must have a1 = a4 = a5 = 1, so
g has the form(

(1, 0, 1, 1, 1), τ
)
, or

(
(1, 1, 0, 1, 1), τ

)
=
(
(1, 0, 1, 1, 1), τ

)3
.

In particular, g is of order 4, and we may assume that we are in the first
case. A simple calculation shows that the action of g and σ on Pic(X) =
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〈F, F ,Ep, Ep, Eq, Eq〉 ∼= Z6 is

g∗ =



2 1 1 1 1 1
1 2 1 1 1 1
−1 −1 −1 −1 −1 0
−1 −1 −1 −1 0 −1
−1 −1 0 −1 −1 −1
−1 −1 −1 0 −1 −1


and σ∗ =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


From this one can easily get that rk Pic(XC)Γ×G = (

∑
h∈Γ×G tr(h∗))/|Γ×

G| = 1, so G is strongly minimal.
Now suppose that G is not cyclic and set G0 = G∩Ker ρ. We may assume

that |G0| equals 2 or 4, as otherwise G contains Ker ρ and hence is strongly
minimal. First consider the case |G0| = 2. Since we already considered
the cyclic case, we may assume that G = 〈g〉 × 〈h〉, where h = (0, τ) and
g = (a, id). The condition gh = hg gives (a, τ) = (τ · a, τ), which means
a2 = a3, a4 = a5. From a1 + a2 + a3 = 0 we obtain a1 = 0 which implies
the same for all elements of G, showing that we have a ?-condition.
Finally, suppose G0 = 〈(a, id)〉 × 〈(b, id)〉 ∼= Z/2 × Z/2 and put H =

〈(0, τ)〉. The condition G0H = HG0 implies that the set
{

(a, τ), (b, τ), (a+
b, τ)

}
coincides with

{
(τ · a, τ), (τ · b, τ), (τ · (a + b), τ)

}
. Let us examine

possible cases.

Case τ · a = a. — Then a4 = a5, and a2 = a3 implies a1 = 0. We have
the following possibilities for a:

(i) (0, 0, 0, 1, 1), (ii) (0, 1, 1, 0, 0), (iii) (0, 1, 1, 1, 1).

Subcase τ · b = b. — As above, this implies b1 = 0, and we are in the
?-condition, contradicting minimality.

Subcase τ · b = a+ b. — According to each possibility for a, we have
(i) (b1, b3, b2, b5, b4) = (b1, b2, b3, b4 +1, b5 +1), so b4 +b5 = 2b4 +1 = 1,

a contradiction.
(ii) (b1, b3, b2, b5, b4) = (b1, b2 + 1, b3 + 1, b4, b5), so 0 = b1 + b2 + b3 =

b1+2b2+1 implies b1 = 1. As we may assume b4 = b5 = 1 (otherwise
the ?-condition is satisfied), there are only two possibilities for b:

α1 = (1, 0, 1, 1, 1) or α2 = (1, 1, 0, 1, 1).

Both these elements indeed give minimal automorphisms, as was
noticed in the very beginning of the proof.

(iii) (b1, b3, b2, b5, b4) = (b1, b2 + 1, b3 + 1, b4 + 1, b5 + 1). Then b4 + b5 =
2b4 + 1 = 1, a contradiction.
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Case τ · a = b. — We have a1 = b1, a2 = b3, a3 = b2, a4 = b5, a5 = b4.
The ?-condition implies that one may assume a1 = b1 = 1 and a4 = b4 =
a5 = b5 = 1. We conclude that {a, b} = {α1, α2}, so G is minimal.

Case τ ·a = a+b. — is obtained from the first one by switching the roles
of a and b.

Finally, let us stress once again that all groups of Proposition 6.4 are
defined over R and strongly minimal. �

We next pass to the case when X ∼= P2
R(a, b).

Proposition 6.6. — Let X ∼= P2
R(1, 2) be a real del Pezzo surface of

degree 4. Then Ao ∼= (Z/2)2 and A′ lies in the group

〈s = (23), r = (2435) | s2 = r4 = 1, srs = r−1〉 ∼= D4.

There are no strongly minimal groups G acting on X.

Proof. — One has

{C1,C
′
1} = {L− E1,−KX − L+ E1};

{C2,C
′
2} = {L− E2,−KX − L+ E2};

{C3,C
′
3} = {L− E2,−KX − L+ E2};

{C4,C
′
4} = {L− E3,−KX − L+ E3};

{C5,C
′
5} = {L− E3,−KX − L+ E3}.

The complex involution acts as

• • oo // • • oo // •

• • oo // • • oo // •

This immediately gives the statement about A′. Moreover, for any element
(a1, a2, a3, a4, a5) ∈ Ao one has a2 = a3 and a4 = a5. Thus Ao is a sub-
group of

{(0, 0, 0, 0, 0), (0, 0, 0, 1, 1), (0, 1, 1, 0, 0), (0, 1, 1, 1, 1)} ∼= (Z/2)2,

and a1 always equals to 0. This implies that both C1 and C ′1 are (real and)
G-invariant for any group G, hence rk Pic(X)G > 1. �

Proposition 6.7. — Let X ∼= P2
R(3, 1) be a real del Pezzo surface of

degree 4. Then Ao lies inside the group

{(a1, a2, a3, a4, a5) ∈ (Z/2)5 : a4 + a5 = a1 + a2 + a3 = 0} ∼= (Z/2)3,
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and A′ is a subgroup of

Sym{R1,R2,R3} × Sym{R4,R5} ∼= S3 × Z/2 ∼= D6

isomorphic to id, Z/2, Z/3 or S3. Moreover, each group acting strongly
minimally on X is either contained in Ao and isomorphic to

(Z/2)2, (Z/2)3,

or is an extension of such a group by a subgroup of A′ isomorphic to Z/2,
Z/3 or S3 (and every such group actually occurs as a strongly minimal
group), or is a group of mixed type of order > 2.

Proof. — We have

{C1,C
′
1} = {L− E1,−KX − L+ E1};

{C2,C
′
2} = {L− E2,−KX − L+ E2};

{C3,C
′
3} = {L− E3,−KX − L+ E3};

{C4,C
′
4} = {L− E4,−KX − L+ E4};

{C5,C
′
5} = {L− E4,−KX − L+ E4}.

The complex involution acts as

• • • • oo // •

• • • • oo // •

Thus, for any element (a1, a2, a3, a4, a5) ∈ Ao one has a4 = a5 and Ao ⊂
(Z/2)3 is the group described in the statement. Embedding A′ ↪→ D6 in-
dicated therein is clear as well; to exclude some possibilities for A′ one
consults (6.3).
Now let G ⊂ Aut(X) be a strongly minimal group. Note that G * A′.

Indeed, otherwise C1 + C2 + C3 = 3L − E1 − E2 − E3 is defined over R,
G-invariant and not a multiple of −KX .
Assume that G ⊂ Ao. Note that G cannot be of order 2, as every element

g = ((a1, a2, a3, a4, a5), id) ∈ Ao has ai = 0 for some i ∈ {1, 2, 3}, so that
the corresponding Ci is 〈g〉-invariant. By the same principle, every strongly
minimal group G ⊂ Ao of order 4 must consist of elements which do not
share 0 on the same i-th place with i ∈ {1, 2, 3}. This leaves the following
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possibilities for G:

G1
o = {(0, 0, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1)},

G2
o = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1)},

G3
o = {(0, 0, 0, 0, 0), (1, 0, 1, 0, 0), (0, 1, 1, 1, 1), (1, 1, 0, 1, 1)}.

All these groups are in fact strongly minimal. To check this, it is convenient
to assume that Pic(XC)⊗R is spanned by e0 = −KX , ei = Ci, i = 1, . . . , 5.
In this basis, the actions of a = (a1, a2, a3, a4, a5) and σ ◦ a are given by

a∗ =



1 a1 a2 a3 a4 a5
0 (−1)a1 0 0 0 0
0 0 (−1)a2 0 0 0
0 0 0 (−1)a3 0 0
0 0 0 0 (−1)a4 0
0 0 0 0 0 (−1)a5



σ∗a∗ =



1 a1 a2 a3 a4 a5
0 (−1)a1 0 0 0 0
0 0 (−1)a2 0 0 0
0 0 0 (−1)a3 0 0
0 0 0 0 0 (−1)a5

0 0 0 0 (−1)a4 0


Thus for a group G ⊆ Ao one has

rk Pic(XC)Γ×G = 1 + 1
2|G|

∑
h∈Γ×G

trh∗

= 1 + 1
2|G|

∑
a∈G

(
2(−1)a1 + 2(−1)a2 + 2(−1)a3

+ (−1)a4 + (−1)a5
)

= 1 + 1
2|G| (2(δ0 − δ1) + (ε0 − ε1)),

where δi is the total number of i’s occurring at the first three positions of all
a ∈ G, and εi is the total number of i’s occurring at the last two positions
of a. Hence G is strongly minimal if and only if 2(δ0 − δ1) + (ε0 − ε1) = 0.
It is now straightforward to check the latter condition for G1

o, G2
o and G3

o,
so all listed groups do act strongly minimally on X. �
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Proposition 6.8. — Let X ∼= Q2,2(0, 2) be a real del Pezzo surface
of degree 4, and G ⊂ Aut(X) be a strongly minimal group. Then A′ is a
subgroup of

Sym{R1,R2,R3} × Sym{R4,R5} ∼= S3 × Z/2 ∼= D6

isomorphic to id, Z/2, Z/3 or S3. Moreover, each strongly minimal group
is either contained in Ao and isomorphic to (Z/2)k, k = 1, 2, 3, 4, or is an
extension of such a group by a subgroup of A′ isomorphic to Z/2, Z/3 or
S3 (and all listed groups indeed occur as strongly minimal groups), or is a
group of mixed type. More information about the structure of G is given
in the proof.

Proof. — As above, denote by Ex the exceptional divisor over a point
x ∈ Q2,2, and by F1 and F2 the strict transforms of fibers. Then one has

{C1,C
′
1} = {F1 + F2 − Ep − Ep, F1 + F2 − Eq − Eq},

{C2,C
′
2} = {F1, F1 + 2F2 − Ep − Ep − Eq − Eq},

{C3,C
′
3} = {F2, 2F1 + F2 − Ep − Ep − Eq − Eq},

{C4,C
′
4} = {F1 + F2 − Ep − Eq, F1 + F2 − Ep − Eq},

{C5,C
′
5} = {F1 + F2 − Ep − Eq, F1 + F2 − Eq − Ep}.

The complex involution acts as

• • • •OO

��

•OO

��
• • • • •

and the same reasoning as in the proof of Proposition 6.7 applies to A′
to get restrictions on this group. We proceed with enumerating minimal
subgroups of Ao. One can use the same basis for Pic(XC) ⊗ R as in the
proof of Proposition 6.7 and see that a∗ remains unchanged, while σ∗a∗
sends ei to (1− ai)e0 + (−1)ai+1ei for i = 4, 5. Thus for G ⊂ Ao we have

rk Pic(XC)Γ×G = 1 + 1
2|G|

∑
a∈G

(
2(−1)a1 + 2(−1)a2 + 2(−1)a3

+ (−1)a4 + (−1)a5 + (−1)a4+1 + (−1)a5+1)
= 1 + 1

|G|
∑
a∈G

(
(−1)a1 + (−1)a2 + (−1)a3

)
= 1 + 1

|G|
(δ0 − δ1),
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implying that G is strongly minimal if and only if δ0 = δ1. We leave to the
interested reader to write down all the possibilities for such G. �

6.4. Conjugacy problem

It follows from the classification of Sarkisov links [17, Theorem 2.6] that if
G has no real fixed points on X, then every G-link starting on X is of type
II and leads to the same (isomorphic) surface. Therefore, the conjugacy
class of G in Cr2(R) is determined by the conjugacy class of G in Aut(X);
we do not carry out the detailed classification of the latter ones here. For
each real form, some information about Ao and A′ can be found in the
previous section.
If G has a real fixed point on X, then its blow up induces a link of type

I and gives a G-minimal conic bundle of degree 3. Note that according
to Lemma 2.5 and the description of possible groups from the previous
section, G can be one of the following:

Z/2, (Z/2)2, Z/4, Z/8, D4.

7. Del Pezzo surfaces of degree 3: cubic surfaces

Before stating our main result, let us briefly recall some facts about real
cubic surfaces. It is classically known that any smooth complex cubic sur-
face contains exactly 27 lines. It is probably less known that in [31] Segre
divided real lines on smooth real cubic into two species called hyperbolic
and elliptic. Consider a real line on the cubic surface. Any plane passing
through this line intersects the surface in the line itself and a further resid-
ual conic. This conic intersects the line in two points. Define an involution
on the line by exchanging these two points of intersection. The fixed points
of this involution are called parabolic points. The real line is called hyper-
bolic if the involution has two real parabolic points. The real line is called
elliptic if it has a pair of complex conjugate parabolic points. In the follow-
ing table we collect the information about possible types of σ∗ ∈ W (E6)
(including Segre’s notation Fi), real lines, tritangent planes(4) and topology
of X(R).
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Table 7.1. Real lines and real structures on cubic surfaces

σ∗ [31] # of real lines/tritangent
planes

# of elliptic/hyperbolic
lines

Topology
of X(R)

id F1 (27,45) 12/15 #7RP2

A1 F2 (15,15) 6/9 #5RP2

A2
1 F3 (7,5) 2/5 #3RP2

A3
1 F4 (3,7) 0/3 RP2

A4
1 F5 (3,13) 0/3 RP2 t S2

This information can be used to get some restrictions on group actions
on X.

Lemma 7.1. — Let G be a p-group, where p is any prime number, and
X be a real R-rational cubic surface. Then X is not G-minimal.

Proof. — It was shown in [39] that a group of odd order cannot act
minimally on a R-rational cubic surface. On the other hand, a 2-group
cannot act minimally on a real cubic surface, as there exists an invariant
real line. �

Lemma 7.2. — There are no finite groups acting minimally on a real
cubic surface with σ∗ of type A2

1.

Proof. — According to Table 7.1 such a surface contains 2 elliptic lines.
Assume that G acts minimally on X. Then it permutes elliptic lines which
must intersect at a point. The plane passing through these lines intersects
X in the third real line, which must be G-invariant, a contradiction. �

Lemma 7.3. — Let X be a real cubic surface with σ∗ of type A3
1 or A4

1,
and G ⊂ Aut(X) be a finite group acting minimally on X. Then G is one
of the following groups:

k = 0 : S3,

k = 1 : Z/6, D6, BD6 ∼= Z/3o Z/4,
k = 2 : A4, Z/6× Z/2, D6 × Z/2, S4, A4 × Z/2, BD6 × Z/2,

(see the meaning of k in the proof).

(4)Recall that a tritangent plane is a plane intersecting a smooth cubic surface in three
lines.
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Proof. — If σ∗ is of type A3
1 or A4

1, then X has exactly 3 real lines. In
both cases these lines form a triangle, possibly a degenerate one (i.e. all
lines meet at one Eckardt point). Indeed, in the first case this is obvious, as
X dominates P2

R. In the second case X is non-rational over R, so it cannot
contain two disjoint real lines.
So, the group G acts on the set of three real lines, say `1, `2, `3, and one

has a homomorphism δ : G → S3. The minimality condition implies that
Im δ contains an element of order 3. The kernel Ker δ consists of automor-
phisms that preserve each `i, and in particular either fix three real points
p = `1 ∩ `2, `1 ∩ `3, `2 ∩ `3, or preserve the unique point p = `1 ∩ `2 ∩ `3. In
both cases Ker δ embeds into GL(TpX) = GL2(R) and acts on TpX with
two real eigenvectors, hence must be isomorphic to (Z/2)k, k = 0, 1, 2. Now
a simple exercise in group theory and Lemma 7.1 give the list of groups in
the statement. �

We are ready to state the main result of this section. Note that in the
following theorem we do not classify all possible automorphism groups of
real cubic surfaces. It is more convenient for us to go through classification
of possible Aut(XC) instead. The latter can be found in [11, 9.5] and [13];
see also(5) [15, 31]. For reader’s convenience, we collect this description in
the table below.

Table 7.2. Automorphism groups of complex cubic surfaces

Type [13] Aut(XC) Equation
I (Z/3)3 oS4 x3

0 + x3
1 + x3

2 + x3
3

II S5 x2
0x1 + x2

1x2 + x2
2x3 + x2

3x0

III H3(3)o Z/4 x3
0 + x3

1 + x3
2 + x3

3 + 6ax1x2x3

IV H3(3)o Z/2 x3
0 + x3

1 + x3
2 + x3

3 + 6ax1x2x3

V S4 x3
0 + x0(x2

1 + x2
2 + x2

3) + ax1x2x3

VI S3 × Z/2 x3
2 + x3

3 + ax2x3(x0 + x1) + x3
0 + x3

1

VII Z/8 x2
3x2 + x2

2x1 + x3
0 + x0x

2
1

VIII S3 x3
2 + x3

3 + x2x3(ax0 + bx1) + x3
0 + x3

1

IX Z/4 x2
3x2 + x2

2x1 + x3
0 + x0x

2
1 + ax3

1

X (Z/2)2 x2
0(x1 + x2 + ax3) + x3

1 + x3
2 + x3

3 + 6bx1x2x3

XI Z/2 x3
1 + x3

2 + x3
3 + 6ax1x2x3 + x2

0(x1 + bx2 + cx3)

(5)Note that Segre’s classification is known to be incorrect in some places. For example,
the class VII is missing in his classification.

TOME 72 (2022), FASCICULE 2



866 Egor YASINSKY

Theorem 7.4. — Let X be a smooth real R-rational cubic surface, and
G ⊂ Aut(X) be a group acting minimally on X. Then, according to the
type of XC, one of the following cases holds:
Type I: X is a real form of the Fermat cubic surface

(7.1) x3
0 + x3

1 + x3
2 + x3

3 = 0.

There are 3 real forms of the Fermat cubic, denoted Fid, F(12) and
F(12)(34) (see Section 7.3). In the first two cases, σ∗ is of type A3

1,
and for F(12)(34) it is of type A1. For the real form Fid, the group
G is S3, A4 or S4 (acting by permutation of coordinates in (7.1));
the groups S4 and S3 do occur as minimal(6) . For the real form
F(12) the group G is S3, Z/6 or D6, while for the real form F(12)(34)
it embeds into (S3 × S3) o Z/2 (in the last two cases we do not
claim that all such subgroups are minimal).

Type II: X is the real Clebsch cubic surface

x0 + x1 + x2 + x3 + x4 = x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0.

Moreover, σ∗ = id, Aut(X) ∼= S5 and G is either S4, or S5 (both
cases occur).

Type III and Type IV: Then X is a real form of the cyclic cubic surface

x3
0 + x3

1 + x3
2 + x3

3 + ax1x2x3 = 0,

and G = Aut(X) ∼= S3 acts minimally by permuting the coordi-
nates x1, x2 and x3. The real structure σ∗ is of type A3

1.
Type V: X is the real cubic surface

αx3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0, x0 + x1 + x2 + x3 + x4 = 0.

and depending on the parameter α, we have one of the following
cases (all groups, except possibly A4, are indeed minimal):

id (α > 1/4) S4, S3

A3
1 (α < 1/16) S3, A4, S4.

Type VI: Then Aut(X) ∼= S3 × Z/2, and X is a real form of the surface
given by

x3
0 + x3

1 + x3
2 + x3

3 + ax2x3(x0 + x1) = 0

The group G is one of the following:

S3, Z/6 ' Z/3× Z/2, S3 × Z/2

(6)Meaning that we do not know about A4.
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(all groups act minimally). Possible types of σ∗ are: id, A1, and A3
1

(more information is given in the proof).
Type VIII: Then Aut(X) ∼= S3, G = Aut(X), and X is a real form of the

surface given by

x3
0 + x3

1 + x3
2 + x3

3 + x2x3(ax0 + bx1) = 0.

(Aut(X) acts minimally). Possible types of σ∗ are id, A1 and A3
1

(more information is given in the proof).

Proof. — Here we give an overview of the proof, referring the reader to
subsequent paragraphs for details. First we notice that Lemma 7.1 implies
that Types VII, IX, X and XI are not relevant for us, as G would be a
p-group.
Next we look at surfaces with comparatively “large” automorphism

groups. Cubics of Types II and V are studied in Sections 7.1 and 7.2 respec-
tively. Type I is discussed in Section 7.3. Types III and IV are discussed in
Section 7.4.

Now let us consider the case when X is a surface of Type VIII, i.e.
Aut(XC) ∼= S3. Then we must have G = Aut(X) ∼= S3 and G is minimal
by [13, Theorem 6.14 (7)]. Let us find possible real structures. Note that
X has 3 real Eckardt points p1, p2 and p3 (recall that there is a bijective
correspondence between the set of Eckardt points on a smooth cubic sur-
face, and the set of its involutions whose fixed loci consist of a hyperplane
section and an isolated point [11, Proposition 9.1.23]). Note that pi are
collinear and do not lie on a line contained in X [11, Proposition 9.1.26].
Let us say that a real Eckardt point is of the first type if all three lines
passing through this point are real, and of the second type if there are
one real Ri and two complex conjugate. We may assume that one of the
following cases hold:

(1) p1, p2 are of 1st type and p3 is of 2nd type. Then clearly G preserves
R3, hence is not minimal.

(2) p1 and p2 are of 2nd type and p3 is of 1st type. We may assume
that G permutes R1 and R2. If R1∩R2 = ∅, then G is not minimal.
Otherwise the plane 〈R1, R2〉 intersects X at some real line which
is G-invariant.

(3) All points are of 2nd type. Then G acts on Ri. Note that these lines
cannot intersect in one point, as it would be another Eckardt point.
Therefore, Ri form a triangle. Now a surface containing a point of
2nd type can be of Segre types F3, F4 or F5 [31, p. 153]. In our
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situation, R-rationality assumption and Lemma 7.2 imply that σ is
of type A3

1.
(4) Finally, if all points are of 1st type, then we have at least 9 real

lines on X and hence σ∗ is of type id or A1.

Finally, assume that X is a real cubic of type VI, i.e. Aut(XC) ∼= S3×Z/2.
Then XC has 4 Eckardt points: 3 collinear points p1, p2, p3, and the fourth
point q. The lines qpi, i = 1, 2, 3, lie on XC (otherwise, XC∩qpi = {q, pi, ri}
with ri being an Eckardt point by [11, Proposition 9.1.26]). Since both Γ
and G preserve collinearity, q is real and G-fixed. Assume that not all pi’s
are real, and let p1 be the only real point among them. Then the real
line qp1 is G-invariant for any G ⊂ Aut(X). Thus we may assume that all
Eckardt points on X are real. In particular, Aut(X) ∼= S3×Z/2 (otherwise
we do not have enough real involutions), and then [13, Theorem 6.14 (6)]
shows that minimal subgroups are S3, Z/6 and the whole Aut(X). Same
considerations as in the previous case show that pi have the same type.
One can show that σ can be of types id, A1 and A3

1, see [31, § 106]. �

Remark 7.5. — The classification given in Theorem 7.4 can be also for-
mulated in terms of elements of the Weyl group W (E6). Let X be a real
R-rational cubic surface, and G ⊂ Aut(X) be a group acting minimally on
X. Recall that |W (E6)| = 27345. By Lemma 7.1 we may assume that G
contains an element of order 3 or 5. We have the following cases:

• G has an element of order 5. Then X is isomorphic to the Clebsch
diagonal cubic over R, see Proposition 7.6.

• G has an element of order 3. Let g ∈ G be an element of order 3.
Then g∗ is of type(7) A2, A2

2 or A3
2 in W (E6). On the other hand,

if g∗ is of type A3
2, then tr g∗ = −3, hence Eu(X(C)g) = 0. This is

possible if and only if X(C)g consists of an elliptic curve, a section
by a fixed hyperplane of g in P3

C. But g ∈ PGL4(R), so it cannot
have such a hyperplane (as it would correspond to an eigenvalue of
multiplicity 3). So, we may assume that g∗ is either of type A2, or
of type A2

2 in W (E6).
– G has an element of type A2. As was shown in [11, 9.5.1], in

this case XC is isomorphic to the Fermat cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0,

whose real forms are studied in Section 7.3.

(7)3C, 3D and 3A respectively in ATLAS notation.
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– G has an element of type A2
2. Then XC is isomorphic to the

surface

(7.2) x3
0 + x3

1 + x3
2 + x3

3 + x0x1(ax2 + bx3) = 0.

whose complex automorphism groups is S3 for general values
of parameters a and b. For special values we get more automor-
phisms, which can be illustrated as follows (the arrows denote
specialization, and the numbers denote the type of surface ac-
cording to [13]):

V S4 //

))

II S5

VIII S3

66

//

((

VI S3 × Z/2 //

55

I (Z/3)3 oS4

IV H3(3)o Z/2 //

55

III H3(3)o Z/4

Note that the Types III, IV, and I correspond to the situation
when the surface (7.2) specializes to a cyclic cubic surface (de-
fined later). Such surfaces are logically divided in three distinct
types: harmonic, equianharmonic and the rest, see below. The
equianharmonic case, namely the Fermat cubic (I), is discussed
in Section 7.3. The types III and IV correspond to harmonic
and neither harmonic nor equianharmonic cubics respectively
and are discussed in Section 7.4.

In the next few paragraphs we discuss cubic surfaces of Types I-V. For
this we first need to recall Sylvester’s classical approach to cubic forms.

Sylvester non-degenerate cubic surfaces

Recall that by the classical result of J. Sylvester (see [11, Corollary 9.4.2]
for modern exposition) a general homogeneous cubic form F (x0, x1, x2, x3)
can be written as a sum

(7.3) F = L3
0 + L3

1 + L3
2 + L3

3 + L3
4,

over C, where Li(x0, x1, x2, x3) are linear forms, no four are linearly depen-
dent. Moreover, these forms are defined uniquely, up to scaling by a cubic
root of unity. The corresponding planes Li = 0 cut out so-called Sylvester
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pentahedron. Let α0L0 + . . .+α4L4 = 0 be a unique, up to proportionality,
linear relation. Consider the embedding

P3 ↪→ P4, ι : [x0 : x1 : x2 : x3]

7→ [y0 : y1 : y2 : y3 : y4] def= [L0 : L1 : L2 : L3 : L4].

If S = {F = 0} ⊂ P3 is the cubic surface given by F , one has

ι(S) =
{ 4∑
i=0

y3
i =

4∑
i=0

αiyi = 0
}
.

Let us further make the change of coordinates zi = αiyi and assume that
our surface is given by

(7.4)
4∑
i=0

λiz
3
i =

4∑
i=0

zi = 0,

where λi = 1/α3
i . These parameters are uniquely determined up to permu-

tation and common scaling by the isomorphism class of the surface.
Representation (7.4) is called the Sylvester form of a cubic surface. So,

a general cubic surface admits a unique(8) Sylvester form. We call such
surfaces Sylvester nondegenerate (and Sylvester degenerate otherwise).

One can show that the automorphism group of any surface given by (7.4)
is a subgroup of the group S5 which acts by permuting coordinates (or,
equivalently, the sides of the Sylvester pentahedron) [12, Theorem 6.1].
Moreover, the equation

4∑
i=0

λiz
3
i = 0

must be transformed into itself under any such permutation τ , i.e. the
constant ζ ∈ C by which this equation is multiplied equals to 1. Indeed,
otherwise it is easy to see that ζ must be a 5th primitive root of unity, and
τ is a cycle of length 5. The equation then necessarily reduces to

z3
0 + ζz3

1 + ζ2z3
2 + ζ3z3

3 + ζ4z3
4 = 0,

which defines a Sylvester degenerate cubic surface. So, in order to have
some nontrivial permutation among the zi’s transforming (7.4) into itself,
the parameters λi’s must be not all distinct. As was noticed already in [31],
the corresponding automorphism groups are generated by permutations of
z′is with the same values of λi’s (e.g. if λ0 = λ1 = λ2, then Aut(XC) ∼= S3
is the group of permutations of z0, z1 and z2):

(8) In the sense mentioned above.
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Table 7.3. Automorphism groups of Sylvester non-degenerate cubic
surfaces

Name in [13] Aut(XC) Relations between λi’s
II S5 λ0 = λ1 = λ2 = λ3 = λ4

V S4 λ1 = λ2 = λ3 = λ4

VI S3 × Z/2 λ0 = λ1 = λ2, λ3 = λ4

VIII S3 λ0 = λ1 = λ2

X (Z/2)2 λ1 = λ2, λ3 = λ4

XI Z/2 λ3 = λ4

7.1. Clebsch diagonal cubic

(see also Segre’s account [31, § 102])

Proposition 7.6. — Let X be a real R-rational cubic surface with
Aut(XC) ∼= S5, and G ⊂ Aut(X) be a group acting minimally on X. Then
X is ismomorphic to the Clebsch diagonal cubic

x1 + x2 + x3 + x4 + x5 = 0, x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0,

in P4
R, Aut(X) ∼= S5 and G is either S5 or S4 (both groups occur).

Proof. — It is well known that XC is C-isomorphic to the Clebsch cubic
surface [11, Theorem 9.5.8]. Note that S5 acts on XC acts by permut-
ing coordinates x1, . . . , x5, and Γ = Gal(C/R) acts on S5 trivially. Thus
H1(Γ,S5) = Hom(Γ,S5)/ ∼, where ∼ denotes conjugation by elements of
S5. Since S5 has exactly 2 conjugacy classes of involutions with represen-
tatives (12) and (12)(34), we see that the Clebsch cubic has 3 real forms,
which we denote by Xid, X(12) and X(12)(34). We are now going to calculate
the number of real lines on each nontrivial real form of the Clebsch cubic.
First start with their description on XC. Put

Lijk = {xi = xj + xk = 0},

where either i = 1 and (jk) ∈ {(23), (24), (25)}, or i ∈ {2, 3, 4, 5}, j = 1
and k 6= i, k 6= 1 (clearly, some permutation of indexes give same lines).
Further, define

Lijkl = {xi + ζxj + xk = xj + ζxi + xl = ζxi + ζxj − x5 = 0}

where i, j, k, l ∈ {1, 2, 3, 4}, i < j and ζ = (1 +
√

5)/2. An easy calculation
shows that we have 15 different lines Lijk and 12 different lines Lijkl.
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Now we are interested in those lines L ⊂ XC for which σ(L) = L. It
means that in the case of the real form corresponding to the cycle (12) we
are looking for those lines among Lijk and Lijkl which are (12)-invariant.
So, we get just L312, L412 and L512. An easy calculation shows that X(12)
has 13 real tritangent planes (these correspond to (12)-invariant pairs of
lines). In particular, X(12) is not rational over R (see Table 7.1), so X is
not isomorphic to X(12). Similarly, for the cycle (12)(34) the real lines on
the corresponding real form are L512, L513 L514, L1234, L1243, L3412 and
L3421. Our calculations are summed up in Table 7.4.

Table 7.4. Real lines on Clebsch cubic surface

Form Xid X(12) X(12)(34)

Number of real lines 27 3 (not R-rational) 7

Finally, if X has exactly 7 real lines, then it cannot be G-minimal for
any group G by Lemma 7.2. If all 27 lines are real, then G is either S4 or
S5 by [13, Theorem 6.14]. �

7.2. Cubic surfaces with automorphism group S4

(see also [31, § 107]) Let X be a real R-rational cubic surface with
Aut(XC) ∼= S4. The Sylvester form of XC is

(7.5) αz3
0 + z3

1 + z3
2 + z3

3 + z3
4 = 0, z0 + z1 + z2 + z3 + z4 = 0,

where we put α = λ0/λ1. Both Aut(X) and Γ act on the faces of the
Sylvester pentahedron, which we denote by π0, . . . , π4. In particular, we
have three distinct cases:

(1) all πi’s are real;
(2) π0, π1, π2 are real, and π3 = σ(π4);
(3) π0 is real, and π1 = σ(π2), π3 = σ(π4).

Note that in the last two cases Aut(X) faithfully acts on the set of pairs
{π1, π2} and {π3, π4}, so Aut(X) will be a 2-group, and X is then never
G-minimal, see [31, Table on p. 161].
Thus we may assume that the Sylvester presentation is real, i.e. all πi are

defined over R andX varies in the real pencil of cubic surfacesXα, α ∈ RP1.
A simple calculation shows that Xα is a smooth cubic surface for all α ∈ C,
except α = 1/4 and α = 1/16. The surface X1/16 has the unique singular
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point [−4 : 1 : 1 : 1 : 1], and the surface X1/4 has exactly four singular
points [2 : 1 : −1 : −1 : −1], [2 : −1 : −1 : 1 : −1], [2 : −1 : 1 : −1 : −1],
and [2 : −1 : −1 : −1 : 1]. By Ehresmann’s fibration theorem, the surfaces
Xα arising from α’s lying between a consecutive pair of the values −∞,
1/16, 1/4, +∞ are homeomorphic to each other. The special cases α = 1
and α = 0 yield Clebsch and Fermat cubic surfaces respectively. Their real
forms are studied in Sections 7.1 and 7.3. Finally, it can be shown that for
1/16 < α < 1/4 the real loci Xα(R) are disconnected, so σ∗ is of type A4

1
for such surfaces. We can illustrate the situation as follows:

α : ∞ A3
1 1/16 A4

1 1/4 id +∞

By [13, Theorem 6.14 (5)] the groups Aut(X) ' S4 and S3 act minimally
on (7.5) by permuting coordinates. For the real structure of type A3

1 we
might have a new group A4 (however, we do not address this question here).

Sylvester degenerate cubic surfaces

We are now going to study those real cubic surfaces which either do not
admit the Sylvester form at all, or this form is not unique. The latter ones
are called cyclic surfaces. These are the surfaces for which four of the five
Li’s are linearly dependent, and after a suitable change of variables the
equation becomes

(7.6) F = x3
0 +G3(x1, x2, x3),

where G3 is a ternary cubic form (so, our surface is a Galois triple cover
of P2). Consider the cubic curve E given by G3 = 0. Following [11, Defini-
tion 3.1.2, Theorem 3.1.3], we call E and the corresponding cyclic surface
harmonic if the absolute invariant j(E) = 1728, and equianharmonic if
j(E) = 0.

7.3. Equianharmonic case: Fermat cubic

(compare [31, § 103]) Any equianharmonic cubic is projectively isomor-
phic to the Fermat cubic over C. In this subsection X denotes the Fermat
cubic surface

x3
1 + x3

2 + x3
3 + x3

4 = 0.
Recall that Aut(XC) ∼= (Z/3)3 o S4, where one can view (Z/3)3 as the
group{

ω = (ω1, ω2, ω3, ω4) ∈ C4 : ω3
i = 1 for all i, and ω1ω2ω3ω4 = 1

}
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with an obvious action ψ of S4 on (Z/3)3. The group Γ acts on Aut(XC) as

σ ·
(
(ω1, ω2, ω3, ω4), τ

)
=
(
(ω1, ω2, ω3, ω4), τ

)
.

Any 1-cocycle c : Γ → Aut(XC) is given by c(σ) = (ω, τ) such that c(σ) ·
σ(c(σ)) = 1, i.e.
(7.7)

(ω, τ) · (ω, τ) =
(
(ω1ωτ−1(1), ω2ωτ−1(2), ω3ωτ−1(3), ω4ωτ−1(4)), τ2) = 1.

In particular, τ is either trivial, or of order 2. If c ∼ c′, then τ and τ ′ (corre-
sponding to c(σ) and c′(σ)) are conjugate inS4, thus we may assume that τ
is one of the following: id, (12) or (12)(34). A slightly tedious computation
shows that this indeed corresponds to partition of the set of 1-cocylces into
3 conjugacy classes with representatives (1, id), (1, (12)) and (1, (12)(34)),
so the Fermat cubic surface has 3 real forms. We refer to these cases as Fid,
F(12) and F(12)(34) respectively. The 27 lines on XC are given by

αkj : x1 + ωkx4 = x2 + ωjx3 = 0,

βkj : x1 + ωkx3 = x4 + ωjx2 = 0,

γkj : x1 + ωkx2 = x4 + ωjx3 = 0,

where 0 6 j, k 6 2, and ω is a primitive 3rd root of unity. One can easily
check that (σ, g)-invariant lines (i.e. real ones) are

α00, β00, γ00 for g = (1, id),
γ00, γ10, γ20 for g = (1, (12)),

all γkj , α00 β00, α12, β11, α21, β22 for g = (1, (12)(34)),

We see that there are 3 real lines on Fid and F(12), and 15 real lines on
F(12)(34). Note that three real lines on Fid form a triangle, while on F(12)
they intersect at an Eckardt point. A real cubic surface with 15 real lines is
always rational over R. To determine which of the forms Fid and F(12) are
R-rational, one can compute the number of real tritangent planes. These
are given by

x1 + ωix2 + ωjx3 + ωkx4 = 0,

xs + ωlxp = 0,

where s < p, and i, j, k, l ∈ Z/3. So, in each of two cases the number of
real planes is 7, which means that all real forms of the Fermat cubic are
rational over R (see Table 7.1).

Finally, let us determine which groups can act minimally on a real Fer-
mat cubic. The surface (7.1) corresponds to the real form Fid. Thus, a
minimal group G embeds into S4 (acting by permutation of coordinates).
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The groups S4 and S3 do act minimally by [13, Theorem 6.14 (1)]. Since
we have a non-trivial real structure of type A3

1, it could be possible that A4
(i.e. the only remaining non-p-group) acts minimally on such X; we do not
investigate this question here. For the real form F(12), our group G must
embed into the tangent space of a real Eckardt point; it is easy to see, using
Lemma 7.3 or directly [31, § 103, case II], that G is S3, Z/6 or D6. We
leave it to the interested reader to write down an explicit equation of F(12)
and to find which of these groups are actually minimal. Consider now the
form F(12)(34). By [31, § 43, § 103] the group Aut(X) is a group of order
72, having S3 ×S3 as an index 2 subgroup. In fact, it is straightforward
to give a real cubic surfaces acted by (S3×S3)oZ/2, just by considering
the surface

S : g3(x, y) + g3(z, t) = 0,
where g3(x, y) = x3 − 3xy2 is the absolute invariant of D3 ∼= S3. Note
that S is automatically the real form of the Fermat cubic, since only the
automorphism group of the latter one can contain a copy of S3 ×S3 (see
Table 7.2; the case of H3(3)o Z/4 is easily excluded).

7.4. Non-equianharmonic case

A cyclic non-singular and non-equianharmonic cubic surface has the
canonical equation [31, § 88] over C

(7.8) x3
0 + (x3

1 + x3
2 + x3

3 − 3λx1x2x3) = 0

with λ(λ3 +8)(λ3−1) 6= 0. It corresponds to Segre types (viii) and (ix) [31,
§ 100] and Types III-IV of [13]. So, the equation (7.8) describes a cyclic
cubic surface varying in a pencil whose real members correspond to λ ∈ R.
There are only two real singular surfaces in this pencil, arising from λ =∞
and λ = 1. It can be checked(9) that σ∗ is always of type A3

1 (see also [31,
§ 104])
Let f be a homogeneous polynomial defining a hypersurface Z in Pn.

Recall that the hypersurface Hess(Z) =
{

det Hess(f) = 0
}

is called the
Hessian hypersurface of Z. The Hessian of a cyclic cubic surface is the union
of a fundamental plane Π = {x0 = 0} and the cone over a cubic curve. Thus
each automorphism of X is a linear map operating separately on x0 and
x1, x2, x3. One can show that Aut(X) is isomorphic to a subgroup of

(9)One can pick a specific value of λ > 1 and λ < 1 and calculate the number of real
lines and tritangent planes, and then use Table 7.1.
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S3 [31, § 104]. So, a minimal group G must be isomorphic to S3; note that
such a group indeed acts minimally on X (since it is already minimal over
C, [13, Theorem 6.14]).

Remark 7.7. — Recall that the intersection C = Π∩XC is a cubic curve,
whose 9 inflection points correspond to 9 Eckardt points of XC. Obviously,
in our case C is defined over R (as Π is Γ-invariant, being the only plane
component of the Hessian). It is well known that a real cubic curve has ex-
actly 3 real inflection points, and these points are collinear. In terminology
of the proof of Theorem 7.4, the corresponding Eckardt points on X are
of type 2 (these automatically follows from the type of σ∗, or can be easily
seen from the explicit description of lines on X, see [11, Example 9.1.24]).

7.5. Non-cyclic Sylvester degenerate surfaces

A detailed description of the automorphism groups of such surfaces can
be found in [31, § 100] (cases x–xvii). After excluding 2-groups, we are left
just with two types (xi) and (xiv), having (complex) automorphism groups
S3 and S3 × Z/2 respectively. Such groups were already discussed in the
proof of Theorem 7.4.

7.6. Conjugacy classes

Classification of links in [17] shows that del Pezzo cubic surfaces are
rigid, and hence the conjugacy class of G in Cr2(R) is determined by the
conjugacy class of G in Aut(X).

8. Del Pezzo surfaces of degree 2

Throughout this section X (or Xsgn
B , see below) denotes a real del Pezzo

surface of degree 2. The anticanonical map ϕ|−KX | : X → P2
R is a double

cover branched over a smooth quartic B ⊂ P2
R. The Galois involution γ of

the double cover is called the Geiser involution. Note that B(R) divides RP2

into connected open sets and only one of these is non-orientable. Choose an
equation F (x, y, z) = 0 of B such that F is negative on that non-orientable
set. One can associate two different degree 2 del Pezzo surfaces to B, namely

Xsgn
B =

{
[x : y : z : w] ∈ PR(1, 1, 1, 2) : w2 = sgn ·F (x, y, z)

}
,
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where sgn ∈ {1,−1}. It is classically known that there are 6 topological
types of degree 4 smooth real plane curves. Correspondingly there are 12
topological types of degree 2 real del Pezzo surfaces. The following table
lists only those X = Xsgn

B which are rational over R (see [19] or [38] for
details):

Table 8.1. Involutions in W (E7) and real forms of R-rational del Pezzo
surfaces of degree 2

Conjugacy class
of σ∗ ∈ W (E7)

Eigenvalues
of σ∗

trσ∗ sgn Xsgn
B (R) B(R) # real

lines

id 17 7 − #8RP2 ©©©© 56

A1 −1, 16 5 − #6RP2 ©©© 32

A2
1 −12, 15 3 − #4RP2 ©© 16

A3
1
′′ −13, 14 1 − #2RP2 © 8

A3
1
′ −13, 14 1 + T2 } 0

A4
1
′ −14, 13 −1 + S2 © 0

The Geiser involution is contained in the center of Aut(X) and fits into
the short exact sequence

1 −→ 〈γ〉 −→ Aut(X) −→ Aut(B) −→ 1,

It is well known that this exact sequence splits, i.e. Aut(X) ∼= Aut(B)×〈γ〉.
In particular, we have the following possibilities for the group G:

• γ /∈ G. Then G is isomorphic to a subgroup GB ⊂ Aut(B) ⊂
PGL3(R). Possible automorphism groups of real algebraic curves
of genus 3 (considered as Klein surfaces) were described(10) in [7].
Excluding those which do not embed into PGL3(R) we get the fol-
lowing list:

Z/2, Z/2× Z/2, D3, D4, D6, S4.

Since our quartic lies in P2
R it is not difficult to obtain this classi-

fication using invariant theory, see Appendix C for description of
some invariants. This also shows that our curve cannot admit an

(10) In fact, for each automorphism group the authors even provide some restrictions on
the number of real ovals.
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automorphism of order 6: otherwise the equation of B reduces to
the form

z4 +Az2(x2 + y2) +B(x2 + y2)2 = 0,

which is singular. Further, by [39, Theorem 1.2] there is no H =
Z/3-action on an R-rational del Pezzo surface of degree 2 with
Pic(X)H ' Z. Therefore, if G does not contain γ and acts strongly
minimally on an R-rational del Pezzo surface of degree 2, then it is
isomorphic to one of the following groups:

(8.1) Z/2, Z/2× Z/2, Z/4, D3, D4, A4, S4.

• γ ∈ G. Then G is of the form 〈γ〉 ×GB , where GB is one of those
listed in (8.1) (if not trivial), and the group Z/6 containing γ. Recall
that for every real del Pezzo surface of degree 2 we have Pic(X)γ '
Z. Therefore, any group G ⊂ Aut(X) containing γ is automatically
strongly minimal.

The main result of this section is the following.

Proposition 8.1. — Let (X,σ) be a real del Pezzo surface of degree
2 and G ⊂ Aut(X) be a group acting strongly minimally on X and not
containing the Geiser involution. Then one of the following possibilities
holds.

(1) G is a cyclic group 〈g〉n
• n = 2:

(2+) g : [x : y : z : w] 7→ [x : y : −z : w], g∗ has type A4
1
′, and

σ∗ is of type A4
1
′, A3

1
′ or A3

1
′′. The equation of X has the

form

±w2 = z4 + f2(x, y)z2 + f4(x, y),

where f2 and f4 are some binary forms of degrees 2 and
4 respectively which are chosen(11) in accordance with
Table 8.1 (as well as the sign of w).

• n = 4:
(4+) g : [x : y : z : w] 7→ [−y : x : z : w], g∗ has type A2

3, and
X is of the form

(8.2) ± w2 = z4 +Az2(x2 + y2) +B(x4 + y4) + Cx2y2 +D(x3y − xy3)

for some A,B,C,D ∈ R.

(11)Unfortunately, we do not know if there is any characterization of B(R) in terms of
the coefficients of F . However, it should not be difficult to do determine the topology of
B(R) for a given equation.
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(4−) g : [x : y : z : w] 7→ [−y : x : z : −w], g∗ has type
D4(a1)×A1, and X is of the form

(8.3) ± w2 = z4 +Az2(x2 + y2) +B(x4 + y4) + Cx2y2

for some A,B,C ∈ R.
In each case, except possibly 2+ and σ of type A3

1
′′, it is indeed

possible to choose the coefficients in the equation of X, such that
G is strongly minimal.

(2) G is isomorphic to one of the groups (Z/2)2, S3, D4, A4 or S4 and
contains at least one of the elements described in (1). In particular,
all groups occur (but we do not find all possibilities for compatible
real structures).

In what follows we assume that γ /∈ G.

8.1. Case G ∼= Z/2

Let g be an involution generating G. Without loss of generality we may
assume that g acts on P2

R as [x : y : z] 7→ [x : y : −z] and then the equation
of XC has the form

±w2 = z4 + 2f2(x, y)z2 + f4(x, y),

where f4 has no multiple factors (since B is smooth).
Assume that g 6= γ and X is strongly 〈g〉-minimal. Then σ∗ 6= id. Other-

wise, rk Pic(XC)〈g〉 = 1 implies tr id∗+tr g∗ = 7+tr g∗ = 0, so g acts as −id
on E7, i.e. coincides with γ. Thus we may assume that trσ∗ ∈ {−1, 1, 3, 5}.
For the action on X we have two possibilities

(2+) [x : y : z : w] 7→ [x : y : −z : w],

or

(2−) [x : y : z : w] 7→ [x : y : −z : −w].

We consider these two cases separately.

2− The fixed locusXg
C consists of 4 points [x : y : 0 : 0] where f4(x, y) = 0.

Thus tr g∗ = 1, g∗ is of type A3
1 in W (E7) and tr id∗ + tr g∗ + trσ∗ =

8 + trσ∗ ∈ {7, 9, 11, 13}. Since XC is assumed to be Γ × G-minimal, we
must have tr(σ∗g∗) ∈ {−7,−9,−11,−13}. The last three values are impos-
sible in W (E7), so we may assume that σ∗ is of type A4

1
′ and σ∗ = γ∗ ◦ g∗.

We are going to show that this case does not occur.
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Indeed, run two H-equivariant minimal model programs on XC, one with
H = 〈σ〉 and the other with H = 〈g ◦γ〉. Their common result will be some
del Pezzo surface Z. Since g ◦ γ is of type (2+) it fixes an elliptic curve on
X (see below), so we have K2

Z 6 4 (it is easy to check that a del Pezzo
surface Z with K2

Z > 4 cannot contain a fixed-point elliptic curve). On the
other hand, Z is minimal over R, hence is not R-rational. But then X is
non-rational over R too, a contradiction.

2+ Then Xg
C consists of 2 real points [0 : 0 : 1 : ±1] and a smooth

genus 1 curve E = {w2 = f4(x, y)}. Thus tr g∗ = −1, g∗ is of type A4
1
′

and tr id∗+ tr g∗+ trσ∗ ∈ {5, 7, 9, 11}. Again, the last two options are not
possible for W (E7). Thus either σ∗ is of type A4

1
′ (with X(R) ≈ S2), or A3

1
′

(X(R) ≈ T2), or A3
1
′′ (X(R) is a Klein bottle).

The first two possibilities do occur. The first one is considered in Exam-
ple 8.2. The second one is obtained by applying the same construction to
Q2,2.

Example 8.2. — Consider a quadric surface Q = {t20 + t21 + t22 = t23} ⊂
ProjR[t0, t1, t2, t3] with X(R) ≈ S2 and three pairs of complex conjugate
points

p± = [±i : ±i
√

2 : 2 : 1], s± = [±i : 0 : 1 : 0], r± = [0 : ±i :
√

2 : 1],

lying on Q. Let ĝ ∈ Aut(Q) be the automorphism given by

[t0 : t1 : t2 : t3] 7→ [−t0 : −t1 : t2 : t3]

(a “rotation” of S2 by 180◦). Then ĝ(p+) = p−, ĝ(s+) = s−, ĝ(r+) = r−.
Denote by π : X → Q the blow up of Q at our six points and by g̃ the lift
of ĝ on X. We claim that

(1) X is a smooth real del Pezzo surface of degree 2,
(2) The involution σ∗ on X is of type A4

1 (in particular, X(R) ≈ S2),
(3) X is strongly minimal with respect to g = γ ◦ g̃.

Let us assume that (1) holds for a moment. Note that Pic(XC) is generated
by three pairs of complex conjugate exceptional divisors Ep± , Es± , Er±
and a pair of complex conjugate divisors F, F , where F = π∗(`), F =
π∗(`), Pic(QC) = Z[`] ⊕ Z[`]. Note that σ permutes the members in each
pair (which implies (2)), while g̃ permutes the members in each pair of
exceptional divisors and preserves F and F . So, g̃∗ ◦ σ∗ acts with trace
equal to 6 in Pic(XC) ⊗ R, hence with trace equal to 5 in K⊥X ⊗ R. Put
g = g̃ ◦ γ. Since γ∗ acts as −id in K⊥X ⊗ R one has tr

(
(γ ◦ g)∗ ◦ σ∗

)
= −5,

so XC is strongly 〈g〉 × Γ-minimal.
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Finally, let us prove (1). Note that X is a smooth del Pezzo if our six
points do not lie on divisors of bidegree (1, 0), (0, 1), (1, 1), (1, 2), (2, 1)
or (2, 2). For convenience of calculation, let us make the linear change of
coordinates

T0 = t3 − t2, T1 = t0 − it1, T2 = t0 + it1, T3 = t3 + t2.

ThenQ = {t23−t22 = t20+t21} is given by T0T3 = T1T2 in ProjR[T0, T1, T2, T3]
and the blown up points are

p = [−1 : i+
√

2 : i−
√

2 : 3], p̃ = [−1 : −i−
√

2 : −i+
√

2 : 3],
s = [−1 : i : i : 1], s̃ = [−1 : −i : −i : 1],

r = [1−
√

2 : 1 : −1 : 1 +
√

2], r̃ = [1−
√

2 : −1 : 1 : 1 +
√

2].

Divisors of bidegree (1, 0) and (0, 1) on Q are the lines T1 = tT0, T3 = tT2
and T2 = tT0, T3 = tT1. It can be easily checked that no two points from
above lie on such lines. Further, divisors of bidegree (1, 1) are hyperplane
sections of Q, but our points do not simultaneously satisfy the equation
αT0 +βT1 +γT2 + δT3. Next, assume that our six points lie on the curve C
of bidegree (1, 2) (note that C is smooth). Then g(C) is a curve of bidegree
(2, 1) still containing all six points. But C · g(C) = 5, a contradiction.
Finally, assume that the six points lie on a curve E of bidegree (2, 2).
Note that E has at most one ordinary double point and E2 = 8. So, the
self-intersection of a strict transform of E after the blow-up is at least −1.

8.2. Case G ∼= Z/4

Let g be a generator of GB ⊂ PGL3(R) ∼= SL3(R). We may assume that
g acts as [x : y : z] 7→ [−y : x : z]. The equation of B then has the form

(8.4) z4 +Az2(x2 + y2) +B(x4 + y4) + Cx2y2 +D(x3y − xy3) = 0,

There are two possible lifts of g to an automorphism of X, namely

(4+) [x : y : z : w] 7→ [−y : x : z : w]

or
(4−) [x : y : z : w] 7→ [−y : x : z : −w].

We treat these two cases separately.

4+ Let p = [x : y : z : w] ∈ P(1, 1, 1, 2) be a point fixed by g. Then
either p = [0 : 0 : z : w] or p = [1 : ±i : 0 : 0]. The condition p ∈ X implies
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w/z2 = ±1 in the former case, and 2B−C±2iD = 0 in the latter. It follows
that in the second case we have C = 2B, D = 0, so F reduces to the form

(8.5) z4 +Az2(x2 + y2) +B(x2 + y2)2 = 0,

which is singular. Therefore Fix(g,XC) = {[0 : 0 : 1 : ±1]} and tr g∗ = −1.
It follows that the conjugacy class of g∗ in W (E7) is A3 ×A2

1 or A2
3.

In the first case Sp(g∗) = {±i,−13, 12}, so Sp(g2)∗ = {−12, 15} and (g2)∗
cannot be of type A4

1, a contradiction. Thus only the case of A2
3 remains.

This case does occur, see Example 8.3

4− As above, let p = [x : y : z : w] ∈ P(1, 1, 1, 2) be a point fixed by
g. Then p = [1 : ±i : 0 : β], where β = w/x2. By Remark 2.3 the set
X(C)g is not empty. It is easy to check then that X(C)g consists of 4
points [1 : ±i : 0 : β], where β2 = 2B − C + 2iD and β2 = 2B − C − 2iD,
so D = 0 (2B − C 6= 0: otherwise 2B = C, D = 0, which gives a singular
quartic).
So, tr g∗ = 1 and g∗ belongs to the class (A3 × A1)′, (A3 × A1)′′ or

D4(a1) × A1 in W (E7). The same arguments as in the (4+)-case exclude
the first two possibilities. The remaining case does occur, see Example 8.3.

Example 8.3. — Consider a smooth real del Pezzo surface

X =
{

[x : y : z : w] : x4 + 6x2y2 + y4 − 2z4 = w2} ⊂ ProjPR(1, 1, 1, 2).

The curve B =
{

[x : y : z] : x4 + 6x2y2 + y4 − 2z4 = 0
}
is a smooth plane

quartic with one oval. One can easily find all 28 bitangents of B and 56
lines on XC: {

w = ±
√

2iz2, x = α1y
}
, α1 = i(±1±

√
2),{

w = ±(x2 + 3y2), z = α2y
}

and
{
w = ±(3x2 + y2), z = α2x

}
, α2

2 = ±2i,{
w = ± 1√

2
(x− y)2, z = α3(x+ y)

}
and

{
w = ± 1√

2
(x+ y)2, z = α3(x− y)

}
, α2

3 = ±1
2 ,{

w = ±i(x2 + 4ixy − y2), z = α4(x+ iy)
}

and
{
w = ±i(x2 − 4ixy − y2), z = α4(x− iy)

}
, α2

4 = ±1.

(in [33] these sets of lines are called θ-, η-, σ-, and τ -lines respectively).
Consider the automorphism g : [x : y : z : w] 7→ [−y : x : z : ±w]. It is
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easy to check that there are no disjoint 〈g〉-orbits defined over R, so X is
〈g〉-minimal.

8.3. Other groups

We may assume that the groups listed in (8.1) contain an element of
order 2 or 4, described above. This shows that all these groups can act
strongly minimally on a real del Pezzo surface of degree 2. We however do
not find all compatible real structures here.

8.4. G-links

To classify isomorphism classes of (X,G), we use classification of Sarkisov
links [13, Corollary 7.11] or [17, Theorem 2.6] which says that if a del Pezzo
surface of degree d has no orbits of length < d, then X is superrigid. In
particular a Del Pezzo surface of degree 2 is superrigid unless G has a fixed
point, which must be real in our case. The only possible link is a birational
Bertini involution (see the next paragraph). From Lemma 2.5 we conclude
that X is G-superrigid for groups A4, S4 (not containing γ), or the groups
H × (Z/2)2, H × Z/4, H × S3, H × D4, H × A4, H × S4, where H is
generated by the Geiser involution.

9. Del Pezzo surfaces of degree 1

Let X be a del Pezzo surface of degree 1 over a field k. Its anticanonical
model

Proj
⊕
n>0

H0(X,−nKX)

is a smooth sextic hypersurface f(w, x, y, z) = 0 in Pk(3, 1, 1, 2). Write
f(w, x, y, z) = w2− g3(x, y, z)w− g6(x, y, z), where gi ∈ k[x, y, z] is a poly-
nomial of (graded) degree i. If char k 6= 2 one can make the change of
variables w 7→ w + g3/2 and reduce the equation to the form

w2 = Az3 + z2h2(x, y) + zh4(x, y) + h6(x, y).

When k = R one can make the change of variables z 7→ z/ 3
√
A−B/3 3

√
A2

and reduce the equation of X to the form

(9.1) w2 = z3 + f4(x, y)z + f6(x, y).
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The linear system |−2KX | has no base points and exhibits X as a double
cover of a quadratic cone Q ⊂ ProjR[x, y, z]. The corresponding Galois
involution β is called the Bertini involution and acts as

[w : x : y : z] 7→ [−w : x : y : z] = [w : −x : −y : z].

Its fixed point locus Xβ is the union of a curve R ⊂ Q of genus 4 and
a single point q. This point is the unique base point of the elliptic pencil
|−KX |, so in particular q ∈ X(R).

Remark 9.1. — In Table 9.1 below we collect some information about real
structures on del Pezzo surfaces of degree 1. This time we do not restrict
ourselves to R-rational surfaces only, because — as will become clear in
Section 9.1 — we should have a closer look at involutions’ conjugacy classes
in W (E8), and deal with the fact that sometimes the Carter graph does
not determine an involution up to conjugacy.
For an irreducible reflection group W acting on a vector space V , and

involution σ∗ ∈ W , define i(σ∗) = dimV −, where V = V + ⊕ V − is the
decomposition into eigenspaces. In the notation of Table 9.1, i(σ∗) is the
sum of lower indices. Note that there is a central involution −id in W (E8),
which induces a correspondence of each σ∗ with σ∗t (called the Bertini twist
of σ∗ in Section 9.1), where i(σ∗t ) = 8 − i(σ∗). It will be important for us
that two classes with i(σ∗) = 4 are both self-corresponding under this,
see [38, § 2] for details.

Since Aut(X) fixes q, we have the natural faithful representation

Aut(X) ↪→ GL(TqX) ∼= GL2(R),

so either Aut(X) ∼= Z/n or Aut(X) ∼= Dn.
Let G ⊂ Aut(X). The action of G on the pencil |−KX | induces the action

on
C = ProjR[x, y] ∼= P1

R

(recall that by construction {x, y} is a basis in H0(X,−KX)). This gives
us the natural homomorphism

υ : G→ Aut(C) = PGL2(R).

PutG0 = Ker υ. Every element ofG0 acts on PR(3, 1, 1, 2) as diag{α, ε, ε, β},
where ε = ±1, and ε6 = α2 = β3. Thus β = 1, α = ±1, and |G0| 6 2.
Moreover, G0 ∼= Z/2 means that β ∈ G.
Since each g ∈ G ⊂ Aut(X) leaves the equation (9.1) invariant, g must

have the form

[w : x : y : z] 7→ [w : ax+ by : cx+ dy : z], a, b, c, d ∈ R,
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Table 9.1. Involution in W (E8) and real forms of del Pezzo surfaces of
degree 1

[38] [8] Eigenvalues
of σ∗

trσ∗ X(R) number of real
lines on X

1 ∅ 18 8 #9RP2 240

A1 A1 −1, 17 6 #7RP2 126

A2
1 A2

1 −12, 16 4 #5RP2 60

A3
1 A3

1 −13, 15 2 #3RP2 26

A4
1 A4

1
′′ −14, 14 0 RP2 8

D4 A4
1
′ −14, 14 0 S2 t#3RP2 24

A1 ×D4 A5
1 −15, 13 −2 S2 t RP2 6

D6 A6
1 −16, 12 −4 2S2 t RP2 4

E7 A7
1 −17, 1 −6 3S2 t RP2 2

E8 A8
1 −18 −8 4S2 t RP2 0

(unlike the case k = C). In particular, f4(x, y) and f6(x, y) are absolute
invariants of G. From the list of basis invariants in Appendix C we get that
for n > 4, n 6= 6, one has f4 = a(x2 + y2)2, f6 = b(x2 + y2)3, so

27f2
6 + 4f3

4 = (27b2 + 4a3)(x2 + y2)6,

and hence X is singular. Moreover, X does not admit H = Z/3-action with
Pic(X)H ' Z by [39, Theorem 1.2]. Therefore, a strongly minimal G can
be isomorphic to one of the following groups:

(9.2) Z/2, Z/4, Z/2× Z/2, Z/6, D3, D4, D6.

Note that rk(XC)β = 1, hence to classify groups acting strongly mini-
mally on X, we can focus only on those that do not contain the Bertini
involution.

Proposition 9.2. — Let X be a real R-rational del Pezzo surface of
degree 1 and G be a finite group acting strongly minimally on X. Then G
contains the Bertini involution and we are in one of the following cases (all
groups indeed act on X strongly minimally):
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Table 9.2. Minimal automorphism groups of del Pezzo surfaces of de-
gree 1.

G Generators f4(x, y) f6(x, y)

Cyclic groups G = 〈r〉

Z/2 β f4(x, y) f6(x, y)

Z/4 R4 ax4 + bx2y2 + ay4

+ cxy(x2 − y2)
(x2 + y2)(a′x4 + d′x3y

+b′x2y2−d′xy3+a′y4)

Z/6 R6 a(x2 + y2)2 b(x2 + y2)3

+c(x6−15x4y2+15x2y4−y6),
+d(6x5y − 20x3y3 + 6xy5).

Dihedral groups G = 〈Rn, S | Rnn = S2 = 1, SRnS−1 = R−1
n 〉

(Z/2)2 R2, S ax4 + bx2y2 + cy4 a′x6 + b′x4y2 + c′x2y4 + d′y6

D4 R4, S ax4 + bx2y2 + cy4 (x2 + y2)(a′x4 + b′x2y2 + a′y4)

D6 R6, S a(x2 + y2)2 b(x2 + y2)3 + c(x6 − 15x4y2

+ 15x2y4 − y6)

Proof. — All the groups listed in Table 9.2 do contain the Bertini involu-
tion, so they act strongly minimally onX. To write down the corresponding
equation one should consult Appendix C. It remains to exclude the groups
which do not contain the Bertini involution. Below we assume that β /∈ G
and G � S3. The case G ∼= S3 requires more thorough analysis and is
excluded in Section 9.1.

Case G = Z/2. — Denote by g an involution which generates G. We
may assume that g acts on TqX ∼= R2 as diag{−1, 1}. The set Xg

C is the
disjoint union of the elliptic curve x = 0 and 2 or 3 points w = y =
0, so tr g∗ ∈ {−1, 0}. However, there are no involutions in W (E8) whose
trace equals −1, so we assume tr g∗ = 0. If XC is strongly Γ×G-minimal,
then tr id∗ + tr g∗ + trσ∗ + tr(σ ◦ g)∗ = 8 + trσ∗ + tr(σ ◦ g)∗ = 0. Hence
trσ∗ = 0, tr(σ ◦ g)∗ = −8 (see Table 9.1). The latter equality implies that
σ∗ = g∗ ◦ β∗.

Now run two H-equivariant minimal model programs on XC, one with
H = 〈σ〉 and the other with H = 〈g ◦ β〉. Their common result will be
some del Pezzo surface Z. Since g ◦ β fixes an elliptic curve on X (as well
as g), we have K2

Z 6 4 (it is easy to check that a del Pezzo surface Z with
K2
Z > 4 cannot contain a fixed-point elliptic curve). On the other hand, Z
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is minimal over R, hence is not R-rational. But then X is non-rational over
R too, a contradiction.
Case G = Z/2n, n > 2. — Let g generate G. As G does not contain the

Bertini involution, we may assume that gn acts as diag{−1, 1} on TqX, so
det gn = −1. But each h ∈ GL2(R) with 2 < ordh < ∞ has determinant
equal to 1, a contradiction.
Case G = Dn, n > 2. — It is easy to see that G = D2 ∼= (Z/2)2

always contains the Bertini involution. So, we assume that n > 2 and n

is even. Then G contains an element of order n whose (n/2)th-power is
not the Bertini involution. The same argument as before shows that this is
impossible. �

9.1. Geometry of C-configurations and S3-actions

We now apply the techniques of [34] to analyze S3-actions on real del
Pezzo surfaces of degree 1. More precisely, we now show that if β /∈ G ∼=
S3, then G cannot act on any R-rational del Pezzo surface of degree 1
with invariant Picard number equal to one (the R-rationality assumption
is crucial).
So, assume G = 〈g, h | g3 = h2 = 1, gh = hg−1〉 and rk Pic(XC)Γ×G = 1.

Since we suppose β /∈ G, all involutions in G have zero traces on K⊥X (i.e.
of types A4

1
′ or A4

1
′′). All elements of order 3 in G are of type A2

2, with
trace equal 2, as was shown in [39, § 5.4]. The formula (2.1) implies

(9.3) rk Pic(XC)G = 3.

Following the terminology of [34], we say that six (−1)-curves H1, . . . ,H6
on a del Pezzo surface of degree 1 form a C-configuration, if

Hi ·Hi+1 = 0, Hi ·Hi+2 = 2, Hi ·Hi+3 = 3

(all subscripts are modulo 6). In fact,

(9.4)

Hi +Hi+3 ∼ −2KX , Hi +Hi+2 +Hi+4 ∼ −3KX ,

6∑
i=1

Hi ∼ −6KX ,

and Hi+3 = β(Hi). The graph of a C-configuration looks like C, where the
vertices denote (−1)-curves, the edges denote intersections with multiplicity
2, and the curves corresponding to opposite vertices intersect with multi-
plicity 3. Two C-configurations C = {H1, . . . ,H6} and C′ = {H ′1, . . . ,H ′6}
are called asynchronized if Hi ·H ′j = 1 for any i, j.
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By [33, Lemma 4.12], for every element g∗ of type A2
2 there are twelve

g-invariant (−1)-curves on XC forming two C-configurations, and two g-
invariant C-configurations on which g acts faithfully. These four configura-
tions are pairwisely asynchronized. Denote the first two configurations by
CA = {A1, . . . , A6} and CB = {B1, . . . , B6}, and the last two (where g acts
faithfully) by CC = {C1, . . . , C6} and CD = {D1, . . . , D6}. Let us choose
the numbering in every 6-tuple so that the first two entries are disjoint
(i.e. neighbors in C graph). By the proof of [33, Lemma 4.15], the classes
ai = Ai +KX , bi = Bi +KX , ci = Ci +KX and di = Di +KX , i = 1, 2,
form a basis of the vector space V = Pic(XC)⊗ R ∩K⊥X . We may assume
that g acts on CC and CD by rotating them (more precisely, the “trian-
gles” 4 and 5) counterclockwise. Using relations (9.4), one easily finds the
matrix of g∗ in our basis:

g∗= I4⊕
(
−1 −1
1 0

)
⊕
(
−1 −1
1 0

)
, (g−1)∗= I4⊕

(
0 1
−1 −1

)
⊕
(

0 1
−1 −1

)
,

Now the involution h ∈ G acts on the C-configurations, and it is easy to
see that condition (9.3) implies that there is a G-invariant C-configuration
among our four (the incidence relation in C together with gh = hg−1 show
that h acts either trivially, or as a central symmetry). We call this invariant
configuration C0.
Similarly, the Γ × G-minimality of XC implies that Γ acts by central

symmetry on C0. Denote by σ∗ the image of the complex involution on X
in the Weyl group W (E8), and assume that X is given by equation (9.1).
Changing the signof w2 in that equation gives another del Pezzo surface
of degree 1, which we denote X[β] and call the Bertini twist of X. If σt
is the complex involution on X[β], then its image in W (E8) equals σ∗t =
β∗ ◦ σ∗. Note that β∗ acts as −id on K⊥X , and therefore tr(σ∗t ) = − trσ∗.
In particular,

rk PicX[β]Γt×G
C = 3,

where Γt = 〈σt〉. The output of G-Minimal Model Program on X[β] is a
real G-minimal del Pezzo cubic surface Y . Note that now Γt stabilizes the
vertices of C0, so σ∗t has the same type in W (E8) as the type of the complex
involution on Y — i.e. id, A1, A2

1, A3
1, or some lift of A4

1 (see Section 7).
Therefore the original involution σ∗ is of type A8

1, A7
1, A6

1, A5
1, A4

1
′ or A4

1
′′.

The first four correspond to non-R-rational del Pezzo surfaces. So, we may
assume that the complex involution on Y is of type A4

1, and hence both Y
and X[β] are not R-rational. As was noticed in Remark 9.1, both classes
A4

1
′ and A4

1
′′ are self-dual under the Bertini twist, hence X is not rational

over R either.
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9.2. Embedding into Cr2(R) and conjugacy classes

A priori it is not clear that one can choose the coefficients of f4 and f6
in Table 9.2 in such a way that the corresponding surfaces are R-rational.
Here is one of the possible approaches to this problem.
Let X̃ denote the blow-up of X at q. By Proposition 2.1, the surface

X is R-rational if and only if X̃(R) is connected. The surface X̃ is an
elliptic fibration over P1

R with a real section (coming from the exceptional
divisor of the blow-up). As shown in [38, § 5] the set X̃(R) is connected
if(12) Eu(X̃(R)) < 0. Now Eu(X̃(R)) is the sum of Euler characteristics of
singular fibers.
Recall that every geometrically singular member of |−KX | is an irre-

ducible curve of arithmetic genus 1. Therefore, each singular fiber of the
fibration X̃ → P1

R is a rational curve with a unique singularity which is
either a node or a simple cusp. From the point of view of Euler character-
istic only the nodes do matter: we have contributions +1 from each acnode
(a singularity which is equivalent to the singularity y2 = x3 − x2 over R)
and −1 for each crunode (those which are equivalent to y2 = x3 + x2), see
Figure 9.1.

Figure 9.1. Transition between fibers with 1 component and those with
2 components through an acnode (left) and a crunode (right).

Now an easy calculation shows that the coefficients of the binary forms
f4(x, y) and f6(x, y) from Table 9.2 can be chosen in such a way that
the number of crunodal curves in (9.1) is greater than acnodal ones, so
X̃(R) < 0.

(12)This condition is sufficient but not necessary. In fact X̃(R) is non-connected if
Eu(X̃(R)) > 0, but the case Eu(X̃(R)) = 0 is more subtle and we will not discuss
it here.
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So, all the groups G from Table 9.2 do embed into Cr2(R). Also note
that any del Pezzo surfaces of degree 1 is G-superrigid (see [13, Corol-
lary 7.11] and [17, Theorem 2.6]). In particular, none of the groups listed
in Proposition 9.2 is linearizable.

Appendix A. Simple groups and p-groups acting on real
rational surfaces

In this Appendix we show that classification of subgroups of some partic-
ular types in Cr2(R) can be much simpler than the analogous question in
complex settings. Also, these results can be obtained directly, i.e. avoiding
the complete classification.
In this section X denotes a real smooth geometrically rational (not nec-

essarily R-rational) surface. Let G ⊂ Bir(X) be a finite group. Then, ap-
plying G-equivariant minimal model program to X, we can assume that X
is either a real del Pezzo surface with Pic(X)G ∼= Z, or a real surface with
G-equivariant conic bundle structure and Pic(X)G ∼= Z2 [14, Theorem 5].
Our goal is to classify simple groups acting on real geometrically rational

surfaces. Let us first recall the situation in the case k = C. As a by-product
result of [13] one has the next theorem.

Theorem A.1. — Let G ⊂ Cr2(C) be a finite non-abelian simple group.
Then G is isomorphic to one of the following groups:

A5, A6, PSL2(F7).

More precisely, we have the following characterization of these groups.
• There are 2 conjugacy classes of subgroups isomorphic to PSL2(F7).
First, PSL2(F7) embeds into PGL3(C) and preserves the Klein quar-
tic x3y + y3z + z3x = 0. Second, it embeds as a group of automor-
phisms of the double cover of P2

C, ramified along that Klein quartic
(i.e. a del Pezzo surface of degree 2).

• There are 3 embeddings of A5 into Cr2(C), up to conjugacy. The
first is in PGL2(C), the second is in PGL3(C), and the third is in
the group of automorphisms of a del Pezzo surface of degree 5.

• Up to conjugacy, there is a unique copy of the Valentiner group A6,
acting linearly on P2

C and preserving the sextic curve

10x3y3 + 9x5z + 9y5z + 27z6 − 45x2y2z2 − 135xyz4 = 0.

Remark A.2. — Although a complete classification of finite subgroups in
Cr3(C) seems to be out of reach, Yu. Prokhorov managed to find all finite
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simple non-abelian subgroups of Cr3(C). Besides A5, A6 and PSL2(F7), we
have three new simple groups

SL2(F8), A7, PSp4(F3).

in Cr3(C), see [24] for details.

By contrast, over R the following holds.

Theorem A.3. — Let X be a real geometrically rational surface with
X(R) 6= ∅ acted by a simple non-abelian group G. Then G ∼= A5. It
has 3 embeddings into Cr2(R) up to conjugacy. One in PGL3(R), one in
Aut(Q3,1) ∼= PO(3, 1), and one in the group of automorphisms of a del
Pezzo surface of degree 5 obtained by blowing up P2

R at the points [1 : 0 :
0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1].

Proof. — Assume first that G is minimally regularized on a real conic
bundle π : X → P1

R. Since X(R) 6= ∅ one has C(R) 6= ∅, so C ∼= P1
R. The

homomorphism G → Aut(P1
R) ∼= PGL2(R) is either injective or trivial. In

both cases G embeds into automorphism group of some P1
R (which is either

a base or a fiber), hence must be cyclic or dihedral by Lemma 2.5 (1).
Now assume that G is minimally regularized on a real del Pezzo surface

X of degree d = K2
X 6= 7. We consider each d separately.

d = 9: Then X is a Severi–Brauer variety. As X(R) 6= ∅, we have X ∼= P2
R

and Aut(X) ∼= PGL3(R), so G ∼= A5 by Proposition 2.5 (2). This is
where the Valentiner group A6 is excluded (it does not embed into
PGL3(R)).

d = 8: The surface P2
R(1, 0) is never G-minimal. If X ∼= P1

R × P1
R, we argue

as in the conic bundle case. If X ∼= Q3,1 = {x2 + y2 + z2 = w2},
then G ∼= A5 realized as the automorphism group of an icosahedron
inscribed in the sphere( x

w

)2
+
( y
w

)2
+
( z
w

)2
= 1.

The action is minimal since Pic(Q3,1) ∼= Z.
d = 6: Then G is a subgroup of Aut(XC) ∼= (C∗)2oD6, so it maps isomor-

phically to a subgroup of D6. So, this case does not occur.
d = 5: Then G is a subgroup of Aut(XC) ∼= S5, so G ∼= A5. The action of

this group can be defined over R and is always minimal, since G
contains a minimal element of order 5, see [39, 4.6] or Section 5

d = 4: Then X = Q1 ∩ Q2 ⊂ P4
R is an intersection of two quadrics and G

acts on the pencil Q = 〈Q1, Q2〉 ∼= P1
R. Thus G acts trivially on Q
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and fixes the vertices of its singular members. But these vertices
generate P4

C, hence G is abelian, a contradiction.
d = 3: All possible groups of automorphisms of complex cubic surfaces are

well-known, see [11, Table 9.6] or Section 7. The only group to con-
sider is G ∼= A5. This group acts faithfully on H0(X,−KX) ∼= R4.
It is known that there exists only one real 4-dimensional irreducible
representation(13) of A5. Thus there exists a unique A5-invariant
cubic surface in PH0(X,−KX); we may assume that it is given by

x0 + x1 + x2 + x3 + x4 = x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0

in ProjR[x0, x1, x2, x3, x4] and the set S of (−1)-curves on X con-
sists of 27 real lines (real forms of the Clebsch cubic were described
in Section 7.1). Moreover S = S6 t S′6 t S15, |Sk| = k, where the
lines inside both S6 and S′6 are disjoint. Further, there exists a
commutative diagram

X

π

~~

π′

  
P2
R

// P2
R

such that π (resp. π′) is a birational A5-morphism contracting S6
(resp. S′6) to the unique A5-orbit of length 6 in P2

R. It follows that
rk Pic(X)G = 2, so X is not strongly G-minimal (in fact, it is not
G-minimal either, as the conic bundle structures on a cubic surface
are given by projecting away from a line).

d = 2: Then G embeds into Aut(B) ⊂ PGL3(R), where B is a smooth
quartic curve. By Lemma 2.5 (2), we need to consider only G ∼= A5.
But, as is well known, a genus 3 curve has no automorphisms of
order 5, so this case does not occur.

d = 1: Note that any group G ⊂ Aut(X) fixes a unique base point p ∈
X(R) of an elliptic pencil |−KX |. Thus we have a faithul repre-
sentation G → GL(TpX) ∼= GL2(R), and G cannot be simple by
Lemma 2.5 (1).

(13)Namely, the number of real irreducible representations of a finite group G equals to
the number of equivalence classes under real conjugacy. By definition, two elements are
equivalent if they are either in the same conjugacy class or if the inverse of one element
is in the conjugacy class of the other. It is known that for A5 (as a particular case of an
ambivalent group) the number of such equivalence classes equals to the number of usual
conjugacy classes, i.e. the number of irreducible complex representations (and all these
representations can be defined over R), see [18, Chapter 16].
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Finally, let us remark that all three conjugacy classes of A5 in Cr2(R) (cor-
responding to d = 5, 8, 9) are different, since they are different in Cr2(C),
see e.g. [9, Theorem B2]. �

We can generalize Theorem A.3 a little bit. Recall that a groupG is called
quasisimple if [G,G] = G and G/Z(G) is a simple group. It was proved
in [26] that every finite quasisimple non-simple subgroup of G ⊂ Cr2(C) is
isomorphic to 2•A5 ∼= SL2(F5) and the embedding G ⊂ Cr2(C) is induced
by action either on P2, or on a conic bundle. In contrast with this situation,
we have

Proposition A.4. — Every quasisimple subgroup of Cr2(R) is simple
(and is described in Theorem A.3).

Proof. — Let G ⊂ Cr2(R) be a finite quasisimple non-simple group. As
usual, we assume that G acts biregularly on some R-rational surface X.
The simple group H = G/Z(G) acts on Y = X/Z(G). The surface Y is
clearly unirational over C, hence is C-rational by Castelnuovo’s theorem.
Thus H ∼= A5 by Theorem A.3. Same group-theoretic arguments as in [26,
Proposition 2.1] imply that Z(G) ∼= Z/2 and G is the binary icosahedral
group 2•A5.

Suppose that X is a G-equivariant conic bundle over B ∼= P1
R. The kernel

of the homomorphism G → Aut(B) coincides with Z(G) = Z/2, as this is
the only proper normal subgroup of 2•A5. Thus A5 acts faithfully on the
general fiber, which is impossible.
Now let X be a del Pezzo G-surface with rk Pic(X)G = 1. We then argue

as in the proof of Theorem A.3. Note that the image of every nontrivial
homomorphism from 2•A5 either contains A5, or coincides with the whole
group. This observation helps us to exclude all the cases(14) except d =
3. It remains to notice that 2•A5 does not act on any cubic surface [11,
Table 9.6]. �

A.1. p-subgroups in Cr2(R)

Recall that a p-group is a finite group of order pk, where p is a prime.
From the group-theoretic point of view, these groups are somewhat opposite

(14) It follows from [21] that PO(3, 1) does not contain 2•A5. Alternative proof: as-
sume that G = 2•A5 ⊂ Aut(Q3,1). As G has no index 2 subgroups, it faithfully acts
by orientation-preserving diffeomorphisms of S2, and hence embeds into SO3(R), see
Remark 3.1. But this is impossible by Lemma 2.5.
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to simple non-abelian groups. It follows from [39] that for p > 3, every p-
subgroup G ⊂ Cr2(R) is conjugate either to a direct product of at most
two cyclic groups, regularized on X = P1

R × P1
R with rk Pic(X)G = 2, or

to a cyclic subgroup of PGL3(R), or to (Z/3k × Z/3l) o (Z/3) acting on
a del Pezzo surface of degree 6, or to Z/5 acting on a del Pezzo surface
of degree 5 (with invariant Picard numbers equal to one). As the reader
can see from present paper, the classification of 2-subgroups of Cr2(R) is
much more extensive. We leave it to the interested reader to extract this
classification for del Pezzo surfaces.
Instead we give a bound on the number of generators of an abelian p-

subgroup G ⊂ Cr2(R) in the spirit of [1] (where it was done for k = C;
note that a priori Beauville’s bound might fail to be sharp over R).

Proposition A.5. — Let G ⊂ Cr2(R) be an abelian p-subgroup. Then
it is generated by at most r elements, where

r 6


4 if p = 2,
3 if p = 3,
2 if p > 5.

If G is elementary, then r 6 2 for p = 3. For any p, these bounds are
attained by some abelian p- subgroups G ⊂ Cr2(R).

Proof. — If G is minimally regularized on a real conic bundel X → B,
then G fits into the short exact sequence

(A.1) 1→ GF → G→ GB → 1,

where GB ⊂ Aut(B) ∼= PGL2(R), and GF acts by automorphisms of the
generic fiber F . Since G is finite, GF is a subgroup of PGL2(R). So, both
GF and GB are cyclic or dihedral, and hence G is generated by at most 4
elements. Note that if G ∼= (Z/p)r and p > 2, then r = 1 or 2.
The remaining cases directly follow from the results of this paper. Note

that for p = 2 the value r = 4 is achieved for a del Pezzo quartic surface
isomorphic to P2

R(5, 0) or Q2,2(0, 2). The bound r = 3 for p = 3 is attained
on a del Pezzo surface of degree 6 isomorphic to Q2,2(0, 1) (so G is a group
of type 2b). �

Appendix B. Non-solvable groups

Another interesting class of subgroups of the Cremona group is non-
solvable groups. As was shown in [13] and [35] the plane Cremona group

ANNALES DE L’INSTITUT FOURIER



THE REAL PLANE CREMONA GROUP 895

(over C) already contains eight sporadic insoluble subgroups

S5, PSL2(F7), PSL2(F7)× Z/2,
A6, A5 × A4, A5 ×S4, A5 × A5, (A5 × A5)o Z/2,

and four infinite series A5×Z/n, A5×Dn, SL2(F5)×Z/n and SL2(F5)×Dn.
By contrast, the following holds over R.

Theorem B.1. — Let X be a real geometrically rational surface with
X(R) 6= ∅, and G be a finite non-solvable group acting on it. Then the
pair (X,G) is isomorphic to one (and only one) of the following pairs

•
(
P2
R,A5

)
;

•
(
Q3,1,A5

)
or
(
Q3,1,A5 × Z/2

)
;

•
(
P2
R(4, 0),A5

)
or
(
P2
R(4, 0),S5

)
;

•
(
Y,S5

)
, where Y is the Clebsch diagonal cubic.

Proof. — If G is minimally regularized on a conic bundle, then we again
have the short exact sequence (A.1) with both GF and GB cyclic or dihe-
dral. Thus G is solvable.
So, we may assume that G acts on a real del Pezzo surface X of degree

d with Pic(X)G ∼= Z. If d = 9, then G ∼= A5. If d = 8 and X ∼= Q2,2, then
G ∼= H•(Z/2)r, where r ∈ {0, 1} and H is a subgroup of H1 ×H2 with H1
and H2 being cyclic or dihedral. Clearly G is solvable in this case. If d = 8
and X ∼= Q3,1 we have G ⊂ PO(3, 1), so G ∼= A5 or A5 × Z/2, see [21].
When d = 6, Proposition 4.1 tells us that G ∼= H•N , where H is an abelian
group and N is a group of order at most 6, so G is solvable. For d = 5 we
have either G ∼= A5, or G ∼= S5 by Proposition 5.2. Let d = 4. Then G is
a subgroup of W (D5) ∼= (Z/2)4 oS5, so G ∼= A•H, where A is an abelian
group, and H ⊂ S5. In fact it is known that |H| < 10 [11, Theorem 8.6.8],
so G is solvable.
Let d = 3. Then [11, Table 9.6] shows that G ∼= A5 or S5. Moreover, we

already know (see the proof of Theorem A.3) that X is the Clebsch cubic
and it is not A5-minimal. Further, in the notation of that proof let `i,
i = 1, . . . , 6, be the elements of S6 (note that all the lines on the Clebsch
cubic are real). It is known that the divisor classes of `i and KX span
Pic(X) ⊗ R, so Pic(X)A5 ⊗ R is spanned by KX and the sum

∑
`i. Since

S5 does not leave this sum invariant, the group S5 acts minimally on X.
For d = 2 we have G ∼= (Z/2)r × H, where r ∈ {0, 1}, and H is either

cyclic, or dihedral, or has order < 60. So, G is solvable. When d = 1 the
group G embeds into GL(TqX) ∼= GL2(R) (see Section 9), so it is solvable.
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Finally as we noted in Theorem A.3 the pairs (P2
R,A5), (Q3,1,A5) and

(P2
R(4, 0),A5) are pairwise non-isomorphic. The pair (P2

R(4, 0),S5) is known
to be superrigid, see [13, 8.1]. �

Appendix C. Real invariants of some finite groups

In this appendix we collect some results concerning invariant theory of
finite groups over R. They should be known to experts, but we decided to
include them because we do not know proper references.
Let V be a realm-dimensional vector space and x1, . . . , xm be a standard

dual basis of V ∗. Let ρ : G → GL(V ) be a faithful linear representation
of a finite group G and η : G → GL(V ⊗ C) be some faithful complex
representation equivalent to ρ, i.e. ρ(g) = T ◦ η(g) ◦ T−1 for each g ∈ G
and some T ∈ GLm(C).

Recall that every finite subgroups of GL2(R) is either cyclic Z/n ∼= 〈Rn〉
or dihedral

Dn
∼= 〈Rn, S | Rnn = S2 = 1, SRnS−1 = R−1

n 〉.

In the sequel by standard representations of Z/n and Dn we mean

ρ : Rn 7→
(

cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)
, S 7→

(
1 0
0 −1

)
.

In order to construct G-invariant del Pezzo surfaces in Sections 8 and 9
we need to know G-invariant binary forms fk(x, y) of degrees k = 2, 4 and 6.
They are listed below for different groups (in their standard representation).

Cyclic groups

Let G = Z/n. We claim that

(C.1) R[x, y]ρ(Z/n) = R[x2 + y2,Re(x+ iy)n, Im(x+ iy)n]

Denote by ω a primitive nth root of unity. The representation ρ is
equivalent to η : Rn 7→ diag{ω, ω} via the map T : x 7→ z = x + iy,
y 7→ w = x − iy. For each g ∈ G we have η(g)(Tf) = Tρ(g)T−1Tf = Tf ,
so Tf ∈ C[x, y]η(Z/n). It is well known that C[z, w]η(Z/n) = C[zn, zw,wn],
so

Tf =
∑

cjklz
nj(zw)kwnl, and f =

∑
cjkl(x+iy)nj(x2+y2)k(x−iy)nl.

Separating the real part, we get the list of basic invariants. Below we
use (C.1) mostly as a starting point for finding a nicer list of generators.
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Z/2 R[x, y]Z/2 = R[x2 + y2, x2 − y2, 2xy] = R[x2, xy, y2]

f2k(x, y) is invariant for all k > 1.

Z/4 R[x, y]Z/4 = R[x2 + y2, x4 − 6x2y2 + y4, 4x3y − 4xy3] = R[x2 +
y2, x2y2, x3y − xy3]

f2(x, y) : a(x2 + y2);
f4(x, y) : ax4 + bx2y2 + ay4 + cxy(x2 − y2);
f6(x, y) : (x2 + y2)(ax4 + dx3y + bx2y2 − dxy3 + ay4)

Z/8 R[x, y]Z/8 = R[x2 + y2, x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8, 8x7y−
56x5y3 + 56x3y5 − 8xy7] = R[x2 + y2, xy(x2 − y2)(x4 − 6x2y2 +
y4), x2y2(x2 − y2)2]

f2(x, y) : a(x2 + y2);
f4(x, y) : a(x2 + y2)2;
f6(x, y) : a(x2 + y2)3.

Dihedral groups

One has
R[x, y]ρ(Dn) = R[x2 + y2,Re(x+ iy)n].

D2 R[x, y]D2 = R[x2 + y2, x2 − y2] = R[x2, y2]

f2(x, y) : ax2 + by2;
f4(x, y) : ax4 + bx2y2 + cy4;
f6(x, y) : ax6 + bx4y2 + cx2y4 + dy6.

D4 R[x, y]D4 = R[x2 + y2, x4 − 6x2y2 + y4] = R[x2 + y2, x2y2]

f2(x, y) : a(x2 + y2);
f4(x, y) : ax4 + bx2y2 + ay4;
f6(x, y) : (x2 + y2)(ax4 + bx2y2 + ay4).

D8 R[x, y]D8 = R[x2 +y2, x8−28x6y2 +70x4y4−28x2y6 +y8] = R[x2 +
y2, x2y2(x2 − y2)2]

f2(x, y) : a(x2 + y2);
f4(x, y) : a(x2 + y2)2;
f6(x, y) : a(x2 + y2)3.
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