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AUGMENTED AND RESTRICTED BASE LOCI OF
CYCLES

by Angelo Felice LOPEZ (*)

Abstract. — We introduce augmented and restricted base loci of cycles and
we study the positivity properties naturally defined by these base loci.
Résumé. — Nous introduisons les lieux de base augmentés et restreints de cycles

et nous étudions les propriétés de positivité naturellement définies par ces lieux de
base.

1. Introduction

One of the most important facts in algebraic geometry is that the geom-
etry of a variety is reflected in the geometry of its subvarieties. There is,
however, a big difference between codimension one subvarieties and higher
codimensional ones. In the first case several tools are at hand, such as lin-
ear systems, ample divisors, vanishing theorems and so on. On the other
hand, no similar tool is available in the study of higher codimensional cycles
and this certainly makes the theory harder. Well-known famous problems
are still open in that case, such as the Hodge conjecture or Grothendieck
standard conjectures.

When dealing with algebraic cycles one can define effective, pseudoef-
fective and big cycles, but perhaps a good notion of positive cycles still
lacks [2, Problem 6.13]. A few years ago, Ottem [18, 19] defined the no-
tion of ample subschemes and proved several beautiful results about them.
On the other hand, the properties of the cone generated by them remain
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mysterious, for example it is not known whether one can “move” multi-
ples of ample subschemes or if they are big (except when k = 1 [19] or
n− 1 [18]). Perhaps another difficulty is that higher codimensional nef cy-
cles may not be pseudoeffective [2, 20]. More recently, in a series of papers,
Fulger and Lehmann [6, 7, 8, 9] laid out a general theory of cones of cycles,
by introducing and studying several notions of positivity of cycles.
In the present paper we take a different approach. We observe that, in the

case of Cartier divisors, there are well-established notions of base loci, such
as the stable, augmented or restricted base locus [3, 4] and that positivity
properties of divisors are precisely reflected in their base loci. For example
a divisor D is ample if and only if B+(D) = ∅, it is nef if and only if
B−(D) = ∅, it is big if and only if B+(D) is not the whole variety. Our
goal in the present paper is to take the same path in the case of cycles.
The starting observation is that B−(D) and B+(D) can also be de-

scribed using the numerical base locus of perturbations of D, that is the
intersection of the supports of the effective divisors numerically equivalent
to perturbations of D (see Lemma 3.2). On the other hand, this process
can now be carried over to cycles.
Let X be a projective variety of dimension n and let k be an integer

such that 1 6 k 6 n − 1. We denote by Zk(X)R the vector space of real
k-cycles, Nk(X) the vector space of real k-cycles modulo numerical equiv-
alence and by [Z] the numerical equivalence class of a real k-cycle Z on X
(for definitions see section 2).

Definition 1.1. — Let α ∈ Nk(X). Set

|α|num = {e ∈ Zk(X)R : e is effective and [e] = α} .

The numerical stable base locus of α is

Bnum(α) =

X if |α|num = ∅⋂
e∈ |α|num

Supp(e) if |α|num 6= ∅ .

The augmented base locus of α is

B+(α) =
⋂

A1, ..., An−k

Bnum (α− [A1 · · · An−k])

and the restricted base locus of α is

B−(α) =
⋃

A1, ..., An−k

Bnum (α+ [A1 · · · An−k])

where A1, . . . , An−k run among all ample R-Cartier R-divisors on X.

ANNALES DE L’INSTITUT FOURIER



AUGMENTED AND RESTRICTED BASE LOCI OF CYCLES 437

As a matter of fact, rather than perturbing with complete intersection
of ample divisors, one can use push-forwards f∗[A1 · · · An−k] under finite
flat morphisms f : Y → X, with A1, . . . , An−k ample on Y . As we will
see in Section 5, if we let PCIk(X) be the convex cone generated by those
classes, one has (see Remark 5.4) that

B+(α) =
⋂

γ ∈PCIk(X)

Bnum(α− γ)

and

B−(α) =
⋃

γ ∈PCIk(X)

Bnum(α+ γ).

As mentioned above, these loci do coincide, in the case of Cartier divisors,
with their counterparts. On the other hand, a basic question arises: What
are the positivity properties of α ∈ Nk(X) when B+(α) or B−(α) are
empty or properly contained in X?
To answer these questions we introduce the following positivity property

of cycles. As we will see, it can also be considered a partial answer to [2,
Problem 6.13]. See also Lemma 7.4 and Remark 7.5 for a comparison with
other positivity notions.

Definition 1.2. — Let X be a projective variety of dimension n and
let k be an integer such that 1 6 k 6 n− 1. Set

Pk(X) ={
α ∈ Nk(X) :∃ A1, . . . , An−k ample R-Cartier R-divisors on X

and ∃ β ∈ Nk(X) with Bnum(β) = ∅ and α = [A1 · · · An−k] + β
}
.

(see also Proposition 5.5 for the analogous formulation in terms of PCIk
(X).)

Our first result is the ensuing

Theorem 1. — Let X be a projective variety of dimension n and let
k be an integer such that 1 6 k 6 n − 1. Then Pk(X) is a convex cone
in Nk(X). Moreover suppose that X is smooth. Then Pk(X) is open and
full-dimensional.

We observe that a variety may have Picard rank one and therefore, in
some sense, the opennes of Pk(X) is not at all accounted for by complete
intersection of ample divisors.
Our answer to the above questions is given in the following two results.
As for the augmented base locus we have
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Theorem 2. — Let X be a projective variety of dimension n, let k be
an integer such that 1 6 k 6 n− 1 and let α ∈ Nk(X). Then

(i) B+(α) ( X if and only if α is big;
(ii) B+(α) = ∅ if and only if α ∈ Pk(X).

We observe that while (i) is the same as in the case of divisors, (ii) intro-
duces a novel positivity property of cycles which, in some sense, resembles
ampleness of divisors.

As for the restricted base locus we have

Theorem 3. — Let X be a projective variety of dimension n, let k be
an integer such that 1 6 k 6 n− 1 and let α ∈ Nk(X). Then

(i) If B−(α) ( X, then α is pseudoeffective;
(ii) If α is pseudoeffective and the base field is uncountable, then B−(α)

( X;
(iii) If B−(α) = ∅, then α ∈ Pk(X);
(iv) If X is smooth and α ∈ Pk(X), then B−(α) = ∅.

Again (i) and (ii) resemble the case of divisors, while (iii) and (iv) give
more information on the cone Pk(X).

Acknowledgments

We would like to thank J.C. Ottem for several helpful conversations. We
also thank the referee for the big contribution given to improve the paper.

2. Notation

A variety is by definition an integral separated scheme of finite type over
a field.

Throughout the paper X will be a projective variety of dimension n > 2
defined over an arbitrary algebraically closed field and, unless otherwise
specified, k will be an integer such that 1 6 k 6 n−1. In some cases we will
require that X is smooth. Whenever countability arguments are required,
in Theorem 3(ii), Proposition 10.2, Remark 10.3 and Corollary 10.4, we
will need the base field to be uncountable.
Let deg : A0(X)→ Z be the group homomorphism that sends any point

to 1. A k-cycle Z is said to be numerically trivial if deg(P (EI)∩Z) = 0 for
any weight k homogeneous polynomial P (EI) in Chern classes of a finite set
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of vector bundles on X (see [10, Definition 19.1]). The quotient of Zk(X) by
the numerically trivial cycles is denoted by Nk(X)Z; this is a free abelian
group of finite rank by [10, Example 19.1.4]. We set Nk(X) = Nk(X)Z⊗ZR.
The cone of effective k-cycles will be denoted by Effk(X); the cone of

pseudoeffective k-cycles is the closure Effk(X) and the cone of big k-cycles
is Bigk(X) := Int(Effk(X)).

3. The case of divisors

In this section we verify that, in the case of divisors, the definitions of
augmented and restricted base loci can equivalently be given using numer-
ical base loci.

Definition 3.1. — Let D be an R-Cartier R-divisor on X. Set

|D|∼R = {E R-CartierR-divisor on X : E is effective andE ∼R D} .
|D|num = {E R-CartierR-divisor on X : E is effective andE ≡ D} .

The stable base locus of D is

B(D) =

 X if |D|∼R = ∅⋂
E ∈ |D|∼R

Supp(E) if |D|∼R 6= ∅ .

The numerical stable base locus of D is

Bnum(D) =

 X if |D|num = ∅⋂
E ∈ |D|num

Supp(E) if |D|num 6= ∅ .

The augmented base locus of D is

B+(D) =
⋂
A

B(D −A)

and the restricted base locus of D is

B−(D) =
⋃
A

B(D +A)

where A runs among all ample R-Cartier R-divisors on X.

The above definitions of B+(D) and B−(D) concide with the ones in [3].
For B+(D) it is straightforward that Definition 3.1 is the same as [3, Defi-
nition 1.2]. Given this, for B−(D), to prove the equivalence, one can use [3,
Lemma 1.14] and Proposition 4.1(vii).

TOME 72 (2022), FASCICULE 1
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We recall that in [3, Example 1.16] is shown that B−(D) ⊆ B+(D) and
if D is a Q-Cartier Q-divisor, then B−(D) ⊆ B(D) ⊆ B+(D).
As for the relation with numerical base loci, we have

Lemma 3.2. — Let D be an R-Cartier R-divisor on X. Then
(i) B−(D) ⊆ Bnum(D) ⊆ B(D) ⊆ B+(D);
(ii) B+(D) =

⋂
A

Bnum(D −A),

(iii) B−(D) =
⋃
A

Bnum(D +A)

where in (ii) and (iii) A runs among all ample R-Cartier R-divisors on X.

Proof. — This is straightforward. �

In particular, when Cartier and Weil divisors coincide, the two notions
of base loci, associated to a Cartier divisor and to its class, are the same.

Corollary 3.3. — Let X be a locally factorial projective variety, let
D be a Weil R-divisor on X and let [D] ∈ Nn−1(X). Then

(i) Bnum(D) = Bnum([D]);
(ii) B+(D) = B+([D]);
(iii) B−(D) = B−([D]).

Proof. — Follows by the definitions and Lemma 3.2. �

4. Properties of base loci of cycles

We collect in one single statement some basic properties. They are ana-
logues of similar results in [3].

Proposition 4.1. — Let α, β ∈ Nk(X) and let A1, . . . , An−k be ample
R-Cartier R-divisors on X. Then

(i) Bnum(α) = Bnum(bα) for every b ∈ R+;
(ii) Bnum(α+ β) ⊆ Bnum(α) ∪Bnum(β);
(iii) B−(α) ⊆ Bnum(α) ⊆ B+(α);
(iv) For any ample R-Cartier R-divisors A′1, . . . , A′n−k on X there exists

an ε0 > 0 such that for every 0 < ε 6 ε0 we have
(a) Bnum([A1 · · · An−k]− ε[A′1 · · · A′n−k]) = ∅;
(b) B+(α) = Bnum(α− ε[A′1 · · · A′n−k]).

(v) B+(α+ β) ⊆ B+(α) ∪B+(β);
(vi) B−(α) =

⋃
m∈N+

Bnum(α+ 1
m [A1 · · · An−k]);
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(vii)
B−(α) =

⋃
A′1, ..., A

′
n−k

B+
(
α+

[
A′1 · · · A′n−k

])
where A′1, . . . , A

′
n−k run among all ample R-Cartier R-divisors

on X.

Proof. — The proof of (i) and (ii) is straightforward.
To see (iii), since Bnum([A1 · · · An−k]) = ∅ by (ii), we have that

Bnum (α+ [A1 · · · An−k]) ⊆ Bnum(α) ⊆ Bnum (α− [A1 · · · An−k])

and then (iii) follows by Definition 1.1.
To see (iv) observe that for i = 1, . . . , n− k we can write

Ai =
si∑
j=1

cijAij and A′i =
ti∑
l=1

dilA
′′
il

with cij , dil ∈ R+, Aij , A′′il ample Cartier divisors. Let m� 0 be such that
Dijl := mAij −A′′il is ample for every i, j, l. Now, setting q = n− k,[

A′1 · · · A′q
]

=
∑

l1 ∈{1, ..., t1}, ..., lq∈{1, ..., tq}

d1l1 · · · dq, lq
[
A′′1l1 · · · A

′′
q, lq

]
and setting t = t1 · · · tq,

[A1 · · · Aq] =

=
∑

j1 ∈{1, ..., s1}, ..., jq∈{1, ..., sq}

c1j1 · · · cq, jq

[
A1j1 · · · Aq, jq

]
=

∑
j1, ..., jq

c1j1 · · · cq, jq

1
tq
[
(tA1j1) · · ·

(
tAq, jq

)]

=
∑

j1, ..., jq

c1j1 · · · cq, jq

1
tq

 ∑
l1, ..., lq

A1j1

 · · ·
 ∑
l1, ..., lq

Aq, jq


=

∑
j1, ..., jq

c1j1 · · · cq, jq

1
tq

 1
m

∑
l1, ..., lq

(
A′′1l1 +D1j1l1

)
· · ·

 1
m

∑
l1, ..., lq

(
A′′q, lq +Dq, jq, lq

)
=

∑
j1, ..., jq

c1j1 · · · cq, jq

1
(tm)q

 ∑
l1, ..., lq

A′′1l1 · · · A
′′
q, lq

+ β

TOME 72 (2022), FASCICULE 1
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where β is sum of intersections of A′′il and Dijl. Let ε0 > 0 be such that

∑
j1, ..., jq

c1j1 · · · cq, jq

(tm)q − ε0d1l1 · · · dq, lq > 0 for every l1, . . . , lq.

Then

[A1 · · · Aq]− ε0
[
A′1 · · · A′q

]
=

∑
l1, ..., lq

 ∑
j1, ..., jq

c1j1 · · · cq, jq

(tm)q − ε0d1l1 · · · dq, lq

[A′′1l1 · · · A′q, lq]+ β

Hence [A1 · · · An−k] − ε0[A′1 · · · A′n−k] is a sum of intersections of ample
R-Cartier R-divisors and so is [A1 · · · An−k] − ε[A′1 · · · A′n−k]. Therefore
Bnum([A1 · · · An−k]− ε[A′1 · · · A′n−k]) = ∅ by (ii). This proves (iva).

To see (ivb) choose Ai1, . . . , Ai, n−k, 1 6 i 6 s, ample R-Cartier R-
divisors such that

B+(α) =
s⋂
i=1

Bnum (α− [Ai1 · · · Ai, n−k]) .

By (iva) we can choose ε0 > 0 such that for every 0 < ε 6 ε0 we have

Bnum
(
[Ai1 · · · Ai, n−k]− ε

[
A′1 · · · A′n−k

])
= ∅ for all 1 6 i 6 s.

Therefore, using (ii), for all 1 6 i 6 s we have

Bnum
(
α− ε

[
A′1 · · · A′n−k

])
= Bnum

(
α− [Ai1 · · · Ai, n−k] + [Ai1 · · · Ai, n−k]− ε

[
A′1 · · · A′n−k

])
⊆ Bnum (α− [Ai1 · · · Ai, n−k]) ∪Bnum ([Ai1 · · · Ai, n−k]

−ε
[
A′1 · · · A′n−k

])
= Bnum (α− [Ai1 · · · Ai, n−k])

hence Bnum(α−ε[A′1 · · · A′n−k]) ⊆ B+(α). Since the other inclusion follows
by Definition 1.1, we get (ivb).
As for (v), let A be an ample Cartier divisor onX. By (ivb) we can choose

an ε0 > 0 such that B+(α) = Bnum(α − ε[An−k]), B+(β) = Bnum(β −
ε[An−k]) and B+(α + β) = Bnum(α + β − ε[An−k]) for every 0 < ε 6 ε0.
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Now (ii) gives

B+(α+ β) = Bnum
(
α+ β − ε

[
An−k

])
= Bnum

(
α− ε

2
[
An−k

]
+ β − ε

2
[
An−k

])
⊆ Bnum

(
α− ε

2
[
An−k

])
∪Bnum

(
β − ε

2
[
An−k

])
= B+(α) ∪B+(β).

To see (vi), for any ample R-Cartier R-divisors A′1, . . . , A′n−k we have,
by (iva), that

Bnum

([
A′1 · · · A′n−k

]
− 1
m

[A1 · · · An−k]
)

= ∅ for m� 0.

But then, using (ii),

Bnum
(
α+

[
A′1 · · · A′n−k

])
=Bnum

(
α+ 1

m
[A1 · · · An−k] +

[
A′1 · · · A′n−k

]
− 1
m

[A1 · · · An−k]
)

⊆ Bnum

(
α+ 1

m
[A1 · · · An−k]

)
∪Bnum

([
A′1 · · · A′n−k

]
− 1
m

[A1 · · · An−k]
)

=Bnum

(
α+ 1

m
[A1 · · · An−k]

)

and therefore

B−(α) ⊆
⋃

m∈N+

Bnum

(
α+ 1

m
[A1 · · · An−k]

)
.

The other inclusion follows by definition of B−(α). Hence (vi) is proved.
Finally to show (vii) let A′1, . . . , A′n−k be ample R-Cartier R-divisors and

let A be an ample Cartier divisor on X. By (iv) we can choose an ε0 > 0
such that B+(α+[A′1 · · · A′n−k]) = Bnum(α+[A′1 · · · A′n−k]−ε[An−k]) and
Bnum([A′1 · · · A′n−k] − ε[An−k]) = ∅ for every 0 < ε 6 ε0. Now, using (ii),
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we get

B+
(
α+

[
A′1 · · · A′n−k

])
= Bnum

(
α+

[
A′1 · · · A′n−k

]
− ε

2
[
An−k

])
= Bnum

(
α+ ε

2
[
An−k

]
+
[
A′1 · · · A′n−k

]
− ε

[
An−k

])
⊆ Bnum

(
α+ ε

2
[
An−k

])
∪Bnum

([
A′1 · · · A′n−k

]
− ε

[
An−k

])
= Bnum

(
α+ ε

2
[
An−k

])
⊆ B−(α)

and therefore ⋃
A′1, ..., A

′
n−k

B+
(
α+

[
A′1 · · · A′n−k

])
⊆ B−(α).

The other inclusion follows by definition of B−(α) and (iii). �

We have the following two consequences, the first one being Theorem 2.

Proof of Theorem 2. — If B+(α) ( X then there exist some ample R-
Cartier R-divisorsA1, . . . , An−k onX such that Bnum(α−[A1 · · · An−k]) (
X, so that |α−[A1 · · · An−k]|num 6= ∅. Pick e ∈ Zk(X)R such that e is effec-
tive and [e] = α−[A1 · · · An−k]. Then, as in [8, Lemma 2.12], [A1 · · · An−k]
is big, whence so is α = [A1 · · · An−k] + [e]. Now assume that α is big.
Then, given an ample Cartier divisor A on X, there is an ε > 0 such that
α− ε[An−k] ∈ Effk(X), whence there is e ∈ Zk(X)R such that e is effective
and α = ε[An−k] + [e]. Therefore

B+(α) ⊆ Bnum

(
α−

[(
ε

1
n−kA

)n−k])
⊆ Supp(e) ( X

and Theorem 2(i) follows.
To see Theorem 2(ii) observe that, if α ∈ Pk(X), then there exist

A1, . . . , An−k ample R-Cartier R-divisors on X and β ∈ Nk(X) such that
Bnum(β) = ∅ and α = [A1 · · · An−k] + β. Therefore B+(α) ⊆ Bnum(α −
[A1 · · · An−k]) = Bnum(β) = ∅. On the other hand, assume that B+(α) = ∅
and let A be an ample Cartier divisor on X. By Proposition 4.1(ivb) there
is an ε > 0 such that B+(α) = Bnum(α − ε[An−k]). Set β = α − ε[An−k].
Then Bnum(β) = ∅ and therefore α = [(ε

1
n−kA)n−k] + β ∈ Pk(X). �

Using Theorem 2 we can make the union in Proposition 4.1(vii) a count-
able one.
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Proposition 4.2. — Let α ∈ Nk(X) and let A1, . . . , An−k be ample
R-Cartier R-divisors on X. Then

B−(α) =
⋃

m∈N+

B+

(
α+ 1

m
[A1 · · · An−k]

)
.

Proof. — Let A′1, . . . , A′n−k be any ample R-Cartier R-divisors on X.
By Proposition 4.1(ivb) we have that

Bnum

([
A′1 · · · A′n−k

]
− 1
m′

[A1 · · · An−k]
)

= ∅ for m′ � 0.

whence

[
A′1 · · · A′n−k

]
− 1

2m′ [A1 · · · An−k]

=
[(

1
(2m′)

1
n−k

A1

)
· · ·

(
1

(2m′)
1

n−k

An−k

)]

+
[
A′1 · · · A′n−k

]
− 1
m′

[A1 · · · An−k]

is in Pk(X) and therefore

B+

([
A′1 · · · A′n−k

]
− 1

2m′ [A1 · · · An−k]
)

= ∅

by Theorem 2(ii). Then Proposition 4.1(v) gives

B+
(
α+

[
A′1 · · · A′n−k

])
⊆ B+

(
α+ 1

2m′ [A1 · · · An−k]
)

∪B+

([
A′1 · · · A′n−k

]
− 1

2m′ [A1 · · · An−k]
)

= B+

(
α+ 1

2m′ [A1 · · · An−k]
)

whence, by Proposition 4.1(vii), we get

B−(α) ⊆
⋃

m∈N+

B+

(
α+ 1

m
[A1 · · · An−k]

)
.

The other inclusion follows again by Proposition 4.1(vii). �
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5. Push-forward of complete intersections

In this section we will prove that to compute stable base loci we can add
more flexibility and use, instead of perturbations by complete intersections
of ample divisors, perturbations by push-forward, under finite flat maps, of
complete intersections of ample divisors. It was proved in [1, Corollary 2.5.2]
that a k-cycle Z is numerically trivial if and only if A1 · · ·Ak+e · f∗Z = 0
for all projective flat maps f : Y → X of relative dimension e and for all
A1, . . . , Ak+e ample divisors on Y . By taking general hyperplane sections,
we can reduce to the case where f is finite flat.
We introduce and study the corresponding cones.

Definition 5.1. — We denote by CIk(X) the convex cone generated
by all classes [A1 · · ·An−k], where A1, . . . , An−k are ample R-Cartier R-
divisors on X.

We denote by PCIk(X) the convex cone generated by all classes of form
f∗[A1 · · · An−k], where f : Y → X runs among all finite flat morphisms
and A1, . . . , An−k run among all ample R-Cartier R-divisors on Y .

Given α ∈ Nk(X) it is easy to see, using the same proof of Proposi-
tion 4.1(iva)-(ivb), that

B+(α) =
⋂

γ ∈CIk(X)

Bnum(α− γ) and B−(α) =
⋃

γ ∈CIk(X)

Bnum(α+ γ).

We now want to show that the same can be done for PCIk(X) and that,
in fact, we get the same stable base loci.
We set (temporarily)

Bpci
+ (α) =

⋂
f,A1, ..., An−k

Bnum (α− f∗ [A1 · · · An−k])

and

Bpci
− (α) =

⋃
f,A1, ..., An−k

Bnum (α+ f∗ [A1 · · · An−k])

where f runs among all finite flat morphisms f : Y → X and A1, . . . ,

An−k run among all ample R-Cartier R-divisors on Y .
We have

Lemma 5.2. — Let α ∈ Nk(X). Let f : Y → X be a finite flat morphism
and let A1, . . . , An−k be ample R-Cartier R-divisors on Y . Then

(i) Bnum(f∗[A1 · · ·An−k]) = ∅.
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Moreover for any finite flat morphism f ′ : Y ′ → X and for any ample
R-Cartier R-divisors A′1, . . . , A′n−k on Y ′, there exists an ε0 > 0 such that
for every 0 < ε 6 ε0 we have

f∗ [A1 · · · An−k]− εf ′∗
[
A′1 · · · A′n−k

]
∈ PCIk(X) ;(ii)

Bnum
(
f∗ [A1 · · · An−k]− εf ′∗

[
A′1 · · · A′n−k

])
= ∅ ;(iii)

Bpci
+ (α) = Bnum

(
α− εf ′∗

[
A′1 · · · A′n−k

])
.(iv)

Proof. — By Proposition 4.1(i)-(ii) it is enough to prove (i) when A1,

. . . , An−k are ample divisors on Y . Now let x ∈ X, so that that f−1(x) is a
finite set and we can find effective divisors Ei ∼Q Ai such that Ei ∩ f−1(x)
= ∅. Then for some d > 0 we have that

f∗ [A1 · · · An−k] = d [f (E1 ∩ . . . ∩ En−k)]

and of course x 6∈ f(E1 ∩ . . . ∩ En−k). This proves (i).
To see (ii) consider the following commutative diagram

Y ×X Y ′

π

��

g

$$

π′ // Y ′

f ′

��
Y

f // X

where g := f ◦ π = f ′ ◦ π′. By [12, Proposition III.9.2(b)] it follows that π
and π′ are flat and by [11, Proposition 6.1.5(iii)] they are finite, whence also
g is finite by [23, Lemma 29.43.5] and flat by [12, Proposition III.9.2(c)].
Then π∗Ai and (π′)∗A′i are ample for all 1 6 i 6 n − k. As in the proof
of Proposition 4.1(iva), there exists an ε1 > 0 such that there are ample
R-Cartier R-divisors A′′ij on Y ×X Y ′ satisfying

[π∗A1 · · · π∗An−k]− ε1
[
(π′)∗A′1 · · · (π′)∗A′n−k

]
=
∑
j

[
A′′1j · · · A′′n−k, j

]
.

Hence for some d > 0, d′ > 0 we have that

f∗ [A1 · · · An−k]− ε1d
′

d
f ′∗
[
A′1 · · · A′n−k

]
= 1
d
g∗ [π∗A1 · · · π∗An−k]− ε1

d
g∗
[
(π′)∗A′1 · · · (π′)∗A′n−k

]
=
∑
j

1
d
g∗
[
A′′1j · · ·A′′n−k, j

]
and then, setting ε0 = ε1d

′

d , (ii) follows and so does (iii) by (i) and Proposi-
tion 4.1(i)-(ii). Finally to show (iv) choose finite flat morphisms fi : Yi → X
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and ample R-Cartier R-divisors Ai1, . . . , Ai, n−k on Yi, 1 6 i 6 s, such that

Bpci
+ (α) =

s⋂
i=1

Bnum (α− (fi)∗ [Ai1 · · · Ai, n−k]) .

By(ii) we can choose ε > 0 such that

Bnum
(
(fi)∗ [Ai1 · · · Ai, n−k]− εf ′∗

[
A′1 · · · A′n−k

])
= ∅ for all 1 6 i 6 s.

Therefore, using Proposition 4.1(ii), for all 1 6 i 6 s we have, setting
q = n− k,

Bnum
(
α− εf ′∗

[
A′1 · · · A′q

])
⊆ Bnum (α− (fi)∗ [Ai1 · · · Ai, q])

∪Bnum
(
(fi)∗ [Ai1 · · · Ai, q]− εf ′∗

[
A′1 · · · A′q

])
= Bnum (α− (fi)∗ [Ai1 · · · Ai, q])

hence Bnum(α − εf ′∗[A′1 · · · A′n−k]) ⊆ Bpci
+ (α). Since the other inclusion

follows by definition of Bpci
+ (α), we get (iv). �

Proposition 5.3. — Let α ∈ Nk(X). Then

B+(α) =
⋂

f,A1, ..., An−k

Bnum (α− f∗ [A1 · · · An−k])

B−(α) =
⋃

f,A1, ..., An−k

Bnum (α+ f∗ [A1 · · · An−k])

where f runs among all finite flat morphisms f : Y → X and A1, . . . , An−k
run among all ample R-Cartier R-divisors on Y .

Proof. — By Proposition 4.1(ivb), there exists an ε0 > 0 such that for
all 0 < ε 6 ε0 we have that B+(α) = Bnum(α − ε[A1 · · · An−k]). By
Lemma 5.2(iii) there exists an ε1 > 0 such that for all 0 < ε 6 ε1 we have
that Bpci

+ (α) = Bnum(α − ε[A1 · · · An−k]). Choosing ε = min{ε0, ε1} we
conclude that B+(α) = Bpci

+ (α).
As for B−(α), by definition it follows that B−(α) ⊆ Bpci

− (α). Let now
A be an ample divisor on X. Given any finite flat morphism f : Y →
X and any ample R-Cartier R-divisors A1, . . . , An−k on Y , we have by
Lemma 5.2(ii) that there exists an ε0 > 0 such that if 0 < ε 6 ε0

2 we have
that

(5.1) Bnum (f∗ [A1 · · · An−k])− 2ε
[
An−k

] )
= ∅.
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Moreover by Proposition 4.1(ivb) there exists an ε1 > 0 such that for
every 0 < ε 6 ε1 we have that

(5.2) B+ (α+ f∗ [A1 · · · An−k])

= Bnum
(
α+ f∗ [A1 · · · An−k]− ε

[
An−k

])
.

Then for ε = min{ ε0
2 , ε1} we have, using Proposition 4.1(iii), (5.2), Propo-

sition 4.1(ii) and (5.1), that

Bnum (α+ f∗ [A1 · · · An−k]) ⊆ B+ (α+ f∗ [A1 · · · An−k])

= Bnum
(
α+ f∗ [A1 · · · An−k]− ε

[
An−k

])
= Bnum

(
α+ ε

[
An−k

]
+ f∗ [A1 · · · An−k]− 2ε

[
An−k

])
⊆ Bnum

(
α+ ε

[
An−k

])
⊆ B−(α).

Therefore also Bpci
− (α) ⊆ B−(α) and we are done. �

Again, using Proposition 4.1(ii), (ivb), Lemma 5.2 and Proposition 5.3,
it follows easily that

Remark 5.4. — Let α ∈ Nk(X). Then

B+(α) =
⋂

γ ∈PCIk(X)

Bnum(α− γ).

B−(α) =
⋃

γ ∈PCIk(X)

Bnum(α+ γ).

As for the cones we get

Proposition 5.5. — We have

Pk(X) = CIk(X) +NSAk(X) = PCIk(X) +NSAk(X).

Proof. — The first equality follows by definition of Pk(X) and convexity
of NSAk(X). To see the second we first show that

(5.3) PCIk(X) ⊆ Pk(X).

By Theorem 2(ii) it is enough to prove that B+(α) = ∅ for every α ∈
PCIk(X). On the other hand, by Proposition 4.1(v), it is sufficient to show
that B+(α) = ∅ when α = f∗[A1 · · ·An−k], where f : Y → X is a finite
flat morphism and A1, . . . , An−k are ample R-Cartier R-divisors on Y . By
Proposition 5.3 and Lemma 5.2(iii) there exists an ε such that 0 < ε < 1
and B+(α) = Bnum(α − εf∗[A1 · · ·An−k]) = Bnum((1− ε)f∗[A1 · · ·An−k])
and the latter is empty by Proposition 4.1(i) and Lemma 5.2(i). This
proves (5.3).
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As NSAk(X) is convex, we get by (5.3) that

PCIk(X) +NSAk(X) ⊆ Pk(X) +NSAk(X)
= CIk(X) +NSAk(X) ⊆ PCIk(X) +NSAk(X)

and we are done. �

On a given variety one can consider various cones of positive cycles.
For example, as in Lemma 6.1 below, one can consider the convex cones
generated by Chern classes, or dual Segre classes or Schur classes or even
monomials in Schur classes of several sufficiently positive vector bundles.
Aside from what we know from Lemma 6.1, we can observe that the cone
of dual Segre classes of ample vector bundles is a subcone of PCIk(X). As
a matter of fact, any dual Segre class sn−k(E∨) of an ample vector bundle
E is push-forward, from P (E) of a power of the ample line bundle OP (E)(1).
By cutting down with hyperplanes one obtains that sn−k(E∨) ∈ PCIk(X).

We do not know if this holds more generally for other types of Schur
classes.

6. Proof of Theorem 1

We will give two different proofs of Theorem 1. The first one holds for
every k and uses the cone PCIk(X). The other one holds only for k < n

2 +1
or k = n− 1, but it has the advantage to introduce a method of studying
cycles that makes them resemble divisors. This method might be useful in
the study of higher codimensional cycles.
Here is the first proof of Theorem 1.
Proof. — By Proposition 4.1(i)-(ii) we see that PCIk(X) is a convex

cone. Now assume that X is smooth. It is easily seen that any convex cone
satisfying a property such as the one in Lemma 5.2(ii), coincides with its
relative interior. Therefore PCIk(X) is open in its linear span in Nk(X).
On the other hand, as mentioned in the beginning of section 5, it follows
by [1, Corollary 2.5.2], that PCIk(X) generates Nn−k(X)∨ = Nk(X). By
Proposition 5.5 we have, by a simple fact of convex cones, that

Pk(X) = PCIk(X) +NSAk(X) = Int(NSAk(X))

and therefore Pk(X) is open in Nk(X), hence also full-dimensional. �

To give the second proof, we first need three lemmas.

Lemma 6.1. — Let E be a vector bundle of rank r and let A be an
ample Cartier divisor on X.
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(i) If E is globally generated, then Bnum([cn−k(E)]) = ∅;
(ii) If E(−A) is globally generated and r > n − k, then [cn−k(E)] ∈

Pk(X);
(iii) Assertions (i) and (ii) hold more generally for Schur classes of E if

X is smooth and we are in characteristic zero.

Proof. — To see (i), the assertion being obvious if r < n−k, assume that
r > n − k. Let x ∈ X and pick general sections τ0, . . . , τr−n+k ∈ H0(E).
Then they are linearly independent in x and therefore x does not belong
to their degeneracy locus, which, as is well-known [10, Examples 14.3.2
and 14.4.3], [5, Lemma 5.2], represents [cn−k(E)]. This proves (i). To see (ii)
observe that we can write

[cn−k(E)] =
(

r

n− k

)[
An−k

]
+
n−k−1∑
j=0

(
r − n+ k + j

j

)[
Ajcn−k−j(E(−A))

]
and, using Proposition 4.1(i)-(ii), we see that this belongs to Pk(X) since (i)
implies that

Bnum
([
Ajcn−k−j(E(−A))

])
= ∅ for all 0 6 j 6 n− k − 1.

This gives (ii). Let now λ = (λ1, . . . , λn−k) be a partition of n − k with
r > λ1 > . . . > λn−k > 0. As for the first part of (iii) we just notice
that, when E is globally generated it defines a morphism f : X → G to
a Grassmannian and then any Schur class sλ(E) is the pull-back f∗sλ(Q),
where Q is the tatutological quotient bundle. By [15, Remark 8.3.6], there
is a Schubert variety Ωλ such that [sλ(Q)] = [Ωλ]. Given any x ∈ X,
since G is a homogeneous space, a general translate gΩλ of Ωλ does not
contain f(x), is generically transverse to f and [gΩλ] = [Ωλ] by Kleiman’s
transversality theorem [5, Theorem 1.7]. By [5, Theorem 1.23] we have that
[f−1(gΩλ)] = f∗[gΩλ] = f∗[Ωλ] = f∗[sλ(Q)] = [sλ(E)] and of course x 6∈
f−1(gΩλ). Hence (i) follows for sλ(E). When E(−A) is globally generated,
the proof of (ii) for Schur classes is similar to the proof of (ii) for Chern
classes. In fact by [21, Corollary 7.2] (or [22, § 2.5]) we have that

[sλ(E)] = dλ(1, ..., 1)
[
An−k

]
+
∑
ν

dλν

[
An−k−|ν|sν(E(−A))

]
and dλ(1, ..., 1) > 0, dλν > 0 for all ν. Then the proof goes as above. �

Lemma 6.2. — Assume that X is smooth and that k < n
2 + 1. Then

there are V1, . . . , Vp smooth subvarieties of X of dimension k such that
{[V1], . . . , [Vp]} is a basis of Nk(X).

Proof. — This follows by [14, Theorem 5.8]. �
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Remark 6.3. — As it will be clear from the sequel, it would actually be
enough to have a basis of classes of lci subvarieties. It is an open problem
that such a basis exists for every k. In [16, Conjecture 2.1] it is conjectured
to hold for rational equivalence, whence also for numerical equivalence.

Lemma 6.4. — Assume that X is smooth and let V be a smooth sub-
variety of X of dimension k with 1 6 k 6 n − 2. Let A be an ample
Cartier divisor on X and let m � 0. For every x ∈ X there exist divi-
sors Di ∈ |IV/X(mA)|, 1 6 i 6 n − k − 1, such that if Y is the complete
intersection of D1, . . . , Dn−k−1, then x 6∈ Sing(Y ).

Proof. — Let m � 0 be such that IV/X(mA) is globally generated and
H1(I2

V/X(mA)) = 0. If x 6∈ V , then for a general choice ofD1, . . . , Dn−k−1,
we actually have that x 6∈ Y . Now suppose that x ∈ V . Since(

IV/X/I2
V/X

)
(mA)

is also globally generated and has rank n− k, there are σ1, . . . , σn−k−1 ∈
H0((IV/X/I2

V/X)(mA)) such that they are linearly independent in x. From
the exact sequence

0→ I2
V/X(mA)→ IV/X(mA)→

(
IV/X/I2

V/X

)
(mA)→ 0

we get f1, . . . , fn−k−1 ∈ H0(IV/X(mA)) such that σi = dfi, 1 6 i 6
n − k − 1. Hence df1, . . . , dfn−k−1 are linearly independent in x, that is
x 6∈ Sing(Y ), where Y is the complete intersection of the divisors D1, . . . ,

Dn−k−1 associated to f1, . . . , fn−k−1. �

We now proceed to give the second proof, holding only when k < n
2 + 1

or k = n− 1, of Theorem 1.
Proof. — By Proposition 4.1(i)-(ii) we see that Pk(X) is a convex cone.

Now assume that X is smooth. Let p = dimNk(X). It follows by [13,
Corollary 2.5.2] (see also [8, Remark 2.2]) that there are vector bundles
E1, . . . , Ep on X such that {[cn−k(E1)], . . . , [cn−k(Ep)]} is a basis of Nk(X).
In particular rk Ej > n − k for all 1 6 j 6 p. Let A be an ample Cartier
divisor and let m0 be such that Ej(mA) is globally generated for all 1 6
j 6 p and for all m > m0. Now let {φ1, . . . , φp} be a basis of Nk(X)∨.
Then the matrix (φi([cn−k(Ej)])) is nondegenerate, whence so is the ma-
trix (φi([cn−k(Ej(mA))])) for m� 0, because its determinant is a non-zero
polynomial inm. Therefore {[cn−k(E1(mA))], . . . , [cn−k(Ep(mA))]} is a ba-
sis of Nk(X). On the other hand, [cn−k(Ej(mA))] ∈ Pk(X) for all 1 6 j 6 p
by Lemma 6.1(ii) and therefore Pk(X) is full-dimensional in Nk(X).
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If k = n − 1 it folllows by Lemma 3.2(i) that Pn−1(X) = Amp(X),
whence it is open. Suppose next that k < n

2 + 1 and k 6 n− 2.
By Lemma 6.2 there are V1, . . . , Vp smooth subvarieties of X of dimen-

sion k such that {[V1], . . . , [Vp]} is a basis of Nk(X). To see that Pk(X) is
open it is enough to prove that, if α ∈ Pk(X), then there is a δ > 0 such
that

(6.1) α+ ε1[V1] + . . .+ εp[Vp] ∈ Pk(X)
for all εi ∈ R such that |εi| < δ, 1 6 i 6 p.

Let A1, . . . , An−k be ample R-Cartier R-divisors on X and let β ∈ Nk(X)
such that Bnum(β) = ∅ and

(6.2) α = [A1 · · · An−k] + β.

For j = 1, . . . , n− k we can write Aj = cjA
′
j +A′′j with cj ∈ R+, A′j ample

Cartier divisor and A′′j zero or ample R-Cartier R-divisor. Let A be a very
ample Cartier divisor and let sj be such that sjA′j −A is ample. Then we
can write Aj = c′jA+A′′′j with c′j ∈ R+ and A′′′j ample R-Cartier R-divisor.
Setting c = c′1 · · · c′n−k, we have

(6.3) [A1 · · · An−k] = c
[
An−k

]
+ γ

where γ ∈ Nk(X) is a class that is either zero or sum of intersections of n−k
ample R-Cartier R-divisors. In particular Bnum(γ) = ∅. Letm0 � 0 be such
that Lemma 6.4 holds for all Vi, 1 6 i 6 p. Let Dij ∈ |IVi/X(m0A)| be gen-
eral divisors and let Yi be the complete intersection of Di, 1, . . . , Di, n−k−1.
Let OYi

(±Vi) be the sheaf associated to the Weil divisor ±Vi. Now let
m1 � 0 be such that Hq(Yi,OYi

(±Vi)((m1 − q)A)) = 0 for every q > 0
and for all 1 6 i 6 p. Note that then OYi

(±Vi)(m1A) is 0-regular, whence
globally generated for all 1 6 i 6 p. Set m = mn−k−1

0 m1. Then there are
effective k-cycles ei, fi on X such that, for all 1 6 i 6 p, we have

(6.4) m
[
An−k

]
= [Vi] + [ei] and m

[
An−k

]
= −[Vi] + [fi].

We claim that, for all 1 6 i 6 p, we have Bnum([ei]) = Bnum([fi]) = ∅.
In fact let x ∈ X. By Lemma 6.4 we have that for a general choice

of divisors D′ij ∈ |IVi/X(m0A)|, 1 6 i 6 n − k − 1, we have that if Y ′i
is their complete intersection, then x 6∈ Sing(Y ′i ). By semicontinuity we
have that Hq(Y ′i ,OY ′i (±Vi)((m1 − q)A)) = 0 for every q > 0 and for all
1 6 i 6 p and therefore OY ′

i
(±Vi)(m1A) is 0-regular, whence globally

generated for all 1 6 i 6 p. Then both OY ′
i
(−Vi)(m1A) and OY ′

i
(Vi)(m1A)

are globally generated line bundles in a neighborhood of x and therefore
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we can find e′i, f ′i , of the same class m[An−k]± [Vi] on X of ei, fi, and such
that x 6∈ Supp(e′i) ∪ Supp(f ′i).

Now let
δ = c

4pm
and assume that |εi| < δ for all 1 6 i 6 p. Let

s := #{i ∈ {1, . . . , p} : εi < 0}

and set A′ = ( c2 )
1

n−kA. Then, using (6.2) and (6.3), we can write

α+
p∑
i=1

εi[Vi] = c
[
An−k

]
+ β + γ +

p∑
i=1

εi[Vi]

=
[
(A′)n−k

]
+ β + γ + c

2
[
An−k

]
+

p∑
i=1

εi[Vi]

and now

c

2
[
An−k

]
+

p∑
i=1

εi[Vi] =
∑

1 6 i6 p : εi < 0

( c
4s
[
An−k

]
+ εi[Vi]

)
+

∑
1 6 i6 p : εi > 0

(
c

4(p− s)
[
An−k

]
+ εi[Vi]

)
where the first sum is empty if s = 0 and the second sum is empty if s = p.
Since [(A′)n−k] is intersection of n − k ample R-Cartier R-divisors, and
Bnum(β) = Bnum(γ) = ∅, by Proposition 4.1(i)-(ii) we see that (6.1) will
be proved as soon as we show that

Bnum

( c
4s
[
An−k

]
+ εi[Vi]

)
= ∅ for all i such that εi < 0

and

Bnum

(
c

4(p− s)
[
An−k

]
+ εi[Vi]

)
= ∅ for all i such that εi > 0.

On the other hand, the latter clearly holds, again by Proposition 4.1(i)-(ii),
since, by (6.4), we can write

c

4s
[
An−k

]
+ εi[Vi] =

( c
4s + εim

) [
An−k

]
− εi[ei]

for all i such that εi < 0 and

c

4(p− s)
[
An−k

]
+ εi[Vi] =

(
c

4(p− s) − εim
)[

An−k
]

+ εi[fi]
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for all i such that εi > 0, observing that
c

4s + εim > 0 and c

4(p− s) − εim > 0

by the choice of δ. �

7. The cone of numerically semiample cycles

It is clear that if α ∈ Pk(X), then Bnum(α) = ∅. This allows to introduce
a larger cone.

Definition 7.1. — The cone of numerically semiample cycles is

NSAk(X) = {α ∈ Nk(X) : Bnum(α) = ∅} .

It follows by Proposition 4.1(i)-(ii) that NSAk(X) is a convex cone.
The first consequence of Theorem 1 is the following.

Lemma 7.2. — We have Int(NSAk(X)) ⊆ Pk(X) ⊆ NSAk(X). More-
over, if X is smooth, then Pk(X) is the interior of NSAk(X) and Pk(X) =
NSAk(X).

Proof. — By Proposition 4.1(ii) we have that Pk(X) ⊆ NSAk(X). Let
α ∈ Int(NSAk(X)) and let A be an ample Cartier divisor. Then there
exists an ε > 0 such that

α− ε
[
An−k

]
∈ NSAk(X)

and setting β = α− ε[An−k] we get that Bnum(β) = ∅ and

α =
[(
ε

1
n−kA

)n−k]
+ β ∈ Pk(X).

Now suppose that X is smooth. It follows by Theorem 1 that Pk(X) =
Int(NSAk(X)). Finally Pk(X) = NSAk(X) holds because NSAk(X) is a
convex cone. �

We record some general properties of these cones.

Remark 7.3. —
(i) Pk(X) and NSAk(X) are convex salient cones;
(ii) NSAk(X) is not, in general, neither open nor closed.

Proof. — We have already seen, in Theorem 1 and after definition 7.1,
that Pk(X) and NSAk(X) are convex cones. Now let α ∈ NSAk(X) and
assume that also−α ∈ NSAk(X). Pick e, f ∈ Zk(X)R such that e and f are
effective and [e] = α, [f ] = −α and let A be an ample Cartier divisor on X.
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Then α · [An−k] = [e] · [An−k] > 0 and −α · [An−k] = [f ] · [An−k] > 0, so
that α · [An−k] = 0 and therefore e = 0. This gives (i).
To see (ii) take a nef non semiample divisor D on a smooth surface X

with q(X) = 0, such as in Zariski’s example [24], [15, Example 2.3A]. Then
[D] ∈ NSA1(X) but Bnum([D]) = B(D) 6= ∅, so that [D] 6∈ NSA1(X).
Hence NSA1(X) is not closed. Now take a semiample non big divisor D
on some smooth surface X. Then Bnum([D]) = ∅ so that [D] ∈ NSA1(X),
but [D] is not in the interior of NSA1(X), for otherwise, by Lemma 7.2,
[D] ∈ P1(X), so that D is big. Therefore NSA1(X) is not open. �

Lemma 7.4. — We have
(i) Pk(X) ⊆ Bigk(X) and Pk(X) ⊆ Effk(X);
(ii) Assume that Effk(X) ⊆ NSAk(X) (for example if X is an abelian

or homogeneous variety). Then Pk(X) = Bigk(X) and Pk(X) =
Effk(X);

(iii) In general, if X is smooth, Pk(X) 6⊆ Nefk(X).

Proof. — To see (i) let α ∈ Pk(X). Then there exist ample R-Cartier
R-divisors A1, . . . , An−k and β ∈ Nk(X) such that Bnum(β) = ∅ and
α = [A1 · · · An−k]+β. Pick e ∈ Zk(X)R such that e is effective and [e] = β.
As in [8, Lemma 2.12] we have that [A1 · · · An−k] is big, whence

α ∈ Int
(

Effk(X)
)

+ Effk(X) ⊆ Int
(

Effk(X)
)

= Bigk(X)

and (i) follows.
To see (ii) let α ∈ Bigk(X). Then, given an ample Cartier divisor A on

X, there is an ε > 0 such that α− ε[An−k] ∈ Effk(X), whence α ∈ Pk(X).
This gives (ii).
Now let X be the blow-up of a smooth variety of dimension n > 3 at

a point and let E ⊂ X be the exceptional divisor, so that E ∼= Pn−1. Let
β ∈ N1(X) be the class of a line in E so that β.E = −1 and Bnum(β) = ∅.
Let A be an ample Cartier divisor on X and let m � 0 be such that
( 1
m [An−1] + β).E < 0. Then α = 1

m [An−1] + β ∈ P1(X) \Nef1(X). �

It is clear that, in general, the inclusions in Lemma 7.4(i) can be strict.
For example if X is smooth we have by Lemma 3.2(i) that Pn−1(X) =
Amp(X) whence we can have strict inclusions.

Remark 7.5. — Using Grassmannians and the example in the proof of
Lemma 7.4(iii) it is easy to see that, in general, Pk(X) is not contained,
neither contains the positive cones defined in [8]. It would be nice to un-
derstand the relation between Pk(X) and the cone generated by ample
subschemes. Since ample lci subschemes are nef [18, § 4], it follows that

ANNALES DE L’INSTITUT FOURIER



AUGMENTED AND RESTRICTED BASE LOCI OF CYCLES 457

in general Pk(X) is not contained in the cone generated by ample lci sub-
schemes.

Remark 7.6. — For a cycle α ∈ Effk(X) there are two notions of decom-
position, the σ-decomposition in [17, III.2] and the Zariski decomposition
in [9]. It would be nice to understand the relation between B−(α) and the
negative part of the decomposition, possibly resembling the case of divisors.

8. Proof of Theorem 3

Proof. — Let A be an ample Cartier divisor on X. If B−(α) ( X, then,
for every m ∈ N+, we have that Bnum(α + 1

m [An−k]) ( X, whence |α +
1
m [An−k]|num 6= ∅. Pick em ∈ Zk(X)R such that em is effective and [em] =
α+ 1

m [An−k]. Then α = lim
m→∞

em is pseudoeffective. This proves (i).
To see (ii) assume that the base field is uncountable and that α is pseu-

doeffective. Then α + 1
m [An−k] is big for every m ∈ N+ and therefore

Bnum(α + 1
m [An−k]) ( X by Theorem 2(i). Then also B−(α) ( X by

Proposition 4.1(vi) and this gives (ii).
If B−(α) = ∅, then, for every m ∈ N+, we have

Bnum

(
α+ 1

m

[
An−k

])
= ∅ .

Set βm = α+ 1
m [An−k]. Then

α = lim
m→∞

(
1
m

[
An−k

]
+ βm

)
∈ Pk(X) .

This proves (iii).
Finally assume that X is smooth and let α ∈ Pk(X). Let βm ∈ Pk(X)

be such that
α = lim

m→∞
βm.

Let A1, . . . , An−k be any ample R-Cartier R-divisors on X. Then

[A1 · · · An−k] ∈ Pk(X),

whence, by Theorem 1, for m� 0 we have that

[A1 · · · An−k] + α− βm ∈ Pk(X).

But then

α+ [A1 · · · An−k] = ([A1 · · · An−k] + α− βm) +βm ∈ Pk(X) ⊆ NSAk(X)

by Lemma 7.2 and therefore Bnum(α+[A1 · · · An−k]) = ∅. Hence B−(α) =
∅ and (iv) is proved. �
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9. More properties of base loci of cycles

When X is smooth we can give more results.
First, Proposition 4.1(iv) can be improved as follows.

Proposition 9.1. — Assume that X is smooth and let α ∈ Nk(X).
Then there is an εα > 0 such that

Bnum (α− β) ⊆ B+(α)

for every β ∈ Nk(X) such that ‖β‖ < εα and

B+(α) = Bnum (α− [A1 · · · An−k])

for every A1, . . . , An−k ample R-Cartier R-divisors on X such that

‖[A1 · · · An−k]‖ < εα.

Proof. — By Definition 1.1 there are ample R-Cartier R-divisorsAi1, . . . ,
Ai, n−k, 1 6 i 6 s such that

B+(α) =
s⋂
i=1

Bnum(α− [Ai1 · · ·Ai, n−k]).

For all 1 6 i 6 s, [Ai1 · · · Ai, n−k] ∈ Pk(X), whence, by Lemma 7.2, there
is an εα > 0 (independent of i) such that [Ai1 · · · Ai, n−k]−β ∈ NSAk(X)
for every β ∈ Nk(X) such that ‖β‖ < εα. Then, using Proposition 4.1(ii),
we have

Bnum(α− β)
= Bnum (α− [Ai1 · · · Ai, n−k] + [Ai1 · · · Ai, n−k]− β)
⊆ Bnum (α− [Ai1 · · · Ai, n−k]) ∪Bnum ([Ai1 · · · Ai, n−k]− β)
= Bnum (α− [Ai1 · · · Ai, n−k]) .

Therefore

Bnum(α− β) ⊆
s⋂
i=1

Bnum (α− [Ai1 · · · Ai, n−k]) = B+(α).

Now if A1, . . . , An−k are ample R-Cartier R-divisors on X such that
‖[A1 · · · An−k]‖ < εα, then, by definition,

B+(α) ⊆ Bnum (α− [A1 · · · An−k])

giving the other inclusion. �
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Corollary 9.2. — Assume that X is smooth. Let α ∈ Nk(X) and let
εα be as in Proposition 9.1. Then

B+(α− β) ⊆ B+(α)

for every β ∈ Nk(X) such that ‖β‖ < εα and equality holds if β =
[A1 · · · An−k] where A1, . . . , An−k are ample R-Cartier R-divisors on X.

Proof. — Let β ∈ Nk(X) be such that ‖β‖ < εα. Pick A′1, . . . , A
′
n−k

ample R-Cartier R-divisors on X such that∥∥[A′1 · · · A′n−k]∥∥ < min {εα − ‖β‖, εα−β} .

Then B+(α − β) = Bnum(α − β − [A′1 · · · A′n−k]) by Proposition 9.1.
On the other hand, ‖β + [A′1 · · · A′n−k]‖ < εα, whence Bnum(α − β −
[A′1 · · · A′n−k]) ⊆ B+(α) again by Proposition 9.1 and therefore B+(α −
β) ⊆ B+(α).

Now if β = [A1 · · · An−k] where A1, . . . , An−k are ample R-Cartier R-
divisors on X such that ‖β‖ < εα, then, by Proposition 9.1 and Proposi-
tion 4.1(iii)

B+(α− β) ⊆ B+(α) ⊆ Bnum (α− [A1 · · · An−k])
= Bnum(α− β) ⊆ B+(α− β). �

The following is the analogue of [3, Proposition 1.21].

Proposition 9.3. — Assume that X is smooth. Let α ∈ Nk(X) and
let εα be as in Proposition 9.1. Then

B− (α− [A1 · · · An−k]) = B+ (α− [A1 · · · An−k]) = B+(α)

for every A1, . . . , An−k ample R-Cartier R-divisors on X such that

‖[A1 · · · An−k]‖ < εα.

Proof. — For i = 1, . . . , n− k, let A′i = ( 1
2 )

1
n−kAi and let

β = 1
2 [A1 · · · An−k] =

[
A′1 · · · A′n−k

]
.

Then Corollary 9.2 and Proposition 4.1(vii)-(iii) give

B+(α) = B+(α− β)
= B+(α− 2β + β) ⊆ B−(α− 2β) ⊆ B+(α− 2β)
= B+(α)

whence
B−(α− 2β) = B+(α− 2β) = B+(α). �
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10. Stable cycles

In [3, § 1] stable divisors were defined and studied. We prove some ana-
logues for cycles.

Definition 10.1. — Let α ∈ Nk(X). We say that α is stable if B−(α) =
B+(α).

As in [3, Proposition 1.24], we can give several properties equivalent to
stability.

Proposition 10.2. — Assume that X is smooth, let α ∈ Nk(X) and
assume that the base field is uncountable. The following are equivalent:

(i) α is stable;
(ii) there are ample R-Cartier R-divisors A1, . . . , An−k such that

B+(α) = B+ (α+ [A1 · · · An−k]) ;

(iii) there is an ε > 0 such that B+(α) = B+(α+β) for every β ∈ Nk(X)
such that ‖β‖ < ε;

(iv) there is an ε > 0 such that B−(α) = B−(α+β) for every β ∈ Nk(X)
such that ‖β‖ < ε;

(v) there is an ε > 0 such that Bnum(α+ β) = Bnum(α+ β′) for every
β, β′ ∈ Nk(X) such that ‖β‖ < ε, ‖β′‖ < ε.

Proof. — Assume that (i) holds and pick A′1, . . . , A′n−k ample R-Cartier
R-divisors on X. Since B−(α) = B+(α) is closed, by Proposition 4.2 we
can find an m ∈ N+ such that

B−(α) = B+

(
α+ 1

m

[
A′1 · · · A′n−k

])
.

Setting Ai = ( 1
m )

1
n−kA′i we get (ii).

Now assume (ii). By Corollary 9.2 and Theorem 1, there is an ε > 0 such
that

B+(α+ β) ⊆ B+(α) and [A1 · · · An−k]− β ∈ Pk(X)
for every β ∈ Nk(X) such that ‖β‖ < ε. By Proposition 4.1(v) and Theo-
rem 2(ii) we get

B+(α)
= B+ (α+ [A1 · · · An−k]) ⊆ B+ (α+ β) ∪B+ ([A1 · · · An−k]− β)
= B+(α+ β) ⊆ B+(α)

whence (iii).
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Suppose now (iii) holds and let β ∈ Nk(X) such that ‖β‖ < ε. We first
prove that

(10.1) B−(α+ β) =
⋃

A1, ..., An−k

B+ (α+ β + [A1 · · · An−k])

where A1, . . . , An−k run among all ample R-Cartier R-divisors on X such
that

‖[A1 · · · An−k]‖ < ε− ‖β‖.
To see (10.1) let A′1, . . . , A′n−k be any ample R-Cartier R-divisors onX. By
Theorem 1 we can choose small ample R-Cartier R-divisors A′′1 , . . . , A′′n−k
such that∥∥[A′′1 · · · A′′n−k]∥∥ < ε− ‖β‖

and
[
A′1 · · · A′n−k

]
−
[
A′′1 · · · A′′n−k

]
∈ Pk(X).

By Proposition 4.1(i)-(ii)-(iii) we get

Bnum
(
α+ β +

[
A′1 · · · A′n−k

])
⊆ Bnum

(
α+ β +

[
A′′1 · · · A′′n−k

])
∪Bnum

([
A′1 · · · A′n−k

]
−
[
A′′1 · · · A′′n−k

])
= Bnum

(
α+ β +

[
A′′1 · · · A′′n−k

])
⊆ B+

(
α+ β +

[
A′′1 · · · A′′n−k

])
whence we get the inclusion “⊆” in (10.1). Now let A1, . . . , An−k be any
ample R-Cartier R-divisors on X such that ‖[A1 · · · An−k]‖ < ε−‖β‖. Let
m� 0 be such that∥∥∥∥ 1

m
[A1 · · · An−k]

∥∥∥∥ < εα+β+[A1 ···An−k].

By Proposition 9.1 we have

B+ (α+ β + [A1 · · · An−k])

= Bnum

(
α+ β + [A1 · · · An−k]− 1

m
[A1 · · · An−k]

)
= Bnum

(
α+ β + m− 1

m
[A1 · · · An−k]

)
⊆ B−(α+ β)

and this proves the inclusion “⊇” in (10.1), thus giving (10.1). On the
other hand, for every ample R-Cartier R-divisors A1, . . . , An−k such that
‖[A1 · · · An−k]‖ < ε− ‖β‖ we have that ‖β + [A1 · · · An−k]‖ < ε, whence,
by (iii), B+(α + β + [A1 · · · An−k]) = B+(α) and therefore (10.1) gives
that

(10.2) B−(α+ β) = B+(α) for every β ∈ Nk(X) such that ‖β‖ < ε.
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In particular this holds for β = 0, so that B−(α) = B+(α) and (10.2)
gives (iv).
Assume (iv) and let ε′ > 0 be such that ε′ 6 min{ε, εα}. Let β ∈ Nk(X)

such that ‖β‖ < ε′. Let A1, . . . , An−k be sufficiently small ample R-Cartier
R-divisors so that ‖[A1 · · · An−k]‖ < ε′. By (iv) and Proposition 9.3 we get

B−(α) = B− (α− [A1 · · · An−k]) = B+(α).

Then, by (iv), Propositon 4.1(iii) and Corollary 9.2 we find

B+(α) = B−(α) = B−(α+ β) ⊆ Bnum(α+ β) ⊆ B+(α+ β) ⊆ B+(α)

whence Bnum(α + β) = B+(α) for every β ∈ Nk(X) such that ‖β‖ < ε′

and (v) holds.
Finally assume (v) and let A1, . . . , An−k be sufficiently small ample

R-Cartier R-divisors so that ‖[A1 · · ·An−k]‖ < min{ε, εα}. Now Propo-
sition 9.1, (v) and Proposition 4.1(iii) give

B+(α) = Bnum (α− [A1 · · · An−k])
= Bnum (α+ [A1 · · · An−k]) ⊆ B−(α) ⊆ B+(α)

and this gives (i). �

Remark 10.3. — Let α ∈ Nk(X). If α is not pseudoeffective, then it
is stable by Theorem 3(i) and Propositon 4.1(iii). If α is pseudoeffective
but not big, and the base field is uncountable, then it is not stable by
Theorems 2(i) and 3(ii).

Corollary 10.4. — Assume that X is smooth and that the base field
is uncountable. Then the cone of stable classes is open and dense in Nk(X).

Proof. — It is open by Proposition 10.2 and dense by Proposition 9.3.
�
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