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RANK JUMPS ON ELLIPTIC SURFACES AND THE
HILBERT PROPERTY

by Daniel LOUGHRAN & Cećılia SALGADO (*)

Abstract. — Given an elliptic surface over a number field, we study the col-
lection of fibres whose Mordell–Weil rank is greater than the generic rank. Under
suitable assumptions, we show that this collection is not thin. Our results apply to
quadratic twist families and del Pezzo surfaces of degree 1.

Résumé. — Pour une surface elliptique sur un corps de nombres, nous étudions
la famille des fibres dont le rang de Mordell–Weil est strictement plus grand que
le rang générique. Sous des hypothèses appropriées, nous démontrons que cette
famille n’est pas un ensemble mince. Nos résultats s’appliquent, par exemple, aux
familles quadratiques tordues et aux surfaces de del Pezzo de degré 1.

1. Introduction

Let E be an elliptic curve over Q. By the classical Mordell–Weil theorem,
the group of rational points E(Q) of E is a finitely generated abelian group.
The rank of this group is an important invariant and it is an open problem
whether the rank is uniformly bounded for all elliptic curves over Q.

A common method for producing elliptic curves of large rank is as follows:
one takes an elliptic curve Et over the function field Q(t) with large rank
(the generic rank), then all but finitely many specialisations t ∈ Q will have
rank at least as large of the generic rank. We push this method further in
two ways: we can make the rank of a specialisation strictly larger than the
generic rank, and we can moreover achieve this for “many” choices of t
(namely for a so-called non-thin set of t). We now explain our results and
setup in more detail.
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1.1. Statement of results

Let π : X → P1 be an elliptic surface defined over a number field k,
i.e. a smooth projective surface endowed with a genus one fibration that
admits a section. The presence of a section implies that all but finitely
many fibres are elliptic curves. Moreover, a theorem of Néron [14] implies
that the Mordell–Weil group of the generic fibre is finitely generated.

Silverman’s specialization theorem [23, Theorem C] states that all but
finitely many fibres have rank at least the generic rank. This result built
on a theorem of Néron [14, Theorem 6] (see also [21, § 11.1]) over higher-
dimensional bases which says that outside of a thin set of rational points,
the rank is at least the generic rank. (We recall the definition of thin sets
in § 2.) Given Silverman’s result, a natural question is whether one can
construct infinitely many fibres whose rank is greater than the generic
rank. This has been achieved in various cases when X is unirational or a
K3 surface [1, 18, 17, 8].

In our paper we take Néron’s theorem as our starting point, and prove
results towards showing that the collection of fibres where the rank jumps
is not a thin set. Our first result concerns elliptic surfaces with a bisection,
i.e. a geometrically integral curve C ⊂ X such that the induced map to P1

is finite of degree 2.

Theorem 1.1. — Let π : X → P1 be a geometrically rational elliptic
surface over a number field k with generic rank r. Assume that π admits
a bisection of arithmetic genus 0 and that the generic fibre of π is not a
quadratic twist of a constant elliptic curve. Then the set{

t ∈ P1(k) : rankXt(k) > r + 2
}

is not thin.

Informally,Theorem 1.1 says that there is no finite list of non-trivial
polynomial conditions that contains the set of t for which the rank of the
fibre Xt is at least r + 2. Note that in the stated level of generality, it was
not even known that the set under consideration is infinite. Theorem 1.1
seems particularly surprising in the light of a conjecture of Silverman [24,
p. 556], which predicts that 100% of t, when ordered by height, have rank
r or r + 1.

Our hypothesis that X admits a bisection of arithmetic genus 0 is a
natural one. The minimal models of a geometrically rational surface are
either del Pezzo surfaces or conic bundle surfaces [10, Theorem 1], and in
the latter case a smooth conic gives a bisection.
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We are also able to obtain results for quadratic twist families which are
excluded by Theorem 1.1. Such surfaces have a very special form and can
be completely described (see § 3). Our results here are as follows.

Theorem 1.2. — Let f, g be separable non-constant polynomials with
deg f = 3 and deg g 6 2. Let X be a smooth projective model of the surface

g(t)y2 = f(x) ⊂ A3
k

equipped with the elliptic fibration π given by projecting to the t-coordi-
nate.

(1) The set {t ∈ P1(k) : rankXt(k) > 1} is not thin.
(2) If both g and f have a root over k, then {t ∈ P1(k) : rankXt(k) > 2}

is not thin.

The surfaces in this theorem have generic rank 0. Taking g(t) = t, The-
orem 1.2 applies to the usual quadratic twist family of an elliptic curve.
Here various explicit constructions of infinitely many quadratic twists with
rank at least 2 are known (see e.g. [26, § 8] or [16, § 3]); however all these
constructions produce a thin set of fibres, so do not allow one to prove
part (2) of Theorem 1.2.

The family in Theorem 1.2 has a bisection of arithmetic genus 0, given
by taking x = x0 where f(x0) 6= 0. Our theorems combined show that any
geometrically rational elliptic surface with a bisection of arithmetic genus
0 admits rank jumps on a non-thin set (see Theorem 4.1).

Various examples to which our results apply can be found in § 6; these
include some rational elliptic surfaces and del Pezzo surfaces of degree 1,
where we generalise a result of Kollár and Mella [11].

1.2. Methodology and relation to the literature

To prove our results, we show that any such bisection deforms into a
family of bisections and gives rise to a conic bundle onX. This puts us into a
position to apply the methods of [18], where it is shown that all but finitely
many of the conics increase the generic rank after base-change. Choosing
such a conic with infinitely many rational points, Salgado used this in ibid.
to get infinitely many rank jumps for unirational elliptic surfaces. (Note
that our surfaces are also unirational, cf. Lemma 4.2.)

However in our case we cannot just use a single conic, since the image of
its rational points in P1(k) is clearly thin! We therefore have to consider all
conics at once. The function field of each conic gives a quadratic extension
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620 Daniel LOUGHRAN & Cećılia SALGADO

of k(P1), and the key step in the proof is to show that we obtain infinitely
many isomorphism classes of field extensions this way, whilst still guaran-
teeing that the conic has a rational point. For most X, this is relatively
simple as the branch loci of the quadratic extension can be shown to move.
However, the most difficult case turns out to be the quadratic twist fam-
ily from Theorem 1.2. We perform a detailed analysis of the geometry of
these surfaces in § 3, which have the distinguishing feature that there are
two non-reduced fibres. For our work we need the observation that such
surfaces are birational to Châtelet surfaces, which allows us to use results
of Colliot–Thélène, Sansuc, and Swinnerton–Dyer [3] on the Brauer–Manin
obstruction to weak approximation for Châtelet surfaces. This method is
sufficient to obtain rank jump 1 (Theorem 4.1).

To get rank jump 2 we push the method further, with again particular
attention when there are non-reduced fibres. Note that Salgado also obtains
a result [18, Theorem 1.3] where it is shown that there are infinitely many
fibres where the rank jumps at least twice; however her result contains
technical assumptions (e.g. X is rational with two conic bundles and π has
at most one non-reduced fibre). It is exactly our more careful analysis of
the more delicate case of quadratic twists which allows us to remove these
technical assumptions, as well as the realisation that one can get rank jump
2 by base-changing by the same conic bundle twice.

In [1], Billard obtains a similar result to [18] restricted to rational sur-
faces with a non-isotrivial elliptic fibration. His methods are quite different
and make use of height theory. Assuming various standard conjectures, he
shows in [1, p. 69] that for every ε > 0 there are � B1−ε points of (naive)
height bounded by B in P1(Q) for which the rank jumps. This is insuffi-
cient to conclude that the subset under consideration is not thin, as the
best known upper bound for points of height at most B in a thin set is
O(B3/2(logB)) [21, Theorem 13.3]. Other related works include proofs of
the Hilbert property for certain elliptic K3 surfaces [4, 5, 6]. These allow
one to obtain rank jumps on a non-thin set in certain circumstances (e.g.
if the generic rank is 0).

After seeing a talk by the second-named author on our work at the con-
ference “Rational points on Fano and similar varieties” in Paris in May
2019, Colliot-Thélène devised an alternative method to prove results about
rank jumps and thin sets [2]. He showed that the set of fibres where the
rank jumps by at least 1 is not thin, if X satisfies so-called “weak weak
approximation”. This property is not known in our generality (e.g. for the
del Pezzo surfaces of degree 1 considered in § 6.2). He is able to obtain
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results about rank jump 2, but only when the generic fibre has complex
multiplication over k. So his results only recover the statement of Theo-
rem 1.1 in the very special case where X satisfies weak weak approximation
and the generic fibre has complex multiplication over k.

Notation

Let C be a projective curve (not necessarily integral). We define its arith-
metic genus to be pa(C) = 1−χ(C,OC). If C is geometrically integral, we
define its (geometric) genus g(C) of C to be the genus of the normalisation
of C.

Let f : X → Y be a morphism of varieties and Z1, Z2 ⊂ X closed
subvarieties. We denote by Z1 ×f Z2 the fibre product of Z1 and Z2 which
respect the morphisms f|Zi

: Zi → Y .
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2. Preliminaries

In this section we gather various definitions and basic results. Let k be
a field.

2.1. Elliptic surfaces

Definition 2.1. — An elliptic surface over k is a smooth projective
surface X together with a morphism π : X → B to some curve B which
admits a section and whose generic fibre is a smooth curve of genus 1.

TOME 72 (2022), FASCICULE 2



622 Daniel LOUGHRAN & Cećılia SALGADO

We fix a choice of section to act as the identity element for each smooth
fibre. We say that π is relatively minimal if every birational morphism
f : X → X ′ of elliptic surfaces over k with π′ ◦ f = π is an isomorphism.

We say that X is constant if its generic fibre is constant, i.e. its generic
fibre is the base change of some elliptic curve over k.

We call a geometrically integral curve C ⊂ X a multisection if the map
C → B induced by π is finite flat. We define the degree of C to be the
degree of the induced map. A bisection is a multisection of degree 2. (By a
curve on a smooth projective surface we mean an effective divisor, viewed
as a closed subscheme.)

Remark 2.2. — An elliptic surface is relatively minimal over k if and only
if it is relatively minimal over k̄. This follows from [12, Corollary 9.3.24,
Proposition 9.3.28].

Remark 2.3. — Let X → P1 be a geometrically rational relatively mini-
mal elliptic surface over k. Then the elliptic fibration on X is unique and
given by the anticanonical linear system | −KX | [20, § 8.3].

To force the generic rank to jump, we use the following result of Salgado.
In the statement, the base-changed surface X ×π D need no longer be
regular, but its generic fibre is still an elliptic curve hence the generic rank
is still well-defined.

Theorem 2.4. — Let π : X → B be an elliptic surface over a number
field k and L a pencil of curves on X with an element which is a multisection
of π. Assume that either g(B) = 0 or that X is non-constant. Then for all
but finitely many D ∈ L, the base-changed surface X×πD → D has generic
rank strictly larger than the generic rank of X → B.

Proof. — If X is non-constant then this is [18, Corollary 4.3]. Otherwise,
after a birational transformation, we may assume that X = E×B for some
elliptic curve E over k and with g(B) = 0. As g(B) = 0 any map B → E

is constant, thus any section of π is constant, i.e. X(B) = E(k). Let D ∈ L
be a multisection. Sections are (−1)-curves [20, Corollary 6.9] hence do not
move in a linear system, thus D is not a section. The base-changed surface
is the constant surface X ×P1 D = E × D → D over D. This has a new
section given by

D → X ×P1 D, x 7→ (x, x),

which is easily checked to be independent from the old sections. �

We make numerous uses of the following theorem of Silverman [23].

ANNALES DE L’INSTITUT FOURIER



RANK JUMPS AND THE HILBERT PROPERTY 623

Theorem 2.5. — Let π : X → B be an elliptic surface over a number
field k with generic rank r. Assume that either g(B) = 0 or that X is
non-constant. Then the set {t ∈ B(k) : rankXt(k) < r} is finite.

Proof. — If X is non-constant then this is [23, Theorem C]. Otherwise it
suffices to treat the case X = E×P1, where the result follows immediately
from the fact that any section is constant. �

Remark 2.6. — Theorem 2.5 requires that the elliptic surface is not con-
stant in general. For example, take E an elliptic curve of rank 1 and
X = E × E → E a constant surface over E. Then the fibre over every
rational point has rank 1, but the generic fibre has rank at least 2, with a
new section given by

E → E × E, x 7→ (x, x).

Since we will use it numerous times, for ease of reference we recall the
adjunction formula [12, Theorem 9.1.37]: For a smooth projective surface
X and curve C ⊂ X we have

(2.1) 2pa(C)− 2 = C(C +KX).

2.2. Conic bundles

We use the following definition of conic bundles.

Definition 2.7. — A conic bundle on a smooth projective surface X
is a dominant morphism X → P1 whose generic fibre is a smooth geomet-
rically irreducible curve of genus 0.

Note that, contrary to some authors, we do not require that every fibre
of a conic bundle is isomorphic to a plane conic.

Lemma 2.8. — Let X be a smooth projective surface over k with H1(X,
OX) = 0 and C ⊂ X a curve of arithmetic genus 0 with −KX ·C = 2. Then
the complete linear system |C| is a pencil. If moreover C is geometrically
integral then it induces a conic bundle on X.

Proof. — Consider the exact sequence of sheaves on X

0→ OX → OX(C)→ OC(C)→ 0.

Applying cohomology gives

0→ H0 (X,OX)→ H0 (X,OX(C))→ H0 (X,OC(C))→ H1(X,OX).
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The adjunction formula (2.1) implies C2 = 0, thus dim H0(X,OC(C)) = 1.
Using our assumption H1(X,OX) = 0, we find that dim |C| = 1. If C is
geometrically integral, as C2 = 0 the linear system |C| is base-point-free
and the generic member is geometrically integral of arithmetic genus 0,
hence smooth [12, Proposition 7.4.1]. �

Remark 2.9. — Without the assumption that C is geometrically integral,
one need not obtain a conic bundle in general. Take X → P1 a rational
elliptic surface and C = −KX + 2E where E is a section. Then one checks
that pa(C) = 0 and −KX ·C = 2, but |C| does not induce a conic bundle.
By Lemma 2.8 one has dim |C| = 1, but the problem is that 2E is a fixed
component of |C|.

Lemma 2.10. — Let X be a smooth projective surface over a field k

of characteristic 0. Let L be a base-point-free pencil on X and F ⊂ X a
reduced curve. Then for all but finitely many C ∈ L, the (scheme-theoretic)
intersection C ∩ F is reduced.

Proof. — Consider the morphism X → P1 induced by L and its restric-
tion F → P1 to F . As char k = 0 and F is reduced, the generic fibre is
smooth. It follows that the intersection of a general element of L with F is
reduced, as claimed. �

Remark 2.11. — Take k an infinite field of characteristic 2, and consider
a smooth plane conic F ⊂ P2

k. Then F admits a “strange point”, namely a
point P ∈ P2

k such that the pencil of lines L through P meets F tangen-
tially [19, p. 76]. Blowing up P we obtain a base-point-free pencil which
meets the strict transform of F always in a point of multiplicity 2, and thus
does not satisfy the conclusion of Lemma 2.10.

2.3. Thin sets

We use Serre’s definition of thin sets [22, § 3.1].

Definition 2.12. — Let X be a variety over a field k. A subset Z ⊆
X(k) is called thin if it is a finite union of subsets which are either contained
in a proper closed subvariety of X, or contained in some π(Y (k)) where
π : Y → X is a generically finite dominant morphism of degree exceeding
1, with Y an integral variety over k.

A variety is said to satisfy the Hilbert property if its rational points are
not thin. Hilbert’s irreducibility theorem implies that any projective space
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over a number field satisfies the Hilbert property [22, Theorem 3.4.1]. It is
an open problem in general whether every unirational variety satisfies the
Hilbert property.

Remark 2.13. — To prove that a subset Z ⊆ P1(k) is not thin, it suffices
to show the following: For any finite collection of finite morphisms Yi → P1

of degree at least 2 with the Yi smooth geometrically integral curves, there
exists P ∈ Z which is not in the union of the images of the maps Yi(k)→
P1(k).

3. Elliptic surfaces with two non-reduced fibres

In our proofs, we will need to treat carefully elliptic surfaces with 2
non-reduced fibres. We gather in this section the geometric facts we will
require about such surfaces. We work over a field k of characteristic 0 with
algebraic closure k̄.

Proposition 3.1. — Let π : X → P1 be a geometrically rational rela-
tively minimal elliptic surface over k. Then the following are equivalent.

(1) The generic fibre of X is a quadratic twist of a constant elliptic
curve.

(2) There is a Weierstrass equation for X of the form g(t)y2 = f(x) over
k, where f, g are separable non-constant polynomials with deg f = 3
and deg g 6 2.

(3) The singular fibre configuration of π over k̄ is 2I∗0 .
(4) The map π has more than one non-reduced fibre over k̄.

Proof. — We first show that (1) implies (2). Our assumptions imply that
the generic fibre of X has an equation of the form g(t)y2 = f(x) for some
g ∈ k(t). After making a change of variables, we may assume that g ∈ k[t]
and that g is separable. We obtain the Weierstrass equation

(3.1) y2 = x3 + ag(t)2x+ bg(t)3

for some a, b ∈ k. As g is separable, the resulting equation is easily verified
to be globally minimal [20, § 4.8]. However as X is geometrically rational
g(t) must be non-constant and deg g(t) 6 2 (see [20, § 8.4]).

That (2) implies (3) follows from a simple application of Tate’s algo-
rithm [25, § IV.9.4], whilst (3) implies (4) is trivial.

We now prove that (4) implies (3). This can be shown by inspecting
the list of configurations in [15, p. 7-13]. Alternatively, choose a globally
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minimal Weierstrass equation with discriminant ∆(t). Then a root of ∆
corresponds to a singular fibre, and a non-reduced fibre gives rise to a root
of multiplicity at least 6, with equality only for I∗0 (see Table 4.1 in [25,
§ IV.9.4]). As deg ∆(t) 6 12 [25, § IV.8.4], the only possibility is 2I∗0 .

For (3) implies (2), without loss of generality, we may assume that the
fibre at infinity is smooth. So let g(t) be a separable quadratic polyno-
mial whose zero locus lies below the non-reduced fibres. Then X admits
a Weierstrass equation y2 = x3 + A(t)x + B(t) with deg(A(t)) 6 4 and
deg(B(t)) 6 6 [20, § 8.4], and for some constant c the discriminant satisfies

(3.2) ∆(t) = −16
(
4A(t)3 + 27B(t)2) = cg(t)6.

Moreover g(t) divides A(t) as the singular fibres are additive (see Tate’s
algorithm [25, § IV.9.4]), hence also divides B(t). From (3.2), one easily
deduces that there are constants a and b such that A(t) = ag(t)2 and
B(t) = bg(t)3. We then obtain an equation of the form (3.1), and a change
of variables gives (2). Finally, (2) trivially implies (1). �

We now let π : X → P1 be as in Proposition 3.1. Recall that by a (−n)-
curve (for n > 0) on a smooth projective surface S, we mean a geometrically
integral curve C ⊂ S of arithmetic genus 0 with C2 = −n.

Lemma 3.2. — The intersection graph of negative curves on Xk̄ is given
by Figure 3.1. The Ti are 2-torsion sections of π and the two singular fibres
of π are given by Fi = 2Ei + Li,1 + Li,2 + Li,3 + Li,4.

•
E1

•
L1,1

•
L1,2

•
L1,3

•
L1,4

T1

T2

T3

T4

•
L2,1

•
L2,2

•
L2,3

•
L2,4

E2•

Figure 3.1. The configuration of negative curves on Xk̄.
We denote by • a (−2)-curve and ◦ a (−1)-curve.

Proof. — Let C be a (−n)-curve. The adjunction formula (2.1) gives
−KC · C = n − 2. As −KX is nef (Remark 2.3), we have −KX · C > 0,
hence n > 2. We also find that (−1)-curves correspond to sections of the
elliptic fibration, while (−2)-curves are components of singular fibres. Since
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the Néron–Severi group of X has rank 10 [20, § 8.8], the Shioda–Tate for-
mula [20, Corollary 6.13] implies that the generic rank is 0, hence X has
only finitely many negative curves. For the surfaces we consider, there are
four 2-torsion sections (see the bottom of p. 8 of the list in [15]) and ten re-
ducible components of singular fibres. To derive the intersection behaviour
in Figure 3.1, note that torsion sections are disjoint [13, Lemma 1.1], and
thus different 2-torsion sections intersect different components of the I∗0
fibre in a smooth point (the connected component being Ga, hence torsion
free [25, § IV.9.4, Table 4.1]). �

Lemma 3.3. — The surface X is birational to a Châtelet surface. If k
is a number field then X satisfies the Hilbert property.

Proof. — We make a change of variables to write g(t) = t2 − a for some
a ∈ k and obtain y2t2 − ay2 = f(x). The change of variables w = yt then
gives

w2 − ay2 = f(x)
which is a Châtelet surface. These satisfy so-called weak weak approxima-
tion by [3, Theorem B], hence satisfy the Hilbert property by [22, Theo-
rem 3.5.7]. �

By the previous lemma X in fact always has a conic bundle structure
(this is given by projecting onto x in the equation in Proposition 3.1). We
call this the Châtelet bundle on X.

Proposition 3.4. —
(1) Each conic in the Châtelet bundle meets the non-reduced fibres F1

and F2 of π over k̄ in the non-reduced components 2E1 and 2E2,
respectively.

(2) Assume that the Fi are defined over k and that π has non-trivial
2-torsion. Then there is a conic bundle on X whose smooth fibres
meet the non-reduced fibres Fi of π in a reduced component.

Proof.
(1) We use the curves from Figure 3.1. One obtains the Châtelet surface

by blowing down the Ti. The singular fibres of the conic bundle on the
Châtelet surface are the images of L1,i + L2,i, and the curves Ei thus give
sections of the conic bundle over k̄. Pulling back, the singular fibres of the
Châtelet bundle on X are given by L1,i + 2Ti + L2,i. We have Ei · (L1,i +
2Ti + L2,i) = 1, thus each conic meets Fi in Ei, as claimed.

(2) Our assumptions imply that two sections are defined over k, say
T1, T2. That the Fi are defined over k implies that the Ei are also defined
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over k. Consider the curve C = E1 +L1,1 +L1,2 +T1 +T2, which is defined
over k. One easily checks from Figure 3.1 that C2 = 0 and −KX · C = 2,
thus by (2.1) and Lemma 2.8 this moves in a pencil. We will prove that this
yields the required conic bundle (we have to be careful here, cf. Remark 2.9).

We first claim that |C| has no fixed component. Write C = D+F where
D,F are effective divisors such that |D| has no fixed component. Then we
can write

D = a1E1 + a2L1,1 + a3L1,2 + a4T1 + a5T2, ai ∈ {0, 1}.
From Figure 3.1 we have
(3.3) D2 = −2a2

1 − 2a2
2 − 2a2

3 − a2
4 − a2

5 + 2 (a1a2 + a1a3 + a2a4 + a3a5) .
Let M be the real symmetric matrix underlying the quadratic form in (3.3).
Then M has 5 distinct eigenvalues, of which 4 are negative, and one is equal
to 0 with eigenvector (1, 1, 1, 1, 1). We deduce that D2 6 0 with equality if
and only if a = 0 or 1. The case D2 < 0 cannot occur as |D| is a pencil
without fixed component. Moreover if a = 0 then |D| is not a pencil, so
we must have a = 1. This implies that F = 0 hence |C| has no fixed
component, as claimed.

As C2 = 0 and |C| is a pencil without fixed components, we deduce that
|C| is base-point-free. Whence by generic smoothness, the generic member
is geometrically integral smooth of arithmetic genus 0, hence a conic, so
|C| induces a conic bundle. From Figure 3.1 we find that C ·Ei = 0, hence
the smooth members of the conic bundle avoid the non-reduced fibres of π,
as required. �

4. Rank jump once

We now begin the proof of our main results. Our first aim is to prove The-
orem 1.2(1). To prepare for the proof of Theorem 1.1 and also
illustrate the additional difficulties for quadratic twist families, we prove
the following general result.

Theorem 4.1. — Let π : X → P1 be a geometrically rational elliptic
surface over a number field k with generic rank r. Assume that π admits
a bisection of arithmetic genus 0. Then the set {t ∈ P1(k) : rankXt(k) >
r + 1} is not thin.

We note that the surface X in Theorem 1.2 satisfies the assumptions of
Theorem 4.1, as there is always a family of bisections given by the Châtelet
bundle (explicitly, take the curve x = x0 for some x0 ∈ k with f(x0) 6= 0).
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4.1. First steps

To prove Theorem 4.1 we may assume that π : X → P1 is relatively min-
imal. Let C ⊂ X be the bisection of arithmetic genus 0. By Remark 2.2, we
see that π is still relatively minimal over the algebraic closure. In particular,
the elliptic fibration is given by the anticanonical class −KX (Remark 2.3),
thus C · (−KX) = 2. Hence by Lemma 2.8, we find that L := |C| is a base-
point-free pencil which gives rise to a conic bundle ψ : X → P1.

Lemma 4.2. — The surface X is unirational, hence X(k) is Zariski-
dense.

Proof. — By Remark 2.3 we have K2
X = 0. Let E ⊂ X be the zero

section of π.
As C is nef we have C ·E > 0. First suppose that C ·E = 0. In this case E

is a (−1)-curve and a component of a fibre of the conic bundle. Contracting
E, we obtain a conic bundle surface X ′ with K2

X′ = 1 and X ′(k) 6= ∅. But
X ′ is unirational by [11, Theorem 7], hence X is unirational.

Now suppose that C · E > 0. Then E is a rational multisection of the
conic bundle ψ. Then X×ψE → E is a conic bundle surface with a section,
hence is rational (cf. [11, Lemma 23]). As this dominates X, we deduce X
is unirational. �

4.2. Quadratic extensions

If a conic D ∈ L is integral, then the restriction π|D : D → P1 is a
degree 2 cover; thus k(P1) ⊂ k(D) is a quadratic extension which ramifies
in exactly 2 points. The key result we require is the following.

Proposition 4.3. — The set{
k
(
P1) ⊂ k(D) : D ∈ L,D(k) 6= ∅

}
contains infinitely many isomorphism classes of quadratic extensions.

To prove this, we require the following on the ramification of k(P1) ⊂
k(D).

Lemma 4.4. — Let P ∈ P1 lie below a reduced fibre F of π. Then there
are only finitely many D ∈ L such that k(P1) ⊂ k(D) ramifies at P .

Proof. — We have that k(D) ramifies over P if and only if F ∩ D is
non-reduced. However by Lemma 2.10 this happens for only finitely many
D, as required. �
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Proof of Proposition 4.3. — We divide the proof into two cases, depend-
ing on the number of reduced fibres of π.

At most one non-reduced fibre: Lemma 4.4 shows that at most one branch
point of D can be fixed and the other point must move in general. But
quadratic extensions of k(P1) with different branch loci are non-isomorphic,
hence given a quadratic extension k(P1) ⊂ K, there are only finitely many
D with k(D) ∼= K. Moreover by Lemma 4.2, there are infinitely many D

with D(k) 6= ∅. Proposition 4.3 now easily follows in this case.
Two non-reduced fibres: This is the more delicate case. By Proposition 3.1

our surface has an equation of the shape

g(t)y2 = f(x)

where deg f = 3 and deg g = 2 are separable. The elliptic fibration π is
given by projecting to t. We will use the Châtelet conic bundle ψ given by
projecting to x (see § 3), since there is no reason in general to expect the
existence of another conic bundle. The quadratic extensions for x ∈ k with
f(x) 6= 0 are

k(t) ⊂ k(t)
(√

f(x)g(t)
)
.

This ramifies exactly over the roots of g(t); this is independent of x so the
conclusion of Lemma 4.4 does not hold in this case, hence we must take a
different approach. Assume that the set in Proposition 4.3 is finite. Then
as (x, y, t) varies over the rational points of X, it follows that f(x) takes
only finitely many values modulo squares. Therefore, for d ∈ k∗, it suffices
to show that the set

(4.1)
{

(x, y, t) ∈ X(k) : f(x) = dw2, for some w ∈ k
}

is thin, since this contradicts that X satisfies the Hilbert property (Lem-
ma 3.3). But consider the geometrically integral curve Y with the map

Y : f(x) = dw2 ⊂ A2, Y → P1, (x,w) 7→ x.

Then we have the base-change with respect to the conic bundle ψ : X → P1

Z := X ×P1 Y → X.

The image of Z(k) → X(k) is exactly the set (4.1). As the generic fibre
of X → P1 is geometrically irreducible, it easily follows that Z is again
irreducible. Hence it follows from the definition of thin sets that (4.1) is
thin, as required. �
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4.3. Completion of the proof

We now prove Theorem 4.1.
Proof of Theorem 4.1. — Let Yi → P1 be a finite collection of fi-

nite morphisms of degree at least 2 with the Yi geometrically integral.
By Theorem 2.4, all but finitely many of the conics D ∈ L are bisec-
tions that increase the generic rank after base-change. The field extensions
k(P1) ⊂ k(Yi) have only finitely many quadratic subfields. Proposition 4.3
therefore implies that there are infinitely many D ∈ L such that

(1) D(k) 6= ∅;
(2) k(D) is not a subfield of any k(Yi);
(3) The generic fibre of X ×π D → D has Mordell–Weil rank at least

r + 1.
Choose such a D. As quadratic extensions are Galois, it follows from (2)
that k(D) is linearly disjoint with each k(Yi), so the curves D ×P1 Yi are
integral. By (1) we have D ∼= P1, so D satisfies the Hilbert property. Thus
there are infinitely many x ∈ D(k) not in the union of the images of the
(D ×P1 Yi)(k) → D(k). Then the point π(x) ∈ P1(k) does not lie in the
image of any Yi(k) → P1(k). However by (3) and Theorem 2.5 applied to
X ×π D → D, the rank of π−1(x) is at least r + 1 for infinitely many x.
This shows that the set in Theorem 4.1 is not contained in any thin subset,
as required (cf. Remark 2.13). �

Remark 4.5. — In the case of two non-reduced fibres, the elliptic sur-
face becomes constant after base changing to D. Nonetheless D ∼= P1, so
Silverman’s theorem (Theorem 2.5) still applies in this case.

5. Rank jump twice

In this section we give a uniform proof of Theorem 1.1 and part (2) of
Theorem 1.2, by building on the proof of Theorem 4.1.

5.1. Biquadratic extensions

Let π : X → P1 be a geometrically rational relatively minimal elliptic
surface over a number field k of generic rank r with a bisection of arith-
metic genus 0. As in the proof of Theorem 4.1, this induces a conic bundle
structure ψ : X → P1. If X is as in Theorem 1.2(2), then by Proposition 3.4
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it admits a conic bundle which is not the Châtelet bundle; we choose ψ to
be such a bundle satisfying Proposition 3.4(2).

Let Yi → P1 be a finite collection for i ∈ I of finite morphisms of degree at
least 2 with the Yi smooth geometrically integral curves (cf. Remark 2.13).
We next view the fields k(Yi) and the function fields of the conics as ex-
tensions of k(P1) and compare their branch points.

Proposition 5.1. — Let P = {P1, . . . , Pr} for some Pj ∈ P1
k. There

exist infinitely many D1 and infinitely many D2 which are fibres of the
conic bundle ψ, such that:

(1) D := D1×πD2 is a geometrically integral curve with a Zariski-dense
set of rational points;

(2) k(D1)⊗k(P1) k(D2) is linearly disjoint with every k(Yi);
(3) The generic fibre of X ×π D → D has Mordell–Weil rank at least

r + 2.
(4) Either

(a) g(D) = 0 and D ramifies above at most one of the Pj , or
(b) g(D) = 1 and D does not ramify above any of the Pj .

Proof. — To prove the result, we are free to increase P. We therefore
assume that P contains all the branch points of the Yi and the singular
locus of π. We first assume that every fibre of π is reduced. Then we can
vary the ramification of D1 using Lemma 4.4. As in § 4.3, we deduce that
there are infinitely many D1 with D1(k) 6= ∅ such that D1 is not ramified
above any of the Pj , andXD1 := X ×π D1 → D1 is an elliptic surface with
generic rank at least r + 1. We fix such a D1 and next construct D2. Note
that XD1(k) is Zariski-dense as XD1 has an elliptic fibration of positive
rank.

Composing with ψ gives a map ψ′ : XD1 → X
ψ−→ P1 whose fibres are the

curves D1 ×π D2 as D2 runs over the fibres of ψ. The generic fibre of ψ′ is
a smooth curve of genus 1, as only finitely many D2 share a branch point
with D1 by Lemma 4.4. These D = D1 ×π D2 are a family of bisections
of the elliptic fibration XD1 → D1 induced by π, hence by Theorem 2.4
all but finitely many D2 satisfy (3). As XD1(k) is Zariski-dense, it follows
from [6, Lemma 3.2] that ψ′ has infinitely many fibres with infinitely many
rational points, which shows (1). As there are infinitely many such D2, we
can arrange (4b) using Lemma 4.4. Next k(P1) ⊂ k(D) is a biquadratic
extension, hence Galois. To show (2), it suffices to note that the k(Yi)
contain none of the quadratic subfields of k(D) by (4b) and our choice
of P. This completes the proof in this case.
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If π has two non-reduced fibres over k̄, then, by our choice of ψ (Proposi-
tion 3.4), the smooth fibres of ψ do not meet meet a non-reduced component
of π, hence as in the proof of Lemma 4.4 we can move both branch points
of the fibres of ψ. The proof now proceeds exactly as in the previous case
in which every fibre of π is reduced.

Finally assume that π has one non-reduced fibre over k̄, which without
loss of generality lies over P1 (this is necessarily a rational point). If there
is at least one smooth fibre of ψ which is unramified over P1, then we
can vary the ramification and the proof is similar to the above. So we
assume that all smooth fibres of ψ ramify over P1. As in the proof of
Proposition 4.3, we find that there are infinitely fibresD1 of ψ withD1(k) 6=
∅ such that the intersection of the branch locus of D1 and P is exactly P1,
and such that XD1 := X×πD1 → D1 has generic rank at least r+1. (Note
that XD1 is singular here, so not strictly an elliptic surface in the sense of
Definition 2.1). We fix such a D1 and next construct D2.

We again consider the map ψ′ : XD1 → P1 whose fibres are the curves
D = D1 ×π D2 as D2 runs over the fibres of ψ. Again D are a family
of bisections of the elliptic fibration induced by π, hence applying Theo-
rem 2.4 to a desingularisation of XD1 , we see that all but finitely many D2
satisfy (3). Here D1 and D2 both ramify over P1, and by Lemma 4.4 share
no other branch points in general. Now (2) immediately follows, since any
quadratic subfield of k(D) ramifies over a point outside of P, so cannot be
a subfield of any of the k(Yi). Moreover Lemma 5.2 implies (4b) and that
D is geometrically integral. To conclude, as XD1(k) is Zariski-dense and
the generic fibre of ψ′ has genus 0, there are infinitely many D2 such that
D(k) is Zariski-dense, which shows (1). �

Lemma 5.2. — Let C1, C2 be smooth projective geometrically integral
curves of genus 0 over a field K of characteristic 0 equipped with morphisms
fi : Ci → P1 of degree 2 that have exactly one branch point in common.
Then C1 ×P1 C2 is a geometrically integral curve of genus 0.

Proof. — Our hypotheses imply that K(C1) 6∼= K(C2) as quadratic ex-
tensions of K(P1), hence they are linearly disjoint. This implies that C :=
C1 ×P1 C2 is geometrically integral. To calculate the genus, we may pass
to the algebraic closure and moreover assume that the branch points are
0, 1,∞. Thus we have

K(C1) ∼= K(t)
(√

t
)
, K(C2) ∼= K(t)

(√
t(t− 1)

)
.

An affine patch of C therefore has the equations
z2 = t, w2 = t(t− 1).
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Rearranging gives w2 = z2(z2 − 1), which defines a curve of genus 0. �

Remark 5.3. — It is essential for the proof of Proposition 5.1 in the case
Theorem 1.2(2) that ψ is not the Châtelet bundle. Otherwise, any two
conics D1 and D2 ramify over exactly the same points; here D1 ×π D2 is
never geometrically integral and Proposition 5.1(1) fails.

5.2. Proof of Theorem 1.1 and Theorem 1.2(2)

Proof. — We choose D as in Proposition 5.1, with P the union of all
the branch points of the Yi and the singular locus of π. If g(D) = 0, then
the proof is essentially the same as the proof of Theorem 4.1; as D has the
Hilbert property there are infinitely many P ∈ P1(k) in the image of D(k)
not in the image of any of the Yi(k). By Proposition 5.1 and Theorem 2.5
applied to a desingularisation of X ×π D → D, we find that for all but
finitely many choices of P the rank of the fibre jumps twice, as required.

We therefore consider the case g(D) = 1. Here the previous argument
breaks down, as D does not satisfy the Hilbert property. Nonetheless, we
have the following.

Lemma 5.4. — The set (D ×P1 Yi)(k) is finite for all i.
Proof. — By construction, the curves D1, D2, Yi are all smooth and share

no branch points in common. Therefore D ×P1 Yi is geometrically integral
and smooth (see e.g. [27, Lemma 2.8]). But the map D ×P1 Yi → D is
ramified somewhere above one of the ramification points of Yi. As g(D) = 1,
Riemann–Hurwitz implies that g(D×P1Yi) > 2. The result now follows from
Faltings’s theorem [7]. �

The proof of rank jump 2 now runs in a similar way to the case g(D)
= 0. Namely, by Proposition 5.1 and Lemma 5.4, there are infinitely many
rational points P ∈ P1(k) which do not lie in the image of any of the Yi(k)
but do lie in the image of D(k). We then wish to apply Theorem 2.5 to
X×πD → D. But as g(D) = 1, to do so we need to know that this surface
is not constant.

Lemma 5.5. — The elliptic surface X ×π D → D is non-constant.
Proof. — The original elliptic surface X → P1 is relatively minimal and

geometrically rational; in particular it has at least one singular fibre [20,
§ 8.4]. But by construction, D ramifies away from singular fibres of π. Thus
X ×π D is regular, relatively minimal over D and has at least one singular
fibre. Such an elliptic surface cannot be constant, as claimed. �

Applying Theorem 2.5 completes the proofs of Theorems 1.1 and 1.2. �
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6. Examples

6.1. Rational elliptic surfaces

Let F and G be two plane cubic curves over k. Assume that F and G

meet in at least one k-point and that F is smooth. Let X be the minimal
desingularisation of the surface
(6.1) tF (x, y, z) + uG(x, y, z) = 0 ⊂ P1 × P2.

Then X is a rational elliptic surface, with a common point P of F and G

giving a section over k. The projection onto P2 realises X as a blow-up of
P2 in the 9 (possibly infinitely near) points over k̄ which lie above the base
locus F ∩G. The pencil of lines through P gives rise to a conic bundle on
X. Theorem 1.1 thus applies.

Corollary 6.1. — Let r denote the generic rank of the elliptic fibra-
tion (6.1). Then the set of curves with rank at least r + 2 is not thin.

In the stated level of generality this result is new and improves on the
results on rational elliptic surfaces from [1, 18].

Example 6.2. —
(1) Corollary 6.1 applies to the Mordell family y2 = x3 + t (here r = 0).
(2) If the intersection of F and G consists of nine rational points in gen-

eral position then the elliptic fibration on X has generic Mordell–
Weil rank 8. Corollary 6.1 implies that the collection of curves with
rank at least 10 is not thin. This construction generalises some of
the constructions of elliptic curves of large rank given in [21, § 11.2].

6.2. Some quadratic families of elliptic curves

Consider families of elliptic curves of the form
(6.2) y2 = a3(t)x3 + a2(t)x2 + a1(t)x+ a0(t)
where deg ai(t) 6 2 and a3(t) 6= 0. We assume that the family is non-
constant and let r be the generic rank. Using the conic bundle structure
given by projecting to x, in [11, Corollary 2] it was shown that there are
infinitely many t ∈ P1(k) for which the rank is positive. An application of
Theorem 4.1 gives the following immediate improvement.

Corollary 6.3. — The set of t ∈ k for which (6.2) has rank at least
r + 1 is not thin.
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The quadratic twist family from Theorem 1.2 is a subfamily here. Once
we remove this family, we obtain the following from Theorem 1.1.

Corollary 6.4. — Assume that there is no polynomial g(t) such that
ai(t)/g(t) ∈ k for all i. Then the set of t ∈ k for which (6.2) has rank at
least r + 2 is not thin.

6.3. Del Pezzo surfaces

Let X be a del Pezzo surface of degree 1 with a conic bundle ψ : X → P1.
Let X̃ be the blow-up of X in the base-point of the anticanonical linear
system and π : X̃ → P1 the induced elliptic fibration. Every fibre of π is
geometrically integral, hence π has generic rank ρ(X) − 2, where ρ(X) is
the Picard number of X. Theorem 1.1 thus gives the following.

Corollary 6.5. — The set {t ∈ P1(k) : rank X̃t(k) > ρ(X)} is not
thin.

If ψ is relatively minimal, then X is non-rational by [9, Corollary 1.7].
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d’une courbe algébrique dans un corps”, Bull. Soc. Math. Fr. 80 (1952), p. 101-166.

[15] U. A. Persson, “Configurations of Kodaira fibres on rational elliptic surfaces”,
Math. Z. 205 (1990), no. 1, p. 1-47.

[16] K. Rubin & A. Silverberg, “Rank frequencies for quadratic twists of elliptic
curves”, Exp. Math. 10 (2001), no. 4, p. 559-570.

[17] C. Salgado, “On the rank of the fibres of elliptic K3 surfaces”, Bull. Braz. Math.
Soc. (N.S.) 43 (2012), no. 1, p. 7-16.

[18] ——— , “On the rank of the fibres of rational elliptic surfaces”, Algebra Number
Theory 6 (2012), no. 7, p. 1289-1313.

[19] P. Samuel, Lectures on old and new results on algebraic curves, Lectures on Mathe-
matics and Physics. Mathematics. Tata Institute of Fundamental Research, vol. 36,
Tata Institute of Fundamental Research, 1966.
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Manuscrit reçu le 23 juillet 2019,
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accepté le 19 novembre 2020.

Daniel LOUGHRAN
Department of Mathematical Sciences
University of Bath
Claverton Down
Bath
BA2 7AY, (UK)
dlt32@bath.ac.uk
https://sites.google.com/site/danielloughran/

TOME 72 (2022), FASCICULE 2

mailto:dlt32@bath.ac.uk
https://sites.google.com/site/danielloughran/


638 Daniel LOUGHRAN & Cećılia SALGADO
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