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A BORG–LEVINSON THEOREM FOR MAGNETIC
SCHRÖDINGER OPERATORS ON A RIEMANNIAN

MANIFOLD

by Mourad BELLASSOUED, Mourad CHOULLI, David DOS
SANTOS FERREIRA, Yavar KIAN & Plamen STEFANOV (*)

Abstract. — We establish uniqueness and stability results for the inverse spec-
tral problem of recovering the magnetic field and the electric potential in a Rie-
mannian manifold from the knowledge of boundary spectral data of the corre-
sponding magnetic Schrödinger operator with Dirichlet boundary condition. The
spectral data consist in the knowledge of asymptotic properties, that we specify
hereafter, of the sequence of eigenvalues and Neumann traces of the corresponding
sequence of eigenfunctions. We also prove similar results for Schrödinger operators
with Neumann boundary conditions. To our knowledge our results are the first
ones involving such weak boundary spectral data.
Résumé. — Nous établissons des résultats d’unicité et de stabilité pour le pro-

blème qui consiste à reconstruire, à partir de données spectrales au bord, le champ
magnétique et le potentiel électrique, qui apparaissent dans une équation de Schrö-
dinger magnétique sur une variété riemannienne compacte, avec une condition aux
limites de Dirichlet. Les données spectrales consistent en la connaissance du com-
portement asymptotique, dans un sens que nous préciserons, de la suite des valeurs
propres, de l’opérateur de Schrödinger magnétique avec une condition aux limites
de Dirichlet, et des traces des dérivées normales des fonctions propres associées.
Nous démontrons également des résultats similaires pour un opérateur de Schrödin-
ger magnétique avec une condition aux limites de Neumann. A notre connaissance
nos résultats sont les premiers concernant les problèmes spectraux inverses avec
des données spectrales au bord aussi faibles.

1. Introduction and main results
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1.1. Statement of the problem

Let M = (M, g) be a smooth and compact Riemannian manifold of
dimension n > 2 and with boundary ∂M. We denote the Laplace–Beltrami
operator associated to the Riemannian metric g by ∆. In local coordinates,
the metric reads g = (gjk), and the Laplace–Beltrami operator ∆ is given by

∆ = 1√
|g|

n∑
j,k=1

∂

∂xj

(√
|g| gjk ∂

∂xk

)
.

Here (gjk) is the inverse of the metric g and |g| = det(gjk).
Given a couple of magnetic and electric potentials B = (A, q), where

q ∈ L∞(M) is real-valued, and A = ajdxj is a covector field (1-form) with
real-valued coefficients, aj ∈W 1,∞(M), we consider the magnetic Laplacian

(1.1)

HB = 1√
|g|

n∑
j,k=1

(
1
i

∂

∂xj
+ aj

)√
|g| gjk

(
1
i

∂

∂xk
+ ak

)
+ q

= −∆− 2i A · ∇ − i δA+ |A|2 + q

:= −∆A + q.

Here, the dot product is in the metric with A and ∇ considered as cov-
ectors, δ is the coderivative (codifferential) operator, corresponding to the
divergence with identifying vectors and covectors, which sends 1-forms to
functions by the formula

δA = 1√
|g|

n∑
j,k=1

∂

∂xj

(
gjk
√
|g|ak

)
,

and we recall that, for A = ajdxj , we have |A|2 = gjkajak.
For B = (A, q) with q ∈ L∞(M) and A = ajdxj , aj ∈ W 1,∞(M), define

on L2(M) the unbounded self-adjoint operator HB as follows

(1.2) HBu = HBu

and

(1.3) D(HB) =
{
u ∈ H1

0 (M), −∆Au+ qu ∈ L2(M)
}
.

Here, for k ∈ N, Hk(M), denotes the standard definition of the Sobolev
spaces.
The operator HB is self adjoint and has compact resolvent, therefore its

spectrum σ(HB) consists in a sequence λB = (λB,k) of real eigenvalues,
counted according to their multiplicities, so that

(1.4) −∞ < λB,1 6 λB,2 6 . . . 6 λB,k → +∞ as k →∞.
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In the sequel φB = (φB,k) denotes an orthonormal basis of L2(M) consist-
ing in eigenfunctions with φB,k associated to λB,k, for each k. In the rest
of this text, we often use the following notation, where k > 1,

ψB,k = (∂ν + iA(ν))φB,k, on ∂M

and ψB = (ψB,k), where ν the outward unit normal vector field on ∂M

with respect to the metric g.
We address the question of whether one can recover, in some suitable

sense, the magnetic field A and the potential q from some asymptotic
knowledge of the boundary spectral data (λB ,ψB) with B = (A, q). As
for most inverse problems, the main issues are uniqueness and stability.

1.2. Obstruction to uniqueness

We recall that there is an obstruction to the recovery of the electro-
magnetic potential B from the boundary spectral data (λB ,ψB). Indeed,
let B = (A, q), and let V ∈ C1(M) be such that V|∂M = 0 and set
qB = (A+ dV, q). Then it is straightforward to check that

(1.5) e−iVHBeiV = H
qB , (λB ,ψB) = (λ

qB ,ψ qB).

Therefore, the magnetic potential A cannot be uniquely determined by
the boundary spectral data (λB ,ψB) and our inverse problem needs to be
stated differently.
According to [47], for every covector A ∈ Hk(M, T ∗M), there exist

uniquely determined As ∈ Hk(M, T ∗M) and V ∈ Hk+1(M) such that

(1.6) A = As + dV, δAs = 0, V |∂M = 0.

Following the well established terminology, As and dV are called respec-
tively the solenoidal and potential parts of the covector A. In view of the
obstruction described above, the best one can expect is the simultaneous
recovery of As and q from some knowledge of the boundary spectral data
(λB ,ψB). From now on, we focus our attention on this problem.

1.3. Known results

There is a vast literature devoted to inverse spectral problems in one di-
mension. We refer for instance to the pioneer works by Ambartsumian [2],
Borg [11], Levinson [40], Gel’fand and Levitan [20]. The first multidimen-
sional uniqueness result of this type is due to Nachman, Sylvester and
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2474 Bellassoued, Choulli, Dos Santos Ferreira, Kian & Stefanov

Uhlmann [42] for the operator −∆+q with g Euclidean. They showed that
q is uniquely determined by the Dirichlet eigenvalues and the traces of the
normal derivatives of the corresponding eigenfunctions. Later, Isozaki [21]
proved that if finitely many eigenvalues and eigenfunctions are omitted,
we still have uniqueness. In [50], Sun studied, in this context, the recov-
ery of magnetic Schrödinger operator from boundary measurements. The
result of [50] requires an assumption of smallness of the magnetic field.
This assumption was removed by Nakamura, Sun and Uhlmann in [43] as
a consequence of their result on the Calderón’s problem for such opera-
tors. These results have been extended to bounded electromagnetic poten-
tials by [37] and to unbounded domains by [28, 29]. We mention also the
work of [9, 35, 36] dealing with the sable recovery of an electromagnetic
potential appearing in a dynamical Schrödinger equation. Developing fur-
ther Isozaki’s approach, Choulli and Stefanov [15] gave a generalization of
Isozaki’s uniqueness result together with a Hölder stability estimate with
respect to appropriate metrics for the spectral data. We mention that, fol-
lowing a remark of Isozaki which goes back to [21], the uniqueness and
stability results of [15] were stated with only some asymptotic closeness of
the boundary spectral data. We mention also the work of [12, 13], dealing
with recovery of general non-smooth coefficients from the full boundary
spectral data, the work [26] who have considered a similar inverse spectral
problem for Schrödinger operators in an infinite cylindrical waveguide and
the work of [44] devoted to the extension of the approach of [21] to the
recovery of non-smooth coefficients from partial boundary spectral data.
We refer also to the works [12, 25, 30, 32, 34] for applications of inverse
spectral problems to other class of inverse problems.
Another approach for getting uniqueness in the spectral inverse prob-

lem for the Laplace–Beltrami operator was introduced by Belishev [4] and
Belishev and Kurylev [5]. This approach consists in reducing the inverse
spectral problem under consideration into an inverse hyperbolic problem for
which one can apply the so called boundary control method. This method
allows to consider the trace of the normal derivative of eigenfunctions only
in a part of the boundary. We refer to [5, 23, 24, 31, 38, 39] and [33] in the
case of non-smooth coefficients. We mention that none of these papers con-
sidered this problem with observations corresponding to some asymptotic
knowledge of the boundary spectral data. Actually, to our best knowledge,
beside the present paper, there is no other results dealing with inverse spec-
tral problem on non flat manifolds with data similar to the one considered
by [15, 26].

ANNALES DE L’INSTITUT FOURIER
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One of the first stability estimate for inverse spectral problems was es-
tablished by Alessandrini and Sylvester [1]. This result was reformulated
by the second author in a more precise way in [14]. A similar result in
the case of the Laplace–Beltrami operator was proved by the first and the
third authors in [8] using the idea introduced in [1]. With the help of a re-
sult quantifying the uniqueness of continuation for a Cauchy problem with
data on a part of the boundary for a wave equation, the first two authors
and Yamamoto [7] proved a double logarithmic stability estimate under
the assumption that the potential is known near the boundary. In [15], the
second and the last authors provided one of the first Hölder type stability
estimate for the multi-dimensional Borg–Levinson theorem of determining
the potential from some asymptotic knowledge of the boundary spectral
data of the associated Schrödinger operator. In [26], the fourth author, Ka-
vian and Soccorsi proved a similar result for an inverse spectral problem in
an infinite cylindrical waveguide.

1.4. Preliminaries

We briefly recall some notations and known results in Riemannian geom-
etry. We refer for instance to [22] for more details. By Riemannian manifold
with boundary, we mean a C∞-smooth manifold with boundary in the usual
sense, endowed with a metric g.
As before M denotes a compact Riemannian manifold of dimension n > 2.

Fix a local coordinate system x =
(
x1, . . . , xn

)
and let (∂1, . . . , ∂n) be the

corresponding tangent vector fields. For x ∈ M, the inner product and the
norm on the tangent space TxM are given by

g(X,Y ) = 〈X,Y 〉 =
n∑

j,k=1
gjkXjY k,

|X| = 〈X,X〉1/2, X =
n∑
i=1

Xi∂i, Y =
n∑
i=1

Y i∂i.

The cotangent space T ∗xM is the dual of TxM. Its elements are called cov-
ectors or one-forms. The disjoint union of the tangent spaces

TM =
⋃
x∈M

TxM

is called the tangent bundle of M. Similarly, the cotangent bundle T ∗M is
the disjoint union of the spaces T ∗xM, x ∈ M. A 1-form A on the manifold
M is a function that assigns to each point x ∈ M a covector A(x) ∈ T ∗xM.

TOME 71 (2021), FASCICULE 6
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An example of a 1-form is the differential of a function f ∈ C∞(M),
which is defined by

dfx(X) =
n∑
j=1

Xj ∂f

∂xj
, X =

n∑
j=1

Xj∂j .

Hence f defines the mapping df : TM→ R, which is called the differential
of f given by

df(x,X) = dfx(X).
In local coordinates,

df =
n∑
j=1

∂jfdxj .

where (dx1, . . . ,dxn) is the basis in the space T ∗xM, dual to the basis
(∂1, . . . , ∂n).
The Riemannian metric g induces a natural isomorphism ı : TxM→ T ∗xM

given by ι(X) = 〈X, · 〉. For X ∈ TxM denote X[ = ı(X), and similarly
for A ∈ T ∗xM we denote A] = ı−1(A), ı and ı−1 are called musical isomor-
phisms. The sharp operator is given by

(1.7) T ∗xM −→ TxM, A 7−→ A],

given in local coordinates by

(1.8) (ajdxj)] = aj∂j , aj =
n∑
k=1

gjkak.

Define the inner product of 1-forms in T ∗xM by

(1.9) 〈A,B〉 = 〈A], B]〉 =
n∑

j,k=1
gjkajbk =

n∑
j,k=1

gjkajbk.

The metric tensor g induces the Riemannian volume

dvn = |g|1/2dx1 ∧ · · · ∧ dxn.

We denote by L2(M) the completion of C∞(M) endowed with the usual
inner product

(f1, f2) =
∫

M
f1(x)f2(x) dvn, f1, f2 ∈ C∞(M).

A section of a vector bundle E over the Riemannian manifold M is a C∞
map s : M→ E such that for each x ∈ M, s(x) belongs to the fiber over x.
We denote by C∞(M, E) the space of smooth sections of the vector bundle
E. According to this definition, C∞(M, TM) denotes the space of vector
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fields on M and C∞(M, T ∗M) denotes the space of 1-forms on M. Simi-
larly, we may define the spaces L2(M, T ∗M) (resp. L2(M, TM)) of square
integrable 1-forms (resp. vectors) by using the inner product

(1.10) (A,B) =
∫

M
〈A,B〉dvn, A,B ∈ L2(M, T ∗M).

For k ∈ N, we define the Sobolev space Hk(M) as the completion of
C∞(M) with respect to the norm

‖f‖2Hk(M) = ‖f‖2L2(M) +
n∑
k=1
‖∇kf‖2L2(M,TkM),

where ∇k is the covariant differential of f in the metric g. Moreover,
following [24, p. 59], [41, p. 40] and [41, Theorem 9.6, Chapter 1], for
s ∈ [0,+∞) \ N, we denote by Hs(M) the space of interpolation of order
1− (s− [s]) between H [s]+1(M) and H [s](M). Here [s] denotes the integer
part of s and we refer to [41, Definition 2.1, Chapter 1] for the definition
of space of interpolation. Since, for k ∈ N, Hk(M) = Hk(Mint), where Mint
denotes the interior of M , this definition of the space Hs(M), s ∈ [0,+∞),
coincides with the space Hs(Mint) defined by interpolation in [41, p. 40].
Then, applying [41, Theorems 9.1, 9.2, Chapter 1] (see also the proof of [41,
Theorem 9.4, Chapter 1]), one can check that the definition of the space
Hs(Mint) by interpolation coincides with its definition by local coordinates.
Therefore, our definition of the space Hs(M) coincides with the definition
of Hs(Mint) by local coordinates. We denote also by Hs

0(M) the closure
of C∞0 (Mint) in Hs(M) and, in view of [41, Theorem 11.6, Chapter 1], we
recall that for s /∈ 1

2 + N, Hs
0(M) coincide with the space of interpolation

of order 1− (s− [s]) between H [s]+1
0 (M) and H [s]

0 (M).
If f is a C∞ function on M, then ∇f is the vector field defined by

X(f) = 〈∇f,X〉,

for every vector field X on M. In the local coordinates system, the last
identity can be rewritten in the form

(1.11) ∇f =
n∑

i,j=1
gij ∂f

∂xi
∂j = (df)].

The normal derivative of a function u is given by the formula

(1.12) ∂νu := 〈∇u, ν〉 =
n∑

j,k=1
gjkνj

∂u

∂xk
,

where ν is the unit outward vector field to ∂M.
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Likewise, we say that a 1-form A = ajdxj belongs to Hk(M, T ∗M) if each
aj ∈ Hk(M). The space Hk(M, T ∗M) is a Hilbert space when it is endowed
with the norm

‖A‖Hk(M,T∗M) =

 n∑
j=1
‖aj‖2Hk(M)

 1
2

.

As usual, the vector space of smooth 2-forms on M is denoted by Ω2(M).
In local coordinates, a 2-form ω is represented as

ω =
n∑

j,k=1
ωjkdxj ∧ dxk,

where ωjk are real-valued functions on M. Similarly as before, ω is in
Hs(M,Ω2(M)), s ∈ R, if ωjk ∈ Hs(M) for each j, k. Additionally,
Hs(M,Ω2(M)) is a Hilbert space for the norm

‖ω‖Hs(M,Ω2(M)) =

∑
j,k

‖ωjk‖2Hs(M)

 1
2

.

In the rest of this text, the scalar product of L2(∂M) is also denoted by
〈 · , · 〉:

(1.13) 〈f1, f2〉 =
∫
∂M

f1(x) f2(x) dσn−1

where dσn−1 is the volume form of ∂M.

1.5. Main results

Prior to the statement of our main results, we introduce the notion of
simple manifolds [48]. We say that the boundary ∂M is strictly convex if
the second fundamental form is positive-definite for any x ∈ ∂M.

Definition 1.1. — A manifold M is simple if ∂M is strictly convex
and, for any x ∈ M, the exponential map expx : exp−1

x (M) → M is a
diffeomorphism.

Note that if M is simple, then it is diffeomorphic to a ball, and every
two points can be connected by a unique minimizing geodesic depending
smoothly on its endpoints. Also, one can extend it to a simple manifold M1
such that Mint

1 ⊃ M.

ANNALES DE L’INSTITUT FOURIER
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We now introduce the admissible sets of magnetic potentials A and elec-
tric potentials q. Set

B = W 2,∞(M, T ∗M)⊕ L∞(M).

We endow B with its natural norm

‖B‖B = ‖A‖W 2,∞(M,T∗M) + ‖q‖L∞(M).

For r > 0, set

(1.14) Br = {B = (A, q) ∈ B, ‖B‖B 6 r} .

Let B` ∈ Br, ` = 1, 2, we denote by (λ`,k, φ`,k), k > 1, the eigenvalues and
normalized eigenfunctions of the operator HB` .

For ` = 1 or ` = 2, let

(1.15) ψ`,k = (∂ν + iA`(ν))φ`,k, k > 1.

At this point we remark that when A1 = A2 it is clear that HB1−HB2 =
q1 − q2 whence by the min-max principle,

sup
k>1
|λ1,k − λ2,k| 6 ‖q1 − q2‖L∞(M) <∞.

Assume now that A1 6= A2 and δA1 = δA2. Then we have

HB1 −HB2 = −2i(A1 −A2)∇+ |A1|2 − |A2|2 + q1 − q2.

Thus, HB1 −HB2 /∈ B(L2(M)). Therefore, we can reasonably expect that

sup
k>1
|λ1,k − λ2,k| = +∞.

Keeping in mind this property and the obstruction described in Sec-
tion 1.2, it seems natural to expect the recovery of the solenoidal part of
the magnetic potential from a rate of growth of the eigenvalues. Our first
result gives a positive answer to this issue together with the recovery of the
electric potential.

Theorem 1.2. — Assume that M is simple. Let B` = (A`, q`) ∈ Br,
` = 1, 2, such that

(1.16) ∂αxA1(x) = ∂αxA2(x), x ∈ ∂M, |α| 6 1.

Furthermore, assume that there exists t ∈ [0, 1/2) so that

(1.17) sup
k>1

k−t/n|λ1,k − λ2,k|+
∑
k>1

k−2t/n‖ψ1,k − ψ2,k‖2L2(∂M) <∞.

Then As1 = As2. Moreover, under the additional conditions

(1.18) lim
k→+∞

|λ1,k − λ2,k| = 0, and
∑
k>1
‖ψ1,k − ψ2,k‖2L2(∂M) <∞,

TOME 71 (2021), FASCICULE 6
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we have q1 = q2.

In the spirit of [15, 26], we consider also the stability issue for this problem
stated as follows.

Theorem 1.3. — Assume that M is simple. Let B` = (A`, q`) ∈ Br,
` = 1, 2, such that A1 and A2 satisfies (1.16) and q1− q2 ∈ H1

0 (M) satisfies

‖q1 − q2‖H1
0 (M) 6 r.

Furthermore, assume that there exists t ∈ (0, 1/2) so that

(1.19) sup
k>1

k−t/n|λ1,k − λ2,k|+
∑
k>1
‖ψ1,k − ψ2,k‖2L2(∂M) <∞.

Then As1 = As2 and

(1.20) ‖q1 − q2‖L2(M) 6 C

(
lim sup
k→∞

|λ1,k − λ2,k|
) 1

2

<∞,

the constant C only depends on r and M.

To our best knowledge Theorems 1.2 and 1.3 are the first results deal-
ing with inverse spectral problems for Schrödinger operators, with non-
constant leading coefficients, from asymptotic knowledge of boundary spec-
tral data similar to the one considered by [15, 26]. Note also that Theo-
rem 1.3 seems to be the first stability result of recovering the electric po-
tential from partial boundary spectral data in such general context (the
only other similar results can be found in [7, 15, 26] where stable recovery
of Schrödinger operators on a bounded domain, with an Euclidean metric
and without magnetic potential, have been considered).

We recall that multi-dimensional Borg–Levinson type theorems for mag-
netic Schrödinger operators have been already considered in [23, 27, 46].
Among them, only [27] considered the uniqueness issue from boundary
spectral data similar to (1.18). The results in the present work can be seen
as an improvement of that in [27] in four directions. First of all, we prove for
the first time the extension of such results to a general simple Riemanian
manifold by proving the connection between our problem and the injectiv-
ity of the so called geodesic ray transform borrowed from [3, 19, 47, 48]. In
addition, by using some results of [48], we establish stability estimates for
this problem where [27] treated only the uniqueness. In contrast to [27], we
do not require the knowledge of the magnetic potentials on the neighbor-
hood of the boundary. This condition is relaxed, by considering only some
knowledge of the magnetic potentials at the boundary given by (1.16). Fi-
nally, we show, for what seems to be the first time, that even a rate of

ANNALES DE L’INSTITUT FOURIER
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growth of the difference of eigenvalues like (1.17), (1.19) can determine the
magnetic potential appearing in a magnetic Schrödinger operator.
The main ingredient in our analysis is a suitable representation for-

mula that involves the magnetic potential A and the electric potential
q in terms of the Dirichlet-to-Neumann map associated to the equations
HBu−λu = 0, for a well chosen set of complex λ’s. In [21, 27], the authors
considered such a representation for a bounded domain with flat metric.
Using a construction inspired by [6, 8, 16, 17, 18, 49] we show how one can
extend such approach to more general manifolds. Note that this construc-
tion differs from the one considered by [16, 17, 18] for recovering the mag-
netic Schrödinger operators from boundary measurements. Actually, our
results hold for a general simple manifold even in the case n > 3, whereas
the determination of Schrödinger operators from boundary measurements
in the same context is still an open problem (see [17, 18]).
In this paper we treat also the problem of determining the Neumann

realization of magnetic Schrödinger operator. For simplicity and in order
to avoid any confusion between the results for the different operators, we
give the statement of the result for the Neumann realization of magnetic
Schrödinger operator in Theorem 6.1. The result of Theorem 6.1 is stated
with an optimal growth of the difference of eigenvalues (see the discussion
just after Theorem 6.1).

We believe that following the idea of [9, 27, 37, 45], one can relax the
regularity condition imposed to the magnetic potentials as well as condi-
tion (1.16). This approach requires the construction of ansatz depending
on an approximation of the magnetic potential instead of the magnetic po-
tential itself. In order to avoid the inadequate expense of the size of the
paper, we do not consider this issue.

1.6. Outline

The outline of the paper is as follows. We review in Section 2 the geo-
desic ray transform for 1-one forms and functions on a manifold. Section 3
is devoted to an asymptotic spectral analysis. We construct in Section 4
geometrical optics solutions for magnetic Schrödinger equations. We par-
ticularly focus our attention on the solvability of the eikonal and the trans-
port equations which are essential in the construction of geometric optic
solutions. Additionally, we provide a representation formula. The proof of
Theorems 1.2 and 1.3 are given in Section 5. The Neumann case is briefly
discussed in Section 6. Finally, we prove some uniform estimates related to
the Weyl’s formula for the magnetic Schrödinger operator in the Appendix.

TOME 71 (2021), FASCICULE 6
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2. A short review on the geodesic ray transform on a
simple manifold

We collect in this section some known results on the geodesic ray trans-
form for functions and 1-forms on a smooth simple Riemannian manifold
(M, g). These results will be used later in this text.

Denote by divX the divergence of a vector field X ∈ H1(M, TM) on M,
i.e. in local coordinates ([24, p. 42]),

(2.1) divX = 1√
|g|

n∑
i=1

∂i

(√
|g|Xi

)
, X =

n∑
i=1

Xi∂i.

Using the inner product of a 1-form, we can define the coderivative operator
δ as the adjoint of the exterior derivative via the relation

(2.2) (δA, v) = (A,dv) , A ∈ C∞(M,T ∗M), v ∈ C∞(M).

Then δA is related to the divergence of vector fields by δA = div(A]),
where the divergence is given by (2.1). If X ∈ H1(M, TM) the divergence
formula reads

(2.3)
∫

M
divX dvn =

∫
∂M
〈X, ν〉dσn−1.

For f ∈ H1(M), we have the following Green formula

(2.4)
∫

M
divX f dvn = −

∫
M
〈X,∇f〉dvn +

∫
∂M
〈X, ν〉f dσn−1.

Therefore, for u,w ∈ H2(M), the following identity holds

(2.5)
∫

M
∆Auw dvn

= −
∫

M
〈∇Au,∇Aw〉dvn +

∫
∂M

(∂νu+ iA(ν)u)w dσn−1

=
∫

M
u∆Aw dvn

+
∫
∂M

(
(∂νu+ iA(ν)u)w − u(∂νw + iA(ν)w)

)
dσn−1,

where ∇Au = ∇u + iuA]. For x ∈ M and θ ∈ TxM, denote by γx,θ the
unique geodesic starting from x and directed by θ.

Recall that the sphere bundle and co-sphere bundle of M are respectively
given by

SM = {(x, θ) ∈ TM; |θ| = 1} , S∗M = {(x, p) ∈ T ∗M; |p| = 1} ,
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The exponential map expx : TxM→ M is defined as follows

(2.6) expx(v) = γx,θ(|v|), θ = v

|v|
.

We assume in the rest of this section that M is simple and we point out
that any arbitrary pair of points in M can be joined by an unique geodesic
of finite length.
Given (x, θ) ∈ SM and denote by γx,θ the unique geodesic γx,θ satisfying

the initial conditions γx,θ(0) = x and γ̇x,θ(0) = θ, which is defined on the
maximal interval [`−(x, θ), `+(x, θ)], with γx,θ(`±(x, θ)) ∈ ∂M. Define the
geodesic flow ϕt by
(2.7)
ϕt : SM −→ SM, ϕt(x, θ) = (γx,θ(t), γ̇x,θ(t)), t ∈ [`−(x, θ), `+(x, θ)],

and observe that ϕt ◦ ϕs = ϕt+s.
Introduce now the submanifolds of inner and outer vectors of SM

(2.8) ∂±SM = {(x, θ) ∈ SM, x ∈ ∂M, ±〈θ, ν(x)〉 < 0} ,

where ν is the unit outer normal vector field on ∂M.
Note that ∂+SM and ∂−SM are compact manifolds with the same bound-

ary S(∂M) and
∂SM = ∂+SM ∪ S∂M ∪ ∂−SM.

It is straightforward to check that `± : SM→ R satisfy

`−(x, θ) 6 0, `+(x, θ) > 0, `+(x, θ) = −`−(x,−θ),
`−(x, θ) = 0, (x, θ) ∈ ∂+SM,

`−(ϕt(x, θ)) = `−(x, θ)− t, `+(ϕt(x, θ)) = `+(x, θ) + t.

To each 1-form A ∈ C∞(M, T ∗M), with A = ajdxj , associate the smooth
symbol σA ∈ C∞(SM) given by

(2.9) σA(x, θ) =
n∑
j=1

aj(x)θj = 〈A](x), θ〉, (x, θ) ∈ SM.

Recall that the Riemannian scalar product on TxM induces the volume
form on SxM given by

dωx(θ) =
√
|g|

n∑
k=1

(−1)kθkdθ1 ∧ · · · ∧ydθk ∧ · · · ∧ dθn.

As usual, the notation p· means that the corresponding factor has been
dropped.
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We also consider the volume form dv2n−1 on the manifold SM defined
as follows

dv2n−1(x, θ) = dωx(θ) ∧ dvn,
where dvn is the Riemannnian volume form on M.
By Liouville’s theorem, the form dv2n−1 is preserved by the geodesic

flow. The corresponding volume form on the boundary

∂SM = {(x, θ) ∈ SM, x ∈ ∂M}

is given by
dσ2n−2 = dωx(θ) ∧ dσn−1,

where dσn−1 is the volume form of ∂M.
Santaló’s formula will be useful in the sequel:

(2.10)
∫
SM

F (x, θ) dv2n−1(x, θ)

=
∫
∂+SM

(∫ `+(x,θ)

0
F (ϕt(x, θ)) dt

)
µ(x, θ) dσ2n−2,

for any F ∈ C(SM), where we set µ(x, θ) = |〈θ, ν(x)〉|.
For the sake of simplicity L2(∂+SM, µdσ2n−2) is denoted by L2

µ(∂+SM).
Note that L2

µ(∂+SM) is a Hilbert space when it is endowed with the
scalar product

(2.11) (u, v)µ =
∫
∂+SM

u(x, θ)v(x, θ)µ(x, θ) dσ2n−2.

Until the end of this section, we assume that M is simple.

2.1. Geodesic ray transform of 1-forms

The ray transform of 1-forms on M is defined as the linear operator

I1 : C∞(M, T ∗M) −→ C∞(∂+SM)

acting as follows

I1(A)(x, θ) =
∫
γx,θ

A =
n∑
j=1

∫ `+(x,θ)

0
aj(γx,θ(t))γ̇jx,θ(t) dt

=
∫ `+(x,θ)

0
σA(ϕt(x, θ)) dt.

It is easy to check that I1(dϕ) = 0 for any ϕ ∈ C∞(M) satisfying ϕ|∂M =
0. On the other hand, it is known that I1 is injective on the space of
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solenoidal 1-forms satisfying δA = 0. Therefore, if A ∈ H1(M, T ∗M) is so
that I1(A) = 0, then As = 0. Whence, there exists ϕ ∈ H1

0 (M) ∩H2(M)
such that A = dϕ. As a consequence of this observation, we have

(2.12) |I1(A)(x, θ)| = |I1(As)(x, θ)| 6 C‖As‖C0 , A ∈ C0(M, T ∗M).

With reference to [47], we recall that I∗1 : L2
µ(∂+SM) → L2(M, T ∗M) is

given by

(2.13) (I∗1 Ψ(x))j =
∫
SxM

θj qΨ(x, θ) dωx(θ).

Here qΨ is the extension of Ψ from ∂+SM to SM, which is constant on
every orbit of the geodesic flow. That is
qΨ(x, θ) = Ψ

(
γx,θ(`−(x, θ)), γ̇x,θ(`−(x, θ))

)
= Ψ(ϕ`−(x,θ)(x, θ)), (x, θ)∈SM.

One can check [47] that I1 has a bounded extension, still denoted by I1,

I1 : Hk(M, T ∗M) −→ Hk(∂+SM).

We complete this subsection by results borrowed from [48]. We extend
(M, g) to a smooth Riemannian manifold (M1, g) such that Mint

1 ⊃ M and
we consider the normal operator N1 = I∗1I1. Then there exist C1 > 0,
C2 > 0 such that

(2.14) C1‖As‖L2(M) 6 ‖N1(A)‖H1(M1) 6 C2‖As‖L2(M),

for any A ∈ L2(M, T ∗M). If O is an open set of M1, N1 is an elliptic
pseudo-differential operator of order −1 on O having as principal symbol
%(x, ξ) = (%jk(x, ξ))16j,k6n, where

%j,k(x, ξ) = cn
|ξ|

(
gjk −

ξjξk
|ξ|2

)
.

Therefore, for each integer k > 0, there exists a constant Ck > 0 such that,
for any A ∈ Hk(M, T ∗M) compactly supported in O, we have

(2.15) ‖N1(A)‖Hk+1(M1) 6 Ck‖As‖Hk(O).

2.2. Geodesic ray transform of functions

Following [47, Lemma 4.1.1], the ray transform of functions is the linear
operator

(2.16) I0 : C∞(M) −→ C∞(∂+SM)
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acting as follows

(2.17) I0f(x, θ) =
∫ `+(x,θ)

0
f(γx,θ(t)) dt.

Similarly to I1, I0 has an extension, still denoted by I0:

(2.18) I0 : Hk(M) −→ Hk(∂+SM)

for every integer k > 0. We refer to [47, Theorem 4.2.1] for details.
Considering I0 as a bounded operator from L2(M) into L2

µ(∂+SM), we
can compute its adjoint I∗0 : L2

µ(∂+SM)→ L2(M)

(2.19) I∗0 Ψ(x) =
∫
SxM

qΨ(x, θ) dωx(θ),

where qΨ is the extension of Ψ from ∂+SM to SM which is constant on
every orbit of the geodesic flow:

qΨ(x, θ) = Ψ(γx,θ(`−(x, θ))).

Let M1 be a simple manifold so that Mint
1 ⊃ M and consider the normal

operator N0 = I∗0I0. Then there exist two constants C1 > 0, C2 > 0
such that

(2.20) C1‖f‖L2(M) 6 ‖N0(f)‖H1(M1) 6 C2‖f‖L2(M)

for any f ∈ L2(M), see [48].
If O is an open set of M1, N0 is an elliptic pseudo-differential operator

of order −1 on Ω, whose principal symbol is a multiple of |ξ|−1, see [48].
Therefore there exists a constant Ck > 0 such that, for all f ∈ Hk(O)
compactly supported in O,

(2.21) ‖N0(f)‖Hk+1(M1) 6 Ck‖f‖Hk(O).

3. Asymptotic spectral analysis

We fix in all of this section B` = (A`, q`) ∈ Br, ` = 1, 2, satisfying the
assumptions of Theorem 1.2. As in Section 1, HB` , ` = 1, 2, is the operator
defined by (1.2) and (1.3) when B = B`. Furthermore, for λ ∈ ρ(HB`),
denote by RB`(λ) the resolvent of HB` and recall the following resolvent
estimate.
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Lemma 3.1. — Let B` = (A`, q`) ∈ Br, ` = 1, 2 and consider the set
S := {z ∈ C \ R : |z| > 1}. Then for all s ∈ [0, 1] there exists Cs > 0,
depending on B1, B2, s and Ω, such that

(3.1) ‖RB`(λ)‖L (L2(M);H2s(M)) 6
Cs(1 + |λ|)s

|=λ|
, ` = 1, 2, λ ∈ S.

Proof. — For s = 0, (3.1) follows from the classical resolvent estimate

‖RB`(λ)‖L (L2(M)) 6
1

dist(λ, σ(HB`))
= 1
|=λ|

, λ ∈ S.

Now let us fix h ∈ L2(M), λ ∈ S and consider ‖RB`(λ)h‖D(HB` ). We have

‖RB`(λ)h‖2D(HB` )

6
+∞∑
`=1

(
1 + |λk|
|λ− λk|

)2
|〈h, φB`,k〉|2

6
∑

|λk|62|λ|

(
1 + |λk|
|λ− λk|

)2
|〈h, φB`,k〉|2 +

∑
|λk|>2|λ|

(
1 + |λk|
|λ− λk|

)2
|〈h, φB`,k〉|2

6

[(
1 + 2|λ|
|=λ|

)2
+ sup
k>1

(
4(1 + |λk|)

1 + |λk|

)2
]+∞∑
`=1
|〈h, φB`,k〉|2

6 C

(
1 + |λ|
|=λ|

)2
‖h‖2L2(M),

with C > 0 a constant. Combining this with the fact that D(HB`) is
embedded continuously into H2(M), thanks to the elliptic regularity of the
operatorHB` , we deduce that (3.1) is true for s = 1. Then, by interpolation,
we deduce (3.1) for all s ∈ [0, 1]. �

For f ∈ H3/2(∂M) and λ ∈ ρ(HB`), ` = 1, 2, consider the Dirichlet
problem

(3.2)
{

(HB` − λ)u = 0 in M,

u = f on ∂M.

Let κ be a boundary defining function, that is a smooth function κ :
M→ R+ such that

• κ(x) > 0 for all x ∈ Mint,
• κ|∂M = 0 and dκ(x) 6= 0, for all x ∈ ∂M .

We recall that one can construct such a function by combining local coor-
dinates with boundary distance functions or by considering the first eigen-
value of the Dirichlet Laplacian. We can now state the following result.
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Lemma 3.2. — If f ∈ H3/2(∂M) and λ ∈ ρ(HB`), then the BVP (3.2)
has a unique solution u`(λ) = uf` (λ) ∈ H2(M) given by the series

(3.3) u`(λ) =
∑
k>1

〈f, ψ`,k〉
λ− λ`,k

φ`,k,

the convergence takes place in H1(M). Moreover, for any neighborhood V
of ∂M in M, we have

(3.4) lim
λ→−∞

(
‖u`(λ)‖L2(M) + ‖κ∇u`(λ)‖L2(M)

)
= 0.

Proof. — The proof of (3.3) and

lim
λ→−∞

‖u`(λ)‖2L2(M) = 0

is quite similar to that of [27, Lemma 2.1].
The proof of (3.4) is then completed by establishing the following Cacciop-
poli’s type inequality, where λ < 0:

(3.5) ‖κdu`(λ)‖L2(M) 6 C‖u`(λ)‖L2(M),

the constant C only depends on r and M.
For the sake of simplicity, we omit the subscript ` in u`(λ) and B`.

Multiplying the first equation of (3.2) by κ2u(λ), using the fact that κ|∂M =
0 and applying Green’s formula, we obtain

(3.6)

0 = −
∫

M
∆Au(λ)κ2u(λ) dvn +

∫
M

(q − λ)κ2|u(λ)|2 dvn

=
∫

M
|κdu(λ)|2 dvn + 2

∫
M
〈κdu(λ), u(λ)dκ〉dvn

+ 2=
∫

M
〈κu(λ)A, κdu(λ)〉dvn

+
∫

M

(
2i〈A, κdκ〉+ (|A|2 + q − λ)κ2)|u(λ)|2 dvn.

An application of Cauchy–Schwarz’s inequality yields

‖κdu(λ)‖2L2(M) − λ‖κu(λ)‖2L2(M) 6 C‖u(λ)‖L2(M)‖κdu(λ)‖L2(M)

+ C‖u(λ)‖2L2(M)

6 C ′‖u(λ)‖2L2(M) + 1
2‖κdu(λ)‖2L2(M).

Then, it follows

(3.7) 1
2‖κdu(λ)‖2L2(M) − λ‖κu(λ)‖2L2(M) 6 C‖u(λ)‖2L2(M)
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and since −λ > 0, we get

(3.8) ‖κdu(λ)‖2L2(M) 6 C‖u(λ)‖2L2(M),

implying Caccioppoli’s inequality (3.5). �

Lemma 3.3. — Let f ∈ H3/2(∂M) and, for µ ∈ ρ(HB1) ∩ ρ(HB2), set

w1,2(µ) = u1(µ)− u2(µ) ∈ H2(M),

where u`(µ) is the corresponding solution to (3.2) with B` and λ are sub-
stituted by B` and µ. Then we have that w1,2(µ) converges to 0 in H2(M)
as µ→ −∞. In particular, ∂νw1,2(µ)→ 0 in L2(∂M) as µ→ −∞.

Proof. — For the sake of simplicity, we use in this proof w(µ) instead
of w1,2(µ). Since the trace map v 7→ ∂νv is continuous from H2(M) into
L2(∂M), it is enough to show that ‖w(µ)‖H2(M) → 0 when µ → −∞. Let
µ < µ∗ < −2‖q‖∞, for some fixed µ∗ < 0. It is straightforward to check
that w(µ) is the solution of the boundary value problem

(3.9)
{

(HB1 − µ)w(µ) = h(µ) in M,

w(µ) = 0 on ∂M.

Here h(µ) is given by

(3.10) h(µ) = −2i〈A2 −A1,du2(µ)〉+ (V2 − V1)u2(µ)

with
Vj = −iδAj + |Aj |2 + qj , j = 1, 2.

Multiplying the first equation of (3.9) by w(µ), we apply Green’s for-
mula (2.5) in order to obtain∫

M
h(µ)w(µ) dvn =

∫
M
HB1w(µ)w(µ) dvn −

∫
M
µ|w(µ)|2 dvn

=
∫

M
|∇A1w|2 dvn +

∫
M

(q − µ)|w|2 dvn.

We deduce that, for −µ sufficiently large,(
−‖q‖∞ −

µ

2

)
‖w(µ)‖2L2(M) + |µ|4 ‖w(µ)‖2L2(M) 6 C‖h(µ)‖2L2(M),

for some positive constant C, not dependent on µ, and then we conclude
that

(3.11) |µ|‖w(µ)‖2L2(M) 6 C‖h(µ)‖2L2(M).

Moreover we have

(3.12)
{

(HB1 − µ∗)w(µ) = h(µ) + (µ− µ∗)w(µ) in M,

w(µ) = 0 on ∂M.
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Using that (HB1−µ∗)−1 is an isomorphism from L2(M) onto H2(M), there
exists a constant C, depending on M and B1, so that

(3.13)

‖w(µ)‖H2(M) 6 C‖h(µ) + (µ− µ∗)w(µ))‖L2(M)

6 C
(
‖h(µ)‖L2(M) + |µ− µ∗|‖w(µ)‖L2(M)

)
6 C

(
‖h(µ)‖L2(M) + 2|µ|‖w(µ)‖L2(M)

)
,

where the positive constant C is not dependent on µ. Using now the esti-
mate (3.11), we obtain

(3.14) ‖w(µ)‖H2(M) 6 4C‖h(µ)‖L2(M).

On the other hand, in view of (1.16) there exists C > 0 such that

(3.15) |A1(x)−A2(x)| 6 Cκ(x), x ∈ M.

Applying (3.15), we obtain

(3.16) ‖h(µ)‖L2(M) 6 C
′′(‖κdu2(µ)‖L2(M) + ‖u2(µ)‖L2(M)

)
for some constant C ′′ independent of µ. Then, according to (3.4) in Lem-
ma 3.2, we get

(3.17) lim sup
µ→−∞

‖h(µ)‖L2(M) = 0,

entailing by (3.14)

(3.18) lim sup
µ→−∞

‖w(µ)‖H2(M) = 0.

This completes the proof of the lemma. �

The following lemma will be useful in the sequel. We omit its proof since
it is quite similar to that in [26, 27].

Lemma 3.4. — Let f ∈ H3/2(∂M) and, for µ, λ ∈ ρ(HB`), set w`(λ, µ) =
u`(λ) − u`(µ), where u`(µ) is the solution of (3.2) when λ is substituted
by µ. Then we have

(3.19) (∂ν + iA`(ν))w`(λ, µ) =
∑
k>1

(µ− λ)〈f, ψ`,k〉
(λ− λ`,k)(µ− λ`,k) ψ`,k,

the convergence takes place in H1/2(∂M).
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4. Isozaki’s representation formula

In the present section we provide a version of Isozaki’s approach [21],
based on the so-called Born approximation method. The usual ansatz used
to solve the problem of determining the coefficients of a magnetic Laplace–
Beltrami operator, from the corresponding Dirichlet-to-Neumann map will
be useful in our analysis. Let us describe briefly this method.
In all of this section B` = (A`, q`) ∈ Br, ` = 1, 2, with A` satisfy-

ing (1.16). We extend the covector A1 to a W 2,∞ covector on M1 sup-
ported in the interior of M1 and still denoted by A1. Then, we consider the
extension of A2 to M1, still denoted by A2, defined by

(4.1) A1(x) = A2(x), x ∈ M1 \M.

Then, (1.16) implies that A2 ∈W 2,∞(M1;T ∗M1). We fix also A = A1−A2.

4.1. Representation formula

If u`(λ), λ ∈ ρ(HB1) ∩ ρ(HB2), is the solution of (3.2) when B = B`,
define the Dirichlet-to-Neumann map by

(4.2) ΛB`(λ) : f ∈ H3/2(∂M) 7−→ (∂ν + iA`(ν))u`(λ)|∂M, ` = 1, 2.

We fix ψ ∈ C2(M) a function satisfying the eikonal equation

(4.3) |dψ|2 =
n∑

i,j=1
gij ∂ψ

∂xi

∂ψ

∂xj
= 1.

We also set two functions α` ∈ H2(M) solving the transport equations

(4.4) 〈dψ,dα`〉+ 1
2(∆ψ)α` = 0, ` = 1, 2.

These functions will be given in Section 4.2. Consider also two functions
βA` ∈ H2(M), ` = 1, 2, solutions of the transport equations

(4.5) 〈dψ,dβA`〉+ i〈A`,dψ〉βA` = 0, ∀ x ∈ M, ` = 1, 2.

Henceforth τ > 1 and λτ = τ + i. Let

(4.6)
ϕ∗1,τ (x) = eiλτψ(x)α1βA1(x) := eiλτψ(x)β∗1(x),

ϕ∗2,τ (x) = eiλτψ(x)α2βA2(x) := eiλτψ(x)β∗2(x),

where, for ` = 1, 2, α` is a solution of (4.4) and βA` is a solution of (4.5).
Define

(4.7) SB`(τ) = 〈ΛB`(λ2
τ )ϕ∗1,τ , ϕ∗2,τ 〉=

∫
∂M

ΛB`(λ2
τ )ϕ∗1,τϕ∗2,τ dσn−1, `= 1, 2.
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Lemma 4.1. — We have

(4.8) SB1(τ) =
∫
∂M

β∗1
(
∂νβ∗2 − iA1(ν)β∗2 − iλτβ∗2∂νψ

)
dσn−1

+
∫

M
β∗1HB1(β∗2) dvn − 2λτ

∫
M
β∗1β

∗
2〈A,dψ〉dvn

−
∫

M
RB1(λ2

τ )
(
eiλτψHB1 (β∗1)

)
×
(
e−iλτψHB1(β∗2)− 2λτe−iλτψβ∗2〈A,dψ〉

)
dvn.

and

(4.9) SB2(τ) =
∫
∂M

β∗1
(
∂νβ∗2 − iA2(ν)β∗2 − iλτβ∗2∂νψ

)
dσn−1

+
∫
M

β∗1HB2(β∗2) dvn

−
∫

M
RB2(λ2

τ )
(
eiλτψ (HB2 (β∗1)− 2λτ 〈A,dψ〉β∗1)

)
×
(
e−iλτψHB2(β∗2)

)
dvn.

Here RB`(λ2
τ ) is the resolvent of HB` .

Proof. — Direct computations yield

(4.10)
(
HB1 − λ2

τ

)
ϕ∗1,τ = eiλτψHB1 (β∗1)

+ eiλτψ
(
λ2
τβ
∗
1
(
|dψ|2 − 1

)
− 2iλτβA1

(
〈dψ,dα1〉+ α1

2 ∆ψ
)

− 2iλτα1 (〈dψ,dβA1〉+ i〈A1,dψ〉βA1)
)
.

Taking into account (4.3), (4.4) and (4.5), with ` = 1, the right-hand side
of (4.10) becomes

(4.11)
(
HB1 − λ2

τ

)
ϕ∗1,τ = eiλτψHB1 (β∗1) ≡ eiλτψk1.

Denote by u1 the solution of the BVP{(
HB1 − λ2

τ

)
u1 = 0 in M,

u1 = ϕ∗1,τ on ∂M.

We split u1 into two terms, u1 = ϕ∗1,τ + v1, where v1 is the solution of the
boundary value problem{(

HB1 − λ2
τ

)
v1 = −eiλτψk1 in M,

v1 = 0 on ∂M.
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Therefore

(4.12) u1 = ϕ∗1,τ − (HB1 − λ2
τ )−1(eiλτψk1) = ϕ∗1,τ −RB1(λ2

τ )
(
eiλτψk1

)
.

As

(4.13) SB1(τ) =
∫
∂M

(∂νu1 + iA1(ν)u1)ϕ∗2,τ dσn−1,

we get by applying formula (2.5)

(4.14) SB1(τ) =
∫

M
∆A1u1ϕ∗2,τ dvn −

∫
M
u1∆A1ϕ

∗
2,τ dvn

+
∫
∂M

ϕ∗1,τ

(
∂νϕ∗2,τ + iA1(ν)ϕ∗2,τ

)
dσn−1.

On the other hand, by a simple computation and using (4.3), (4.4) and (4.5),
we get

∆A1ϕ
∗
2,τ = ∆A1(eiλ̄τψβ∗2)

= −λ2
τϕ
∗
2,τ + eiλ̄τψ∆A1(β∗2)

− 2iλτeiλ̄τψα2 (〈dψ,dβ2〉+ i〈A1,dψ〉β2)

+ 2iλτβ2e
iλ̄τψ

(
〈dψ,dα2〉+ α2

2 ∆ψ
)

= −λ2
τϕ
∗
2,τ + eiλ̄τψ∆A1(β∗2)

− 2iλτeiλ̄τψα2 (−i〈A2,dψ〉β2 + i〈A1,dψ〉β2)

= −λ2
τϕ
∗
2,τ + eiλ̄τψ∆A1(β∗2) + 2λτeiλ̄τψβ∗2〈A,dψ〉.

Whence, in light of (4.12), we find∫
M
u1∆A1ϕ

∗
2,τ dvn

=
∫

M

(
ϕ∗1,τ −RB1(λ2

τ )
(
eiλτψk1

))
×
(
−λ2

τϕ
∗
2,τ + e−iλτψ∆A1(β∗2) + 2λτe−iλτψβ∗2〈A,dψ〉

)
dvn,

and, using again (4.12), we get∫
M

∆A1u1ϕ∗2,τ dvn = −
∫

M
HB1u1ϕ∗2,τ dvn +

∫
M
q1u1ϕ∗2,τ dvn

=
∫

M

(
ϕ∗1,τ−RB1(λ2

τ )(eiλτψk1)
)(
−λ2

τϕ
∗
2,τ + q1ϕ∗2,τ

)
dvn.
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We deduce that

(4.15)
∫

M
∆A1u1ϕ∗2,τ dvn −

∫
M
u1∆A1ϕ

∗
2,τ dvn

=
∫

M

(
ϕ∗1,τ −RB1(λ2

τ )(eiλτψk1)
)

×
(
e−iλτψHB1(β∗2)− 2λτe−iλτψβ∗2〈A,dψ〉

)
dvn

=
∫

M
β∗1HB1(β∗2) dvn − 2λτ

∫
M
β∗1β

∗
2〈A,dψ〉dvn

−
∫

M
RB1(λ2

τ )(eiλτψk1)
(
e−iλτψHB1(β∗2)−2λτe−iλτψβ∗2〈A,dψ〉

)
dvn.

Moreover

(4.16)
∫
∂M

ϕ∗1,τ (∂νϕ∗2,τ + iA1(ν)ϕ∗2,τ ) dσn−1

=
∫
∂M

β∗1
(
∂νβ∗2 − iA1(ν)β∗2 − iλτβ∗2∂νψ

)
dσn−1.

Finally, we get (4.8) by combining (4.14), (4.15) and (4.16).
The proof of (4.9) is quite similar to that of (4.8). But, for the reader’s

convenience, we detail the proof of (4.9). By a simple computation we find

(4.17)
(
HB2 − λ2

τ

)
ϕ∗1,τ = eiλτψHB2 (β∗1)

+ eiλτψ
(
λ2
τβ
∗
1
(
|dψ|2 − 1

)
− 2iλτβA1

(
〈dψ,dα1〉+ α1

2 ∆ψ
)

− 2iλτα1(〈dψ,dβA1〉+ i〈A2,dψ〉βA1)
)
.

Taking into account (4.3), (4.4) and (4.5), the right-hand side of (4.17)
takes the form

(4.18) (HB2−λ2
τ )ϕ∗1,τ = eiλτψ(x)(HB2 (β∗1)− 2λτ 〈A,dψ〉β∗1)≡ eiλτψ(x)k2.

Let u2 be the solution of the BVP{(
HB2 − λ2

τ

)
u2 = 0 in M,

u2 = ϕ∗1,τ on ∂M.

As for u1, we split u2 into two terms, u2 = ϕ∗1,τ+v2, where v2 is the solution
of the BVP {(

HB2 − λ2
τ

)
v2 = −eiλτψk2 in M

v2 = 0 on ∂M.
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Therefore

(4.19) u2 = ϕ∗1,τ −
(
HB2 − λ2

τ

)−1 (eiλτψk2) = ϕ∗1,τ −RB2(λ2
τ )(eiλτψk2).

Since

(4.20) SB2(τ) =
∫
∂M

(∂νu2 + iA2(ν)u2)ϕ∗2,τ dσn−1,

we obtain, by applying formula (2.5),

(4.21) SB2(τ) =
∫

M
∆A2u2ϕ∗2,τ dvn −

∫
M
u2∆A2ϕ

∗
2,τ dvn

+
∫
∂M

ϕ∗1,τ (∂νϕ∗2,τ + iA2(ν)ϕ∗2,τ ) dσn−1.

On the other hand, by using (4.3), (4.4) and (4.5), we find

(4.22) ∆A2ϕ
∗
2,τ = ∆A2(eiλ̄τψβ∗2) = −λ2

τϕ
∗
2,τ + eiλ̄τψ∆A2(β∗2).

Whence

(4.23)
∫

M
u2∆A2ϕ

∗
2,τ dvn =

∫
M

(ϕ∗1,τ −RB2(λ2
τ )(eiλτψk2))

×
(
−λ2

τϕ
∗
2,τ + e−iλτψ∆A2(β∗2)

)
dvn

and∫
M

∆A2u2ϕ∗2,τ dvn = −
∫

M
HB2u2ϕ∗2,τ dvn +

∫
M
q2u2ϕ∗2,τ dvn

=
∫
M

(
ϕ∗1,τ −RB2(λ2

τ )(eiλτψk2)
)(
−λ2

τϕ
∗
2,τ +q2ϕ∗2,τ

)
dvn.

Thus,

(4.24)
∫

M
∆A2u2ϕ∗2,τ dvn −

∫
M
u2∆A2ϕ

∗
2,τ dvn

=
∫

M

(
ϕ∗1,τ −RB2(λ2

τ )(eiλτψk2)
) (
e−iλτψHB∈(β∗∈)

)
dvn

=
∫
M

β∗1HB2(β∗2) dvn −
∫

M
RB2(λ2

τ )
(
eiλτψk2

) (
e−iλτψHB1(β∗2)

)
dvn

=
∫
M

β∗1HB2(β∗2) dvn

−
∫

M
RB2(λ2

τ )
(
eiλτψ(HB2 (β∗1)−2λτ 〈A,dψ〉β∗1)

)(
e−iλτψHB1(β∗2)

)
dvn.
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Moreover, we have

(4.25)
∫
∂M

ϕ∗1,τ (∂νϕ∗2,τ + iA2(ν)ϕ∗2,τ ) dσn−1

=
∫
∂M

β∗1
(
∂νβ∗2 − iA2(ν)β∗2 − iλτβ∗2∂νψ

)
dσn−1.

Inserting (4.25) and (4.24) in (4.21), we obtain

(4.26) SB2(τ)

=
∫
∂M

β∗1
(
∂νβ∗2 − iA2(ν)β∗2 − iλτβ∗2∂νψ

)
dσn−1 +

∫
M
β∗1HB2(β∗2) dvn

−
∫

M
RB2(λ2

τ )
(
eiλτψ(HB2 (β∗1)−2λτ 〈A,dψ〉β∗1)

)(
e−iλτψHB2(β∗2)

)
dvn.

This completes the proof of the Lemma. �

Subtracting side by side (4.8) and (4.9), and using the fact that A1 = A2
on ∂M, we obtain the following identity, that we will use later in the text.

(4.27) SB1(τ)− SB2(τ)

= −2λτ
∫

M
β∗1β

∗
2〈A,dψ〉dvn +

∫
M
β∗1(HB1 −HB2)(β∗2) dvn

−
∫

M
RB1(λ2

τ )
(
eiλτψHB1(β∗1)

)(
e−iλτψ

(
HB1(β∗2)−2λτβ∗2〈A,dψ〉

))
dvn

+
∫

M
RB2(λ2

τ )
(
eiλτψ (HB2(β∗1)−2λτ 〈A,dψ〉β∗1)

)(
e−iλτψHB2(β∗2)

)
dvn.

4.2. Solving the eikonal and transport equations

We construct the phase function ψ solution to the eikonal equation (4.3)
and the amplitudes α` and β`, ` = 1, 2, solutions to the transport equa-
tions (4.4) and (4.5).
Let y ∈ ∂M1. Denote points in M1 by (r, θ) where (r, θ) are polar normal

coordinates in M1 with center y. That is, x = expy(rθ), where r > 0 and

θ ∈ S+
y M1 = {θ ∈ TyM1, |θ| = 1, 〈θ, ν〉 < 0} .

In these coordinates (depending on the choice of y) the metric has the form

g̃(r, θ) = dr2 + g0(r, θ).

If u is a function in M, set, for r > 0 and θ ∈ SyM1,

ũ(r, θ) = u(expy(rθ)),
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If u is compactly supported, ũ is naturally extended by 0 outside M.
The geodesic distance to y provide an explicit solution of the eikonal

equation (4.3):

(4.28) ψ(x) = dg(x, y).

Since y ∈ M1\M, we have ψ ∈ C∞(M) and

(4.29) ψ̃(r, θ) = r = dg(x, y).

We now solve the transport equation (4.4). To this and, recall that if
f(r) is any function of the geodesic distance r, then

(4.30) ∆g̃f(r) = f ′′(r) + %−1

2
∂%

∂r
f ′(r).

Here % = %(r, θ) denotes the square of the volume element in geodesic polar
coordinates. In the new coordinates system, equation (4.4) takes the form

(4.31) ∂ψ̃

∂r

∂α̃

∂r
+ 1

4 α̃%
−1 ∂%

∂r

∂ψ̃

∂r
= 0.

Thus α̃ satisfies

(4.32) ∂α̃

∂r
+ 1

4 α̃%
−1 ∂%

∂r
= 0.

For η ∈ H2(S+
y M), we seek α̃ in the form

(4.33) α̃(r, θ) = %−1/4η(y, θ).

Direct computations yield

(4.34) ∂α̃

∂r
(r, θ) = −1

4%
−5/4 ∂%

∂r
η(y, θ).

Finally, (4.33) and (4.34) entail

(4.35) ∂α̃

∂r
(r, θ) = −1

4%
−1α̃(r, θ)∂%

∂r
.

In the rest of this subsection we are concerned with transport equa-
tion (4.5). Using that, in polar coordinates, ∇ψ(x) can be expressed in
term of γ̇y,θ(r) (see for instance [6, Appendix C]), we have

〈Ã`(r, y, θ),dψ〉 = 〈Ã]`(r, y, θ),∇ψ〉 = σA`(ϕr(y, θ)) = σ̃A`(r, y, θ).

Consequently, in polar coordinates system, (4.5) has the form

(4.36) ∂ψ̃

∂r

∂β̃

∂r
+ iσ̃A`(r, y, θ)β̃ = 0,

where σ̃A`(r, y, θ) := σA`(Φr(y, θ)) = 〈γ̇y,θ(r), A]`(γy,θ(r))〉. Thus β̃ satisfies

(4.37) ∂β̃

∂r
+ iσ̃A`(r, y, θ)β̃ = 0.
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Thus, we can choose β̃ defined as follows

β̃(y, r, θ) = exp
(
i

∫ `+(y,θ)

0
σ̃A`(r + s, y, θ) ds

)
.

In other words, we solved (3.4). Note that here, since the support of A` is
contained into the interior of M1, the support of σ̃A` is contained into the
interior of M1 and the function r 7→ σ̃A`(r, y, θ) is supported on [0, `+(y, θ)].
Therefore, in the previous integral, for r, s ∈ [0, `+(y, θ)] if r+ s > `+(y, θ)
we have σ̃A`(r + s, y, θ) = 0 which makes sense.
In the remainder of this paper we use the following notations:

(4.38) β̃A`(y, r, θ) = exp
(
i

∫ `+(y,θ)

0
σ̃A`(r + s, y, θ) ds

)
, ` = 1, 2,

and

(4.39) α̃1(r, θ) = %−1/4η(y, θ), α̃2(r, θ) = %−1/4.

4.3. Asymptotic behavior of the boundary representation
formula

We discuss in this subsection the asymptotic behavior of SB1(τ)−SB2(τ),
as well as the asymptotic behavior of [SB1(τ)− SB2(τ)]/τ , as τ →∞.
As before, B` = (A`, q`) ∈ Br, ` = 1, 2 are such that A`’s satisfy (1.16).

Set

A(x) = (A1 −A2)(x), q(x) = (q1 − q2)(x).

Note that A, extended by 0 outside M, belongs to C0(M1, T
∗M1). We also

extend q by 0 outside M. This extension, still denoted by q, is an element
of L∞(M1).

Lemma 4.2. — For any η ∈ H2(S+
y M1), we have

(4.40) lim
τ→+∞

SB1(τ)− SB2(τ)
τ

= 2i
∫
S+
y M1

(
eiI1A(y,θ) − 1

)
η(y, θ) dωy(θ).

Proof. — By the resolvent estimate, we have

(4.41) ‖RB`(λ2
τ )‖L (L2(M)) 6

1
|=(λ2

τ )| = 1
2τ , ` = 1, 2.
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Inequalities (4.41) and (4.27) yield in a straightforward manner

lim
τ→+∞

SB1(τ)− SB2(τ)
τ

= 2
∫

M
β∗1β

∗
2〈A,dψ〉dvn(4.42)

= 2
∫

M
α1α2βA1βA2〈A,dψ〉dvn.

Applying (4.1) and making the change of variable x = expy(rθ), with r > 0
and θ ∈ SyM1, we get

(4.43) 2
∫

M
〈A,dψ〉(α1α2)(x)(βA1βA2)(x) dvn

= 2
∫
S+
y M1

∫ `+(y,θ)

0
σ̃A(r, y, θ)(α̃1α̃2)(r, θ)(β̃A1 β̃A2)(r, θ)%1/2 dr dωy(θ)

= 2
∫
S+
y M1

∫ `+(y,θ)

0
σ̃A(r, y, θ)β̃A1(r, θ)β̃A2(r, θ)η(y, θ)dr dωy(θ)

=
∫
S+
y M1

∫ `+(y,θ)

0
σ̃A(r, y, θ) exp

(
i

∫ `+(y,θ)

0
σ̃A(r+s, y, θ)ds

)
η(y, θ)drdωy(θ).

Also

(4.44)
∫ `+(y,θ)

0
σ̃A(r, y, θ) exp

(
i

∫ `+(y,θ)

0
σ̃A(r + s, y, θ)ds

)
dr

= −i
∫ `+(y,θ)

0
∂r

[
exp

(
i

∫ `+(y,θ)

0
σ̃A(r + s, y, θ)ds

)]
dr

= i

[
exp

(
i

∫ `+(y,θ)

0
σ̃A(s, y, θ)ds

)
− 1
]
,

entailing

2
∫

M
〈A,dψ〉(α1α2)(x)(βA1βA2)(x) dvn

= 2i
∫
S+
y M1

(exp (iI1A(y, θ))− 1) η(y, θ)dωy(θ).

This in (4.42) gives the expected inequality. �

Lemma 4.3. — Assume that A1 = A2. Then, for any η ∈ H2(S+
y M1),

we have

(4.45) lim
τ→+∞

(SB1(τ)− SB2(τ)) =
∫
S+
y M1

I0(q)(y, θ)η(y, θ)dωy(θ).
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Proof. — Since A1 = A2, (4.27) is reduced to the following formula

(4.46) SB1(τ)− SB2(τ) =
∫

M
q(x)β∗1(x)β∗2(x) dvn

−
∫

M
RB1(λ2

τ )
(
eiλτψHB1(β∗1)

)(
e−iλτψHB1(β∗2)

)
dvn

+
∫

M
RB2(λ2

τ )
(
eiλτψHB2(β∗1)

)(
e−iλτψHB2(β∗2)

)
dvn.

Once again the resolvent estimate enables us to get

(4.47) lim
τ→+∞

(SB1(τ)− SB2(τ)) =
∫

M
q(x)(α1α2)(x) dvn.

We complete the proof by mimicking the end of the previous proof in order
to obtain

(4.48)
∫

M
q(x)(α1α2)(x) dvn =

∫
S+
y M1

I0(q)(y, θ)η(y, θ) dωy(θ).

This completes the proof. �

5. Proof of the main results

5.1. Asymptotic behavior of the spectral data

Prior to the completion of the proofs of Theorems 1.2 and 1.3, we estab-
lish some technical lemmas. Assumptions and notations are the same as in
the preceding one.

Lemma 5.1. — For t ∈ [0, 1/2) and ` = 1, 2, we have

(5.1)
∑
k>1

k2t/n
∣∣∣∣ 〈ϕ∗1,τ , ψ`,k〉λ`,k − λ2

τ

∣∣∣∣2 6 C`τ2t‖η‖2
H2(S+

y M1)

and

(5.2)
∑
k>1

k2t/n
∣∣∣∣ 〈ϕ∗2,τ , ψ2,k〉
λ`,k − λ2

τ

∣∣∣∣2 6 C`τ2t,

the constant C` depends on t, M, r and B` if t > 0, and it is independent
on B` when t = 0.
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Proof. — By Lemma 3.2 the solution of the boundary value problem
(3.2), with f = ϕ∗1,τ , λ = λτ and B = B1, is given by the series

(5.3) u1(λτ ) =
∑
k>1

〈ϕ∗1,τ , ψ1,k〉
λ2
τ − λ1,k

φ1,k.

If µ = 2r+1, then the operator HB` +µ is positive. Indeed, for u ∈ H1
0 (M),

we have∫
M

(HB` + µ)uudvn =
∫

M
|∇A`u|2 dvn +

∫
M

(q` + µ)|u|2 dvn

>
∫

M
|du|2 dvn + (µ− ‖q`‖∞ − 2‖A`‖∞)

∫
M
|u|2 dvn.

Since D((HB`+µ) 1
2 ) = H1

0 (M) we have, by interpolation, D((HB`+µ) t2 ) =
Ht

0(M) = Ht(M) (e.g. [41, Chapter 1, Theorems 11.1 and 11.6]). Whence,
for w ∈ Ht(M), we have

(5.4)
∑
k>1

(1 + |λ`,k|)t|(w, φ`,k)|2 6 C`‖w‖2Ht(M), ` = 1, 2,

the constant C` only depends on t, r and M and B`.
On the other hand, we get from (4.12) that

‖u1(λτ )‖Ht(M) = ‖ϕ∗1,τ −RB1(λ2
τ )(eiλτψHB1β

∗
1)‖Ht(M)

6 ‖ϕ∗1,τ‖Ht(M) + ‖RB1(λ2
τ )(eiλτψHB1β

∗
1)‖Ht(M).

Combining this with (3.1) and the fact that =λ2
τ = 2τ , we get

‖u1(λτ )‖Ht(M) 6 C

(
τ t + (1 + |λτ |)t

2τ

)
‖η‖H2(S+

y M1)(5.5)

6 Cτ t‖η‖H2(S+
y M1),

with C > 0 a constant independent of τ and η. Here again the constant
C only depends on t, r, M and B1, where we used that exp−1

y (M) ⊂ {rθ :
r > 0, θ ∈ S+

y (M1)} in order to restrict the norm of η to S+
y M1.

This estimate and (5.4) with w = u1(λτ ) and ` = 1 entails

(5.6)
∑
k>1

(1 + |λ1,k|)t|(u1(λτ ), φ1,k)|2 6 C1τ
2t‖η‖2

H2(S+
y M1).

We get the first estimate (5.1) for ` = 1, by using (A.1) in Appendix A and
the identity

(5.7) (u1(λτ ), φ1,k) =
〈ϕ∗1,τ , ψ1,k〉
λ2
τ − λ1,k

.
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To prove the first inequality (5.1) for ` = 2, we consider u2(λτ ), the solution
of the BVP (3.2) when λ = λτ , f = ϕ∗1,τ and B = B2. By Lemma 3.2, this
solution is given by the series

(5.8) u2(λτ ) =
∑
k>1

〈ϕ∗1,τ , ψ2,k〉
λ2
τ − λ2,k

φ2,k.

On the other hand, we get from (4.19) and (3.1)

(5.9) ‖u2(λτ )‖Ht(M)

6 ‖ϕ∗1,τ‖Ht(M) + ‖RB2(λ2
τ )(eiλτψ(HB2(β∗1)−2λτ 〈A,dψ〉β∗2)‖Ht(M)

6 C

(
τ t + |λτ |

1+t

τ

)
‖η‖H2(S+

y M1) 6 Cτ
t‖η‖H2(S+

y M1).

Applying again (5.4) with w = u2(λτ ) and ` = 2 entails

(5.10)
∑
k>1

(1 + |λ2,k|)t|(u2(λτ ), φ2,k)|2 6 C2τ
2t‖η‖2

H2(S+
y M1).

Since

(5.11) (u2(λτ ), φ2,k) =
〈ϕ∗1,τ , ψ2,k〉
λ2
τ − λ2,k

,

we obtain (5.1) with ` = 2.
The second inequality of (5.2) is proved similarly. �

Let us recall some notations that we introduced in Section 3. For f ∈
H3/2(∂M) fixed and λ, µ ∈ ρ(HB1) ∩ ρ(HB2), if u`(λ) (resp. u`(µ)) is the
solution of the boundary value problem (3.2) for B = B` (resp. B = B`
and λ = µ), ` = 1, 2, we have posed

w`(λ, µ) = u`(λ)− u`(µ),(5.12)
w1,2(µ) = u1(µ)− u2(µ).(5.13)

Let

(5.14) K(τ, µ, f) = (∂ν + iA1(ν))w1(λ2
τ , µ)− (∂ν + iA2(ν))w2(λ2

τ , µ)
on ∂M.

Then, by (3.19), we obtain

(5.15) K(τ, µ, f)

=
∑
k>1

[
(µ− λ2

τ )〈f, ψ1,k〉
(λ2
τ − λ1,k)(µ− λ1,k)ψ1,k −

(µ− λ2
τ )〈f, ψ2,k〉

(λ2
τ − λ2,k)(µ− λ2,k)ψ2,k

]
.
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We define

(5.16) L(τ, µ) = 〈K(τ, µ, ϕ∗1,τ ), ϕ∗2,τ 〉.

From (5.15), we get

(5.17) L(τ, µ)

=
∑
k>1

(µ− λ2
τ )
[ 〈ϕ∗1,τ , ψ1,k〉〈ψ1,k, ϕ

∗
2,τ 〉

(λ2
τ − λ1,k)(µ− λ1,k) −

〈ϕ∗1,τ , ψ2,k〉〈ψ2,k, ϕ
∗
2,τ 〉

(λ2
τ − λ2,k)(µ− λ2,k)

]
.

Define

(5.18) L∗(τ) =
∑
k>1
L∗1,k(τ) +

∑
k>1
L∗2,k(τ) +

∑
k>1
L∗3,k(τ),

with

L∗1,k(τ) =
〈
ϕ∗1,τ , ψ1,k − ψ2,k

〉
〈ψ1,k, ϕ

∗
2,τ 〉

λ2
τ − λ1,k

,

L∗2,k(τ) =
〈
ϕ∗1,τ , ψ2,k

〉
〈ψ1,k − ψ2,k, ϕ

∗
2,τ 〉

λ2
τ − λ1,k

,

L∗3,k(τ) =
〈
ϕ∗1,τ , ψ2,k

〉
〈ψ2,k, ϕ

∗
2,τ 〉

(
1

(λ2
τ − λ1,k) −

1
(λ2
τ − λ2,k)

)
.

Lemma 5.2. — Under assumption (1.17), L(τ, µ) converges to L∗(τ) as
µ→ −∞ and, for t ∈ [0, 1/2), we have

(5.19) lim sup
τ→∞

τ−t|L∗(τ)| 6 C‖η‖H2(S+
y M1) lim sup

k→∞
k−t/n|λ1,k − λ2,k|.

Proof. — We split L(τ, µ) into three series

L(τ, µ) =
∑
k>1
L1,k(µ, τ) +

∑
k>1
L2,k(µ, τ) +

∑
k>1
L3,k(µ, τ),

with

L1,k(τ, µ) = (µ− λ2
τ )
〈ϕ∗1,τ , ψ1,k − ψ2,k〉〈ψ1,k, ϕ

∗
2,τ 〉

(λ2
τ − λ1,k)(µ− λ1,k) ,

L2,k(τ, µ) = (µ− λ2
τ )
〈ϕ∗1,τ , ψ2,k〉〈ψ1,k − ψ2,k, ϕ

∗
2,τ 〉

(λ2
τ − λ1,k)(µ− λ1,k) ,

L3,k(τ, µ) = (µ− λ2
τ )〈ϕ∗1,τ , ψ2,k〉〈ψ2,k, ϕ

∗
2,τ 〉

×
(

1
(λ2
τ − λ1,k)(µ− λ1,k) −

1
(λ2
τ − λ2,k)(µ− λ2,k)

)
.

Under assumption (1.17) and in light of (5.1), we can see that the series
in L1,k(τ, µ), L2,k(τ, µ) and L3,k(τ, µ) converge uniformly with respect to
µ� −1. Therefore, L(τ, µ) converges to L∗(τ) as µ→ −∞.
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We have

|L∗1,k(τ)| 6 ‖ϕ∗1,τ‖L2(∂M)‖ψ1,k − ψ2,k‖L2(∂M)

∣∣∣∣ 〈ψ1,k, ϕ
∗
2,τ 〉

λ2
τ − λ1,k

∣∣∣∣ ,(5.20)

|L∗2,k(τ)| 6
‖ϕ∗1,τ‖L2(∂M)‖ϕ∗2,τ‖L2(∂M)‖ψ1,k − ψ2,k‖2L2(∂M)

|λ2
τ − λ1,k|

(5.21)

+ ‖ϕ∗2,τ‖L2(∂M)‖ψ1,k − ψ2,k‖L2(∂M)

∣∣∣∣ 〈ϕ∗1,τ , ψ1,k〉
λ2
τ − λ1,k

∣∣∣∣ ,
|L∗3,k(τ)|6 ‖ϕ∗1,τ‖L2(∂M)‖ψ1,k−ψ2,k‖L2(∂M)

|λ2,k−λ1,k|
|λ2
τ−λ2,k|

∣∣∣∣〈ψ2,k, ϕ
∗
2,τ 〉

λ2
τ−λ2,k

∣∣∣∣(5.22)

+ |λ2,k − λ1,k|
∣∣∣∣ 〈ϕ∗1,τ , ψ1,k〉
λ2
τ − λ1,k

∣∣∣∣ ∣∣∣∣ 〈ψ2,k, ϕ
∗
2,τ 〉

λ2
τ − λ2,k

∣∣∣∣ .
But

(5.23) sup
τ>1
‖ϕ∗1,τ‖L2(∂M) 6 ‖β∗1‖L2(∂M) 6 C‖η‖H2(SyM1)

and

(5.24) sup
τ>1
‖ϕ∗2,τ‖L2(∂M) 6 ‖β∗1‖L2(∂M) 6 C,

the constant C only depends on M. This estimate entails in particular that

lim sup
τ→+∞

τ−t|L∗1,k(τ)| = 0, k > 1.

Thus, for an arbitrary positive integer n1, we get

lim sup
τ→+∞

τ−t
∞∑
k=1
|L∗1,k(τ)| = lim sup

τ→+∞
τ−t

∞∑
k=n1

|L∗1,k(τ)|.

This estimate together with (5.1), (5.20), (5.23) and (5.24) imply

τ−t
∞∑

k=n1

|L∗1,k(τ)| 6 C
(

sup
τ>1

τ−2t
∞∑
k=1

k2t/n
∣∣∣∣ 〈ψ1,k, ϕ

∗
2,τ 〉

λ2
τ − λ1,k

∣∣∣∣2
)1/2

×

( ∞∑
k=n1

k−2t/n‖ψ1,k − ψ2,k‖2L2(∂M)

)1/2

6 C

( ∞∑
k=n1

k−2t/n‖ψ1,k − ψ2,k‖2L2(∂M)

)1/2

,
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the constant C is independent on τ . Since the last term goes to zero as n1
tends to ∞ by (1.18), we easily get

(5.25) lim sup
τ→+∞

τ−t
∞∑
k=1
|L∗1,k(τ)| = 0.

In the sequel, we use the following useful observation: for r > 1 the map
τ 7→ |λ2

τ − r| reach its minimum at τ =
√
r − 1. Hence

|λ2
τ − r| > 2

√
r − 1, τ > 0.

This observation together with (5.1), (5.21) and (A.1) in Appendix A yield

lim sup
τ→+∞

τ−t
∞∑
k=1
|L∗2,k(τ)| = lim sup

τ→+∞
τ−t

∞∑
k=n1

|L∗2,k(τ)|

6 C
∞∑

k=n1

k−1/n‖ψ1,k − ψ2,k‖2L2(∂M)

+ C

(
sup
τ>1

τ−2t
∞∑
k=1

k2t/n
∣∣∣∣〈ψ1,k, ϕ

∗
1,τ 〉

λ2
τ − λ1,k

∣∣∣∣2
)1

2
( ∞∑
k=n1

k−2/n‖ψ1,k−ψ2,k‖2L2(∂M)

)1
2

6 C
∞∑

k=n1

k−2t/n‖ψ1,k−ψ2,k‖2L2(∂M) +C

( ∞∑
k=n1

k−2t/n‖ψ1,k−ψ2,k‖2L2(∂M)

)1
2

.

Then, using again the fact that n1 is arbitrary and (1.17), we find

(5.26) lim sup
τ→+∞

τ−t
∞∑
k=1
|L∗2,k(τ)| = 0.

The same argument as before enables us to obtain

(5.27) lim sup
τ→+∞

τ−t
∞∑
k=1
|L∗3,k(τ)| 6 C‖η‖H2(S+

y M1) lim sup
k→+∞

k−t/n|λ1,k−λ2,k|.

The expected result follows from (5.25), (5.26) and (5.27). �

5.2. End of the proof of the main results

We are now ready to complete the proof of Theorems 1.2 and 1.3.
Proof of Theorem 1.2. — Since A`, ` = 1, 2, satisfy (1.16) and w1,2(µ) =

0 on ∂M, we easily obtain the following identity, useful in the sequel,

(5.28) K(τ, µ, ϕ∗1,τ ) = (∂ν + iA1(ν))u1(λ)
− (∂ν + iA2(ν))u2(λ)− ∂νw1,2(µ) on ∂M.
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By formula (5.16) we get

(5.29) L(τ, µ) =
∫
∂M
K(τ, µ, ϕ∗1,τ )ϕ∗2,τ dσn−1

=
∫
∂M

(∂ν + iA1(ν))u1(λ)ϕ∗2,τ dσn−1

−
∫
∂M

(∂ν + iA2(ν))u2(λ)ϕ∗2,τ dσn−1 −
∫
∂M

∂νw1,2(µ)ϕ∗2,τ dσn−1

=
∫
∂M

ΛB1(λ2
τ )ϕ∗1,τϕ∗2,τ dσn−1

−
∫
∂M

ΛB2(λ2
τ )ϕ∗1,τϕ∗2,τ dσn−1 −

∫
∂M

∂νw1,2(µ)ϕ∗2,τ dσn−1

= SB1(τ)− SB2(τ)−
∫
∂M

∂νw1,2(µ)ϕ∗2,τ dσn−1.

According to Lemmas 3.3 and 5.2, formula (5.29) and passing to the limit
as µ goes to −∞, we get

(5.30) SB1(τ)− SB2(τ) = L∗(τ).

Furthermore, from (5.19) we have τ−t (SB1(τ)− SB2(τ)) is bounded for
τ > 1 and t ∈ [0, 1/2). Then τ−1 (SB1(τ)− SB2(τ)) goes to zero as τ tends
to ∞. This in (4.40) yields,

(5.31)
∫
S+
y M1

(
eiI1A(y,θ) − 1

)
η(y, θ) dωy(θ) = 0.

Since η is arbitrary in H2(SyM), we obtain that I1A(y, θ) ∈ 2πZ for any
θ ∈ S+

y M1. On the other hand, since ∂M1 is strictly convex, S+
y M1 3 θ 7→

`+(y, θ) is continuous, and letting θ tend to a tangent direction θ0 ∈ Sy∂M1
we get

lim
θ→θ0

`+(y, θ) = 0

hence
2πm = lim

θ→θ0
I1A(y, θ) = 0

and therefore

(5.32) I1A(y, θ) = 0, θ ∈ S+
y M1

which implies that I1A = 0, because y ∈ ∂M1 is arbitrary. From (2.14),
we deduce that the solenoidal part As in the Hodge decomposition of the
1-form A is equal to zero. This completes the proof of the first part of
Theorem 1.2.
Now let us consider the second part of the theorem. For this purpose,

we assume that condition (1.18) is fulfilled and we would like to show that

ANNALES DE L’INSTITUT FOURIER



A BORG–LEVINSON THEOREM 2507

q1 = q2. Note first that the condition As = 0 implies dA = 0 and, since M1
is simply connected, there exists ϕ ∈ W 3,∞(M1) such that dϕ = A. Since
A = 0 on M1 \M by eventually extracting a constant to ϕ we may assume
that ϕ = 0 on M1 \M . In particular we have ϕ|∂M = ∂νϕ|∂M = 0. Let
B3 = (A1, q2). Applying (1.5), we deduce that

e−iϕHB2e
iϕ = HB3 .

In particular, for λ3,k, k > 1, the non-decreasing sequence of eigenval-
ues of HB3 we have λ3,k = λ2,k and φ3,k = e−iϕφ2,k corresponds to
an orthonormal basis of eigenfunctions of HB3 . Moreover, fixing ψ3,k =
(∂ν + iA2(ν))φ3,k, we deduce that

ψ3,k(x) = (∂ν + iA1(ν)) e−iϕφ2,k(x)

= e−iϕ (∂ν + iA1(ν)− i∂νϕ)φ2,k(x)
= (∂ν + iA2(ν))φ2,k(x) = ψ2,k(x), x ∈ ∂M.

Combining this with (1.18), we deduce that

lim
k→+∞

|λ1,k − λ3,k| = 0, and
∑
k>1
‖ψ1,k − ψ3,k‖2L2(∂M) <∞.

In view of this gauge invariance property, from now on, without loss of
generality, we may assume that A1 = A2. According to (1.18), with t = 0,
the right hand side of (5.19) is equal to zero. �

Proof of Theorem 1.3. — We already proved that dA1 = dA2 in The-
orem 1.2 and according to the gauge invariance property of the boundary
spectral data, without loss of generality, we may assume that A1 = A2.
Then a straightforward application of the min-max principle yields

(5.33) |λ1,k − λ2,k| 6 ‖q1 − q2‖L∞(M).

In that case (1.19) is reduced to

(5.34)
∑
k>1
‖ψ1,k − ψ2,k‖2L2(∂M) <∞.

Combining this with (4.45), (5.19) for t = 0 (which is valid in the present
case) and taking into account that

(5.35) lim sup
τ→+∞

|SB1(τ)− SB2(τ)| = lim sup
τ→+∞

|L∗(τ)|,
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we obtain, for any η ∈ H2(S+
y M1) real valued, that

(5.36)
∣∣∣∣ ∫
S+
y M1

I0(q)(y, θ)η(y, θ) dσ2n−2
∣∣∣∣

6 C‖η‖H2(S+
y M1) lim sup

k→+∞
|λ1,k − λBk2 |.

Since q ∈ H1(M1), by the smoothing effect of the normal operator N0 =
I∗0I0 (see (2.21)), N0q ∈ H2(M) and

(5.37) ‖N0(q)‖H2(M1) 6 C‖q‖H1(M) 6 Cr
′.

Since I0 : H2(M1) → H2(∂+SM1) is bounded, we can take η = I0N0(q).
We integrate with respect to y ∈ ∂M1 the left hand side (5.36) in order
to get∫

∂+SM1

I0(q)(y, θ)η(y, θ) dσ2n−2 =
∫

M1

|N0(q)|2 dvn = ‖N0(q)‖2L2(M1).

Combined with (5.36), this inequality entails

(5.38) ‖N0(q)‖2L2(M1) 6 C‖I0N0(q)‖H2(∂+SM1) lim sup
k→+∞

|λ1,k − λ2,k|.

On the other hand, it follows from (5.37)

(5.39) ‖I0N0(q)‖H2(∂+SM1) 6 C‖N0(q)‖H2(M1) 6 C
′,

the constants C and C ′ only depend on M and r. Thus, (5.38) and (5.39),
give

(5.40) ‖N0(q)‖2L2(M1) 6 C lim sup
k→+∞

|λ1,k − λ2,k|,

the constant C only depends on M and r′. We complete the proof by using
the interpolation inequality

‖N0(q)‖H1(M1) 6 C‖N0(q)‖
1
2
L2(M1)‖N0(q)‖

1
2
H2(M1) 6 C

′‖N0(q)‖
1
2
L2(M1),

the constants C and C ′ only depend on M, r. We then apply (2.20) to
get (1.20). �

6. Extension to the Neumann case

We explain in this section how to adapt the preceding analysis to obtain
an uniqueness result for an inverse spectral problem fo the Schrödinger
operator under Neumann boundary condition.
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For B = (A, q) ∈ B, define the unbounded self-adjoint operator HB ,
acting in L2(M) as follows

(6.1) HBu = HBu = −∆Au+ qu, u ∈ D(HB),

with domain

(6.2) D(HB) =
{
u∈H1(M), −∆Au+qu∈L2(M), (∂ν + iA(ν))u|∂M = 0

}
.

Fix B` ∈ Br, ` = 1, 2 and denote by (µ`,k, χ`,k), k > 1, the eigenvalues
and normalized eigenfunctions of HB` .
We aim in this section to prove the following uniqueness result.

Theorem 6.1. — Assume that (1.16) and the conditions
+∞∑
k=1
‖χ1,k − χ2,k‖2L2(∂M) <∞,(6.3)

lim
k→+∞

k−
1
n |µ1,k − µ2,k| = 0,(6.4)

are fulfilled. Then As1 = As2.

Note that, according to Weyl’s formula in [10, p. 114], we have that

lim
k→+∞

k−
1
n |µ1,k − µ2,k| <∞.

Therefore, condition (6.4) seems to be the optimal rate of growth of the
difference of eigenvalues that guaranty the uniqueness of the magnetic po-
tential.

6.1. Boundary representation formulae for the Neumann
problem

For g ∈ H1/2(∂M) and ρ(HB), consider the BVP

(6.5)
{

(HB − λ)v = 0 in M,

(∂ν + iAν)v = g on ∂M.

Similarly to the Dirichlet case, for ` = 1, 2, define the N-to-D map

N`,λ : g ∈ H 1
2 (∂M) 7−→ vj(λ)|∂M,

where vj(λ) ∈ H2(M) is the solution of the BVP (6.5).
Define, For ` = 1, 2,

(6.6)
Qj(τ) =

〈
Nj,λ2

τ
(∂ν + iAjν)ϕ∗1,τ , (∂ν + iAjν)ϕ∗2,τ

〉
=
∫
∂M

(∂ν − iAjν)ϕ∗2,τNj,λ2
τ
(∂ν + iAjν)ϕ∗1,τ dσn−1,
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with ϕ∗j,τ , j = 1, 2, given in (4.6).

Proposition 6.2. — We have

(6.7) Q1(τ) =
∫
∂M

(iλτ )∂νψβ∗1 + i(A1ν)β∗1 + ∂νβ
∗
1)β∗2(x) dσn−1(x)

− 2λτ
∫
Sy(M1)

∫ `+(y,θ)

0
σ̃A(r, y, θ)β̃∗1 β̃∗2%1/2 dr dωy(θ)−

∫
M
β∗1HB1(β∗2) dvn

+
∫

M

[
(HB1−λ2

τ )−1(eiλτψHA1,q1β
∗
1)
]
e−iλτψ

[
2λτ (A∇ψ)β∗2 +HB1β

∗
2
]

dvn

and

(6.8) Q2(τ)

=
∫
∂M

(iλτ )∂νψβ∗1 +i(A1ν)β∗1 +∂νβ
∗
1)β∗2(x) dσn−1(x)−

∫
M
β∗1HB2(β∗2) dvn

+
∫

M

[
(HB2−λ2

τ )−1eiλτψ(2λτ (−A∇ψ)β∗1 +HB2β
∗
1)
](
e−iλτψHB2β

∗
2
)

dvn.

Proof. — Applying Green’s formula, we get

Q1(τ) =
∫

M
div(v1(λ2

τ )∇A1ϕ
∗
2,τ ) dvn

=
∫

M

〈
∇A1v1(λ2

τ ),∇A1ϕ
∗
2,τ
〉
g

dvn +
∫

M
v1(λ2

τ )∆A1ϕ
∗
2,τ dvn

= −
∫

M
∆A1v1(λ2

τ )ϕ∗2,τ dvn

+
∫
∂M

(∂ν + iA1ν)v1(λ2
τ )ϕ∗2,τdσg +

∫
M
v1(λ2

τ )∆A1ϕ
∗
2,τ dvn,

where v1(λ2
τ ) the solution of the BVP (6.5), with g = (∂ν + iA1ν)ϕ∗1,τ ,

λ = λ2
τ , A = A1, q = q1. Using the fact that

(∂ν + iA1ν)v1(λ2
τ )(x) = g(x) = (∂ν + iA1ν)ϕ∗1,τ (x), x ∈ ∂M,

we deduce that

Q1(τ) =
∫
∂M

(iλτ )∂νψβ∗1 + i(A1ν)β∗1 + ∂νβ
∗
1)β∗2(x) dσn−1(x)

−
∫

M
∆A1v1(λ2

τ )ϕ∗2,τ dvn +
∫

M
v1(λ2

τ )∆A1ϕ
∗
2,τ dvn.

This identity at hand, we proceed as in Lemma 4.1 to get (6.7). Similar
arguments allow us to derive (6.8). �
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As for the derivation of (4.40), we obtain from (6.7) and (6.8) the fol-
lowing identity

(6.9) Q2(τ)−Q1(τ)

= 2λτ
∫
Sy(M1)

∫ `+(y,θ)

0
σ̃A(r, y, θ)β̃∗1 β̃∗2%1/2 dr dωy(θ)

+
∫

M
(q1 − q2)β∗1β∗2 dvn(x)−

∫
M
β∗1(∆A1β

∗
2 −∆A2β

∗
2) dvn

−
∫

M

[
(HB1−λ2

τ )−1(eiλτψHB1β
∗
1)
]
e−iλτψ

[
2λτ (A∇ψ)β∗2 +HB1β

∗
2
]

dvn

+
∫

M

[
(HB2−λ2

τ )−1eiλτψ(2λτ (−A∇ψ)β∗1 +HB2β
∗
1)
](
e−iλτψHB2β

∗
2
)

dvn,

from which we deduce that, for all y ∈ ∂M1 and all η ∈ H2(S+
y M1),

(6.10) 2i
∫
S+
y (M1)

(
eiI1A(y,θ) − 1

)
η(y, θ) dωy(θ) = lim

τ→+∞

Q2(τ)−Q1(τ)
τ

.

The following lemma is needed in the proof of Theorem 6.1.

Lemma 6.3. — For ` = 1, 2, consider ϕ∗j,τ , j = 1, 2, given by (4.6).
Then, we have

(6.11)

∞∑
k=1

k
2
n

∣∣∣∣∣
〈
ϕ∗1,τ , χ`,k

〉
µ`,k − λ2

τ

∣∣∣∣∣
2

< C‖η‖2
H2(S+

y (M1))τ
2,

∞∑
k=1

k
2
n

∣∣∣∣∣
〈
ϕ∗2,τ , χ`,k

〉
µ`,k − λ2

τ

∣∣∣∣∣
2

6 Cτ2, ` = 1, 2,

with C > 0 independent of τ .

Proof. — Let τ = ‖q1‖L∞(M) + ‖q2‖L∞(M) + 1 and note that D((HB` +
τ)1/2) = H1(M) since it coincides with the domain of the form associated
to the operator HB` + τ . Whence, for any w ∈ H1(M), we have

∞∑
k=1

(1 + |µ`,k|)|(w,χ`,k)L2(M)|2 6 C‖w‖2H1(M),

the constant C only depends on τ , A`, q` and M. Combining this estimate
with a Weyl’s formula for Neumann magnetic operators, similar to that in
Lemma A.1, we get (6.11). �

TOME 71 (2021), FASCICULE 6



2512 Bellassoued, Choulli, Dos Santos Ferreira, Kian & Stefanov

6.2. End of the proof of Theorem 6.1.

The following lemma is useful in the sequel

Lemma 6.4. — Let g ∈ H1/2(∂M), B ∈ B, λ ∈ ρ (HB) and denote by
v(λ) the solution of the BVP (6.5). Then

(6.12) v(λ)|∂M =
∑
k>1

〈g, χk〉
λ− µk

χk,

the convergence takes place in H1/2(∂M).

In light of this lemma, we have

(6.13) Q2(τ)−Q1(τ) =
∞∑
k=1

〈(∂ν + iA1ν)ϕ∗1,τ , χ2,k〉〈χ2,k, (∂ν + iA1ν)ϕ∗2,τ 〉
λ2
τ − µ2,k

−
〈(∂ν + iA1ν)ϕ∗1,τ , χ1,k〉〈χ1,k, (∂ν + iA1ν)ϕ∗2,τ 〉

λ2
τ − µ1,k

.

Observe that, according to (1.16), A1 can be substituted by A2 in the
identity above.
On the other hand, we have from (4.6)

(6.14) ‖(∂ν + iA1ν)ϕ∗j,τ‖L2(∂M)

6 |λτ |‖∂νψβ∗j ‖L2(∂M) + ‖(∂ν + iA1ν)β∗j ‖L2(∂M)

6 Cτ(1 + ‖η‖H2(SyM1)),

the constant C being independent of τ . Thus,

|Q2(τ)−Q1(τ)| 6
∞∑
k=1
Ek(τ) +

∞∑
k=1
Fk(τ) +

∞∑
k=1
Gk(τ),

with

Ek(τ) = ‖(∂ν+iA1ν)ϕ∗1,τ‖L2(∂M)‖χ2,k−χ1,k‖L2(∂M)
|〈χ2,k,(∂ν+iA1ν)ϕ∗2,τ 〉|

|λ2
τ − µ2,k|

6 C‖χ2,k − χ1,k‖L2(∂M)τ
|〈χ2,k, (∂ν + iA1ν)ϕ∗2,τ 〉|

|λ2
τ − µ2,k|

,

Fk(τ)=‖(∂ν+iA1ν)ϕ∗2,τ‖L2(∂M)‖χ2,k−χ1,k‖L2(∂M)
|〈(∂ν+iA1ν)ϕ∗1,τ , χ1,k〉|

|λ2
τ − µ2,k|

6C‖χ2,k − χ1,k‖L2(∂M)τ
|〈(∂ν + iA1ν)ϕ∗1,τ , χ2,k〉|

|λ2
τ − µ2,k|

+ Cτ2‖χ1,k − χ2,k‖2L2(∂M)
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and

Gk(τ)

=
|〈(∂ν + iA1ν)ϕ∗1,τ , χ1,k〉||〈χ1,k, (∂ν + iA1ν)ϕ∗2,τ 〉||µ2,k − µ1,k|

|λ2
τ − µ2,k||λ2

τ − µ1,k|

6 Ck−
1
n |µ2,k − µ1,k|‖χ1,k − χ2,k‖L2(∂M)k

1
n
|〈(∂ν + iA1ν)ϕ∗1,τ , χ1,k〉|

|λ2
τ − µ1,k|

+ k−
1
n |µ2,k−µ1,k|k

1
n
|〈(∂ν+iA1ν)ϕ∗1,τ , χ1,k〉|

|λ2
τ − µ1,k|

|〈χ2,k, (∂ν+iA1ν)ϕ∗2,τ 〉|
|λ2
τ − µ2,k|

,

the constant C > 0 being independent on τ and k.
Noting that

sup
τ>1

τ2

|λ2
τ − µ`,k|

<∞, ` = 1, 2, k > 1,

we deduce that we have, for all k > 1,

lim sup
τ→+∞

τ−1Ek(τ) = lim sup
τ→+∞

τ−1Fk(τ) = lim sup
τ→+∞

τ−1Gk(τ) = 0.

Then, for any arbitrary integer n1 > 1, we get

lim sup
τ→+∞

τ−1
∞∑
k=1
Ek(τ) 6 lim sup

τ→+∞
τ−1

∞∑
k=n1

Ek(τ),

lim sup
τ→+∞

τ−1
∞∑
k=1
Fk(τ) 6 lim sup

τ→+∞
τ−1

∞∑
k=n1

Fk(τ),

lim sup
τ→+∞

τ−1
∞∑
k=1
Gk(τ) 6 lim sup

τ→+∞
τ−1

∞∑
k=n1

Gk(τ).

We combine these inequalities, estimates (6.11) and Weyl’s formula in order
to get, by repeating the arguments used to prove Lemma 5.2, that

lim sup
τ→+∞

∣∣∣∣Q2(τ)−Q1(τ)
τ

∣∣∣∣
6 C

(
1 + ‖η‖H2(S+

y (M1))
)2(lim sup

k→+∞
k−

1
n |µ2,k − µ1,k|

)
.

Then, from (6.4) and (6.10) we deduce that I1A ∈ 2πZ. We proceed simi-
larly to the proof of Theorem 1.2 to get that As1 = As2. This completes the
proof of Theorem 6.1.
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Appendix A. Weyl’s formula

We establish some uniform estimates related to the Weyl’s formula of
magnetic Schrödinger operators. Our estimates, which are also valid for
the Neuman realization of magnetic Schrödinger operators, can be stated
as follows.

Lemma A.1. — Let B = (A, q) ∈ B. Then there exists a constant
C > 1, only depending on M and r > ‖A‖2L∞(M,T∗M) + ‖q‖L∞(M) such that

(A.1) C−1k2/n 6 1 + |λkB | 6 Ck2/n, k > 1.

Proof. — Let (λk) be the sequence of eigenvalues, counted according
to their multiplicities, of the Laplace–Beltrami operator under Dirichlet
boundary condition. By Weyl’s asymptotic formula [10, p. 114]

(A.2) λk = O
(
k

2
n

)
, k > 1.

The sesquilinear form associated to HB is given by

a(u, v) =
∫

M
〈∇Au,∇Av〉dvn +

∫
M
quv dvn, u, v ∈ H1

0 (M).

Then it is not hard to check that

a(u, u) 6 ‖∇u‖2L2(M) + 2
√
r‖u‖L2(M)‖∇u‖L2(M) + r‖u‖2L2(M)

6
3
2‖∇u‖

2
L2(M) + r‖u‖2L2(M)

and

a(u, u) > ‖∇u‖2L2(M) − 2
√
r‖u‖L2(M)‖∇u‖L2(M) − r‖u‖2L2(M)

>
1
2‖∇u‖

2
L2(M) − 3r‖u‖2L2(M).

We get the expected two-sided inequalities (A.1) by using (A.2) and the
minmax principle. �

BIBLIOGRAPHY

[1] G. Alessandrini & J. Sylvester, “Stability for multidimensional inverse spectral
problem”, Commun. Partial Differ. Equations 15 (1990), no. 5, p. 711-736.

[2] V. A. Ambartsumian, “Über eine Frage der Eigenwerttheorie”, Z. Phys. 53 (1929),
p. 690-695.

[3] Y. E. Anikonov & V. G. Romanov, “On uniqueness of determination of a form
of first degree by its integrals along geodesics”, J. Inverse Ill-Posed Probl. 5 (1997),
no. 6, p. 487-480.

[4] M. Belishev, “An approach to multidimensional inverse problems for the wave
equation”, Dokl. Akad. Nauk SSSR 297 (1987), p. 524-527.

ANNALES DE L’INSTITUT FOURIER



A BORG–LEVINSON THEOREM 2515

[5] M. Belishev & Y. Kurylev, “To the reconstruction of a Riemannian manifold
via its spectral data (BC-method)”, Commun. Partial Differ. Equations 17 (1992),
p. 767-804.

[6] M. Bellassoued, “Stable determination of coefficients in the dynamical
Schrödinger equation in a magnetic field”, Inverse Probl. 33 (2017), p. 055009.

[7] M. Bellassoued, M. Choulli & M. Yamamoto, “Stability estimate for an in-
verse wave equation and a multidimensional Borg–Levinson theorem”, J. Differ.
Equations 247 (2009), no. 2, p. 465-494.

[8] M. Bellassoued & D. Dos Santos Ferreira, “Stability estimates for the
anisotropic wave equation from the Dirichlet-to-Neumann map”, Inverse Probl.
Imaging 5 (2011), no. 4, p. 745-773.

[9] M. Bellassoued, Y. Kian & É. Soccorsi, “An inverse problem for the magnetic
Schrödinger equation in infinite cylindrical domains”, Publ. Res. Inst. Math. Sci.
54 (2018), p. 679-728.

[10] P. Bérard, Spectral Geometry : Direct and Inverse Problems, Lecture Notes in
Mathematics, vol. 1207, Springer, 1986.

[11] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe”, Acta
Math. 78 (1946), p. 1-96.

[12] B. Canuto & O. Kavian, “Determining coefficients in a class of heat equations via
boundary measurements”, SIAM J. Math. Anal. 32 (2001), no. 5, p. 963-986.

[13] ———, “Determining two coefficients in elliptic operators via boundary spectral
data: a uniqueness result”, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 7
(2004), no. 1, p. 207-230.

[14] M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques,
Mathématiques & Applications, vol. 65, Springer, 2009.

[15] M. Choulli & P. Stefanov, “Stability for the multi-dimensional Borg–Levinson
theorem with partial spectral data”, Commun. Partial Differ. Equations 38 (2013),
no. 3, p. 455-476.

[16] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand & G. Uhlmann, “Determin-
ing a magnetic Schrödinger operator from partial Cauchy data”, Commun. Math.
Phys. 271 (2007), no. 2, p. 467-488.

[17] ———, “Limiting Carleman weights and anisotropic inverse problems”, Invent.
Math. 178 (2009), no. 1, p. 119-171.

[18] D. Dos Santos Ferreira, Y. Kurylev, M. Lassas & M. Salo, “The Calderón
problem in transversally anisotropic geometries”, J. Eur. Math. Soc. 18 (2016),
no. 11, p. 2579-2626.

[19] B. Frigyik, P. Stefanov & G. Uhlmann, “The X-ray transform for a generic
family of curves and weights”, J. Geom. Anal. 18 (2008), no. 1, p. 89-108.

[20] I. M. Gel′fand & B. M. Levitan, “On the determination of a differential equation
from its spectral function”, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), p. 309-360.

[21] H. Isozaki, “Some remarks on the multi-dimensional Borg–Levinson theorem”, J.
Math. Kyoto Univ. 31 (1991), no. 3, p. 743-753.

[22] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 1995.
[23] A. Katchalov & Y. Kurylev, “Multidimensional inverse problem with incomplete

boundary spectral data”, Commun. Partial Differ. Equations 23 (1998), p. 55-95.
[24] A. Katchalov, Y. Kurylev & M. Lassas, Inverse boundary spectral problems,

Monographs and Surveys in Pure and Applied Mathematics, vol. 123, Chapman &
Hall/CRC, 2001.

[25] A. Katchalov, Y. Kurylev, M. Lassas & N. Mandache, “Equivalence of time-
domain inverse problems and boundary spectral problems”, Inverse Probl. 20
(2004), no. 2, p. 419-436.

TOME 71 (2021), FASCICULE 6



2516 Bellassoued, Choulli, Dos Santos Ferreira, Kian & Stefanov

[26] O. Kavian, Y. Kian & E. Soccorsi, “Uniqueness and stability results for an inverse
spectral problem in a periodic waveguide”, J. Math. Pures Appl. 104 (2015), no. 6,
p. 1160-1189.

[27] Y. Kian, “A multidimensional Borg–Levinson theorem for magnetic Schrödinger
operators with partial spectral data”, J. Spectr. Theory 8 (2018), no. 1, p. 235-269.

[28] ———, “Determination of non-compactly supported electromagnetic potentials in
an unbounded closed waveguide”, Rev. Mat. Iberoam. 36 (2020), no. 3, p. 671-710.

[29] ———, “Recovery of non compactly supported coefficients of elliptic equations on
an infinite waveguide”, J. Inst. Math. Jussieu 19 (2020), no. 5, p. 1573-1600.

[30] ———, “Simultaneous determination of coefficients, internal sources and an obsta-
cle of a diffusion equation from a single measurement”, https://arxiv.org/abs/
2007.08947, 2020.

[31] Y. Kian, Y. Kurylev, M. Lassas & L. Oksanen, “Unique recovery of lower order
coefficients for hyperbolic equations from data on disjoint sets”, J. Differ. Equations
267 (2019), no. 4, p. 2210-2238.

[32] Y. Kian, Z. Li, Y. Liu & M. Yamamoto, “The uniqueness of inverse problems for
a fractional equation with a single measurement”, Math. Ann. 380 (2021), no. 3-4,
p. 1465-1495.

[33] Y. Kian, M. Morancey & L. Oksanen, “Application of the boundary control
method to partial data Borg-Levinson inverse spectral problem”, Math. Control
Relat. Fields 9 (2019), p. 289-312.

[34] Y. Kian, L. Oksanen, E. Soccorsi & M. Yamamoto, “Global uniqueness in an
inverse problem for time-fractional diffusion equations”, J. Differ. Equations 264
(2018), no. 2, p. 1146-1170.

[35] Y. Kian & E. Soccorsi, “Hölder stably determining the time-dependent electro-
magnetic potential of the Schrödinger equation”, SIAM J. Math. Anal. 51 (2019),
no. 2, p. 627-647.

[36] Y. Kian & A. l. Tetlow, “Hölder stable recovery of time-dependent electromag-
netic potentials appearing in a dynamical anisotropic Schrödinger equation”, Inverse
Probl. Imaging 14 (2020), no. 5, p. 819-839.

[37] K. Krupchyk & G. Uhlmann, “Uniqueness in an inverse boundary problem for
a magnetic Schrödinger operator with a bounded magnetic potential”, Commun.
Math. Phys. 327 (2014), no. 3, p. 993-1009.

[38] M. Lassas & L. Oksanen, “An inverse problem for a wave equation with sources
and observations on disjoint sets”, Inverse Probl. 26 (2010), no. 8, article no. 085012
(19 pages).

[39] ———, “Inverse problem for the Riemannian wave equation with Dirichlet data
and Neumann data on disjoint sets”, Duke Math. J. 163 (2014), no. 6, p. 1071-1103.

[40] N. Levinson, “The inverse Strum–Liouville problem”,Mat. Tidsskr. B 1949 (1949),
p. 25-30.

[41] J.-L. Lions & E. Magenes, Non homogeneous boundary value problems and appli-
cations. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 181, Springer,
1972.

[42] A. Nachman, J. Sylvester & G. Uhlmann, “An n-dimensional Borg–Levinson
theorem”, Commun. Math. Phys. 115 (1988), no. 4, p. 595-605.

[43] G. Nakamura, Z. Sun & G. Uhlmann, “Global identifiability for an inverse prob-
lem for the Schrödinger equation in a magnetic field”,Math. Ann. 303 (1995), no. 3,
p. 377-388.

[44] V. Pohjola, “Multidimensional Borg–Levinson theorems for unbounded poten-
tials”, Asymptotic Anal. 110 (2018), no. 3-4, p. 203-226.

[45] M. Salo, “Inverse problems for nonsmooth first order perturbations of the Lapla-
cian”, PhD Thesis, University of Helsinki (Finland), 2004.

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/2007.08947
https://arxiv.org/abs/2007.08947


A BORG–LEVINSON THEOREM 2517

[46] V. S. Serov, “Borg-Levinson theorem for magnetic Schrödinger operator”, Bull.
Greek Math. Soc. 57 (2010), p. 321-332.

[47] V. Sharafutdinov, Integral Geometry of Tensor Fields, De Gruyter, 1994.
[48] P. Stefanov & G. Uhlmann, “Stability estimates for the X-ray transform of tensor

fields and boundary rigidity”, Duke Math. J. 123 (2004), no. 3, p. 445-467.
[49] ———, “Stable determination of generic simple metrics from the hyperbolic

Dirichlet-to-Neumann map”, Int. Math. Res. Not. 2005 (2005), no. 17, p. 1047-
1061.

[50] Z. Sun, “An inverse boundary value problem for Schrödinger operators with vector
potentials”, Trans. Am. Math. Soc. 338 (1993), no. 2, p. 953-969.

Manuscrit reçu le 3 août 2018,
révisé le 23 septembre 2019,
accepté le 13 novembre 2020.

Mourad BELLASSOUED
Université de Tunis El Manar
Ecole Nationale d’Ingénieurs de Tunis
LAMSIN, BP 37
1002 Tunis Le Belvédère (Tunisia)
mourad.bellassoued@enit.utm.tn
Mourad CHOULLI
Université de Lorraine
34 cours Léopold
54052 Nancy cedex (France)
mourad.choulli@univ-lorraine.fr
David DOS SANTOS FERREIRA
Institut Élie Cartan de Lorraine, UMR CNRS 7502,
équipe SPHINX, INRIA
Université de Lorraine
F-54506 Vandoeuvre-lès-Nancy Cedex (France)
ddsf@math.cnrs.fr
Yavar KIAN
Aix Marseille Univ, Université de Toulon
CNRS, CPT
Marseille (France)
yavar.kian@univ-amu.fr
Plamen STEFANOV
Department of Mathematics
Purdue University
West Lafayette, IN 47907 (USA)
Plamen-Stefanov@purdue.edu

TOME 71 (2021), FASCICULE 6

mailto:mourad.bellassoued@enit.utm.tn
mailto:mourad.choulli@univ-lorraine.fr
mailto:ddsf@math.cnrs.fr
mailto:yavar.kian@univ-amu.fr
mailto:Plamen-Stefanov@purdue.edu

	1. Introduction and main results
	1.1. Statement of the problem
	1.2. Obstruction to uniqueness
	1.3. Known results
	1.4. Preliminaries
	1.5. Main results
	1.6. Outline

	2. A short review on the geodesic ray transform on a simple manifold
	2.1. Geodesic ray transform of 1-forms
	2.2. Geodesic ray transform of functions

	3. Asymptotic spectral analysis
	4. Isozaki's representation formula
	4.1. Representation formula
	4.2. Solving the eikonal and transport equations
	4.3. Asymptotic behavior of the boundary representation formula

	5. Proof of the main results
	5.1. Asymptotic behavior of the spectral data
	5.2. End of the proof of the main results

	6. Extension to the Neumann case
	6.1. Boundary representation formulae for the Neumann problem
	6.2. End of the proof of Theorem 6.1.

	Appendix A. Weyl's formula
	References

