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RELATIVELY DOMINATED REPRESENTATIONS

by Feng ZHU (*)

Abstract. — Anosov representations give a higher-rank analogue of convex co-
compactness in a rank-one Lie group which shares many of its good geometric and
dynamical properties; geometric finiteness in rank one may be seen as a controlled
weakening of convex cocompactness to allow for isolated failures of hyperbolicity.
We introduce relatively dominated representations as a relativization of Anosov
representations, or in other words a higher-rank analogue of geometric finiteness.
We prove that groups admitting relatively dominated representations must be rel-
atively hyperbolic, that these representations induce limit maps with good prop-
erties, provide examples, and draw connections to work of Kapovich–Leeb which
also introduces higher-rank analogues of geometric finiteness.
Résumé. — Les représentations Anosov fournissent une classe de sous-groupes

discrets des groupes de Lie qui généralisent les sous-groupes convexes-cocompacts
d’un groupe de Lie de rang un. En rang un, la classe des sous-groupes géométrique-
ment finis est une généralisation de la classe des sous-groupes convexes-cocompacts,
qui autorise des défauts isolés d’hyperbolicité. Nous introduisons les représenta-
tions relativement dominées comme une relativisation des représentations Anosov,
autrement dit un analogue de la finitude géométrique en rang supérieur. Nous
montrons qu’un groupe qui admet une représentation relativement dominée est
nécessairement relativement hyperbolique et que ces représentations induisent des
applications de bord satisfaisant des bonnes propriétés. Nous donnons des exemples
et faisons des connexions avec le travail de Kapovich–Leeb sur d’ autres analogues
de la finitude géometrique en rang supérieur.

1. Introduction

Given a rank-one semisimple Lie group G such as SL(2,R) or PSL(2,C)
∼= SO0(1, 3), the notion of convex cocompactness, first introduced in the
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setting of Kleinian groups acting on H3, gives us a stable class of subgroups
with good geometric and dynamical properties.
When G is instead a higher-rank semisimple Lie group, such as SL(d,R)

with d > 3, Anosov subgroups are, at present, the best analogue of convex
cocompact ones. These were originally defined in [21], as a tool to study the
dynamics and geometry of individual Hitchin representations, and further
developed in [17]. There have subsequently been many other equivalent
characterizations: see for instance [4, 16, 19].
In rank one, the class of convex cocompact subgroups forms part of the

strictly larger class of geometrically finite subgroups, which may be un-
derstood as convex cocompactness with the possible addition of certain
degenerate “cuspidal” ends with controlled geometry. Geometrically finite
groups continue to have many of the good properties of convex cocom-
pact groups, modulo mild degeneracy at the cusps which may need to be
controlled by additional hypotheses.

In prior work [18], Kapovich and Leeb proposed relativized versions of
the Anosov condition, which may be considered to be higher-rank analogues
of geometric finiteness. In this paper we propose another, inspired by the
characterization in [4] and making use of the theory of relatively hyperbolic
groups.

Below, all of our groups Γ will be finitely-generated, and, to avoid un-
necessary additional technicalities, torsion-free.
The condition on representations which we wish to define is given in

terms of singular values and subspaces, and in terms of a modified word-
length: given a matrix A ∈ GL(d,R), let σi(A) (for 1 6 i 6 d) denote the
ith singular value of A.
Fix Γ a finitely-generated torsion-free group and a finite collection P of

finitely-generated subgroups satisfying certain conditions (RH) (described
in Definition 4.1) which are automatic if Γ is hyperbolic relative to P. We
will designate the subgroups in P and their conjugates “peripheral”.
Given Γ and P as above, we will say that the images of peripheral sub-

groups under a representation ρ : Γ → GL(d,R) are well-behaved if they
satisfy certain conditions which essentially ensure their images are para-
bolic, plus mild technical conditions governing the behaviors of limits of
Cartan projections. All of these conditions are described precisely in Defi-
nition 4.2.
Let X be a cusped space for (Γ,P) as constructed in [15] (see § 2 for

definitions.) Write dc to denote the metric on X, and | · |c := dc(id, ·). These
are defined in [15] in the case where Γ is hyperbolic relative to P, but the
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same construction can be done and continues to make sense in the more
general case of Γ a torsion-free finitely-generated group and P a malnormal
finite collection of finitely-generated subgroups.
Given Γ a finitely-generated torsion-free subgroup and a collection P of

finitely-generated subgroups satisfying (RH), we will say a representation
ρ : Γ → GL(d,R) is 1-dominated relative to P (Definition 4.3), if there
exists constants C, µ > 0 such that (D−) for all γ ∈ Γ, σ1

σ2
(ρ(γ)) > Ceµ|γ|c ,

and the images of peripheral subgroups under ρ are well-behaved.
Examples of relatively-dominated representations include geometrically-

finite hyperbolic holonomies and geometrically-finite convex projective
holonomies in the sense of [9]; we also remark that in the case P = ∅,
we recover the definition of dominated representations from [4].
1-relatively dominated representations are discrete and faithful, and send

non-peripheral elements to proximal images. Their orbit maps are quasi-
isometric embeddings of the relative Cayley graph, i.e. the Cayley graph
with the metric induced from the cusped space X ⊃ Cay(Γ).

In the setting of Anosov representations, [20] proved that if Γ is finitely-
generated and ρ : Γ→ GL(d,R) is such that there exist constants C, µ > 0
so that σ1

σ2
(ρ(γ)) > Ceµ|γ| for all γ ∈ Γ, then ρ is (P1)-Anosov, and in

particular Γ must be word-hyperbolic. An alternative proof of this appears
in [4] and was the original inspiration for this work. Here we can prove a
relative analogue to this hyperbolicity theorem:

Theorem 1.1 (Theorem 6.1). — If ρ : Γ → GL(d,R) is 1-dominated
relative to P, and Γ contains non-peripheral elements, then Γ must be
hyperbolic relative to P.

Moreover, given a 1-relatively dominated representation, we have limit
maps from the Bowditch boundary ∂(Γ,P) with many of the good proper-
ties of Anosov limit maps:

Theorem 1.2 (Theorem 7.2). — Given ρ : Γ → GL(d,R) 1-dominated
relative to P, we have well-defined, Γ-equivariant, continuous maps ξ :
∂(Γ,P) → P(Rd) and ξ∗ : ∂(Γ,P) → P(Rd)∗ which are dynamics-preser-
ving, compatible and transverse.

A key technical input into the proofs of these theorems is a powerful
generalization of the Oseledets theorem recently formulated in [23]; we will
use a slightly modified version of this result, whose proof is discussed in
Appendix B.

Our approach is different from that of [18]—the latter really focuses on
the geometry of the symmetric space whereas we look more at the intrinsic
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geometry associated to the relatively hyperbolic group—but we show that
the resulting notions are closely related:

Theorem 1.3 (Theorems 9.4 and 9.12).

(a) If ρ : Γ → SL(d,R) is relatively dominated, then ρ(Γ) is relatively
RCA (in the sense of [18]) with uniformly regular peripherals.

(b) If ρ : Γ → SL(d,R) is such that ρ(Γ) is relatively RCA with uni-
formly regular and undistorted peripherals satisfying the quadratic
gaps condition (see Definition 4.2), then ρ is relatively dominated.

We also remark that, using the representation theory of semisimple Lie
groups, our definitions above can be extended to give a notion of relatively
dominated representations for any semisimple Lie group with finite center
with respect to any non-degenerate parabolic subgroup (Definition 10.2).

The rest of this paper is organized as follows: we start by reviewing rele-
vant background facts on relatively hyperbolic groups in § 2 and on singular
value decompositions in § 3. We then give the definition of relatively domi-
nated representations, as well as noting some immediate properties, in § 4.
§ 5 proves a key transversality property, § 6 the relative hyperbolicity theo-
rem, and § 7 the existence of the limit maps. § 8 briefly discusses examples.
§ 9 describes links between the notion of relatively dominated representa-
tions introduced here and notions in [18]; finally, § 10 discusses extending
the definition in § 4 to more general semisimple Lie groups and parabolic
subgroups.

Appendix A collects various linear algebra lemmas which are used throu-
ghout, especially in the later sections; Appendix B contains a proof of the
generalization of the Oseledets theorem mentioned above.
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2. Relatively hyperbolic groups

Relative hyperbolicity is a group-theoretic notion—originally suggested
by Gromov in [14], and further developed by Bowditch [6], Farb [11],
Yaman [25], Groves–Manning [15], and others—of non-positive curvature
inspired by the geometry of cusped hyperbolic manifolds and free products.

The geometry of a relatively hyperbolic group is akin to the geometry
of a cusped hyperbolic manifold in that it is negatively-curved outside of
certain regions, which, like the cusps in a cusped hyperbolic manifold, can
be more or less separated from each other.

There are various ways to make this intuition precise, resulting in various
equivalent characterizations of relatively hyperbolic groups. We will use a
definition of Bowditch, in the tradition of Gromov:

Consider a finite-volume cusped hyperbolic manifold with an open neigh-
borhood of each cusp removed: call the resulting truncated manifold M .
The universal cover M̃ of such a M is hyperbolic space with a countable
set of horoballs removed. The universal cover M̃ is not Gromov-hyperbolic;
distances along horospheres that bound removed horoballs are distorted. If
we glue the removed horoballs back in to the universal cover, however, the
resulting space will again be hyperbolic space.
We can do a similar thing from a group-theoretic perspective: the Cay-

ley graph of the fundamental group π1M is not word-hyperbolic, because
the cusp subgroups fail to quasi-isometrically embed into hyperbolic space.
However, we can glue in metric graphs quasi-isometric to horoballs (“combi-
natorial horoballs”) along the subgraphs of the Cayley graph corresponding
to these cusp subgroups, and the resulting space (a “cusped space” or “aug-
mented space”) will again be quasi-isometric to hyperbolic space. We then
say that π1M is hyperbolic relative to its cusp subgroups.
More precisely (and more generally), let Γ be a finitely generated group

and S = S−1 a finite generating set. We consider the following construction:

Definition 2.1 ([15, Definition 3.1]). — Given a subgraph Λ of the
Cayley graph Cay(Γ, S), the combinatorial horoball based on Λ, denoted
H = H(Λ), is the 1-complex(1) formed as follows:

• the vertex set H(0) is given by Λ(0) × Z> 0
• the edge set H(1) consists of the following two types of edges:

(1) If k > 0 and v and w ∈ Λ(0) are such that 0 < dΛ(v, w) 6 2k,
then there is a (“horizontal”) edge connecting (v, k) to (w, k)

(1)Groves-Manning combinatorial horoballs are actually defined as 2-complexes; the
definition here is really of a 1-skeleton of a Groves–Manning horoball. For metric purposes
only the 1-skeleton matters.

TOME 71 (2021), FASCICULE 5
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(2) If k > 0 and v ∈ Λ(0), there is a (“vertical”) edge joining (v, k)
to (v, k + 1).

H is metrized by assigning length 1 to all edges.

Example 2.2. — The combinatorial horoball over Zd is quasi-isometric
to a horoball in Hd+1, via the map sending (~v, n) in Zd × N to (~v, en) in
the upper half-space.

Next let P be a finite collection of finitely-generated subgroups of Γ,
and suppose S is a compatible generating set, i.e. for each P ∈ P, S ∩ P
generates P .

Definition 2.3 ([15, Definition 3.12]). — Given Γ,P, S as above, the
cusped space X(Γ,P, S) is the simplicial metric graph

Cay(Γ, S) ∪
⋃
H(γP )

where the union is taken over all left cosets of elements of P, i.e. over P ∈ P
and (for each P ) γP in a collection of representatives for left cosets of P .
Here the induced subgraph ofH(γP ) on the γP×{0} vertices is identified

with (the induced subgraph of) γP ⊂ Cay(Γ, S) in the natural way.

Definition 2.4. — Γ is hyperbolic relative to P if and only if the cusped
space X(Γ,P, S) is δ-hyperbolic (for any compatible generating set S; the
hyperbolicity constant δ may depend on S.)

We will also call (Γ,P) a relatively hyperbolic structure.

We remark that for a fixed relatively hyperbolic structure (Γ,P), any
two cusped spaces, corresponding to different compatible generating sets
S, are quasi-isometric ([13, Corollary 6.7]): in particular, the notion above
is well-defined independent of the choice of generating set S. There is a
natural action of Γ on the cusped space X = X(Γ,P, S); with respect
to this action, the quasi-isometry between two cusped spaces X(Γ,P, Si)
(i = 1, 2) is Γ-equivariant.
In particular, this gives us a notion of a boundary associated to the

data of a relatively hyperbolic group Γ and its collection of peripheral
subgroups P:

Definition 2.5. — For Γ hyperbolic relative to P, the Bowditch bound-
ary ∂(Γ,P) is defined as the Gromov boundary ∂∞X of any cusped space
X = X(Γ,P, S).

By the remarks above, this is well-defined up to homeomorphism, inde-
pendent of the choice of compatible generating set S ([6, § 9].)
The following terminology will be useful further below:

ANNALES DE L’INSTITUT FOURIER
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Definition 2.6. — Cay(Γ, S) considered as a subspace of X(Γ,P, S)—
i.e. with the metric inherited from X(Γ,P, S)—will be called the relative
Cayley graph.

Below, with a fixed choice of Γ, P and S as above, for γ, γ′ ∈ Γ, d(γ, γ′)
will denote the distance between γ and γ′ in the Cayley graph with the word
metric, and |γ| := d(id, γ) denotes word-length in this metric. Similarly,
dc(γ, γ′) denotes distance in the corresponding cusped space and |γ|c :=
dc(id, γ) denotes cusped word-length.

2.1. A Bowditch–Yaman criterion for relative hyperbolicity

The Bowditch criterion [5] states, roughly speaking, that we can show a
group Γ is hyperbolic by exhibiting an action of Γ on a metric space satisfy-
ing certain properties which are characteristic of the action of a hyperbolic
group on its Gromov boundary. Moreover, if the hypotheses are satisfied,
the space (and action) we produce is naturally identified with the Gromov
boundary of the group (and the action of the group thereon).
Using the Bowditch boundary and generalizing Bowditch’s arguments,

Asli Yaman proved an analogue of Bowditch’s criterion for relatively hy-
perbolic groups:

Definition 2.7. — If M is a compact metric space, Γ y M as a con-
vergence group if the induced action on the space M (3) of distinct triples
is properly discontinuous.

Γ y M as a geometrically-finite convergence group if every point in M
is either a conical limit point or a bounded parabolic point.
(x ∈ M is a conical limit point if there exists a sequence (gi) ⊂ Γ and

a, b ∈M (a 6= b) such that gix→ a and giy → b for any y ∈M \ {x}.
H 6 Γ is parabolic if it is infinite, fixes some point of M , and contains no
infinite-order element with fixed locus of size 2. Such H have unique fixed
points in M , called parabolic points. A parabolic point x ∈M is bounded
if (M \ {x})/ StabΓ(x) is compact. A parabolic subgroup is maximal if it
is not a proper subgroup of any larger parabolic subgroup, in other words
if it is the stabilizer of a parabolic point.)

Theorem 2.8 ([25, Theorem 0.1]). — Suppose that M is a non-empty,
perfect, compact metric space, and Γ y M as a geometrically-finite con-
vergence group.
Suppose also that the stabiliser of each bounded parabolic point is finitely

generated.

TOME 71 (2021), FASCICULE 5
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Then Γ is hyperbolic relative to the collection P of its maximal parabolic
subgroups, and M is equivariantly homeomorphic to ∂(Γ,P).

Building on earlier work of Tukia, Gerasimov has shown in [12] that geo-
metric finiteness, as well as the finite generation of the parabolic stabilisers,
can be characterized using the induced group action on the space of distinct
pairs. Putting these together, we obtain

Theorem 2.9. — Suppose Γ is finitely-generated andM is a non-empty,
perfect, compact metrizable space, and Γ y M is such that the induced
action on M (3) is properly discontinuous and the induced action on M (2)

is cocompact.
Then Γ is hyperbolic relative to the maximal parabolic subgroups of the

action Γ yM and M is equivariantly homeomorphic to ∂(Γ,P).

2.2. Geodesics in the cusped space

Let Γ be a finitely-generated group, P be a malnormal finite collection
of finitely-generated subgroups, and let S = S−1 be a compatible finite
generating set as above. Let X = X(Γ,P, S) be the cusped space, and
Cay(Γ) = Cay(Γ, S) the Cayley graph.

We emphasize that none of the results in this or the next subsection
requires Γ to be relatively hyperbolic, although the motivation for the con-
structions involved comes from relative hyperbolicity. This will be useful
below, in the proof of the relative hyperbolicity theorem (Theorem 6.1).
We start by pointing out a family of preferred geodesics in the combina-

torial horoballs:

Lemma 2.10 ([15, Lemma 3.10]). — Let H(Γ) be a combinatorial horo-
ball. Suppose that x, y ∈ H(Γ) are distinct vertices. Then there is a geodesic
γ(x, y) = γ(y, x) between x and y which consists of at most two vertical
segments and a single horizontal segment of length at most 3.

We will call any such geodesic a preferred geodesic.
We have the following estimate going between uncusped and cusped

lengths:

Proposition 2.11. — Suppose γ is a word contained in a single pe-
ripheral subgroup.
Then

2
log 2 log |γ| 6 |γ|c 6

2
log 2 log |γ|+ 1,

ANNALES DE L’INSTITUT FOURIER
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or equivalently

1√
2
√

2
|γ|c 6 |γ| 6

√
2
|γ|c

,

where |γ| refers to word-length in the peripheral subgroup, not in the am-
bient group.

Proof. — Let γ be a peripheral element of Γ which can be written as a
word of word-length L.
There is always a path in the cusped space X from id to γ which consists

of going up blog2 Lc, going across 1, and then going down blog2 Lc, and so
the cusped word-length is certainly bounded from above by 2 log2 L+ 1 =

2
log 2 logL+ 1.
Conversely, any path in X of cusped length at most 2 log2 L − 1 with

a single horizontal segment of (cusped) length ` corresponds to a word of
word-length at most ` · 2log2 L−

`+1
2 = 2− `+1

2 `L < L whenever ` > 1.
Note that any path inX which has two distinct endpoints in Cay(Γ) ⊂ X

must contain at least one horizontal edge. By Lemma 2.10, there is always a
geodesic in the cusped space from id to γ consisting of at most two vertical
segments and a single horizontal segment.
Hence the cusped word-length is bounded from below by 2 log2 L =

2
log 2 logL, as desired. �

Given a path γ : I → Cay(Γ) in the Cayley graph such that γ(I ∩ Z) ⊂
Γ, we can consider γ as a relative path (γ,H), where H is a subset of
I consisting of a disjoint union of finitely many subintervals H1, . . . , Hn

occurring in this order along I, such that each ηi := γ|Hi is a maximal
subpath lying in a closed combinatorial horoball Bi, and γ|IrH contains
no edges of Cay(Γ) labelled by a peripheral generator.
Similarly, a path γ̂ : Î → X in the cusped space with endpoints in

Cay(Γ) ⊂ X may be considered as a relative path (γ̂, Ĥ), where Ĥ =∐n
i=1 Ĥi, Ĥ1, . . . , Ĥn occur in this order along Î, each η̂i := γ̂|Ĥi is a

maximal subpath in a closed combinatorial horoball Bi, and γ̂|ÎrĤ lies
inside the Cayley graph. Below, we will consider only geodesics and quasi-
geodesic paths γ̂ : Î → X where all of the η̂i are preferred geodesics (in the
sense of Lemma 2.10.)
We will refer to the ηi and η̂i as peripheral excursions. We remark that

the ηi, or any other subpath of γ in the Cayley graph, may be considered
as a word and hence a group element in Γ; this will be used without further
comment below.

TOME 71 (2021), FASCICULE 5
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Given a path γ̂ : Î → X whose peripheral excursions are all preferred
geodesics, we may replace each excursion η̂i = γ̂|Ĥi into a combinatorial
horoball with a geodesic path (or, more precisely, a path with geodesic im-
age) ηi = π ◦ η̂i in the Cayley (sub)graph of the corresponding peripheral
subgroup connecting the same endpoints, by omitting the vertical segments
of the preferred geodesic η̂i and replacing the horizontal segment with the
corresponding segment at level 0, i.e. in the Cayley graph.(2) We call this
the “project” operation, since it involves “projecting” paths inside combi-
natorial horoballs onto the boundaries of those horoballs. This produces a
path γ = π ◦ γ̂ : Î → Cay(Γ).
Below, given any path α in the Cayley graph with endpoints g, h ∈ Γ,

or any path α̂ in the cusped space with endpoints in g, h ∈ X, we write
`(α) to denote d(g, h), i.e. distance measured according to the word metric
in Cay(Γ), and `c(α̂) to denote dc(g, h), where dc denotes distance in the
cusped space.
The following observation will be used many times below. It is likely

well-known, but we could not find it in the literature.

Proposition 2.12. — Given a geodesic γ̂ : Ĵ → X with endpoints in
Cay(Γ) ⊂ X and whose peripheral excursions are all preferred geodesics,
let γ = π ◦ γ̂ : Ĵ → Cay(Γ) be its projected image.

Given any subinterval [a, b] ⊂ Ĵ , consider the subpath γ|[a, b] as a relative
path (γ|[a, b], H) where H = (H1, . . . , Hn), and write ηi := γ|Hi ; then we
have the biLipschitz equivalence

1
3 6

dc(γ(a), γ(b))

`
(
γ|[a, b]

)
−

n∑
i=1

`(ηi) +
n∑
i=1
̂̀(ηi) 6

2
log 2 + 1 < 4

where ̂̀(ηi) := max{log(`(ηi)), 1}.

Proof. — If γ|[a, b] lies in a single peripheral excursion, then this follows
from the fact that the projection operation replaces excursions with geo-
desic paths in the Cayley graph and from Proposition 2.11.
More generally, since we start with a geodesic in the cusped space, we

have

(2.1) dc(γ(a), γ(b)) 6 `c
(
γ
∣∣[a, b]\H)+

n∑
i=1

`c(ηi).

(2)As a parametrized path this has constant image on the subintervals of Ĥi corre-
sponding to the vertical segments, and travels along the projected horizontal segment
at constant speed.
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RELATIVELY DOMINATED REPRESENTATIONS 2179

Here γ|[a, b]\H is a disjoint union of subpaths γ1, . . . , γk of γ with endpoints
in Γ, and `c(γ|[a, b]\H) :=

∑k
i=1 `c(γi), where `c(γi) denotes cusped distance

between the endpoints of the subpath γi.
If the endpoints of our subpath do not lie in the middle of a (projected)

peripheral excursion, we can promote the inequality (2.1) to an equality

(2.1’) dc(γ(a), γ(b)) = `c
(
γ
∣∣[a, b]\H)+

n∑
i=1

`c(ηi).

Now suppose one of our endpoints, say b, does lie in the middle of a
projected peripheral excursion, say ηn. (The case where a lies in the middle
of an excursion will be similar.) This is the special case which will take the
remaining time:
Let b− be such that γ̂(b−) is the endpoint of ηn between γ(a) and γ(b).

The infinite vertical ray into the combinatorial horoball from γ(b) hits the
image of γ̂ at the point γ̂(b). We remark that, by the properties of the
project operation, γ(a) = γ̂(a) and γ(b−) = γ̂(b−).
Note γ̂|[a, b] is a geodesic, so by the triangle inequality

(2.2)
dc (γ(a), γ(b)) + dc (γ̂(b), γ(b)) > dc (γ(a), γ̂(b))

= dc
(
γ(a), γ(b−)

)
+ dc

(
γ(b−), γ̂(b)

)
Moreover, [γ(b), γ̂(b)] consists of a single vertical segment, (an isometric

translate of) which is a subpath of

γ̂|[b−, b], so dc (γ(b), γ̂(b)) 6 dc
(
γ(b−), γ̂(b)

)
.

Combining these observations with (2.2), we obtain

dc(γ(a), γ(b)) + dc(γ̂(b), γ(b)) > dc
(
γ(a), γ(b−)

)
+ dc

(
γ(b−), γ̂(b)

)
so

dc(γ(a), γ(b)) > dc(γ(a), γ(b−)) + dc(γ(b−), γ̂(b))− dc(γ̂(b), γ(b))
> dc(γ(a), γ(b−)).

On the other hand, again applying the triangle equality (and multiplying
both sides by 1

2 ) we have

1
2
(
dc(γ(b−), γ(b))− dc(γ(a), γ(b−))

)
6 1

2dc(γ(a), γ(b)).

Adding together these inequalities, we obtain
3
2dc(γ(a), γ(b)) > 1

2
(
dc(γ(a), γ(b−)) + dc(γ(b−), γ(b))

)
.
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RELATIVELY DOMINATED REPRESENTATIONS 11

Now suppose one of our endpoints, say b, does lie in the middle of a
projected peripheral excursion, say ηn. (The case where a lies in the middle
of an excursion will be similar.) This is the special case which will take the
remaining time:
Let b− be such that γ̂(b−) is the endpoint of ηn between γ(a) and γ(b).

The infinite vertical ray into the combinatorial horoball from γ(b) hits the
image of γ̂ at the point γ̂(b). We remark that, by the properties of the
project operation, γ(a) = γ̂(a) and γ(b−) = γ̂(b−).

Note γ̂|[a,b] is a geodesic, so by the triangle inequality

dc(γ(a), γ(b)) + dc(γ̂(b), γ(b)) > dc(γ(a), γ̂(b))

= dc(γ(a), γ(b−)) + dc(γ(b−), γ̂(b))(2.2)

Moreover, [γ(b), γ̂(b)] consists of a single vertical segment, (an isometric
translate of) which is a subpath of γ̂|[b−,b], so dc(γ(b), γ̂(b)) 6 dc(γ(b−), γ̂(b)).
Combining these observations with (2.2), we obtain

dc(γ(a), γ(b)) + dc(γ̂(b), γ(b)) > dc(γ(a), γ(b−)) + dc(γ(b−), γ̂(b))

so

dc(γ(a), γ(b)) > dc(γ(a), γ(b−)) + dc(γ(b−), γ̂(b))− dc(γ̂(b), γ(b))

> dc(γ(a), γ(b−)).

a

b

b-

b̂

Figure 2.1. Solid lines here indicated geodesics in X, dotted lines
indicate projected geodesics

On the other hand, again applying the triangle equality (and multiplying
both sides by 1

2 ) we have

1

2

(
dc(γ(b−), γ(b))− dc(γ(a), γ(b−))

)
6 1

2
dc(γ(a), γ(b)).

Adding together these inequalities, we obtain

3

2
dc(γ(a), γ(b)) > 1

2

(
dc(γ(a), γ(b−)) + dc(γ(b−), γ(b))

)
.

SUBMITTED ARTICLE : OUTPUT.TEX

Figure 2.1. Solid line segments here (all except two) indicate geodesics
in X, dotted line segments ([b−, b] and its translate to the right) indi-
cate projected geodesics.

Now apply (2.1) to γ|[a, b−], where we have equality, and remark that
dc(γ(b−), γ(b)) = `c(ηn) by the properties of the project operation, so that
we may rewrite this inequality as

dc(γ(a), γ(b)) > 1
3
(
dc(γ(a), γ(b−)) + dc(γ(b−), γ(b))

)
= 1

3

(
`(γ

∣∣∣∣∣[a, b]\H) +
n−1∑
i=1

`c(ηi) + `c(ηn)
)

and so we have

dc(γ(a), γ(b)) > 1
3

(
`c
(
γ
∣∣[a, b]\H)+

n∑
i=1

`c(ηi)
)
.

By the definition of the cusped metric and of a relative path,

`c
(
γ
∣∣[a, b]\H) = `

(
γ
∣∣[a, b]\H) = `

(
γ
∣∣[a, b])− n∑

i=1
`(ηi).

By Proposition 2.11, for each i between 1 and n,
2

log 2 log `(ηi) 6 `c(ηi) 6
2

log 2 log `(ηi) + 1.

Hence, writing

L := `
(
γ
∣∣[a, b])− n∑

i=1
`(ηi) +

n∑
i=1

̂̀(ηi),
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we have
1
3L 6 dc(γ(a), γ(b)) 6 2

log 2L+ n 6
(

2
log 2 + 1

)
L

as desired. �
In particular, we note the following very coarse equivalence statement:

Corollary 2.13. — For any sequence of elements (γn) ⊂ Γ, |γn|c →∞
if and only if |γn| → ∞.

2.3. Reparametrizing projected geodesics

Given a geodesic segment γ̂ in the cusped space with endpoints in Cay(Γ),
we can take its projection γ = π ◦ γ̂ : Î → Cay(Γ) and reparametrize it
in such a way that the increments correspond, approximately, to linear
increments in cusped distance. Slightly more generally we will find it useful
to consider paths in Cay(Γ) that “behave metrically like quasi-geodesics in
the relative Cayley graph”, in the following sense:

Definition 2.14. — Given any path γ : I → Cay(Γ) such that I has
integer endpoints and γ(I ∩ Z) ⊂ Γ, define the depth δ(n) = δγ(n) of a
point γ(n) (for any n ∈ I ∩ Z) as

(a) the smallest integer d > 0 such that at least one of γ(n−d), γ(n+d)
is well-defined (i.e. {n − d, n + d} ∩ I 6= ∅) and not in the same
peripheral coset as γ(n), or

(b) if no such integer exists, min{sup I − n, n− inf I}.

Definition 2.15. — Given constants
¯
υ, ῡ > 0, an (

¯
υ, ῡ)-metric quasi-

geodesic path is a path γ : I → Cay(Γ) with γ(I ∩Z) ⊂ Γ such that for all
integers m,n ∈ I,

(i) |γ(n)−1γ(m)|c > ¯
υ−1|m− n| −

¯
υ,

(ii) |γ(n)−1γ(m)|c 6 ῡ(|m− n|+ min{δ(m), δ(n)}) + ῡ, and
(iii) if γ(n)−1γ(n+ 1) ∈ P for some P ∈ P, we have γ(n)−1γ(n+ 1) =

pn, 1 · · · pn, `(n) where each pn,i is a peripheral generator of P , and

2δ(n)−1 6 `(n) :=
∣∣γ(n)−1γ(n+ 1)

∣∣ 6 2δ(n)+1.

We can now make more precise our assertion about reparametrizing pro-
jected geodesic segments:

Proposition 2.16. — Given a cusped space X = X(Γ,P, S), for any
projected geodesic γ = π◦ γ̂ : I → Cay(Γ) with at least one end not inside a
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peripheral coset, we have a reparametrization of its image γr : Ir → Cay(Γ)
which is a (6, 20)-metric quasigeodesic path. (In fact, we can improve the
inequalities slightly so that for all integers m,n ∈ Ir,

(i) |γr(n)−1γr(m)|c > 1
6 |m− n|, and

(ii) |γr(n)−1γr(m)|c 6 8(|m− n|+ min{δ(m), δ(n)}) + 20.)

Proof. — We define the reparametrization as follows:
• Outside of the peripheral excursions, parametrize by arc-length in

Cay(Γ).
• Within an infinite but not bi-infinite peripheral excursion, the first
letter is left alone, the next two are multiplied together, then the
next four multiplied together, and so on.

• Within a finite peripheral excursion of cusped length E, do this from
both ends simultaneously, and put the remainder in the middle.
More precisely, to each natural number n we associate an ordered
partition of positive integers as follows:
– If n = 1+2+ · · ·+2k−1 +2k+2k−1 + · · ·+1 for some k ∈ Z> 0,

that is the associated ordered partition (e.g. 22 = 1+2+4+8+
4+2+1, so (1, 2, 4, 8, 4, 2, 1) is the ordered partition associated
to 22.) Call these numbers nk. Note nk = 3 · 2k − 2.

– If n ∈ (nk, nk+1), associate to n the ordered partition (1, 2, . . . ,
2k + (n − nk), 2k−1, . . . , 1). Note the middle term will be be-
tween 2k+1 and 2k+(nk+1−nk−1) = 2k+3·2k−1 = 2k+2−1
in this case.
For example, n = 17 ∈ (n2, n3) = (10, 22), and so the ordered
partition for 17 is given by (1, 2, 4 + 7, 2, 1) = (1, 2, 11, 2, 1).

Then take the ordered partition (a1, . . . , al) associated to E, and
if γ(s) = γr(sr) is the start of the peripheral excursion, define

γr(sr + j) = γ

(
m+

j∑
i=1

ai

)
for 1 6 j 6 l.

To verify that this satisfies the desired criteria, we remark that the
reparametrization does not modify cusped length outside of the periph-
eral excursions; inside a peripheral excursion of length E, the sum of any
j consecutive numbers inside the partition associated to E is at least

1 + · · ·+ 2j−1 = 2j − 1

if j is no more than half the length of the partition; if j is greater than this
threshold, this sum is still bounded below by

1 + · · ·+ 2`2−1 = 2`2 − 1 > 2j/2 − 1,

ANNALES DE L’INSTITUT FOURIER



RELATIVELY DOMINATED REPRESENTATIONS 2183

where `2 is the floor of half the length of the partition, since the sum must
contain a sum of `2 consecutive numbers inside the partition.
Thus, by Proposition 2.11, the cusped length of the part of the peripheral

excursion associated to this part of the reparametrization is no less than
2 log2(2j/2 − 1) > j − 1. Considering separately what happens for small
values of j, we may further replace this lower bound with j/2.
Proposition 2.12 then gives us

dc (γr(n), γr(m)) > 1
3
(
`
(
γr
∣∣[n,m]\Iη

)
+ `

(
γr
∣∣
Iη

))
> 1

6 |m− n|

This suffices to verify (i).
To verify (ii), we recall that, if wm,n := γr(m)−1γr(n) is a peripheral

word of length `(wm,n), its cusped length is between 2 log2 `(wm,n) and
2 log2 `(wm,n) + 1 (see Proposition 2.11.)
By construction `(wm,m+1) 6 2δ(m)+1, so |wm,m+1|c 6 2δ(m) + 3, and

more generally,

|wm,n|c 6 2 log2

(
2δ(m)+1 + · · ·+ 2δ(n)+1

)
+ 1

and, writing δ = min{δ(m), δ(n)}, this latter is bounded above by

2 log2

(
2δ+1 + · · ·+ 2δ+1+|m−n|

)
+ 1

6 2 log2

(
2δ+1 · (2|m−n|+1 − 1)

)
+ 1

6 2(δ + |m− n|) + 5.

This, again in conjunction with Proposition 2.12, which yields

dc(γr(n), γr(m)) 6 4
(
`
(
γr
∣∣[n,m]\Iη

)
+ `
(
γr
∣∣
Iη

))
6 8 (|m− n|+ min{δ(m), δ(n)}) + 20,

suffices to prove the Proposition. �

3. Singular value decompositions

The condition on representations which we will define is given in terms
of singular values and subspaces: given a matrix g ∈ GL(d,R), let σi(g)
(for 1 6 i 6 d) denote its ith singular value.
Measuring these requires specifying a norm on Rd, although the condi-

tions below are independent (up to possibly changing the constants) of this
choice of norm. Below we will assume we have fixed a norm coming from an
inner product on Rd; by viewing the symmetric space SL(d,R)/SO(d) as
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a space of (homothety classes of) inner products on Rd, this is equivalent
to choosing a basepoint o ∈ SL(d,R)/ SO(d) (and then arbitrarily fixing a
scaling).
Furthermore, write Ui(g) to denote the span of the i largest axes in the

image of the unit sphere in Rd under g, and Si(g) := Ui(g−1) (the letters
come from “Unstable” and “Stable”; these names are inspired by ideas from
dynamics.) Note Ui(g) is well-defined if and only if we have a singular-value
gap σi(g) > σi+1(g).
More precisely, given any g ∈ GL(d,R), we may write g = KAL, where

K and L are orthogonal matrices and A is a diagonal matrix with nonin-
creasing positive entries down the diagonal. A is uniquely determined, and
we may define σi(g) = Aii. Ui(g) is given by the span of the first i columns
of K, which is well-defined as long as σi(g) > σi+1(g).
We remark that, for g ∈ SL(d,R), this singular-value decomposition is

a (particular choice of) Cartan decomposition. We will occasionally write
(given g = KAL as above)

a(g) := (logA11, . . . , logAdd) = (log σ1(g), . . . , log σd(g)) ;

we note that the norm ‖a(g)‖ =
√

(log σ1(g))2 + · · ·+ (log σd(g))2 is equal
to the distance d(o, g ·o) in the associated symmetric space SL(d,R)/ SO(d)
(see e.g. [4, formula (7.3)]).

4. Relatively dominated representations

Recall that Γ is a finitely-generated group, which we assume to be torsion-
free.
Let P be a finite collection of finitely-generated proper infinite subgroups;

call all conjugates of these subgroups peripheral. A element of Γ is called
peripheral if it belongs to some peripheral subgroup, and non-peripheral
otherwise. Below we will write PΓ to denote the set of all conjugates of
groups in P,

⋃
P :=

⋃
P ∈P P and

⋃
PΓ :=

⋃
Q∈PΓ Q to denote the set of

peripheral elements.
Let S be a compatible generating set, and let X = X(Γ,P, S) be the

corresponding cusped space (see Definitions 2.1 and 2.3 above.) As above,
let dc denote the metric on X, and | · |c := dc(id, ·) denote the cusped
word-length.
For most of the arguments below we will also impose further conditions

on P:
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Definition 4.1. — We say that a finite collection P of finitely-genera-
ted proper infinite subgroups satisfies (RH) if

• (malnormality) P is malnormal, i.e. for all γ ∈ Γ and P, P ′ ∈ P,
γPγ−1 ∩ P ′ = 1 unless γ ∈ P = P ′;

• (non-distortion) there exists ν > 0 such that for any infinite-order
non-peripheral element γ ∈ Γ, |γn|c > ν|n|;

• (local-to-global) there exist
¯
υ, ῡ > 0 and a constant L > 0 so that

if p = p1 · · · pn is a geodesic word in P ∈ P, n > L and γp1 · · · pL
is a projected geodesic, then γp is an (

¯
υ, ῡ)-metric quasigeodesic

path.

We remark that all of these conditions hold automatically if Γ is hy-
perbolic relative to P: malnormality follows for torsion-free Γ from [22,
Theorem 1.4]; non-distortion follows from [22, Theorem 1.14]; the local-to-
global condition is a particular case of the much more general local-to-global
properties that hold due to the hyperbolicity of the cusped space X when
Γ is relatively hyperbolic.

We introduce first a few technical conditions controlling what happens
on the images of peripheral subgroups, and then the main notion we are
defining:

Definition 4.2. — Given Γ and P as above, and a representation ρ :
Γ → GL(d,R), we say that the peripheral subgroups have well-behaved
images under ρ if

• (upper domination) there exist constants C1, µ1 > 0 such that
σ1(ρ(η)) 6 C1e

µ1|η|c for every peripheral element η ∈
⋃
P;

• (unique limits) for each P ∈ P, there exists ξρ(P ) ∈ P(Rd) and
ξ∗ρ(P ) ∈ Grd−1(Rd) such that for every sequence (ηn) ⊂ P with
ηn →∞, we have

lim
n→∞

U1(ρ(ηn)) = ξρ(P ) and lim
n→∞

Ud−1(ρ(ηn)) = ξ∗ρ(P ) ;

• (quadratic gaps) for every
¯
υ, ῡ > 0, there exists C ′ > 0 such that if

η ∈ P for some P ∈ P, then, for any γ ∈ Γ, if γη (ηγ, respectively)
is an (

¯
υ, ῡ)-metric quasigeodesic path then σ1

σ2
(ρ(γη)) > C ′|η|2 =

C ′e|η|c (σ1
σ2

(ρ(ηγ)) > C ′|η|2, respectively);
• (uniform transversality) for every P, P ′ ∈ P and γ ∈ Γ, ξ(P ) 6=
ξ(γP ′γ−1), and moreover, for every

¯
υ, ῡ > 0, there exists δ0 > 0 so

that for all P, P ′ ∈ P and g, h ∈ Γ such that there exists a bi-infinite
(
¯
υ, ῡ)-metric quasigeodesic path ηghη′ where η′ ⊂ P ′ and η ⊂ P ,
we have sin∠(g−1ξ(P ), h ξ∗(P ′)) > δ0.
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We remark that the unique limits condition corresponds to the “tied-up
horoballs” condition in [18], and the quadratic gaps condition is analogous
to the uniform gap summation property that appears in [16].

Definition 4.3. — Fix Γ and P as above, with P satisfying (RH), and
fix constants

¯
C,

¯
µ > 0. A representation ρ : Γ→ GL(d,R) is 1-almost dom-

inated relative to P with lower domination constants (
¯
C,

¯
µ), if it satisfies

(D−) for all γ ∈ Γ, σ1

σ2
(ρ(γ)) >

¯
Ce¯

µ|γ|c .

A 1-almost dominated representation ρ is 1-dominated relative to P with
lower domination constants (

¯
C,

¯
µ) if in addition the images of peripheral

subgroups under ρ are well-behaved.

Below we will sometimes refer to (D−) as the lower domination inequality.
We will sometimes suppress P and refer to 1-relatively dominated repre-
sentations.
We further remark that many of the conditions in Definition 4.2 can

be weakened or omitted if we assume relative hyperbolicity of the source
group, together with the existence and transversality of limit maps: see
Theorem 9.12, and associated definitions in that section, for a precise
statement. We conjecture that it may further be possible that the uni-
form transversality hypothesis in Definition 4.2 can be made to follow from
relative hyperbolicity and (D−) as well.

4.1. Dual representations

Given ρ : Γ→ GL(V ) with V = Rd as above (and the implicit choice of
the standard basis, which fixes an identification V ∼= V ∗), we may define
the dual representation ρ∗ : Γ→ GL(V ∗) ∼= GL(V ) by ρ∗(γ) = ρ(γ−1)T .

The following observations will be useful later:

Proposition 4.4. — If ρ : Γ → GL(V ) is 1-dominated relative to P
with lower domination constants (

¯
C,

¯
µ), then so is ρ∗ : Γ→ GL(V ).

Furthermore, for all γ ∈ Γ, U1(ρ∗(γ)) = (Ud−1(ρ(γ)))⊥ and Ud−1(ρ∗(γ))
= (U1(ρ(γ)))⊥.

Proof. — We have (D−) since σ1
σ2

(ρ∗(γ)) = σ1
σ2

(ρ(γ−1)) >
¯
Ce−¯

µ|γ−1|c =

¯
Ce−¯

µ|γ|c .
We can similarly get the quadratic gaps condition, since

σ1

σ2
(ρ∗(γη)) = σ1

σ2

(
ρ
(
η−1γ−1))
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and
σ1

σ2
(ρ∗(ηγ)) = σ1

σ2

(
ρ
(
γ−1η−1))

Now if write the singular value decomposition ρ(γ) = KAL, then ρ∗(γ)
= (K−1)T (A−1)T (L−1)T = KA−1L.
Recalling A has diagonal entries in non-increasing order, A−1 has diag-

onal entries in non-decreasing order; hence U1(ρ∗(γ)) is the line spanned
by the last column of K, which is (Ud−1(ρ(γ)))⊥. Similarly, Ud−1(ρ∗(γ))
is the hyperplane spanned by the all but the first column of K; this is
(U1(ρ(γ)))⊥.
Now the unique limits condition for ρ∗ follows from the unique limits

condition for ρ, since

lim
n→∞

U1 (ρ∗(ηn)) = lim
n→∞

(
Ud−1(ρ(ηn))

)⊥ = ξ∗ρ(P )⊥

and similarly

lim
n→∞

Ud−1 (ρ∗(ηn)) = lim
n→∞

(
U1(ρ(ηn))

)⊥ = ξρ(P )⊥

Similarly, the uniform transversality condition for ρ∗ follows from the
uniform transversality condition for ρ, due to the above identifications. �

4.2. Discreteness, faithfulness, proximal elements

Discreteness and faithfulness are straightforward consequences of the sin-
gular value gap growing coarsely with cusped word-length:

Proposition 4.5. — If ρ : Γ → GL(d,R) is 1-almost relatively domi-
nated, then ρ is discrete and faithful.

Proof. — Given any sequence of distinct elements (γn) ⊂ Γ, we must
have |γn|c → ∞ since there are finitely many group elements γ satisfying
|γ|c 6 N for each N .

(D−) then gives log σ1
σ2

(ρ(γn)) > log
¯
C +

¯
µ|γn|c → ∞ for a 1-almost rel-

atively dominated representation with lower domination constants (
¯
C,

¯
µ).

Hence we cannot have ρ(γn)→ id, which proves that ρ is discrete and has
finite kernel. Since by assumption Γ is torsion-free, we may further conclude
that ρ is faithful. �
Using in addition the property that our peripheral subgroups P satisfy

(RH)—or, in particular, non-distortion—, we further obtain

TOME 71 (2021), FASCICULE 5



2188 Feng ZHU

Proposition 4.6. — Suppose ρ : Γ → GL(d,R) is 1-almost relatively
dominated. For any non-peripheral γ ∈ Γ, ρ(γ) must be proximal.

Proof. — Recall the relation between the eigenvalues and singular values
given by

log |λi(ρ(γ))| = lim
n→∞

1
n

log σi(ρ(γn))

(see e.g. [2, § 2.5]). Suppose ρ : Γ → G is 1-almost relatively dominated
with lower domination constants (

¯
C,

¯
µ).

Non-distortion implies there exists ν > 0 such that |γn|c > νn for any
non-peripheral γ, and (D−) then implies log σ1

σ2
(γn) >

¯
µνn + log

¯
C; hence

we obtain

log
∣∣∣∣λ1

λ2

∣∣∣∣ (ρ(γ)) = lim
n→∞

1
n

log σ1

σ2
(γn) >

¯
µν > 0.

Hence ρ(γ) is proximal, as desired. �

4.3. Relative quasi-isometric embedding

We can extend the upper domination hypothesis on the peripherals to
a more general upper domination inequality (D+). Using the upper and
lower domination inequalities (D±), we can then demonstrate that orbit
maps are quasi-isometric embeddings of the relative Cayley graph, that is
the Cayley graph with the extrinsic metric from the cusped space.

Proposition 4.7. — Suppose ρ : Γ→ GL(d,R) is 1-dominated relative
to P with lower domination constants (

¯
C,

¯
µ). Then there exists C̄ > 1 and

µ̄ >
¯
µ such that for all γ ∈ Γ,

σ1(ρ(γ)) 6 C̄ 1
2 e

1
2 µ̄|γ|c .

Since σ1
σd

(ρ(γ)) = σ1(ρ(γ)) · σ1(ρ(γ−1)), this immediately yields

Corollary 4.8 (D+). — For ρ : Γ → GL(d,R) a 1-relatively domi-
nated representation, let C̄, and µ̄ be as in Proposition 4.7. We have

σ1

σd
(ρ(γ)) 6 C̄eµ̄|γ|c

for all γ ∈ Γ.

We will sometimes refer to (D+) as the upper domination inequality. Be-
low, we will speak of relatively dominated representations with domination
constants (

¯
C,

¯
µ, C̄, µ̄).
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Proof of Proposition 4.7. — We already know the related but weaker
inequality σ1(ρ(γ)) 6 eµ2|γ| from Γ being finitely-generated, where we may
take eµ2 = maxs∈S σ1(ρ(s)) where S is the finite generating set we used
to build our cusped space.
More generally, given a word γ, we consider it as a relative path (γ,H)

(see § 2.2) where H = H1
∐
. . .
∐
Hn, and suppose η = (η1, . . . , ηn) where

ηi = γ|Hi are the maximal peripheral excursions. Then we have

σ1(ρ(γ)) 6 σ1 (ρ(γ \ η)) ·
n∏
i=1

σ1(ρ(ηi))

6 eµ2 · `(γ\η) · Cn1 exp
(
µ1

n∑
i=1
|ηi|c

)
6 C |γ|c1 emax{µ2, µ1}·|γ|c

where σ1(ρ(γ r η)) is to be interpreted as a product of σ1(ρ(γi)), where
each γi is a maximal connected component of γ r η as a path; `(γ r η) is
the (sum of) length(s) of these paths (see § 2.2.) C1 and µ1 here are the
constants from the upper domination condition in Definition 4.2.
Here the second inequality follows from the first paragraph of the proof

for individual non-peripheral pieces, and the upper domination hypothesis
in Definition 4.2 for peripheral pieces, together with the equality (2.1’)
(from the proof of Proposition 2.12.)

In particular, writing C̄
1
2 = C1 and 1

2 µ̄ = max{µ2, µ1}, we have the
Proposition 4.7. �

Proposition 4.9. — Let ρ : Γ→ SL(d,R) be a representation which is
1-dominated relative to P with lower domination constants (

¯
C,

¯
µ).

Then the orbit maps γ 7→ ρ(γ) · o are equivariant quasi-isometric em-
beddings of the relative Cayley graph Cay(Γ, S) ⊂ X(Γ,P, S) into the
symmetric space G/K = SL(d,R)/ SO(d).

Proof. — By construction, the orbit map is equivariant, i.e. ρ(γ2γ1) ·o =
ρ(γ2) · (ρ(γ1) · o).
Viewing G/K as a space of inner products on Rd, we recall the distance

formula at the end of § 3:

dG/K(o, g · o) =
√∑

(log σi(g))2

for any g ∈ SL(d,R), where the o denotes the basepoint corresponding to
our choice of inner product (see the beginning of this section.)
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Now Proposition 4.7 implies(
log σi(ρ(γ))

)2 6 ( log σ1(ρ(γ))
)2 6 1

4
(

log C̄ + µ̄|γ|c
)2

for 1 6 i 6 d, and so√√√√ d∑
i=1

(
log σi(ρ(γ))

)2 6 √d2 (
log C̄ + µ̄|γ|c

)
for all γ ∈ Γ. On the other hand, we have

√√√√ d∑
i=1

(
log σi(ρ(γ))

)2 > 1
2
(∣∣ log σ1(ρ(γ))

∣∣+
∣∣ log σ2(ρ(γ))

∣∣)
> 1

2 log σ1

σ2
(ρ(γ)) > 1

2 log
¯
C + ¯

µ

2 |γ|c.

Combining the two immediately yields that the orbit map into G/K is
a quasi-isometric embedding with respect to the cusped metric. �

5. Existence and transversality of limits

For the rest of this paper, let Γ be a finitely generated group, P be a finite
collection of subgroups of Γ satisfying (RH), and S = S−1 be a compatible
finite generating set. For the next three sections (§ 5, § 6, and § 7), fix
ρ : Γ→ GL(d,R) a representation which is 1-dominated relative to P with
domination constants (

¯
C,

¯
µ, C̄, µ̄).

The goal of this section is to establish the following existence and trans-
versality result, which will be very useful in the following sections:

Definition 5.1. — Let I ⊂ R be an interval (finite or infinite, open or
closed) and let α : I → Cay(Γ) be a path with α(I ∩ Z) ⊂ Γ.
We define the sequence

xγ = (. . . Aa−1, . . . , A−1, A0, . . . , Ab−1, . . . )

:=
(

[· · · ], ρ
(
α(a)−1α(a− 1)

)
, . . . , ρ

(
α(0)−1α(−1)

)
,

ρ
(
α(1)−1α(0)

)
, . . . , ρ

(
α(b)−1α(b− 1)

)
, [· · · ]

)
and call this the matrix sequence associated to α.
We say that α (or xα) is based at id if I 3 0 and α(0) = id.
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Proposition 5.2. — Let γ = π ◦ γ̂ be a bi-infinite (
¯
υ, ῡ)-metric quasi-

geodesic path γ based at id, and let x = xγ = (Ak)k∈Z be the matrix
sequence associated to γ. Then

(i) the following limits

Eu(x) := lim
n→∞

U1(A−1 · · · A−n)

Es(x) := lim
n→∞

Sd−1(An−1 · · · A0)

exist and form a splitting Eu(x)⊕ Es(x) of Rd, and
(ii) there is a uniform bound smin (depending only on the quasigeodesic

and domination constants) on the minimal separation s(Eu(x),
Es(x)) := sin∠(Eu(x), Es(x)) between these linear subspaces.

To prove this we will use the following theorem, which is a mild modifi-
cation of a recent result of Quas–Thieullen–Zarrabi [23], which in turn is a
vast generalization of the characterization of linear cocycles with dominated
splittings given in Bochi–Gourmelon [3]:

Theorem 5.3. — Let (Ak)k∈Z ⊂ GL(d,R) be a sequence of matrices
such that there exist constants C > 1 and µ, µ′ > 0, with 1

µ log 3C > 1,
such that the following axioms(3) are satisfied:

• (SVG-BG) for all k ∈ Z and all n > 0,
σ2

σ1
(Ak+n−1 · · · Ak) 6 Ce−nµ

• (EC) for all k ∈ Z and all n > 0,

d
(
Sd−1 (Ak+n−1 · · · Ak) , Sd−1 (Ak+n · · · Ak)

)
6 Ce−nµ,

d
(
U1 (Ak−1 · · · Ak−n) , U1

(
Ak−1 · · · Ak−(n+1)

) )
6 Ce−nµ.

• (FI)back: for all k 6 0 and n,m > 0
σ1 (Ak+n−1 · · · Ak−m)

σ1 (Ak+n−1 · · · Ak) · σ1 (Ak−1 · · · Ak−m) > C
−1e−mµ

′

Then
(i) for each k ∈ Z in the sequence we have a splitting Eu ⊕ Es of Rd

given by

Eu(k) := lim
n→∞

U1 (Ak−1 · · · Ak−n)

Es(k) := lim
n→∞

Sd−1 (Ak+n−1 · · · Ak)

(3)The names of the axioms are spelled out and briefly explained in Appendix B.
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which is equivariant in the sense that AkE∗(k) = E∗(k + 1) for all
k ∈ Z and ∗ ∈ {u, s};

(ii) moreover, for all k 6 0, we have a uniform lower bound smin =
smin(C, µ, µ′) on the gap s(Eu(k), Es(k)) := sin∠(Eu(k), Es(k))
given by

s(Eu(k), Es(k)) > smin := 2
3(3e)−2r exp

(
− 3/2

1− e−µ

)
C−(1+2r),

where r := µ′

µ .

We will defer the proof of this result to Appendix B and focus on showing
how to obtain Proposition 5.2 given the Theorem. We remark that we may
assume, without loss of generality, that our constants are such that the
additional hypothesis 1

µ log 3C > 1 specified in Theorem 5.3 is satisfied; if
they are not, we can make C larger or µ smaller and the other required
axioms will continue to hold with these adjusted constants.
Before beginning the argument, we remark that a number of linear alge-

bra results, which will be used throughout this and subsequent proofs, are
collected in Appendix A. We note that Lemma A.1, in particular, will be
used many times below to control unstable spaces of products of matrices.

We start by establishing the following

Lemma 5.4. — Given
¯
υ, ῡ > 0, there exist constants C > 1 and µ > 0,

depending only on the representation and
¯
υ, ῡ, such that for any matrix

sequence x = xγ associated to a bi-infinite (
¯
υ, ῡ)-metric quasigeodesic path

γ based at id,

d
(
U1 (Ak−1 · · · Ak−n) , U1

(
Ak−1 · · · Ak−(n+1)

))
6 Ce−nµ

d (Sd−1 (Ak+n−1 · · · Ak) , Sd−1 (Ak+n · · · Ak)) 6 Ce−nµ.

In other words, such sequences xγ satisfy (EC), with constants depending
only on the representation and the quasigeodesic constants. It then follows,
using the triangle inequality, that the limits exist, and in fact convergence
to the limits is uniform:

Corollary 5.5. — Given x = xγ = (Ak) a matrix sequence associated
to bi-infinite (

¯
υ, ῡ)-metric quasigeodesic path γ based at id, the limits

Eu(x) := lim
n→∞

U1 (A−1 · · · A−n)

and

Es(x) := lim
n→∞

Sd−1 (An−1 · · · A0)
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exist, and

d
(
U1 (A−1 · · · A−n) , Eu(x)

)
6 C

1− e−µ · e
−nµ

d
(
Es(x), Sd−1 (An · · · A0)

)
6 C

1− e−µ · e
−nµ

where C, µ are the constants from Lemma 5.4.

To prove Lemma 5.4 it will be useful to more closely examine the parts
of matrix sequences inside the peripheral subgroups. For this purpose, we
recall the notions of peripheral excursion and depth from § 2, now used for
matrix sequences coming from paths in Γ:

Definition 5.6. — Given I an interval in Z and a sequence x = xγ =
(Ak) ∈ GL(d,R)I associated to some path γ : I → Cay(Γ), a peripheral ex-
cursion in x is a subsequence (Ak) ∈ GL(d,R)J where J ⊂ I is a subinterval
and γ|J is a peripheral excursion in the sense of § 2.2.
The depth of a matrix Ak = ρ(γ(k)−1γ(k − 1)) inside a peripheral ex-

cursion is the depth of γ(k)−1γ(k − 1) in the sense of Definition 2.14.

Proof of Lemma 5.4. —We presently restrict our attention to (Ak−n)n> 0,
in order to study more carefully the limit giving Eu(k).

We now derive two inequalities, each of which works to give us the bound
we want in a different case. On the one hand, we have

d
(
U1 (Ak−1 · · · Ak−n) , U1 (Ak−1 · · · Ak−n−1)

)
6 σ1

σd
(Ak−n−1) · σ2

σ1
(Ak−1 · · · Ak−n)

6 σ1

σd

(
ρ
(
γ(k − n)−1γ(k − n− 1)

) )
· σ2

σ1

(
ρ
(
γ(k)−1γ(k − n)

) )
by Lemma A.1. By Corollary 4.8 and Definition 2.15,

σ1

σd

(
ρ
(
γ(k − n)−1γ(k − n− 1)

) )
6 eµ̄·ῡ(δ(Ak−n−1)+6)

= C̄e6µ̄ῡeµ̄ῡ·δ(Ak−n−1);

by Definition 2.15 and the lower domination inequality (D−),
σ2

σ1

(
ρ
(
γ(k)−1γ(k − n)

) )
6

¯
C−1e−¯

µ
¯
υe¯
µ

¯
υn

where
¯
C and

¯
µ are the domination constants. Hence, writing

C2 = C̄
¯
C−1e6µ̄ῡ+

¯
µ

¯
υ, µ2 = µ̄ῡ, and µ0 =

¯
µ

¯
υ,
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(5.1) d
(
U1 (Ak−1 · · · Ak−n) , U1 (Ak−1 · · · Ak−n−1)

)
6 C2e

µ2 · δ(Ak−n−1) · e−µ0n

This will turn out to give us the inequality we want when the depth
δ(Ak−n−1) is relatively small compared to n.
Alternatively, suppose a matrix lies in a peripheral excursion starting

at k − n0. Write D := Ak−1 · · · Ak−n0 to denote the word prior to the
excursion, and, for any integer n with Ak−n belonging to the peripheral
excursion, E(n− n0) := Ak−n0−1 · · · Ak−n, so that we have the decompo-
sition Ak−1 · · · Ak−n = DE(n− n0).
We break E(n− n0)−1E(n+ 1− n0) = Ak−n−1 up into smaller chunks

(5.2)
Ak−n−1 = Ak−n−1, 1 · · · Ak−n−1, `(k−n−1)

= ρ
(
pk−n−1, 1 · · · pk−n−1, `(k−n−1)

)
corresponding to single unbunched peripheral generators (as in proper-
ty (iii) of Definition 2.15.)
For brevity, we write Fj := Ak−n−1,j in the next inequality, and also

adopt the convention F0 = id. Now we have

d
(
U1 (DE(n− n0)) , U1 (DE(n+ 1− n0))

)
6
`(k−n−1)∑

j=1
d
(
U1 (DE(n− n0)F0 · · · Fj−1) , U1 (DE(n− n0)F0 · · · Fj)

)
6
`(k−n−1)∑

j=1

σ1

σd
(Fj) ·

σ2

σ1
(DE(n− n0)F0 · · · Fj−1)

6 C̄eµ̄
`(k−n−1)∑

j=1

σ2

σ1
(DE(n− n0)F0 · · · Fj−1) =: RHS1

where we have used the triangle inequality `(k − n − 1) times, applied
Lemma A.1 to each of the resulting terms, and then used Corollary 4.8
with the bound on the size of single generators; then, using the quadratic
gaps condition (which bounds from below the first singular value gap for
images of words ending in peripheral excursions)
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d
(
U1(DE(n− n0)), U1(DE(n+ 1− n0))

)
6 RHS1

= C̄eµ̄
`(k−n−1)∑

j=1

σ2

σ1

(
ρ
(
γ(k)−1γ(k − n0) · γ(k − n0)−1

γ(k − n)pk−n−1, 1 · · · pk−n−1, j
))

6 C̄eµ̄ · 1
C ′

`(k−n−1)∑
j=0

|γ(k − n0)−1γ(k − n)pk−n−1, 1 · · · pk−n−1, j)|−2

=: RHS2

and finally using the metric quasigeodesic lower bound and Proposition
2.11, we obtain

(5.3) d
(
U1(DE(n− n0)), U1(DE(n+ 1− n0))

)
6 RHS2

6 C̄eµ̄ · 1
C ′

`(k−n−1)∑
j=0

(
2¯
υ−1(n−n0)−

¯
υ + j

)−2

6 21+
¯
υC̄eµ̄

C ′
exp

(
− log 2

¯
υ

(n− n0)
)
6 C3 exp

(
− log 2

¯
υ
· δ(Ak−n)

)
where C3 := 21+

¯
υC̄eµ̄

C′ ; at the end we have used the general inequality

b∑
j=0

(M + j)−2 =
M+b∑
j=M

j−2 6
∫ M+b

M−1
x−2 dx = 1

M − 1 −
1

M + b
6 2
M
.

This second inequality will serve us when the depth δ(Ak−n) is relatively
large compared to n.
For n > 0 where the depth δ(Ak−n−1) 6 µ0

2µ2
n (including all n where

δ(Ak−n) = 0, i.e. Ak−n is non-peripheral), it follows from (5.1) that

d
(
U1 (Ak−1 · · · Ak−n) , U1

(
Ak−1 · · · Ak−(n+1)

))
6 C2e

µ2(δ(Ak−n−1)) · C−1
0 e−µ0n

6 C2e
µ2· µ0

2µ2
ne−µ0n = C2e

−µ0
2 n.

For n > 0 where the depth δ(Ak−n) > µ0
2µ2

n, we have, from (5.3),

d
(
U1 (Ak−1 · · · Ak−n) , U1 (Ak−1 · · · Ak−n−1)

)
6 C3 exp

(
−µ0 log 2

2
¯
υµ2

n

)
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and so we have the desired inequalities for our Lemma, with

C = max {C2, C3} and µ = µ0

2 ·min
{

1, log 2

¯
υµ2

}
.

For (Ak+n)n> 0 and the limit giving Es(k), we may argue similarly, or
alternatively we may consider the reversed dual sequence ιx∗ = (Bk)k∈Z
given by

(5.4) Bk := ρ∗
(
γ(−k − 1)−1γ(−k − 2)

)
=
(
A−1
−k−1

)T
where ρ∗ is the dual representation, which is also 1-relatively dominated
(Proposition 4.4.)

By Proposition 4.4, we have

U1 (B−k−1 · · · B−k−n) = U1
(
ρ∗
(
γr(−k)−1γr(n− k − 1)

))
=
(
Ud−1

(
ρ
(
γr(k)−1γr(k + n− 2)

)))⊥
=
(
Sd−1

(
ρ
(
γr(k + n− 2)−1γr(k)

)))⊥
= (Sd−1 (Ak+n−1 · · ·Ak))⊥

Then we have

d
(
Sd−1 (Ak+n−1 · · · Ak) , Sd−1 (Ak+n · · · A0)

)
= d
(
U1 (B−k · · · B−k−n) , U1 (B−k · · · B−k−n−1)

)
6 Ce−µn.

where in the last step we have used the argument above for the Eu(−k)
limit for ιx∗. �

Proof of Proposition 5.2. — By Corollary 5.5, the limits Eu(x) and
Es(x) exist, and the sequence x = xγ satisfies axiom (EC) in the statement
of Theorem 5.3, with constants depending only on the domination and
quasigeodesic constants.
From the upper and lower domination inequalities and the metric quasi-

geodesic properties in Definition 2.15), x = xγ satisfies axiom (SVG-BG)
in the statement of Theorem 5.3, with constants C =

¯
Ce−¯

µ
¯
υ and µ =

¯
µ

¯
υ.

Step 1 (bounded-depth sequences). —
Definition 5.7. — We say a sequence x = (Ak)k∈Z has bounded depth

∆ in the backward direction (in the forward direction, respectively) if
δ(Ak) 6 ∆ for all k 6 0 (for all k > 0, resp.)

Equivalently, for xγ , our (sub)path γ|Z6 0 (or γ|Z> 0 , respectively) has
peripheral excursions of bounded cusped length.
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Proposition 5.8. — Given ∆ ∈ Z> 0, there exists smin(∆) > 0 (which
also depends on the quasigeodesic and domination constants) such that for
any x = xγ with bounded depth ∆ in the backward direction or in the
forward direction, s(Eu(x), Es(x)) > smin(∆)

Proof. — If x = xγ has bounded depth ∆ in the backward direction,
then x satisfies the axiom (FI)back from the inequalities

σ1 (Ak+n−1 · · · Ak−m)
σ1 (Ak+n−1 · · · Ak) · σ1 (Ak−1 · · · Ak−m)

> σ1 (Ak+n−1 · · · Ak) · σd (Ak−1 · · · Ak−m)
σ1 (Ak+n−1 · · · Ak) · σ1 (Ak−1 · · · Ak−m)

> 1
C2
e−µ2(∆+m) = e−µ2∆

C2
e−µ2m;

these inequalities follow from the general inequalities σ1(A) · σ1(B) >
σ1(AB) > σ1(A) ·σd(B) and Corollary 4.8 and Definition 2.15, with C2, µ2
as in the proof of Lemma 5.4.
Thus if x = xγ has bounded depth ∆ in the backward direction, it

satisfies (FI)back with D = C2e
µ2∆ and µ′ = µ2. In particular, Theorem 5.3

gives us s(Eu(x), Es(x)) > smin(∆) for some smin(∆) depending also on
the quasigeodesic and domination constants, and we obtain the Proposition
for such sequences.
If x = xγ = (Ak)k∈Z has bounded depth ∆ in the forward direction

but not the backward direction, consider again the reversed dual sequence
ιx∗ = (Bk)k∈Z defined above in (5.4).
The sequence ιx∗ has bounded depth in the backward direction, hence

Proposition 5.8 we have s(Eu(ιx∗), Es(ιx∗)) > smin(∆).
But now, by Proposition 4.4, Eu(ιx∗) = Es(x)⊥ since

Eu (ιx∗) = lim
n→∞

U1 (B−1 · · · B−n)

= lim
n→∞

U1

(
ρ∗
(
γr(0)−1γr(n− 2)

) )
= lim
n→∞

(
Ud−1

(
ρ
(
γr(0)−1γr(n− 2)

)) )⊥
=
(

lim
n→∞

Sd−1
(
ρ
(
γr(n− 2)−1γr(0)

) ))⊥
= Es(x)⊥

and similarly Es(ιx∗) = Eu(x)⊥. Hence we have

s(Eu(x), Es(x)) > smin(∆)

as desired. �
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Step 2 (unbounded-depth sequences). — If our sequence x = xγ
does not have bounded depth in either the backward or forward directions,
then the subpaths in both directions (i.e. both γ|Z6 0 and γ|Z> 0) contain
arbitrarily long peripheral excursions.
Define P± ∈ P and infinite peripheral excursions p±∞ as follows:
• if γ is eventually peripheral in the forward (backward, respectively)
direction, let p+

∞ (p−∞, resp.) be the maximal infinite peripheral
excursion of the form γ|>N for some N ∈ Z> 0 (γ|>N for some
N ∈ Z6 0, resp.), and let P+ (P−, resp.) be the peripheral subgroup
in which p+

∞ (p−∞, resp.) lies.
• If γ is not eventually peripheral in the forward (backward, resp.)

direction: by the finiteness of |P| and since the peripheral subgroups
are finitely-generated, in this direction we can find P+ ∈ P (P−,
resp.) and a sequence of increasingly longer peripheral excursions
p±n in P±. By a diagonal argument these converge to an infinite
peripheral excursion p±∞ into P± (respectively.)

Let L be the constant from the local-to-global condition in Definition 4.1
and T2 be the threshold such that

C

1− e−µ e
−µT2 6 δ0

8
where C, µ > 0 are the constants from Lemma 5.4, δ0 is the constant from
the uniform transversality condition, and define T := max {T2, L}.
Consider, in each direction, the first peripheral excursions into P± of

depth at least T which (i.e. whose reparametrized projections) agree with
p±∞ up to length T . Take a sequence x′ where we replace these periph-
eral excursions with p±∞ (resp.) By construction and by the local-to-global
condition, these are uniform metric quasigeodesic paths in both direc-
tions (starting from 0.) From the uniform transversality condition, we have
s(Eu(x′), Es(x′)) > δ0.

Next we wish to use (EC) (more precisely, Corollary 5.5) and the choice
of T to say that

d
(
Eu(x), Eu(x′)

)
6 δ0

4 d
(
Es(x), Es(x′)

)
6 δ0

4 .

To verify (EC) for x′, remark that our construction—in particular the
choice of T—together with the local-to-global condition give us that we
have geodesic rays in both directions, and hence (EC) still follows from
Lemma 5.4.

Hence s(Eu(x), Es(x)) > δ0
2 > 0 and since dimEu(x) + dimEs(x) = d,

we have a splitting Rd = Eu(x)⊕ Es(x). �
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To obtain the minimum gap: we argue by contradiction. From Propo-
sition 5.8 (i.e. step 1 above), we have a minimum gap s(N) for any sequence
of bounded depth N in either direction; from step 2, we have a mini-
mum gap δ0/2 for sequences of unbounded depth. Suppose s(N) → 0 as
N →∞. Then we may choose an infinite sequence of matrix sequences x(m),
each associated to a (reparametrized) (

¯
υ, ῡ)-metric quasigeodesic path of

bounded depth dm, with dm → ∞, such that the gap between Eu(x(m))
and Es(x(m)) is bounded above by 1

m .
Up to subsequence, these converge to some infinite sequence x which is

associated to a reparametrized (
¯
υ, ῡ)-metric quasigeodesic path with zero

gap between Eu(x) and Es(x); but this is a contradiction whether x has
unbounded or bounded depth.
Hence, by our compactness argument, we may choose our minimum gap

to be
min

{
δ0/2, inf

N ∈N
s(N)

}
> 0. �

6. Relative domination implies relative hyperbolicity

Recall that Γ is a torsion-free finitely-generated group. We will presently
prove the following

Theorem 6.1. — If ρ : Γ→ GL(d,R) is 1-dominated relative to P 6= ∅
with domination constants (

¯
C,

¯
µ, C̄, µ̄), and Γ 6=

⋃
PΓ (i.e. Γ contains non-

peripheral elements), then Γ must be hyperbolic relative to P.

We remark that the statement is still true if P = ∅—that is precisely
the result from [4].
The proof of Theorem 6.1 will use the criterion for relative hyperbolicity

given in Theorem 2.9. To do so we will find a compact, perfect metric space
on which Γ acts as a geometrically finite convergence group, and verify that
the maximal parabolic subgroups are precisely the peripheral subgroups.
Below, we construct such a space Λrel, verify it has the required properties,
check that the action of Γ on the space of distinct triples Λ(3)

rel is properly
discontinuous and the action of Γ on the space of distinct pairs Λ(2)

rel is
cocompact, and finally characterize the maximal parabolic subgroups.
We remark that the outline of the argument is adapted from that of

[4, § 3]. In particular, a statement describing north-south dynamics ([4,
Lemma 3.13], Lemma 6.8 here), resulting from a quantitative transversality
result (Corollary 6.6), is a key intermediate proposition. Here the geodesics
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we consider are located not in the group but in the associated cusped space,
and this necessitates the new tools introduced in the previous section for
the proof of the transversality result. There are also differences in the proofs
due to the convergence action of the group being geometrically-finite rather
than uniform; among other things, this, through our assumption that Γ
contains both peripheral and non-peripheral elements, simplifies the proof
of perfectness (Proposition 6.9.)
We fix some notation for the below. Fix `0 ∈ N such that

¯
Ce−¯

µ`0 < 1.
We will write, for brevity, Ξρ(γ) := U1(ρ(γ)) and Ξ∗ρ(γ) := Sd−1(ρ(γ)−1) =
Ud−1(ρ(γ)), for γ ∈ Γ. We recall that these were defined in § 3. Given
ξ, ζ ∈ P(Rd) or Grd−1(Rd), d(ξ, ζ) will denote distance between ξ and ζ in
the relevant Grassmannian.

6.1. The limit set

We will construct a candidate space Λrel for the compact metric space
M required in Theorem 2.8, as follows:

Λrel :=
⋂
n> `0

{Ξρ(γ) : |γ|c > n}.

We remark that any ξ ∈ Λrel can be written as a limit lim
n→∞

Ξρ(γn) where
|γn|c →∞.

Remark 6.2. — Λrel is closely related to Benoist’s limit set from [2]: at
least in the case where ρ(Γ) is Zariski-dense, Λrel is the natural projection
of Benoist’s limit set, which consists of accumulation points in a (in general
larger) flag variety, to the projective space (see [2, § 3.5 and § 3.6]).

It is fairly immediate that

Proposition 6.3. — Λrel is compact, non-empty, and ρ(Γ)-invariant.

Proof. — Λrel is compact and non-empty since it is a decreasing inter-
section of non-empty closed subsets of a Grassmannian, which is a compact
space.
To show Λrel is ρ(Γ)-invariant, we fix η ∈ Γ and ξ ∈ Λrel, and choose

a sequence (γn) ⊂ Γ such that |γn|c → ∞ and Ξ(γn) → ξ. Ξ(ηγn) is
well-defined whenever |γn| > `0 − |η|, and by (D−) and (A.2) we have

d
(
ρ(η) Ξρ(γn),Ξρ(ηγn)

)
6 σ1

σd
(ρ(η)) ·

¯
Ce−¯

µ|γn|c → 0

as n → ∞, and so Ξρ(ηγn) → ρ(η)ξ as n → ∞, and in particular ρ(η)ξ ∈
Λrel. �
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6.2. Dynamics on the limit set

Recall that ρ : Γ → GL(d,R) is a 1-relatively dominated representation
with domination constants (

¯
C,

¯
µ, C̄, µ̄).

We start this section with the following comparability lemma, which
follows from Corollary 4.8 and related estimates:

Lemma 6.4. — There exist constants ν ∈ (0, 1), c0 > 1 and c1 > 1,
depending only on the domination constants

¯
C,

¯
µ > 0, such that for any

γ, η ∈ Γ satisfying |γ|c, |η|c > `0 (with `0 as above), then

dc(γ, η) > ν(|γ|c + |η|c)− c0 − c1 |log d (Ξρ(γ),Ξρ(η))| .

Proof. — Consider γ, η ∈ Γ with cusped word length at least `0. Assume
without loss of generality that |γ|c 6 |η|c. Applying (A.1) to A = ρ(η)
and B = ρ(η−1γ), and using the relatively dominated condition and Corol-
lary 4.8, we obtain

d (Ξρ(η),Ξρ(γ)) 6 σ1

σd

(
ρ
(
η−1γ

))
· σ2

σ1
(ρ(η))

6 C̄eµ̄|η
−1γ|

c ·
¯
Ce−¯

µ|η|c

where C̄, µ̄ are the constants from Corollary 4.8. Equivalently, after taking
logarithms and isolating the dc(γ, η) term,

dc(γ, η) =
∣∣η−1γ

∣∣
c

> µ̄−1 (
¯
µ|η|c − log C̄ − log

¯
C + log d (Ξρ(η),Ξρ(γ))

)
>

¯
µµ̄−1|η|c − µ̄−1 (log C̄ + log

¯
C
)
− µ̄−1∣∣ log d (Ξρ(η),Ξρ(γ))

∣∣
and since |η|c > (|γ|c + |η|c)/2, we obtain the lemma. �
In particular, applying this to projected geodesic rays, we obtain

Lemma 6.5. — If (γn)∞n=0, (ηn)∞n=0 are two projected geodesic sequences
in Γ with γ0 = η0 = id such that

lim
n→∞

Ξρ(γn) 6= lim
n→∞

Ξρ(ηn),

then (. . . , η2, η1, id, γ1, γ2, . . . ) is a metric quasigeodesic, with quasigeodesic
constants depending only on

d
(

lim
n→∞

Ξρ(γn), lim
n→∞

Ξρ(ηn)
)
.
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Proof. — Given the hypotheses, it follows from Corollary 5.5 that the
limits

ξρ(γ) := lim
n→∞

Ξρ(γn), ξρ(η) := lim
n→∞

Ξρ(ηn) and ξ∗ρ(η) := lim
n→∞

Ξ∗ρ(ηn)

exist.
The previous Lemma 6.5 applied to the pairs of elements (γn, ηn), to-

gether with Proposition 2.16, yields that the sequence (. . . , ηn, . . . η0, id,
γ0, . . . , γn, . . . ) is a metric quasigeodesic path, with constants depending
on ε := d(ξρ(γn), ξρ(ηn)), ν ∈ (0, 1), c0, c1 from Lemma 6.4, and `0 from
above.
More precisely, Proposition 2.16 verifies the metric quasigeodesic inequal-

ities for any subpath restricted to one side of id, i.e. containing only ele-
ments γi or ηj .
For subpaths containing both some ηl and some γk, we have

dc(γk, ηl) 6 dc(γk, id) + dc(id, ηl) 6 8(k + l) + 40

from the triangle inequality and Proposition 2.16. For the lower bound
here: write

c := max {2`0, c0 + c1 log(3/ε)} ,
and note that we have

dc(γk, ηl) =
∣∣η−1
l γk

∣∣
c
> ν (|ηl|c + |γk|c)− c >

ν

6 (l + k)− c

from Lemma 6.4 and Proposition 2.16 when both |γk|c, |ηl|c > `0. In the
case |ηl|c 6 `0 we have

dc(γk, ηl) > dc(γk, id)− dc(ηl, id) > |γk|c − `0
> (|γk|c + |ηl|c)− 2`0

and an analogous argument produces the same lower bound when |γk|c
6 `0. �

We may combine this with Proposition 5.2 to obtain

Corollary 6.6. — If (γn)∞n=0, (ηn)∞n=0 are two projected geodesic se-
quences in Γ with γ0 = η0 = id such that

lim
n→∞

Ξρ(γn) 6= lim
n→∞

Ξρ(ηn),

then lim
n→∞

Ξρ(γn) is transverse to lim
n→∞

Ξ∗ρ(ηn).

Proof. — Given the hypotheses, it follows from Corollary 5.5 that the
limits

ξρ(γ) := lim
n→∞

Ξρ(γn), ξρ(η) := lim
n→∞

Ξρ(ηn) and ξ∗ρ(η) := lim
n→∞

Ξ∗ρ(ηn)
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exist. Since γn and ηn piece together to form a metric quasigeodesic path
(Lemma 6.5), Proposition 5.2 then yields the desired conclusion. �
Using this together with a compactness argument, we may then prove

the following quantitative / finite transversality result.

Lemma 6.7. — For every ε > 0, there exist `1 > `0 and δ > 0 such that
for all γ, η ∈ Γ with

(i) |γ|c, |η|c > `1, and
(ii) d(Ξρ(γ),Ξρ(η)) > ε,

we have ∠(Ξρ(γ),Ξ∗ρ(η)) > δ.

Proof. — The proof will proceed by contradiction. Assume there ex-
ist ε > 0 and sequences `j → ∞, δj → 0 such that for each j there
exist γj , ηj ∈ Γ with |γj |c, |ηj |c > `j and d (Ξρ(γj),Ξρ(ηj)) > ε, but
∠(Ξρ(γj),Ξ∗ρ(ηj)) 6 δj .
Consider the γj and ηj as projected geodesics. By a diagonal argu-

ment, these converge, up to a subsequence, to some (infinite words) γ :=
g1 · · · gn · · · and η := h1 · · · hm · · · . Reparametrizing as needed, we may
assume that these are (6, 20)-metric quasigeodesic paths (these constants
being the ones obtained in Proposition 2.16.)
By Corollary 6.6, the limits ξρ(xγ) and ξ∗ρ(xη) exist, and

∠
(
ξρ(xγ), ξ∗ρ(xη)

)
> 0.

This gives us a contradiction, since, by construction,

∠
(
ξρ(xγ), ξ∗ρ(xη)

)
= 0. �

Using this last version of transversality, we then have the following state-
ment describing a sort of North-South dynamics:

Lemma 6.8. — Given ε, ε′ > 0, there exists ` > `0 such that for any
η ∈ Γ with |η|c > ` and any ξ ∈ Λrel with d(ξ,Ξρ(η−1)) > ε, we have

d (ρ(η)ξ, Ξρ(η)) 6 ε′.
Proof. — Let `1 > `0 and δ > 0 be given by Lemma 6.7, with our given

ε > 0. Choose ` > `1 such that
¯
Ce−¯

µ` < ε′ sin δ.
Fix η ∈ Γ and ξ ∈ Λrel such that |η|c > ` and d(ξ,Ξρ(η−1)) > ε. Choose

a sequence (γn) ⊂ Γ such that |γn|c → ∞ and Ξρ(γn) → ξ. Without loss
of generality assume for each n we have |γn|c > `1 and

d
(
Ξρ(γn),Ξρ

(
η−1)) > ε.

It then follows from Lemma 6.7 that

∠
(
Ξρ(γn),Ξ∗ρ

(
η−1)) > δ
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and then, by Lemma A.2 with A = ρ(η) and P = Ξ(γn), we obtain

d
(
ρ(η) Ξρ(γn),Ξρ(η)

)
6 σ2

σ1
(ρ(η)) 1

sin∠
(
Ξρ(γn),Ξ∗ρ(η−1)

)
6 σ2

σ1
(ρ(η)) 1

sin δ 6 ¯
Ce−¯

µ`

sin δ < ε′

and letting n→∞ we have d(ρ(η)ξ,Ξρ(η)) 6 ε′ as desired. �

6.3. Perfectness

Proposition 6.9. — Λrel is perfect, that is every point in Λrel is an
accumulation point of other points in Λrel.

Proof. — We first claim that |Λrel| > 3. By assumption we have non-
peripheral and hence (by Lemma 4.6) biproximal elements, and also periph-
eral elements. The proximal elements give us at least two distinct points
ξ± in Λrel; the peripheral elements give us at least one point ξP in Λrel.
We claim that the peripheral point ξP is not fixed by any non-peripheral

element of Γ, and in particular is distinct from the proximal limit points ξ±.
To see this, suppose γ ∈ Γ is non-peripheral and fixes ξP . Then ξγPγ−1 =
ξP , which violates the transversality hypothesis in Definition 4.2.
Hence |Λrel| > 3.
Now let b1 be a point in Λrel, and let ε′ > 0. We will show that the

2ε′-neighborhood of b1 contains another element of Λrel.
Choose b2, b3 to be two distinct points of Λrel \ {b1}. Let ε := 1

2 mini 6=j
d(bi, bj). Let ` > `0 be given by Lemma 6.8, depending on ε and ε′. Choose
η ∈ Γ such that |η|c > ` and d(Ξρ(η), b1) < ε′. Consider Ξρ(η−1) as a linear
subspace of Rd; it can be ε-close to at most one of the spaces b1, b2, b3. In
other words, there are different indices i, j ∈ {1, 2, 3} such that

d
(
bi,Ξρ

(
η−1)) > ε

and similarly for bj . In particular, by Lemma 6.8,

d(ρ(η)bi, b1) 6 d
(
ρ(η)bi,Ξρ(η)

)
+ ε′ < 2ε′.

By Γ-invariance, the spaces ρ(η)bi and ρ(η)bj are in Λrel; but at most one
of them can be equal to b1. �
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6.4. Geometrically-finite convergence group action

We first prove that Γ acts on Λrel as a convergence group, that is to say

Proposition 6.10. — The natural induced action of Γ on the space
Λ(3)
rel of distinct triples is properly discontinuous.

Proof. — We will pick out a distinguished family of compact sets of
Λ(3)
rel, and use these to prove proper discontinuity of the action. Given T =

(P1, P2, P3) ∈ Λ(3)
rel a triple of distinct points, define |T | = |(P1, P2, P3)| :=

mini 6=j d(Pi, Pj), where d is a(ny) Riemannian metric on the Grassmannian.
For every δ > 0, {T ∈ Λ(3)

rel : |T | > δ} is a compact subset of Λ(3)
rel, and

conversely every compact subset of Λ(3)
rel is contained in a subset of that

form.
We will now establish that, given δ > 0, there exists ` ∈ N such that if

T ∈ Λ(3)
rel satisfies |T | > δ and η ∈ Γ satisfies |η|c > `, then |ρ(η)T | < δ.

This will suffice to establish the proposition, since it implies that given any
compact subset Λ(3)

rel, all but finitely many words (those of length at most
`) must move the compact subset off itself.
Given δ > 0, let ` be given by Lemma 6.8 with ε = ε′ = δ

2 .
Now consider (ξ1, ξ2, ξ3) ∈ Λ(3)

rel such that |T | > δ, and η ∈ Γ such that
|η|c > `. Note that d(Ξ(η−1), ξi) > δ

2 for at least two of the lines ξ1, ξ2, ξ3—
say, without loss of generality, ξ1 and ξ2.
Lemma 6.8 yields d(ρ(η)ξi,Ξρ(η)) < δ

2 for i = 1, 2, and so

|ρ(η)T | 6 d (ρ(η)ξ1, ρ(η)ξ2) < δ,

as desired. �
We then prove that Γ in fact acts on Λrel as a geometrically finite con-

vergence group. By Theorem 2.9, to demonstrate geometric finiteness it
suffices to show cocompactness on the space of distinct pairs. For this we
will use an expansivity argument:

Proposition 6.11. — The natural induced action of Γ on the space
Λ(2)
rel of distinct pairs is cocompact.

Proof. — As with the case of distinct triples above, for every δ > 0, {T ∈
Λ(2)
rel : |T | > δ} is compact subset of Λ(2)

rel, and conversely every compact
subset of Λ(2)

rel is contained in a subset of that form. Here, analogously to
above, |T | := d(ξ1, ξ2).
We will now prove the following statement: there exists ε > 0 such that

for every T = (ξ1, ξ2) ∈ Λ(2)
rel, there exists γ ∈ Γ such that |ρ(γ)T | > ε. This

suffices to establish the Proposition.
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Choose ε = 1
2smin, where smin is the minimum gap from Proposition 5.2

for metric geodesic sequences given our domination constants. If |T | > ε

then we may take γ = id, so we may suppose that |T | < ε.
Choose (6, 20)-metric quasigeodesic paths (the constants are from Propo-

sition 2.16) (γi = g1 · · · g|γi|), (ηi = h1 · · · h|ηi|) ⊂ Γ such that Ξρ(γi)→ ξ1,
Ξρ(ηi)→ ξ2, and consider the sequence of matrices (. . . , A−1, A0, A1, . . . )
given by Ai = ρ(g−1

i+1) for i > 0 and Ai = ρ(h|i|) for i < 0.
By Lemma 6.5, (. . . , η2, η1, id, γ1, γ2, . . . ) =: x is a metric quasigeodesic.
If the sequence for ξ1 is not eventually peripheral, then we may find an

increasing sequence of im > 0 such that the shifted sequences

σimx :=
(
σimAn := An+im

)
n∈Z

converge (as m→∞) to a metric geodesic sequence σ∞x = (Bn)n∈Z, i.e.
Bn = lim

m→∞
σimAn for each n ∈ Z. By construction, for any given N we

can find m0 so that σimAn = Bn whenever |n| 6 N and m > m0.
By Proposition 5.2, sin∠(Eu(σ∞x), Es(σ∞x)) > 2ε. Moreover, by Corol-

lary 5.5, for all large enoughm (given ν′ and c′), sin∠(E∗(σimx), E∗(σ∞x))
< ε

2 for ∗ ∈ {u, s}, so that

sin∠
(
Eu
(
σimx

)
, Es

(
σimx

))
> ε.

Since the endpoints of σimx are given by acting on the endpoints of x by
Aim−1 · · · A0 = ρ(g1 · · · gim)−1 = ρ(γ−1

im
), this establishes that |ρ(γ−1

im
)(ξ1,

ξ2)| > ε, as desired.
We argue similarly if the sequence for ξ2 is not eventually peripheral.
If the sequences for both ξ1 and ξ2 are eventually peripheral, there is a

positive lower bound on the (infimum of the) distance between these (over
all shifts, as above): if not, we can find P, P ′ ∈ P and a sequence of words
wn → ∞ not starting with a letter from P such that d(ξ(P ), wnξ(P ′)) <
2−n. Up to a subsequence, the wn converge to some infinite geodesic such
that lim

n→∞
Ξρ(wn) = ξ(P ); but now observe that this infinite geodesic can-

not be eventually peripheral in both directions—these limit points are all
distinct by hypothesis—, and by the arguments above neither can it be
not eventually peripheral. We conclude, by contradiction, that said lower
bound must in fact exist. �
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6.5. Peripherals are maximal parabolics

Lemma 6.12. — For any non-peripheral γ ∈ Γ, lim
n→∞

Ξρ(γn) is the top
eigenline of ρ(γ).

Proof. — Recall that ρ(γ) is necessarily proximal (Proposition 4.6), so
that the top eigenline is well-defined.
To show limn→∞ Ξρ(γn) is the top eigenline of ρ(γ), we may apply

Lemma A.2 with A = ρ(γn) and L the top eigenline; then d(L,Ξρ(γn)) 6
Cγe

−µγn for positive constants Cγ , µγ depending only on ρ(γ); in partic-
ular, as n → ∞, this bound goes to zero, so that lim

n→∞
Ξρ(γn) = L as

desired. �

Proposition 6.13. — The maximal parabolic subgroups of Γ are pre-
cisely (conjugates of) peripheral subgroups.

Proof. — Suppose H is a maximal parabolic subgroup.
Observe thatH cannot contain non-peripheral elements. Indeed, suppose

γ ∈ Γ is non-peripheral. From Lemma 4.6 and 6.12, ρ(γ) is proximal, and
lim
n→∞

Ξρ(γn) is the top eigenline of ρ(γ). Similarly, ρ(γ−1) is proximal,
and lim

n→∞
Ξρ(γ−n) is the bottom eigenline of ρ(γ). These are distinct (by

proximality), and are both fixed by γ, so γ /∈ H.
Hence every γ ∈ H is peripheral.
Now, from the unique limits hypothesis in Definition 4.2, for any periph-

eral subgroup P , lim
n→∞

Ξρ(ηn) = ξρ(P ) for any sequence (ηn) ⊂ P , and so
P fixes ξρ(P ). By Lemma 6.8, P fixes no other point β ∈ Λrel: any such β
is at some definite distance ε(β) > 0 from ξ(P ), and hence by Lemma 6.8,
sufficiently long words in P must move β off of itself. Hence every peripheral
subgroup P is parabolic, and extends to some maximal parabolic subgroup
P̂ .

Suppose P̂ rP 6= ∅, so that P̂ also contains some non-identity element q
of some other peripheral subgroup Q 6= P . By the torsionfree assumption,
P̂ ∩ Q contains arbitrarily large powers of q. By the same argument as
in the previous paragraph, this implies that Q ⊂ P̂ . But this contradicts
the first part of the uniform transversality hypothesis which stipulates that
ξρ(P ) 6= ξρ(Q).
Hence we must have P̂ = P , i.e. the maximal parabolic subgroups are

exactly the peripheral subgroups, as desired. �
It follows from the above that the parabolic points in Λrel are precisely

the peripheral fixed points.
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6.6. Summary of argument

Proof of Theorem 6.1. — Consider a representation ρ : Γ → GL(d,R)
which is 1-dominated relative to a prescribed collection of peripheral sub-
groups P, such that Γ contains at least one non-peripheral element.
ρ induces an action of Γ on the space of lines P(Rd). Consider Λrel ⊂

P(Rd). It is non-empty, compact and Γ-invariant (Proposition 6.3), and
perfect (Proposition 6.9).
The diagonal action of Γ on Λ(3)

rel is properly discontinuous (Proposi-
tion 6.10) and the diagonal action on Λ(2)

rel is cocompact (Proposition 6.11).
Moreover the maximal parabolic groups are precisely the peripheral sub-

groups; by Theorem 2.9 and since conical limit points cannot be parabolic
these are all bounded, and in particular the stabiliser of each bounded
parabolic point is finitely-generated (Proposition 6.13)

We summarize all of this in a statement that will be used again in the
next section:

Proposition 6.14. — Given a representation ρ : Γ → GL(d,R) which
is 1-dominated relative to P, ρ(Γ) acts on Λrel as a geometrically-finite
convergence group, with PΓ as the set of maximal parabolic subgroups.

Hence, by Theorem 2.9, Γ is hyperbolic relative to P. �

7. Limit maps

In this section, we prove that a relatively dominated representation ρ :
(Γ,P)→ GL(d,R) gives us a pair of limit maps from the Bowditch bound-
ary ∂(Γ,P) into projective space and its dual.
In the case where P = ∅, this recovers the limit maps from the Gromov

boundary of the group into projective space and its dual that we obtain for
an Anosov representation.

Definition 7.1. — Suppose Γ is hyperbolic relative to P, and we have
a pair of continuous maps ξ : ∂(Γ,P)→ P(Rd) and ξ∗ : ∂(Γ,P)→ P(Rd∗).
ξ and ξ∗ are said to be compatible if ξ(η) ⊂ ξ∗(η) as linear subspaces for

all η ∈ ∂(Γ,P).
ξ and ξ∗ are said to be transverse if ξ(η)⊕ ξ∗(η′) = Rd for all η 6= η′.
Given ρ : Γ → GL(d,R) such that ρ(P ) is a parabolic subgroup of

GL(d,R) for each P ∈ P, ξ and ξ∗ are said to be dynamics-preserving if
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(i) ξ(γ+) = (ρ(γ))+ and ξ∗(γ+)⊥ = (ρ∗(γ))+ for all non-peripheral γ ∈
Γ, where γ+ := limn→∞ γn ∈ ∂(Γ,P) and ρ(γ)+ is the attracting
eigenline for ρ(γ), and

(ii) If ∂P ∈ ∂(Γ, P ) is the unique point associated to P ∈ P, then ξ(∂P )
is the parabolic fixed point associated to ρ(P ).

Theorem 7.2. — Given ρ : Γ → GL(d,R) 1-dominated relative to P,
we have well-defined, ρ(Γ)-equivariant, continuous maps ξρ : ∂(Γ,P) →
P(Rd) and ξ∗ρ : ∂(Γ,P)→ P(Rd∗) which are dynamics-preserving, compat-
ible, and transverse.

Proof. — Recall that if ρ : Γ → GL(d,R) is 1-dominated relative to P,
then Γ is hyperbolic relative to P by Theorem 6.1. Moreover, as noted in
Proposition 6.14, ρ(Γ) y Λrel as a geometrically-finite convergence group,
with PΓ as the set of maximal parabolic subgroups.

Yaman’s criterion (Theorem 2.8) then gives us an equivariant homeo-
morphism

ξρ : ∂(Γ,P)→ Λrel ⊂ P
(
Rd
)
.

By looking at the action of ρ(Γ) on the dual vector space (recall § 4.1 and
in particular Proposition 4.4), we similarly obtain an equivariant homeo-
morphism

ξ∗ρ : ∂(Γ,P)→ Λ∗rel ⊂ Grd−1
(
Rd
)
.

Equivariance then combines with the other properties of our limit set
Λrel to imply that ξρ and ξ∗ρ are dynamics-preserving. Here we state the
arguments for ξρ; via the dual representation ρ∗ they also imply the claim
for ξ∗ρ .

For non-peripheral elements γ, the attracting eigenline ρ(γ)+ is contained
in Λrel (Lemma 6.12). Every point in P(Rd)—outside the attracting hy-
perplane H+ of ρ∗(γ−1)—is attracted to ρ(γ)+ under the action of ρ(γ).
By the transversality properties of Λrel, there exist points of Λrel outside
of this hyperplane H+, since by Corollary 6.6 any point of Λrel other than
ρ(γ−1)+ is transverse to H+.
Hence, by equivariance, we have that ξρ(γnζ) = ρ(γn)ξρ(ζ) → ρ(γ)+ as

n→∞, for an open set of ζ ∈ Λrel, and so

ξρ
(
γ+) = ξρ

(
lim
n→∞

γn
)

= ρ(γ)+.

For peripheral elements η ∈ P , the associated limit line ξρ(P ) is con-
tained in Λrel by the unique limits assumption. Since ξ is a homeomor-
phism, there is some ζ ∈ ∂(Γ,P) such that ξρ(ζ) = ρ(η)+. By equivariance,
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ξρ(ηnζ) = ρ(ηn)ξρ(ζ)→ ρ(η)+ as n→∞. Hence

ξρ
(
η+) = ξρ

(
lim
n→∞

ηn
)

= ρ(η)+.

To verify that ξρ and ξ∗ρ are compatible and transverse, we will show that
ξρ, ξ

∗
ρ satisfy

ξρ(x) = lim
n→∞

Ξρ(γn) ξ∗ρ(x) = lim
n→∞

Ξ∗ρ(γn)

for (γn) ⊂ Γ any projected geodesic in Γ such that γn → x, and Ξρ and Ξ∗ρ
as in § 6.
To see this, we note that if x = γ+ ∈ ∂(Γ,P) is a proximal limit point,

then ξρ(x) is the top eigenline of ρ(γ) since ξ is dynamics-preserving, and
by Lemma 6.12 this is equal to limn→∞ Ξρ(γn). If x = ∂P ∈ ∂(Γ,P) is a
parabolic limit point, then by the dynamics-preserving property ξρ(x) =
ξρ(η+) for any η ∈ P , and by the unique limits hypothesis ξρ(x) = ξρ(η+) =
limn→∞ Ξρ(ηn) for any sequence ηn →∞ in P .
More generally, given x ∈ ∂(Γ,P) that is not a peripheral fixed point,

suppose (γn) is a sequence (along a metric quasigeodesic path) such that
no γn ends in a peripheral letter and γn → x. Pick any peripheral element
η ∈

⋃
P.

Then, writing xn := lim
m→∞

γnη
m, we have

lim
n→∞

xn = lim
n→∞

lim
m→∞

γnη
m = lim

n→∞
γn = x

(once n and m are large enough, by Lemma 6.4 the sequences involved may
be taken to be uniform quasigeodesics.)
By continuity, ξρ(x) = lim

n→∞
ξρ(xn); we then have

ξρ(x) = lim
n→∞

ξρ(xn) = lim
n→∞

lim
m→∞

Ξρ(γnηm) = lim
n→∞

Ξρ(γn)

where the last equality follows from Corollary 5.5 (because the γnηm may
be taken to be uniform quasigeodesics) and the triangle inequality:

d(Ξ(γn), ξ(x)) 6 d
(
Ξ(γn),Ξ(γnηm)

)
+ d
(
Ξ(γnηm), ξ(xn)

)
+ d
(
ξ(x), ξ(xn)

)
6 Ĉe−µ̂n + Ĉe−µ̂m + d (ξ(x), ξ(xn))

and all of the terms that appear in the last line can be made arbitrarily
small by taking (m and then) n sufficiently large.
We have written the argument above for ξρ; the argument for ξ∗ρ is en-

tirely analogous.
The compatibility of ξρ and ξ∗ρ then follows since Ξρ(γn) ⊂ Ξ∗ρ(γn) for all

n by definition; the transversality of ξρ and ξ∗ρ follows from Corollary 6.6.
�
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Remark 7.3. — We may alternatively prove this by defining the limit
maps using

ξρ(x) = lim
n→∞

Ξρ(γn) ξ∗ρ(x) = lim
n→∞

Ξ∗ρ(γn)

for (γn) ∈ Γ any projected geodesic in Γ such that γn → x, as in [16], and
directly showing, using arguments similar to those above and earlier in the
paper, that these maps satisfy the desired properties. From the analysis
above these will turn out to be equivalent to the limit maps supplied by
Yaman’s criterion.

8. Examples

For a start, we observe that dominated representations are relatively
dominated relative to P = ∅, since in that case we have | · |c = | · |. We will
now show that geometrically finite subgroups of SO(1, d) and geometrically
finite convex projective holonomies, in the sense of [9], give examples of
relatively dominated representations.

8.1. In rank one

In rank one, the relatively dominated condition coincides with the more
classical notion of geometric finiteness. Here we will illustrate the particular
example of geometrically finite real hyperbolic manifold holonomies; the
arguments for the more general case are similar.

Example 8.1. — Let M be a geometrically finite hyperbolic d-manifold,
Γ = π1M , and ρ : Γ → PSO(d, 1) ⊂ PSL(d + 1,R) be its holonomy repre-
sentation.

In this case we know that Γ is hyperbolic relative to the cusp stabilizers
P, and that the relative Cayley graph, and in fact the cusped space, quasi-
isometrically embeds into Hd.
Proof of quasi-isometry. — This may be verified directly using hyper-

bolic geometry: the quasi-isometric embedding of the Cayley graph is still
given by the orbit map. This sends the ends of each coset γP of a cusp
subgroup P to a single point ξ ∈ ∂Hd, and we may extend the orbit map
to a quasi-isometric embedding of the combinatorial horoball over γP (the
0-simplices of which we address as elements of P×Z> 0) to a quasi-horoball
based at ξ as follows:
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• for each p ∈ γP , let ηp : [0,∞)→ Hd be the geodesic ray from the
image of p to ξ;

• send (p, n) to ηp(λn) with λ = e2/2 (the normalization constant
needed so that the exponential decay factor between levels of the
combinatorial horoballs matches the exponential decay factor be-
tween their images in Hd.)

Denote this extended map from (the 0-simplices of) X to Hd by φ. To
check that this is indeed a quasi-isometric embedding, or more precisely a
quasi-isometry to C ⊂ Hd where C is the convex hull of the limit set of Γ,
we invoke the following argument of Cannon and Cooper:

Lemma 8.2 ([8, Lemma 4.2]). — Given two spaces X, Y with path
metrics dX , dY , φ : X → Y is a quasi-isometry if it satisfies the following
three conditions:

(i) (quasi-onto) for some ε > 0, Y ⊂ N(φ(X), ε) (the ε-neighborhood
of φ(X));

(ii) (Lipschitz) for some L > 0 and all x1, x2 ∈ X, dY (φ(x1), φ2(x))
6 LdX(x1, x2); and

(iii) (uniformly non-collapsing) for each R > 0 there exists an r > 0
such that if dX(x1, x2) > r then dY (φ(x1), φ2(x2)) > R.

Let p1, . . . , pk be parabolic fixed points belonging to different conju-
gacy classes, and N1, . . . , Nk be a system of disjoint horoballs based at
p1, . . . , pk (resp.) in Hd such that

⋃
{γNi : γ ∈ Γ; i = 1, . . . , n} =: N fills

out a family of disjoint open horoballs in Hd, and

φ(Γ) ⊂ Hd \ N =: Q.

(Q is the “thick part”, or “truncated hyperbolic space”.)
To verify condition (i) here: let y be a point of C ⊂ Hd. Then either

there exists some i ∈ {1, . . . , n} and γ ∈ Γ such that y ∈ γNi, or y ∈ Q.
In the latter case,

dHd
(
y, φ

(
X(0)

))
6 diam(Q/Γ) <∞.

In the former case, consider the horoball γNi, which has center γpi =: p. As
noted in Example 2.2, y is within distance δ of a vertex of the combinatorial
horoball for γPi, where γPiγ−1 is the maximal parabolic subgroup of Γ
fixing p, where δ may be chosen independent of i and H.

Hence, condition (i) of the Lemma is satisfied with ε > max{diam(Q/Γ),
δ + 1} <∞.
For condition (ii): by Milnor–Švarc, φ is a quasi-isometry between the

Cayley graph and the truncated hyperbolic space Hd r N . As noted in
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Example 2.2, φ is a quasi-isometry between the system of combinatorial
horoballs and the system of horoballs N . In both cases, in fact, it is not
difficult to show that the quasi-isometry in question is Lipschitz, in the
latter case with uniform constants across the entire system of horoballs.
This, together with the triangle inequality, gives us that φ is Lipschitz as
a map from all of X to Hd.

For condition (iii): suppose, on the contrary, that there exists R > 0 such
that for every positive integer m, there exist points xm, wm ∈ X such that
d(xm, wm) > m, but d(φ(xm), φ(wm)) 6 R.
Since φ is a quasi-isometry between the system of combinatorial horoballs

and the system of horoballs removed from hyperbolic space, there exists
r0 > 0 such that if x and w are points in the same combinatorial horoball,
and d(x,w) > r0, then d(φ(x), φ(w)) > R.
Suppose m > (L + 1)r0, where L is the Lipschitz constant from (ii);

without loss of generality suppose L > 1. Choose a geodesic path from
xm to wm in X. If this geodesic path has a connected subpath of length
at least Lr0 in a combinatorial horoball, then by the previous paragraph
d(xm, wm) > R. Otherwise the geodesic path has a connected subpath of
length at least r0 with both endpoints in the Cayley graph. Then, by the
same computation as in Example 2.2,

d
(
φ(xm), φ(wm)

)
> 2 log dQ(φ(xm), φ(wm))

> L log
∣∣x−1
m wm

∣∣ > L

2
(∣∣x−1

m wm
∣∣
c
− 1
)
> L

2 (r0 − 1).

In particular, if we suppose (without loss of generality—choose r0 to be
larger if not) L

2 (r0 − 1) > R, then we have a contradiction.
This verifies the hypotheses of Lemma 8.2, and hence φ is a quasi-

isometry as desired. �
The quasi-isometric embedding of the relative Cayley graph immedi-

ately gives us both lower and upper domination inequalities (D±), since
log σ1

σ2
(ρ(γ)) = 1

2 log σ1
σd+1

(ρ(γ)) for any γ ∈ Γ, and there exists a basepoint
o ∈ Hd so that d(o, ρ(γ) · o) = log σ1

σd+1
(ρ(γ)) for all γ ∈ Γ.

The unique limits condition is satisfied since each cusp stabilizer is par-
abolic; the quadratic gaps condition is satisfied in the peripherals since, by
a direct computation,∣∣∣∣log σ1

σ2
(ρ(η))− 2 log |η|

∣∣∣∣ =
∣∣d(o, ρ(η) · o)− 2 log |η|

∣∣ 6 CP
for any parabolic element η ∈ P , where CP is a constant depending on
the maximal parabolic subgroup P ∈ P. Since there are finitely many
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(conjugacy classes of) maximal parabolic subgroups in P, we may take
a uniform choice of such constant. The quadratic gaps condition is then
satisfied in full, due to the following argument:

Definition 8.3. — We say ρ : (Γ,P) → PGL(d,R) admits good limit
maps if

• ξρ : ∂(Γ,P)→ P(Rd) given by lim
n→∞

γn 7→ lim
n→∞

Ξρ(γn) and
• ξ∗ρ : ∂(Γ,P)→ P(Rd)∗ given by lim

n→∞
γn 7→ lim

n→∞
Ξ∗ρ(γn)

are well-defined, continuous, ρ(Γ)-equivariant, compatible, dynamics-pre-
serving and transverse.

We note that in our case ρ admits good limit maps, with the image of ξρ
being, up to conjugation in PSL(d+ 1,R), the limit set in the boundary of
the Beltrami–Klein projective ball model of hyperbolic d-space in P(Rd+1),
and the image of ξ∗ρ consisting of hyperplanes tangent to the boundary.

Proposition 8.4. — Suppose ρ : (Γ,P) → PGL(d,R) admits good
limit maps, and the quadratic gaps condition is satisfied for peripheral
elements η ∈

⋃
P.

Then the peripherals satisfy the quadratic gaps condition in full.

Proof. — Given a geodesic γη where η is peripheral, Lemma A.3 gives
us

σ1

σ2
(ρ(γη)) > δ2 · σ1

σ2
(ρ(γ)) · σ1

σ2
(ρ(η)),

where δ := sin∠(Ξρ(η),Ξ∗ρ(γ−1)); we then obtain the quadratic gaps con-
dition for γη by using the transversality of the limit maps to obtain a
uniform positive lower bound on δ and observing that σ1

σ2
(ρ(γ)) > 1. More

precisely: suppose no such δ exists; then we have a sequence of metric quasi-
geodesics γnηn, with ηn peripheral such that sin∠(Ξρ(ηn),Ξ∗ρ(γ−1

n )) > 2−n.
Up to subsequence, these converge to some bi-infinite metric quasigeodesic
γ∞η∞ with sin∠(ξ(η∞), ξ∗(γ−1

∞ )) = 0; but this is in contradiction with the
transversality of the limit maps. �
The uniform transversality condition is also satisfied due to good limit

maps, by the following

Proposition 8.5. — Suppose ρ : (Γ,P) → PGL(d,R) admits good
limit maps. Then the uniform transversality hypothesis from Definition 4.2
is satisfied.
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Proof. — By the transversality of the limit maps, γ(g−1ξρ(P ), hξ∗ρ
(P ′)) > 0. To obtain the uniform version of this hypothesis, suppose we
have sequences (γn), (ηn) ⊂ Γ and peripheral subgroups P, P ′ such that
∠(γ−1

n ξρ(P ′), ηnξ∗ρ(P )) < 2−n. Up to a subsequence, the γ−1
n converge to

some infinite (projected quasi-)geodesic γ−1 : N → Γ, and the ηn to some
infinite (projected quasi-)geodesic η : N → Γ and ∠(ξρ(γ−1), ξ∗ρ(η)) = 0;
but this contradicts transversality. �

8.2. A higher rank example

In higher rank, we have holonomies of geometrically-finite convex pro-
jective n-manifolds, in the sense of [9]:

Definition 8.6 ([9, Définition 1.5 and Théorème 1.3]). — Let Ω ⊂
P(Rd+1) be a strictly convex domain with C1 boundary. A finitely-genera-
ted discrete subgroup Γ 6 Aut(Ω) is geometrically finite if the 1-neighbor-
hood of the convex core C(ΛΓ)/Γ ⊂ Ω/Γ is of finite volume.

Proposition 8.7. — Let M be a d-manifold and write Γ = π1M . Sup-
pose ρ : Γ → PGL(d + 1,R) is a geometrically-finite convex projective
holonomy representation. Then ρ is 1-dominated relative to its cusp stabi-
lizers.

Proof. — Let Ω := M̃ ; this is a strictly convex domain in P(Rd+1) with
C1 boundary, and hence δ-hyperbolic given the Hilbert metric. Γ is hyper-
bolic relative to its cusp stabilizers P, and acts on its limit set ΛΓ ⊂ ∂Ω
of accumulation points as a geometrically-finite convergence group ([9,
Théorème 1.9]).
In fact ΛΓ, as well as the dual limit set Λ∗Γ ⊂ P(Rd+1)∗, may be equivari-

antly identified with ∂(Γ,P), giving us continuous, compatible, dynamics-
preserving limit maps; in particular ξ∗ρ(x) is tangent to ∂Ω at ξρ(x). This
gives us the unique limits condition. Since ∂Ω is strictly convex and C1,
these limit maps are transverse. This gives us, via Proposition 8.5, the
uniform transversality condition.
By [10, Théorème 1.7], all of the peripheral elements η ∈

⋃
P have

image ρ(η) projectively equivalent to an element in the holonomy of a
hyperbolic cusp; in particular (cf. Example 8.1), we have quadratic gaps
in the peripheral subgroups, and hence, by Proposition 8.4, the quadratic
gaps condition in full.
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We now claim that the orbit map is a relative quasi-isometric embedding
from (Γ, dc) into (Ω, dΩ), where dΩ denotes the Hilbert metric on Ω, and
dΩ(o, γ · o) = log σ1

σd+1
(ρ(γ)) for all γ ∈ Γ.

To establish this, we observe that

• since the cusps are projectively equivalent, and hence isometric,
to hyperbolic cusps, we have a system of disjoint horoballs N of
Ω, with boundaries the images of cusp stabilizers, which is quasi-
isometric to our system of combinatorial horoballs;

• the cocompact action of ρ(Γ) on the compact core of M̃ as a geome-
trically-finite convex projective manifold gives, by the Milnor–Švarc
lemma, a quasi-isometry from Cay(Γ) with the word metric to the
truncated domain Ω \ N .

Then we may apply the same argument as in Example 8.1, using Lemma 8.2,
to obtain our relative quasi-isometric embedding.
Finally, by [10, Proposition 7.2, Corollaire 7.3 and Lemme 7.6], there

exists ε = ε(ρ) > 0 such that log λ1
λ2

(ρ(γ)) > ε log λ1
λd+1

(ρ(γ)) for all non-
peripheral γ ∈ Γ: more precisely, Lemme 7.6 bounds the ratio log λ1

λ2
(ρ(γ)) ·

(log λ1
λd+1

(ρ(γ)))−1 from below by an auxiliary quantity 1
2χ(γ) (half the top

Lyapunov exponent for the Hilbert geodesic flow corresponding to ρ(γ));
Proposition 7.2 and Corollaire 7.3 together give us ε > 0 (coming from the
Hölder regularity of the boundary ∂Ω) such that 1

2χ(γ) > (1 + 1
ε )−1.

We may then show that there exists ε′ = ε′(ρ) > 0 such that

log σ1

σ2
(ρ(γ)) > ε′ log σ1

σd+1
(ρ(γ)) + Ĉρ

where Ĉρ is some constant depending only on the representation; this last
inequality. which suffices to establish the lower domination inequality (D−),
will follow from the inequality with the eigenvalue gaps, together with
results of [1] and [2] (as tied together in [16, Theorem 4.12]):
Specifically, by [9, Théorème 7.28], we may assume that ρ is strongly

irreducible and Zariski-dense. Then [16, Theorem 4.12] states that there is
a finite subset F ⊂ Γ such that for any γ ∈ Γ there exists f ∈ F such that

log σ1

σ2
(ρ(γ)) > log λ1

λ2
(ρ(γf))− Cρ

where Cρ is some constant depending only on ρ, and similarly

log λ1

λd+1
(ρ(γf)) > log σ1

σd+1
(ρ(γ))− Cρ,
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and putting all of these inequalities together we obtain

log σ1

σ2
(ρ(γ)) > log λ1

λ2
(ρ(γf))− Cρ > ε log λ1

λd+1
(ρ(γf))− Cρ

> ε log σ1

σd+1
(ρ(γ))− (ε+ 1)Cρ

as desired. �

9. Relation to Kapovich–Leeb

In [18], Kapovich and Leeb develop a number of possible relative ana-
logues of Anosov representations. Here we describe how some of these are
related to the notion of relatively dominated subgroups described here.

The definitions in [18] are formulated in terms of discrete subgroups
Γ 6 G of semisimple Lie groups G; we reformulate them in terms of discrete
and faithful representations, and in the specific case of G = SL(d,R).

We also remark that the choice of a model Weyl chamber τmod in [18]
is equivalent to the choice of a Cartan projection / set of roots, and in
particular all of the definitions below are formulated in the specific case of
the first and last simple roots {log σ1

σ2
, log σd−1

σd
}.

Below, given a representation ρ : Γ → G, we let ΛΓ denote the limit
set of ρ(Γ) ⊂ G in the flag variety G/P1,d−1 corresponding to our chosen
set of simple roots: a point in G/P1, d−1 corresponds to a pair (ξ, ξ∗) ∈
P(Rd) × P(Rd)∗ such that the line corresponding to ξ is contained in the
hyperplane represented by ξ∗. More specifically, ΛΓ is the closure of the
set of accumulation points (ξ, ξ∗) = lim

n→∞
(Ξρ(γn)),Ξ∗ρ(γn))) for sequences

γn →∞.

9.1. Relatively dominated implies relatively RCA

Definition 9.1 ([18, Definition 7.6]). — ρ : Γ → G = SL(d,R) is rela-
tively RCA if

• (regularity) log σ1
σ2

(ρ(γn)) → ∞ for all sequences (γn)n∈N going to
infinity in Γ;

• (convergence) every point in ΛΓ is either a conical limit point or a
bounded parabolic point, and the stabilizers of the bounded para-
bolic points are finitely generated;
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• (antipodality) ΛΓ is antipodal, i.e. every pair of points in the limit
set (has a pair of lifts which) can be joined by a bi-infinite geodesic
in SL(d,R)/SO(d).

We remark that, roughly speaking, the relatively dominated condition
(Definition 4.3) may be seen as strengthening the regularity hypothesis
while weakening the convergence and antipodality hypotheses. There is
also a more subtle distinction involving the role of the intrinsic geometry
of Γ, which we elaborate on more in the next subsection.

We also remark that projecting ΛΓ ⊂ P(Rd)×P(Rd)∗ to the first coor-
dinate yields the limit set Λrel from § 6 above.

Definition 9.2 ([18, Definition 7.1]). — A subgroup Γ 6 G is relatively
asymptotically embedded if it satisfies the regularity and antipodality con-
ditions (as in the previous Definition), and admits a relatively hyperbolic
structure (Γ,P) such that there exists a Γ-equivariant homeomorphism
∂∞(Γ,P)→ ΛΓ.

Theorem 9.3 ([18, Theorem 7.8]). — ρ is relatively RCA if and only if
ρ(Γ) is relatively asymptotically embedded.

In particular, if ρ : Γ→ G is relatively RCA, then Γ is relatively hyper-
bolic. Below, we will use the notions of relative RCA and relative asymp-
totic embeddedness interchangeably.

Theorem 9.4. — If ρ : Γ → G is relatively dominated, then ρ(Γ) is
relatively asymptotically embedded.

Proof. — Regularity is immediate from the lower domination inequal-
ity (D−) and the quasi-equivalence of |γ|c and ‖a(ρ(γ)‖ (Proposition 4.9;
the notation ‖a(ρ(γ))‖ is introduced at the end of § 3).

Antipodality follows from transversality: given two points ξ± in the limit
set, consider the associated hyperplanes θ±; then, by transversality we have
a decomposition Rd = ξ+⊕(θ+∩θ−)⊕ξ−, which gives a bi-infinite geodesic
joining the simplices associated to (ξ±, θ±) in the associated flag variety
G/P1,d−1—concretely, pick a diagonal matrix A ∈ SL(d,R) respecting that
decomposition, and consider the bi-infinite geodesic exp(tA).

Asymptotic embeddedness follows from Theorem 7.2 on the limit maps:
more precisely, we can combine both limit maps from that Theorem into a
single limit map (ξ, ξ∗) into the flag manifold corresponding to our choice
of τmod, and this single limit map gives us our asymptotic embedding. �
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9.2. Uniform regularity and distortion, and equivalence of
notions

Definition 9.5 ([18, § 4.4.1]). — Γ is uniformly regular if there exist
constants µ, c > 0 such that log σ1

σ2
(ρ(γn)) > µ‖a(ρ(γn))‖−c for all (γn) ⊂ Γ

going to infinity.

Definition 9.6. — Suppose Γ is hyperbolic relative to P and we have
a representation ρ : Γ → G. We say Γ (or any subgroup H 6 Γ) is rela-
tively undistorted by ρ if ρ induces (via any orbit map) a quasi-isometric
embedding of the relative Cayley (sub)graph (cf. Proposition 4.9) into the
symmetric space, i.e. the cusped word-length |γ|c and the norm ‖a(ρ(γ))‖
are quasi-equivalent for all γ ∈ Γ (resp., for all γ ∈ H).

Remark 9.7. — Uniform regularity does not necessarily entail undistort-
edness: e.g. consider a hyperbolic mapping torus Γ ⊂ SO+(1, 3) ⊂ SL(4,R)
which is abstractly isomorphic to π1Σg o Z; the fiber groups (abstractly
isomorphic to π1Σg) are exponentially distorted. Γ, being a geometrically
finite subgroup of SO+(1, 3), is uniformly regular (and undistorted by the
inclusion map); the fiber groups, being exponentially distorted subgroups,
are not quasi-isometrically embedded and hence not undistorted by the
inclusion map. However, they remain uniformly regular, since this is a con-
dition purely on the Cartan projections and independent of word-length.

Definition 9.8. — We say ρ : Γ → G is relatively uniform RCA and
undistorted if it satisfies the convergence and antipodality conditions, and
moreover ρ(Γ) is uniformly regular and Γ is relatively undistorted by ρ.

Theorem 9.9 ([18, Theorem 8.25]). — ρ is relatively uniform RCA and
undistorted if and only if it is relatively asymptotically embedded with
uniformly regular peripheral subgroups and Γ is relatively undistorted by ρ.

Remark 9.10. — We can in fact strengthen Theorem 9.4 to say that if
ρ : Γ → G is relatively dominated, then ρ(Γ) is relatively uniform RCA
and undistorted, since, via Proposition 4.9, (D−) is precisely the uniform
regularity and undistortedness condition.

Remark 9.11. — In the non-relative case, uniform regularity and undis-
tortedness (URU) is equivalent to RCA [19]. The proof goes through the
notion of Morse subgroups and in particular requires some version of a
higher-rank Morse lemma.

Theorem 9.12. — If ρ : Γ → G is such that ρ(Γ) is relatively uniform
RCA and undistorted with peripherals also satisfying the quadratic gaps
condition, then ρ is relatively dominated.
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Proof. — Relative uniform RCA implies relative hyperbolicity of the
source group (via Theorem 9.3); this immediately gives us (RH).

As noted in Remark 9.10, (D−) is exactly the uniform regularity and
undistortedness condition.
It remains to check that the hypotheses in Definition 4.2 are satisfied.

The quadratic gaps condition has been assumed. Upper domination follows
from [18, Corollary 5.13]. Unique limits follow from the relative asymptotic
embedding; by Proposition 8.5, so does uniform transversality. �

10. Extending the definition

As above let Γ be a finitely-generated group, and P a finite collection of
finitely-generated subgroups of Γ satisfying (RH) (Definition 4.1).
We say that a representation ρ : Γ → PGL(d,R) is 1-relatively domi-

nated (with domination constants (
¯
C,

¯
µ, C̄, µ̄)) if it is the composition of

a 1-relatively dominated representation ρ̂ : Γ → GL(d,R) (with the same
domination constants) with the natural projection map π : GL(d,R) →
PGL(d,R), or more generally if we can find a group Γ̂, a 2-to-1 homomor-
phism f : Γ̂→ Γ, and a 1-dominated representation ρ̂ : Γ̂→ GL(d,R) such
that π ◦ ρ̂ = ρ ◦ f (cf. [4, Remark 3.4]).
Alternatively, we can continue to use Definitions 4.2 and 4.3, since ratios

of singular values remain unchanged under the reductions considered here,
and we can continue to work with the same symmetric space and flag
spaces.
By considering the associated representations to GL(d,R), we have that

Γ is hyperbolic relative to P in these cases as well (Theorem 6.1) and we
have associated continuous, equivariant, dynamics-preserving, transverse
limit maps (Theorem 7.2.) By considering the associated representations,
or by working directly with the hypotheses in Definitions 4.2 and 4.3, the
results from § 4.2 and § 4.3 continue to hold.
More generally, we may use the following standard fact from the repre-

sentation theory of semisimple Lie groups:

Theorem 10.1 (cf. [17, Proposition 4.3 and Remark 4.12]).
Given G a semisimple Lie group with finite center and P a parabolic sub-
group of G, there exists a finite dimensional irreducible representation
φ = φG,P : G → SL(V ) such that φ(P ) is the stabilizer (in φ(G)) of a
line in V .
φ induces maps β : G/P → P(V ) and β∗ : G/Q → P(V ∗), where Q is

the opposite parabolic to P .

ANNALES DE L’INSTITUT FOURIER



RELATIVELY DOMINATED REPRESENTATIONS 2221

Moreover, if P is non-degenerate, then kerφ = Z(G) and φ is an immer-
sion.

For a construction, we refer the reader to [17], §4 (see also [7, Theo-
rem 2.12 and Corollary 2.13]). The irreducible representation φG,P is called
a Plücker representation in [7], or a Tits representation in [4].
We now make the following

Definition 10.2. — Given Γ a finitely-generated group and P a finite
collection of finitely-generated proper infinite subgroups satisfying (RH),
G a semisimple Lie group with finite center and P a non-degenerate para-
bolic subgroup of G, we say that a representation ρ : Γ→ G is P -dominated
relative to P (with domination constants (

¯
C,

¯
µ, C̄, µ̄)) if φG,P ◦ ρ : Γ →

SL(V ) is 1-dominated relative to P (with the same constants).

Given a P -relatively dominated representation ρ : Γ → G, by applying
Theorem 6.1 to φG,P ◦ρ : Γ→ SL(V ), we have that Γ is hyperbolic relative
to P in these cases as well. By Theorem 7.2, φG,P ◦ ρ has associated con-
tinuous, equivariant, dynamics-preserving, transverse limit maps of ∂(Γ,P)
into P(V ) and P(V ∗); we may compose these with β−1 and (β∗)−1 to ob-
tain limit maps of ∂(Γ,P) into the flag varieties G/P and G/Q. We may
argue similarly to see that the results from § 4.2 and 4.3 continue to hold.
As a particular case of this, suppose G = SL(d,R) and P = Pk is the

stabilizer of a k-plane in G. Then we may explicitly take V =
∧k Rd and

φG,P : SL(d,R)→ SL(V ) to be the map given by the action of SL(d,R) on
the exterior product V coming from the natural action SL(d,R) y Rd.
We note, very briefly, that

σ1

(
k∧
ρ(γ)

)
= σ1 · · · σk(ρ(γ)),

σ2

(
k∧
ρ(γ)

)
= σ1 · · · σk−1σk+1(ρ(γ)),

and moreover U1(
∧k

ρ(γ)) = Uk(ρ(γ)) (in the sense that they represent the
same k-dimensional subspace of Rd) and

SD−1

(∧
kρ(γ)

)
= UD−1

(
k∧
ρ
(
γ−1))

=
〈
θ ∈ Grk

(
Rd
)

: θ 6t Sd−k(ρ(γ))
〉
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(where D :=
(
d
k

)
= dim

∧k Rd) and hence we may also equivalently and
more directly define Pk-relatively dominated representations as in § 4, re-
placing σ1

σ2
with σk

σk+1
as appropriate, and similarly replacing projective

space and its dual with the appropriate Grassmannians.

Appendix A. Linear algebraic lemmas

We collect in this appendix various lemmas of quantitative linear algebra
which are used in the proofs above and below, especially in Sections 6
and 7. They appear in the order in which they are used above. These are
elementary; many of them appear, with proof, in [4, Appendix A].

Recall that, given ξ, η ∈ P(Rd) or Grd−1(Rd), or more generally Grp(Rd)
for some p between 1 and d− 1, d(ξ, η) will denote distance between ξ and
η in the relevant Grassmannian.
Below, we say that A ∈ GL(d,R) is Pp-proximal if σp+1(A) > σp(A).

Recall that Up(A) is well-defined once A is Pp-proximal.

Lemma A.1 ([16, Lemma 5.8]; [4, Lemmas A.4, A.5]). — Given A,B ∈
GL(d,R) with A, AB and BA Pp-proximal, we have

d
(
Up(A), Up(AB)

)
6 σ1

σd
(B)σp+1

σp
(A)(A.1)

d
(
BUp(A), Up(BA)

)
6 σ1

σd
(B)σp+1

σp
(A)(A.2)

Lemma A.2 ([4, Lemma A.6]). — Given any Pp-proximal A ∈ GL(d,R)
and any p-dimensional subspace P ⊂ Rd, we have

d
(
A(P ), Up(A)

)
6 σp+1

σp
(A) 1

sin∠ (P, Sd−p(A)) .

Lemma A.3 ([4, Lemma A.7]). — Let A,B ∈ GL(d,R). Suppose that
A and AB are Pp-proximal, and let α := ∠(Up(B), Sd−p(A)). Then

σp(AB) > (sinα)σp(A)σp(B)

σp+1(AB) 6 (sinα)−1σp+1(A)σp+1(B)

Lemma A.4 (cf. [23, Lemma A.24]). — If U0 and V0 are complementary
vector subspaces, and U is the graph of Θ : U0 → V0, then we have

s(U, V0) > s(U0, V0)
‖ id⊕Θ‖ .
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Proof. — Choose a vector u ∈ U achieving the minimum gap s(U, V0).
Scale it so that if we decompose u into its U0 and V0 components, its U0
component u0 is a unit vector. From the law of sines,

1
s(U, V0) = ‖u‖

sin∠(u0, V0) 6
‖u‖

s(U0, V0) 6
‖ id⊕Θ‖
s(U0, V0)

whence we have the desired inequality (see also illustration below). �

u

U

U0

V0

There is also the following slightly easier version

Lemma A.5 (cf. [23, Lemma A.24]). — If U0 and V0 are complementary
vector subspaces, and U is the graph of Θ : U0 → V0, then we have

s(U, V0) 6 1
‖ id⊕Θ‖ .

Proof. — Pick a vector u ∈ U so that if we decompose u into its U0 and
V0 components, its U0 component u0 is a unit vector, and ‖u‖ = ‖ id⊕Θ‖.
By the law of sines,

‖ id⊕Θ‖
sin∠(u0, V0) = ‖u‖

sin∠(u0, V0) = 1
sin∠(u, V0)

but now

‖ id⊕Θ‖ 6 ‖ id⊕Θ‖
sin∠(u0, V0) = 1

sin∠(u, V0) 6
1

s(U, V0) ,

whence the desired inequality. �
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Appendix B. A local version of Quas–Thieullen–Zarrabi

The purpose of this appendix is to prove Theorem 5.3:

Theorem B.1 (Theorem 5.3). — Let (Ak)k∈Z ⊂ GL(d,R) be a
sequence of matrices such that there exist constants C > 1 and µ, µ′ > 0,
with 1

µ log 3C > 1, such that the following axioms (4) are satisfied:
• (SVG-BG) for all k ∈ Z and all n > 0,

σ2

σ1
(Ak+n−1 · · · Ak) 6 Ce−nµ

• (EC) for all k ∈ Z and all n > 0,

d
(
Sd−1 (Ak+n−1 · · · Ak) , Sd−1 (Ak+n · · · Ak)

)
6 Ce−nµ,

d
(
U1 (Ak−1 · · · Ak−n) , U1

(
Ak−1 · · · Ak−(n+1)

))
6 Ce−nµ.

• (FI)back: for all k 6 0 and n,m > 0

σ1 (Ak+n−1 · · · Ak−m)
σ1 (Ak+n−1 · · · Ak) · σ1 (Ak−1 · · · Ak−m) > C

−1e−mµ
′

Then
(i) for each k ∈ Z in the sequence we have a splitting Eu ⊕ Es of Rd

given by

Eu(k) := lim
n→∞

U1 (Ak−1 · · · Ak−n)

Es(k) := lim
n→∞

Sd−1 (Ak+n−1 · · · Ak)

which is equivariant in the sense that AkE∗(k) = E∗(k + 1) for all
k ∈ Z and ∗ ∈ {u, s};

(ii) moreover, for all k 6 0, we have a uniform lower bound smin =
smin(C, µ, µ′) on the gap s(Eu(k), Es(k)) := sin∠(Eu(k), Es(k))
given by

s (Eu(k), Es(k)) > smin := 2
3(3e)−2r exp

(
− 3/2

1− e−µ

)
C−(1+2r),

where r := µ′

µ .

(4)The acronyms stand for Singular Value Gap—Bochi–Gourmelon, Exponential Con-
vergence, and Fast Invertibility. The first and last of these are adapted from the termi-
nology of [23], although the Singular Value Gap condition there is stronger than the one
we use, which appears in [3].
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This statement is a mild generalization of a specific case of the main
results of [23]; it is the particular statement which is needed above.

Here we are working with finite-dimensional real vector spaces, and hence
many of the technical difficulties in [23], which works in the more general
case of Banach spaces, are significantly lightened.

We also deal only with the specific case where the singular value gap/s
are at p = 1 and p = d − 1, and Ak ∈ SL(d,R); these assumptions are
natural in the application we have here.

Remark B.2. — We can also follow the arguments of [23] to obtain a
domination statement:

(iii) there exists nmin depending only on C, µ, µ′ such that for all k 6 0
and n > nmin with k + n 6 0,∥∥An+k−1 · · · Ak

∣∣
Es(k)

∥∥
m
(
An+k−1 · · · Ak

∣∣
Eu(k)

) 6 16C
9s2
min

e−nµ

where m(A) denotes the bottom singular value of A ∈ GL(d,R). We will
not include the proof here, since we do not use this conclusion above.

We introduce some notation which will be useful below: write
• A(k, n) for the product Ak+n−1 · · · Ak,
• σi(k, n) as shorthand for σi(A(k, n)),
• Ũ(k, n) := U1(A(k − n, n)), U(k, n) := A(k, n)−1U1(A(k, n)), and
V (k, n) := Sd−1(A(k, n)).

We remark that, with these notations, we have
• Ũ(k, n) = A(k − n, n)U(k − n, n);
• U(k, n) ⊥ V (k, n);
• Eu(k) = lim

n→∞
Ũ(k, n) and Es(k) = lim

n→∞
V (k, n).

B.1. Existence and equivariance of limits

It is immediate from (EC) that the limits Eu(k) and Es(k) exist. In fact,
we have the following uniform convergence estimates:

Lemma B.3. — For every k,N ∈ Z,

d
(
V (k,N), Es(k)

)
6 Ce−Nµ

1− e−µ

d
(
Ũ(k,N), Eu(k)

)
6 Ce−Nµ

1− e−µ .
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Proof. — Immediate from the triangle inequality and (EC).
Equivariance follows from using Lemma A.1, which yields

d
(
U1 (Ak−1 · · · A−n) , Ak−1 · · · A0 · U1 (A−1 · · · A−n)

)
6 σ1

σd
(Ak−1 · · · A0) σ2

σ1
(A−1 · · · A−n)

6 σ1

σd
(Ak−1 · · · A0) · Ce−nµ

and taking a limit as n→∞, we get

d
(

lim
n→∞

(
U1 (Ak−1 · · · A−n)

)
,

lim
n→∞

Ak−1 · · · A0 · U1 (A−1 · · · A−n)
)

= 0.

Applying this to Eu(k) := limn→∞ U1(Ak−1 · · · A−n), we get

Eu(k) = Ak−1 · · · A0 · lim
n→∞

U1 (A−1 · · · A−n)

= Ak−1 · · · A0 · Eu(0) for k > 0,
Eu(0) = A−1 · · · Ak · Eu(k)

i.e. Eu(k) = A−1
k · · · A−1

−1 · Eu(0) for k < 0,

and similarly

Es(0) = A−1
0 · · · A−1

k−1 · lim
n→∞

Ud−1
(
A−1
k · · · A−1

k+n−1
)

i.e. Es(k) = Ak−1 · · · A0 · Es(0) for k > 0,
Es(0) = A−1 · · · Ak · Es(k)

i.e. Es(k) = A−1
k · · · A−1

−1 · Es(0) for k < 0. �

B.2. Proof of splitting

The proof will involve, essentially, carefully refined versions of arguments
that can be used to give the Raghunathan estimates [24]. Here we formulate
these arguments in a series of lemmas, then assemble them into a proof of
statement (ii), from which (i) follows.

We follow the argument in [23, § 3], writing things out more concretely
for our specific finite-dimensional, invertible case. We have supplied specific
references to the corresponding / closely analogous lemmas in [23], in the
hope that the reader interested in also reading the result there may find
these helpful.
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For the next five lemmas (through Lemma B.8), fix N sufficiently large
so that

(B.1)
∑
n>N

e−nµ = e−Nµ

1− e−µ 6
1

3C

The following lemma tells us that wheneverm and n are sufficiently large,
A(k, n) expands vectors in U(k,m) at least 2

3σ1(k, n). More precisely, we
have

Lemma B.4 ([23, Lemma 3.3]). — For every n,m > N and k ∈ Z, we
have

∀ u ∈ U(k,m) ‖A(k, n)u‖ > 2
3σ1(k, n) · ‖u‖

Proof. — From (EC) and our choice of N , we have, arguing as in the
proof of Lemma B.3,

d
(
U(k, n), U(k,m)

)
= d
(
V (k, n), V (k,m)

)
6 1

3 .

Given any unit vector u ∈ U(k,m), write u = v+w where v ∈ U(k, n) and
w ∈ V (k, n) ⊥ v. By the properties of the singular-value decomposition,
A(k, n)u = A(k, n)v + A(k, n)w is still an orthogonal decomposition, and
we have

‖A(k, n)u‖ > ‖A(k, n)v‖ = σ1(k, n) · cos∠ (U(k,m), U(k, n))

= σ1(k, n)
√

1− d(U(k, n), U(k,m))2 > σ1(k, n) · 2
3

as desired. �
Recall s(V,W ) denotes the minimal gap inf{sin〈(v,W ) : v ∈ V, ‖v‖ = 1}

between the subspaces. We now use the (FI) hypothesis to prove a lemma
which states that whenever m and n are sufficiently large, we have a lower
bound on the gap between the approximate fast space and the slow space.
More precisely, we have

Lemma B.5 ([23, Lemma 3.4]). — For all k 6 0 and m > N ,

s (A(k −N,N)U(k −N,m), Es(k)) > 2
3C
−1e−Nµ

′
.

Proof. — Write Wk,m := A(k −N,N)U(k −N,m).
Let w ∈Wk,m be a unit vector, and (given any n > N) write w = w1+w2

where w1 ∈ U(k, n) and w2 ∈ V (k, n). Since w = A(k − N,N)u for some
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u ∈ U(k − N,m), we have, from Lemma B.4 and the properties of the
singular-value decomposition,

‖A(k, n)w‖ = ‖A(k −N,N + n)u‖ > 2
3 · σ1(k −N,N + n)‖u‖

and ‖w‖ 6 σ1(k −N,N)‖u‖

so

‖A(k, n)w‖ > 2
3 ·

σ1(k −N,N + n)
σ1(k −N,N) ‖w‖.

On the other hand we also have

‖A(k, n)w1‖ = σ1(k, n)‖w1‖ and ‖A(k, n)w2‖ 6 σ2(k, n)‖w2‖

or, together,

‖A(k, n)w‖ 6 σ1(k, n)
(
‖w1‖+ σ2

σ1
(k, n)‖w2‖

)
.

Combining the two estimates of ‖A(k, n)w‖ we obtain

‖w1 + w2‖ = ‖w‖ 6 3
2

σ1(k −N,N)
σ1(k −N,N + n)‖A(k, n)w‖

6 3
2
σ1(k −N,N) · σ1(k, n)
σ1(k −N,N + n)

(
‖w1‖+ σ2

σ1
(k, n)‖w2‖

)
.

By property (FI)back we have
σ1(k −N,N + n)

σ1(k −N,N) · σ1(k, n) > C
−1e−Nµ

′

and using this and (SVG-BG) on the last inequality we further obtain

‖w1 + w2‖ = ‖w‖ 6 3
2Ce

Nµ′
(
‖w1‖+ Ce−nµ‖w2‖

)
= 3

2Ce
Nµ′‖w1‖

(
1 + Ce−nµ

‖w2‖
‖w1‖

)
.

Now we claim that ‖w2‖
‖w1‖ =

√
1−‖w1‖2
‖w1‖ =

√
‖w1‖−2 − 1 is uniformly bounded

above by some upper bound B that depends only on the constants C and
µ′. If not, ‖w1‖ gets arbitrarily close to zero; in particular, it can be made
smaller than (3CeNµ′)−1. Then 1 = ‖w‖ 6 1

2 + 3
2C

2eNµ
′−nµ < 1 for all

large enough n, which is a contradiction.
With this upper bound in hand, we then have

s(Wk,m, V (k, n)) > ‖w1‖
‖w‖

> 2
3C
−1e−Nµ

′ (
1 + Ce−nµB

)−1
.

and we conclude by letting n→∞, since lim
n→∞

V (k, n) = Es(k). �
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This does not quite suffice, since as N → ∞ these lower bounds go to
zero, and so a priori we could still have the minimal gap between the fast
and slow spaces collapsing to zero. Onwards we push. The idea is to do
some kind of multiplicative block analysis, using Lemma B.5 to control
each block, and using the subsequent lemma/s to control the remaining
exponential terms. This we will achieve using, on the one hand, a lemma
which controls expansion on the slow spaces:

Lemma B.6 ([23, Lemma 3.5]). — For all n > N and k 6 0,∥∥A(k, n)
∣∣
Es(k)

∥∥ 6 2
3 · σ1(k, n) · e−(n−N)µ.

Proof. — Let w ∈ Es(k), and write w = w1 + w2 where w1 ∈ U(k, n)
and w2 ∈ V (k, n). Note we have

d(V (k, n), Es(k)) 6
∑
m>n

Ce−mµ 6 Ce−nµ

1− e−µ 6
1
3e
−(n−N)µ

by Lemma B.3 and our choice of N . Then

‖A(k, n)w1‖ 6 σ1(k, n)‖w1‖ 6 σ1(k, n) · 1
3e
−(n−N)µ‖w2‖

‖A(k, n)w2‖ 6 σ2(k, n)‖w2‖

and putting these two together we obtain

‖A(k, n)w‖ 6 ‖A(k, n)w1‖+ ‖A(k, n)w2‖

6 σ1(k, n)
(

1
3e
−(n−N)µ + σ2

σ1
(k, n)

)
‖w2‖

6 σ1(k, n)
(

1
3e
−(n−N)µ + Ce−nµ

)
‖w‖

6 2
3e
−(n−N)µ · σ1(k, n)‖w‖

as desired. �
On the other hand, we have the following lemma which gives us some

control on the slow space components of images of approximate fast spaces:

Lemma B.7 ([23, Lemma 3.7]). — Let N be sufficiently large.
(i) Given w ∈ Rd a unit vector, write w = w1 + w2 where w1 ∈ U(k −

nN, nN) and w2 ∈ Es(k − nN). Then we have ‖w2‖ 6 3
2
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(ii) The operator Γ−n : U(k − nN, nN)→ Es(k − nN) whose graph is

Wn+1 := A(k − (n+ 1)N,N)U(k − (n+ 1)N, (n+ 1)N)

satisfies ‖Γ−n‖ 6 9
4Ce

Nµ′ .

Proof. — By Lemma B.3 and our choice of N , d(V (k − nN, nN),
Es(k − nN)) < 1

3 ; basic trigonometry then implies∥∥w2
∣∣
U(k−nN, nN)

∥∥∥∥w2
∣∣
V (k−nN, nN)

∥∥ 6 1/3√
1− (1/3)2

= 1
2
√

2
.

Hence, from the orthogonal decomposition

w2 = w2|V (k−nN, nN) + w2|U(k−nN, nN),

we get

‖w2‖ 6
(

1 + 1
2
√

2

)∥∥w2
∣∣
V (k−nN, nN)

∥∥
and since w2|V (k−nN, nN) = w|V (k−nN, nN) we have ‖w2|V (k−nN, nN)‖ 6 1,
so in fact

‖w2‖ 6 1 + 1
2
√

2
<

3
2

For (ii): applying Lemma A.5 to the operator Γ−n : U(k − nN, nN) →
Es(k − nN) gives us

‖ id⊕Γ−n‖ 6
1

s (Wn+1, Es(k − nN)) 6
3
2Ce

Nµ′

where the last inequality follows from Lemma B.5, which gives s(Wn+1,

Es(k − nN)) > 2
3C
−1e−Nµ

′ .
Now we observe that Γ−n = q−n ◦ (id⊕Γ−n) where q−n is the projection

to Es(k−nN) parallel to U(k−nN, nN). We observe that we may rewrite
statement (i) as the assertion that ‖q−n‖ 6 3

2 . We put all of this together
to obtain

‖Γ−n‖ 6 ‖q−n‖ ‖id⊕Γ−n‖ 6
9
4Ce

Nµ′

as desired. �
Now we can put everything together:

Lemma B.8 ([23, Lemma 3.8]). — For every n > 1,

s
(
Ũ(k, nN), Es(k)

)
> 2

3C
−1e−Nµ

′
n−1∏
j=1

(
1 + 3

2De
Nµ′j−3

)−1
.
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Proof. — From Lemma A.4 we have

s
(
Ũ(k, nN), Es(k)

)
>
s
(
Ũ(k,N), Es(k)

)
‖id⊕Ξn‖

where Ξn : Ũ(k,N) → Es(k) is such that Ũ(k, nN) is the graph of Ξn.
Since Ũ(k,N) = A(k − N,N)U(k − N,N), we have s(Ũ(k,N), Es(k)) >
2
3C
−1e−Nµ

′ from Lemma B.5 and it remains to bound ‖ id⊕Ξn‖.
Write

A−n := A(k − nN,N) =
[
a−n 0
c−n d−n

]
where

a−n : U(k − nN, nN)→ U(k − (n− 1)N, (n− 1)N),
c−n : U(k − nN, nN)→ Es(k − (n− 1)N),
d−n : Es(k − nN)→ Es(k − (n− 1)N)

and the 0 in the upper-right corner comes from the equivariance of the slow
spaces; here we adopt the notational convention U(k, 0) := Ũ(k,N).

Then

An−n := A−1 · · · A−n = A(k − nN, nN) :=
[
an−n 0
cn−n dn−n

]
.

Now we have

An+1
−(n+1) =

[
an−n 0
cn−n dn−n

] [
a−(n+1) 0
c−(n+1) d−(n+1)

]
and examining in particular the bottom-left entry of this product, we have

cn+1
−(n+1) = cn−na−(n+1) + dn−nc−(n+1).

Since an+1
−(n+1) = an−na−(n+1),

(B.2) cn+1
−(n+1)

(
an+1
−(n+1)

)−1

= cn−n
(
an−n

)−1 + dn−nc−(n+1)
(
a−(n+1)

)−1 (
an−n

)−1
.

Now, firstly, we observe that Ξn = cn−n(an−n)−1, since from the block struc-
ture of An−n we see that cn−n(an−n)−1 maps from U(k, 0) = Ũ(k,N) to Es(k)
with graph A(k − nN, nN)U(k − nN, nN) = Ũ(k, nN).
Secondly, we write c−(n+1)(a−(n+1))−1 =: Γ−n : U(k − nN, nN) →

Es(k− nN) (see observation 1 below), and note that (B.2) combined with
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the triangle inequality, give us (writing id for the identity on the appropri-
ate complementary subspace, so that id⊕Ξn is a linear endomorphism of
Rd)

‖id⊕Ξn+1‖ 6 ‖id⊕Ξn‖

1 +

∥∥dn−n∥∥ ‖Γ−n‖ ∥∥∥(an−n)−1
∥∥∥

‖id⊕Ξn‖

 .(B.3)

To bound the last quantity that appears, we observe that
(1) Γ−n is precisely the operator from Lemma B.7(ii):

c−(n+1)
(
a−(n+1)

)−1

maps from U(k − nN, nN) to Es(k − nN) with graph A(k − (n +
1)N,N)U(k − (n+ 1)N, (n+ 1)N).
Hence, from Lemma B.7, ‖Γ−n‖ 6 9

4Ce
Nµ′

(2) We have ∥∥∥(an−n)−1
∥∥∥

‖id⊕Ξn‖
6 (σ1(k − nN, nN))−1

since (an−n)−1 = (An−n|U(k−nN, nN))−1 ◦ (id⊕Ξn) (easier to see by
writing a−nn as composition of (An−n|U(k−nN, nN))−1 with projection
onto Ũ(k,N) parallel to Es(k)) and∥∥∥(An−n∣∣U(k−nN, nN)

)−1
∥∥∥ = (σ1(k − nN, nN))−1

(3) From Lemma B.6,∥∥dn−n∥∥ 6 2
3 · σ1(k − nN, nN)e−(n−1)Nµ

Combining the bounds from these three observations, we obtain∥∥dn−n∥∥ ‖Γ−n‖ ∥∥∥(an−n)−1
∥∥∥

‖id⊕Ξn‖
6 2

3 ·
σ1(k − nN, nN)
σ1(k − nN, nN) · e

−(n−1)Nµ · 9
4Ce

Nµ′

= 3
2C · e

−(n−1)NµeNµ
′

Since Ξ1 ≡ 0, ‖ id⊕Ξ1‖ = 1. We then use this together with (B.3), as
in [23], to obtain the iterative bound

‖id⊕Ξn‖ 6
n−2∏
j=0

(
1 + 3

2Ce
N(µ′−jµ)

)
and we are done. �
An elementary argument, done in [23], gives us control over the infinite

product that appears as we take n→∞:
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Lemma B.9 ([23, Lemma 3.10]). — Fix constants C,N, µ′ and µ > 0.
Then
∞∏
j=0

[
1 + 3

2C
−1eN(µ′−jµ)

]
6 exp

(
3
2C
−1e−Nµ

′
·
(
1− e−Nµ

)−1
)
<∞.

Proof. — Write aj := 3
2C
−1eNµ

′
e−jNµ. If µ > 0, then

∑∞
j=1 aj con-

verges, and hence so does our infinite product
∏∞
j=1(1 + aj).

In particular, we have
∞∏
j=1

(1 + aj) = exp

 ∞∑
j=1

log(1 + aj)

 6 exp

 ∞∑
j=1

aj


since aj > 0. Now observe

∞∑
j=1

aj = 3
2C
−1eNµ

′
∞∑
j=0

e−jNµ,

and
∞∑
j=0

e−jNµ =
(
1− e−Nµ

)−1
. �

Now for the final assembly:
Proof of splitting. — From Lemma B.8 and Lemma B.9, we have

s
(
Ũ(k, nN), Es(k)

)
> 2

3C
−1e−Nµ

′
n−2∏
j=0

[
1 + 3

2Ce
N(µ′−jµ)

]−1

> 2
3C
−1 exp

(
−3

2C
−1e−Nµ

′ (
1− e−Nµ

)−1 −Nµ′
)
.

Now recall that N satisfies (B.1), i.e. N > 1
µ (log 3C − log(1− e−µ)) >

1
µ log 3C. Pick N 6 2

µ log 3C, so that e−Nµ′ > (3C)−2r where r := µ′

µ . Such
a choice of N exists from our hypothesis that 1

µ log 3C > 1. Then

s
(
Ũ(k, nN), Es(k)

)
> 2

3C
−1 exp

(
−3

2
C−(1+2r)9−r

1− e−Nµ − 2r log 3C
)

> 2
3(3e)−2rC−(1+2r) exp

(
−31−2rC−(1+2r)

2 (1− e−Nµ)

)
> 2

3(3e)−2r exp
(
− 3/2

1− e−µ

)
C−(1+2r).

Finally, using the fact that Ũ(k, nN) → Eu(k) as n → ∞, we are done.
�
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