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ON A MEASURABLE ANALOGUE OF SMALL
TOPOLOGICAL FULL GROUPS II

by François LE MAÎTRE (*)

Abstract. — We pursue the study of L1 full groups of graphings and of the
closures of their derived groups, which we call derived L1 full groups. Our main
result shows that aperiodic probability measure-preserving actions of finitely gen-
erated groups have finite Rokhlin entropy if and only if their derived L1 full group
has finite topological rank. We further show that a graphing is amenable if and
only if its L1 full group is, and explain why various examples of (derived) L1 full
groups fit very well into Rosendal’s geometric framework for Polish groups. As
an application, we obtain that every abstract group isomorphism between L1 full
groups of amenable ergodic graphings must be a quasi-isometry for their respective
L1 metrics. We finally show that L1 full groups of rank one transformations have
topological rank 2.
Résumé. — Nous poursuivons l’étude des groupes pleins L1 de graphages ainsi

que des adhérences de leurs groupes dérivés, que nous appelons groupes pleins L1

dérivés. Notre résultat principal montre que toute action préservant la mesure de
probabilité d’un groupe de type fini est d’entropie de Rokhlin finie si et seulement
si son groupe plein L1 dérivé est de rang topologique fini. Nous montrons également
que tout graphage est moyennable si et seulement si son groupe plein L1 l’est, et
présentons des exemples variés de groupes pleins L1 (parfois dérivés) qui rentrent
dans le cadre de la géométrie des groupes polonais construits par Rosendal. On en
déduit que tout isomorphisme abstrait entre des groupes pleins L1 de graphages
ergodiques moyennables doit être une quasi-isométrie pour leurs distances L1 res-
pectives. Enfin, on montre que les groupes pleins L1 des transformations de rang
1 sont de rang topologique 2.

1. Introduction

In his pioneering work [9], Dye defined full subgroups of the group
Aut(X,µ) of all measure-preserving transformations of a standard prob-
ability space (X,µ) as those subgroups G which are stable under cutting

Keywords: groupe plein L1, groupes dérivés, entropie de Rokhlin.
(*) Research supported by Projet ANR-14-CE25-0004 GAMME and Projet ANR-17-
CE40-0026 AGRUME.
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and pasting their elements along a countable measurable partition: for every
measurable partition (An)n∈N of X and every sequence (Tn)∈N of elements
of G such that (Tn(An))n∈N is also a partition of X, the measure preserving
transformation T defined by T (x) = Tn(x) for all x ∈ An also belongs to G.
Then, given a measure-preserving action of a countable group Γ on a stan-
dard probability space (X,µ) (i.e. a homomorphism α : Γ → Aut(X,µ)),
the smallest full subgroup of Aut(X,µ) containing α(Γ) is called the full
group [α(Γ)] of the action α.
The full group of the action α can be concretely understood as the group

of all measure-preserving transformations T such that T (x) belongs to the
Γ-orbit of x for all x ∈ X. Moreover, if two actions are conjugate, then
their full groups are isomorphic. It was then realized that the full group
was exactly capturing the partition of the space into orbits induced by the
action, leading to the notion of orbit equivalence which is by now a fairly
large subject on its own (see for instance the survey [10]).
The present paper is about a family of smaller subgroups which one

can associated to any measure-preserving action of any finitely generated
group. These were defined in [22] and are called Lp full groups, although
they are not full as subgroups of Aut(X,µ), but only finitely full, which
means that they are stable under cutting and pasting their elements along
a finite measurable partition.
Their definition uses the extra geometric structure provided by the

Schreier graph of the action. To be more precise, given a measure pre-
serving action α : Γ → Aut(X,µ) of a finitely generated group Γ and a
finite symmetric generating set S for Γ, let us first denote by dS the path
metric associated to the Schreier graph of the action with respect to the
set S. For p ∈ [1,+∞[, we then define the Lp full group of (α, S) be the
group of all T ∈ [α(Γ)] such that the map

x 7→ dS(x, T (x))

is in Lp(X,µ). Changing the generating set S does not change the Lp full
group, so the Lp full group of the action α itself is well-defined, and we
denote it by [α(Γ)]p. If two actions are conjugate, then their Lp full groups
are isomorphic. Moreover, the natural Lp metric on Lp full groups is com-
plete, separable, right-invariant and endows the Lp full groups with a group
topology which does not depend on the choice of the finite generating set.
It is thus natural to ask the following.

Question. — How are properties of the action reflected in the Lp full
group as a topological group?

ANNALES DE L’INSTITUT FOURIER
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One of the natural invariants of topological groups is the topological
rank, namely the smallest number of elements needed to generated a dense
subgroup, so it is natural to ask how the action influences the topological
rank of the associated Lp full group.
In [22] we showed that the topological rank of the L1 full group of an

ergodic Z-action was finite if and only if the action had finite entropy. The
main goal of the present paper is to extend this result to general measure-
preserving actions of finitely generated groups. In order to do so, the right
notion of entropy is Rokhlin entropy, which was recently introduced by
Seward [32]. It is the infimum of the entropies of generating partitions
and, for Z-actions, it coincides with the usual definition of entropy of a
measure-preserving transformation by a result of Rokhlin [29]. A crucial
result of Seward is that the finiteness of the Rokhlin entropy characterizes
measure-preserving subshifts, generalizing Krieger’s theorem to the widest
imaginable setup (see Section 2.4 for more on this).

Our proof that ergodic Z-actions of finite entropy have a topologically
finitely generated L1 full group used crucially the derived L1 full group,
defined as the closure of the subgroup generated by commutators in the
L1 full group of the action(1). Indeed, the latter is far easier to understand,
in particular it is topologically generated by naturally defined involutions
arising from the generating set of Γ (see Theorem 2.14 below). The main
result from [22] is then a direct consequence of the following two statements:

(1) The derived L1 full group is topologically finitely generated as soon
as the action has finite entropy.

(2) The topological abelianization of the L1 full group of an ergodic
Z-action is isomorphic to Z, in particular it always has finite topo-
logical rank.

In the present paper, we generalize the first item from the above list as
follows (see Section 4 for the proof).

Theorem A. — Let Γ be a finitely generated group, let α : Γ →
Aut(X,µ) be a measure-preserving aperiodic Γ-action on (X,µ). The fol-
lowing are equivalent.

(i) The action has finite Rokhlin entropy.
(ii) The derived L1 full group of the action has finite topological rank.

(1)The quotient of the L1 full group by the derived L1 full group is the largest abelian
continuous quotient of the L1 full group, and is thus called the topological abelianization
of the L1 full group.

TOME 71 (2021), FASCICULE 5
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Apart from Seward’s characterization of subshifts, another key ingre-
dient in the proof is Nekrashevych’s work on alternating topological full
groups [26], which provides dense finitely generated subgroups in the de-
rived L1 full groups. The reader is referred to Section 2.9 for the definition
of alternating topological full group and Section 3 for the proof of their
density in L1 full groups.

In the above result, it is natural to ask whether one can remove the
“derived” adjective in item (ii), as in the Z-case. However, we have no
idea what the topological abelianization of the L1 full group of a general
measure-preserving ergodic action of a finitely generated group looks like,
and in particular we do not know when it happens to be topologically
finitely generated. We don’t have any example or non example, even for
Z2-actions.
Let us now consider another invariant of topological groups: amenability.

In [22] we showed that if the L1 full group of a free action of a finitely
generated group Γ was amenable, then Γ itself was amenable, and left the
question of the converse open. Here we show that the converse holds so
as to obtain the following result (see Section 5 for definitions and a more
general statement in terms of graphings).

Theorem B. — Let Γ be a finitely generated group acting freely on a
standard probability space (X,µ). Then the following are equivalent:

(i) Γ is amenable;
(ii) The L1 full group of the action is amenable;
(iii) The derived L1 full group of the action is amenable;
(iv) The derived L1 full group of the action is extremely amenable;
(v) The derived L1 full group of the action is whirly amenable.

Note that the whole L1 full group of any free ergodic Z-action factors
onto Z [22, Corollary 4.20] and hence cannot be extremely amenable. So we
cannot have a stronger notion of amenability for the whole L1 full group
in the above equivalences.
We also note that L1 full groups provide a rich playground for Rosendal’s

extension of geometric group theory to Polish groups: the L1 metric can
often canonically be obtained (up to quasi-isometry) purely from the topo-
logical group structure. We refer the reader to Section 6 for precise state-
ments, and single out the following application, proved in Section 6.4.

Theorem C. — Let Γ and Λ be two finitely generated amenable groups
acting in a measure-preserving and ergodic manner on (X,µ). Then every

ANNALES DE L’INSTITUT FOURIER
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abstract group isomorphism between their L1 full groups must be a quasi-
isometry for their respective L1 metrics.

The conclusion of the theorem is somehow optimal: if we replace quasi-
isometry by bilipschitz equivalence, the theorem fails (see Example 6.16).
We don’t know how to generalize Theorem C to the nonamenable setup,
but we conjecture that the following stronger statement holds.

Conjecture. — Let Φ be a graphing. Then the L1 metric on the L1

full group of Φ is maximal.

Moreover, the following natural problem arises.

Problem. — Classify (derived) L1 full groups up to quasi-isometry.

A simpler instance of the above problem is to decide whether the derived
L1 full groups of the 2-odometer and of the 3-odometer are quasi-isometric,
which has a natural reformulation in terms of quasi-isometry of the dyadic
and triadic symmetric groups for an L1-like metric (see the paragraph fol-
lowing Question 6.9 for details).
Finally, we make progress on the computation of the exact topological

rank of L1 full groups of measure-preserving ergodic transformations. As
reminded before, we had shown in [22] that the topological rank of L1

full groups of a measure-preserving ergodic transformations is finite if and
only if the transformation has finite entropy. Using Marks’ work [23], we
moreover had obtained that the topological rank of the L1 full group of
irrational rotations is equal to two.
Here, we extend this result to the class of rank one transformations,

which we will properly define in Section 7. Let us for now mention that
every compact transformation is rank one (in particular every irrational
rotation is rank one), and that every rank one transformation has entropy
zero.

Theorem D. — Let T be a rank-one measure-preserving transforma-
tion. Then the topological rank of its L1 full group is equal to 2.

It would be very interesting to have an example of a measure-preserving
ergodic transformation such that the topological rank of its L1 full group
is finite, but greater than 2.
The paper ends with further remarks and questions related to these re-

sults. We introduce the notion of Lp-full orbit equivalence and ask whether
it is equivalent to Lp orbit equivalence, we mention a natural extension
of Theorem A to symmetric Lp full groups. We finally make a few more
remarks on the topological abelianization of L1 full groups.

TOME 71 (2021), FASCICULE 5
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2. Preliminaries

In what follows Γ and Λ will always denote countable infinite groups.

2.1. Standard probability spaces

Recall that a measurable space is standard if its σ-algebra comes from the
Borel σ-algebra induced by the topology of some Polish space. Measurable
maps between standard Borel spaces are simply called Borel maps. One of
the highlights of standard Borel spaces is the fact that the range of any
injective Borel map is Borel so that Borel bijections automatically have a
Borel inverse [17, Theorem 15.1]. Another important fact is that in any
standard Borel space we have a countable family of Borel subsets (Cn)
which separates points: for every distinct x, y ∈ X there is n ∈ N such that
x ∈ Cn < y ∈ Cn.

Given a countable group Γ, a Γ-action on X is called Borel if the bi-
jections induced by the elements of Γ are Borel maps. Two Borel actions
Γ y X and Γ y Y are conjugate if there is a Borel Γ-equivariant bijection
between X and Y .
The support of a Borel bijection T : X → X is the Borel set suppT :=

{x ∈ X : T (x) 6= x}. Here are two useful lemmas on Borel bijections of
standard Borel spaces which only rely on the existence of a countable family
of Borel subsets which separates points.

Lemma 2.1 (see e.g. [22, Proposition 2.7]). — Let T be a Borel bijection
of a standard Borel space X. Then there is a partition of suppT in three
Borel subsets A1, A2, A3 such that for all i ∈ {1, 2, 3} the set T (Ai) disjoint
from Ai.

By applying the above lemma n times we have.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.2. — Let X be a standard Borel space, let (Ti)ni=1 be a finite
family of Borel bijections ofX. Then there is a finite Borel partition (Aj)mj=1
of
⋂n
i=1 suppTi such that for each i ∈ {1, . . . , n} and each j ∈ {1, . . . ,m}

we have that Ti(Aj) is disjoint from Aj .

Recall that given a measurable map f : X → Y between measurable
spaces, if µ is a probability measure on X then one can define the pushfor-
ward measure f∗µ on Y by f∗µ(A) = µ(f−1(A)) for all every A ⊆ Y .

We will work most of the time in a standard probability space (X,µ),
which means that X is still a standard Borel space but now equipped with
a nonatomic Borel probability measure µ. Given two standard probability
spaces (X,µ) and (Y, ν), there is a Borel bijection S : X → Y such that
S∗µ = ν [17, Theorem 17.41], so we may as well work in a fixed standard
probability space (X,µ).

2.2. The measure algebra and its automorphisms

Let (X,µ) be a standard probability space, we denote by MAlg(X,µ) the
quotient of the algebra B(X) of Borel subsets of X by the ideal of measure
zero sets; in other words in the measure algebra we identify two Borel sets
A and B as soon as µ(A 4 B) = 0. Unless specified otherwise, we will
always be working in the measure algebra when considering Borel sets, so
for instance when we write A ⊆ B we mean µ(A \B) = 0.

A measure-preserving transformation of (X,µ) is a Borel bijection T :
X → X such that T∗µ = µ. We denote by Aut(X,µ) be the group of all
measure-preserving transformations, two such transformations being iden-
tified if they coincide on a full measure subset of X. We say that a measure-
preserving transformation is periodic if all its orbits are finite.

Every element of Aut(X,µ) defines a measure-preserving automorphism
of the measure algebra, and conversely every automorphism of the measure
algebra comes from a measure-preserving transformation which is unique
up to measure zero [17, Theorem 15.11]. In particular, since every measure-
preserving Borel bijection between full measure Borel subsets of (X,µ)
defines an automorphism of its measure algebra, it also defines a measure-
preserving transformation. This will be used implicitly in many proofs.
Given T ∈ Aut(X,µ) and A ⊆ X of positive measure, we define the

T -return time to A as the function nT,A : X → N \ {0} given by: for all
x ∈ A, nA,T (x) is the smallest n ∈ N such that Tn(x) ∈ A. The Poincaré
recurrence theorem ensures us that the return time is well defined up to

TOME 71 (2021), FASCICULE 5
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measure zero, also called the return time to A. We can then define the
measure-preserving transformation TA induced by T on A by:

TA(x) =
{
TnA,T (x) if x ∈ A
x otherwise.

The measure algebra MAlg(X,µ) can be equipped with a complete metric
dµ defined by dµ(A,B) = µ(A4B). The following lemma which was used
implicitly in [22].

Lemma 2.3. — Let (X,µ) be a standard probability space, let D be a
set of Borel subsets of X such that the image of D in MAlg(X,µ) is dense.
Then there is a full measure Borel subset X ′ ⊆ X such that D separates
the points of X ′.

Proof. — Let (Cn)n∈N separate the points of X, by changing our enu-
meration we may as well assume each Cn appears infinitely often. Now for
each n ∈ N we pick Dn ∈ D such that µ(Cn 4Dn) < 2−n. By the Borel–
Cantelli lemma, there is a full measure Borel subset X ′ ⊆ X such that for
all x ∈ X ′, there is N ∈ N such that for all n > N , x 6∈ Cn 4 Dn. By
construction the set X ′ is as wanted. �

2.3. Ergodic theory

An action of a countable group Γ on a standard probability space (X,µ)
is measure-preserving if it is a Borel action and for every γ ∈ Γ we have
γ∗µ = µ. Every such action yields a homomorphism Γ→ Aut(X,µ) which
only depends on the action up to measure zero and conversely, every such
homomorphism comes from a measure-preserving action which is unique
up to measure zero (see [13, Theorem 2.15]).
Two measure-preserving actions of Γ are conjugate if they are conjugate

as Borel actions up to restricting to full measure Γ-invariant Borel subsets.
Viewing actions as homomorphisms α, β : Γ→ Aut(X,µ), this is equivalent
to the existence of T ∈ Aut(X,µ) such that for all γ ∈ Γ we have β(γ) =
Tα(γ)T−1. The L1 full groups that we are interested in only depend on the
action up to measure zero, so we can and will forget about what happens
on measure zero sets most of the time. By doing so we will implicitly use
the following : if we have a Borel set A of full measure, then it contains the
full measure Γ-invariant set

⋂
γ∈Γ γA.

Two basic invariants of conjugacy of measure preserving actions are ape-
riodicity (the Γ-orbit of almost every x ∈ X is infinite) and the stronger
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notion of ergodicity (every Γ-invariant Borel subset has measure 0 or 1). We
will only be interested in aperiodic actions, and sometimes we will restrict
to ergodic ones. Another important invariant is freeness, which means that
for almost all x ∈ X and all γ ∈ Γ we have γx 6= x. Note that aperiodicity
follows from freeness since all the groups we consider are infinite.

Example 2.4. — Let I be a countable set and let ν be a probability
measure on I which is not a Dirac measure, then the measure preserving
action Γ y (IΓ, ν⊗Γ) given by (γ ·x)g = xγ−1g is free and ergodic. Such an
action is called a Bernoulli shift.

2.4. Subshifts and Rokhlin entropy

Let X be a standard Borel space, let Γ y X be a Borel action. An
observable on X is a Borel map ϕ : X → I where I is a countable set. To
every such observable we can associate a Borel partition of X indexed by
I defined as (ϕ−1{i})i∈I , and conversely if P is a countable partition of X
then the map ϕ : X → P which sends every x ∈ X to the unique P ∈ P
such that x ∈ P is an observable. An observable ϕ is called (dynamically)
generating if for all x, y ∈ X with x 6= y there is γ ∈ Γ such that ϕ(γx) 6=
ϕ(γy).
A Borel action Γ y X on a standard Borel space is called a subshift if

it admits a generating observable with finite range. A measure-preserving
Γ-action on a standard probability space is called a measure-preserving
subshift if there is a full measure Borel Γ-invariant set Y such that the
restriction of the action to Y is a subshift. Note that Bernoulli shifts over
finite spaces are examples of measure-preserving subshifts.
Finally, an action by homeomorphisms on a compact Hausdorff space is

called a topological subshift if it has a continuous generating observable
(such an observable must then take values in a finite set by compactness
and continuity).
We have the following well-known characterization of subshifts up to

conjugacy (in the respective Borel and topological categories).

Proposition 2.5. — The following hold.
(1) A Borel action Γ y X is a subshift if and only if it is conjugate to

a restriction of Γ y IΓ to an invariant Borel subset where I is a
finite set.

(2) A Γ-action by homeomorphisms on a compact zero-dimensional
topological space K is a topological subshift if and only if it is
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conjugate (via a homeomorphism) to the restriction of Γ y IΓ to
an invariant closed subset, where I is a finite set.

Proof. — For (1), let ϕ : X → I be a generating observable where I is
finite, and consider the Γ-equivariant map ΦI : X → IΓ given by x 7→
(ϕI(γ−1x))γ∈Γ. Since ϕ is generating and Borel, ΦI is an injective Borel
map. Its range is thus a Borel Γ-invariant subset of IΓ.

For (2), consider the same map and observe that it now has to be a
homeomorphism onto its image. �

If we are now given a measure-preserving Γ-action on (X,µ), we say that
an observable ϕ is generating if we can find a Borel Γ-invariant subset
X ′ ⊆ X of full measure such that the restriction of ϕ to X ′ is generating
for Γ y X ′. The following analogue of Proposition 2.5 is immediate.

Proposition 2.6. — A measure-preserving Γ-action on (X,µ) is a
measure-preserving subshift if and only if it admits a generating observable
whose range is finite.

Let (X,µ) be standard probability space. The entropy of an observable
ϕ : X → I is the non-negative real number H(ϕ) defined by the equation

H(ϕ) = −
∑
i∈I

µ
(
ϕ−1({i})

)
lnµ

(
ϕ−1({i})

)
,

where we make the convention that 0 ln(0) = 0. Here are two fundamental
properties of entropy:

• Subadditivity: for any two observables ϕ and ψ we have

H(ϕ× ψ) 6 H(ϕ) +H(ψ)

where (ϕ,ψ) is the observable x 7→ (ϕ(x), ψ(x)).
• Concavity: if we fix k ∈ N, the observables taking value in {1, . . . , k}
which maximize entropy are exactly those which give the same prob-
ability to every i ∈ {1, . . . , k} (and their entropy is thus ln k)

Definition 2.7 (Seward). — The Rokhlin entropy of a measure-pres-
erving aperiodic Γ-action is the infimum of the entropies of its generating
observables.

Every aperiodic Borel action admits a generating observable by [15, The-
orem 5.4], so the above quantity is an element of [0,+∞]. The following
remarkable result of Seward is a far-reaching generalization of Krieger’s
generator theorem which will allow us to work with arbitrary countable
groups rather than Z.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.8 (Seward [31]). — Let Γ be a countable group, let Γ y
(X,µ) be a measure-preserving action. The action is a measure-preserving
subshift if and only if it has finite Rokhlin entropy.
Seward also has a quantitative version of the above result, yielding a

generating observable whose range is as small as possible (see [32], where
he also defines Rokhlin entropy).

2.5. Full groups

If (X,µ) is a standard probability space, and A,B are Borel subsets of
X, a partial isomorphism of (X,µ) of domain A and range B is a Borel
bijection f : A→ B which is measure-preserving for the measures induced
by µ on A and B respectively. We denote by dom f = A its domain, and
by rng f = B its range. Given two partial isomorphisms ϕ1 : A → B and
ϕ2 : C → D, we define their composition ϕ2 ◦ϕ1 as the map ϕ−1

1 (B∩C)→
ϕ2(B ∩ C) given by ϕ2 ◦ ϕ1(x) = ϕ1ϕ2(x). We also define the inverse ϕ−1

of a partial isomorphism ϕ : A→ B as the unique map ϕ−1 : B → A such
that ϕ−1 ◦ ϕ = idA.

By definition a graphing is a countable set of partial isomorphisms. Ev-
ery graphing Φ generates a measure-preserving equivalence relation RΦ,
defined to be the smallest equivalence relation containing (x, ϕ(x)) for ev-
ery ϕ ∈ Φ and x ∈ domϕ. Given a graphing Φ, a Φ-word is a composition
of finitely many elements of Φ or their inverses. Observe that (x, y) ∈ RΦ
iff and only if there exists a Φ-word w such that y = w(x). Moreover we
have a natural path metric dΦ on the RΦ-classes: for (x, y) ∈ RΦ we let
dΦ(x, y) be the minimum length of a Φ-word w such that y = w(x).
A graphing is called aperiodic when theRΦ-class of µ-almost every x ∈ X

is infinite. Given a Borel set A, we say that A is RΦ-invariant if whenever
x ∈ A and (x, y) ∈ RΦ, we have y ∈ A. Equivalently, this means that for
all x ∈ A and all ϕ ∈ Φ, we have ϕ(x) ∈ A and ϕ−1(x) ∈ A. A graphing Φ
is ergodic if every RΦ-invariant Borel set has measure 0 or 1. Every ergodic
graphing is automatically aperiodic.
The full group of a measure-preserving equivalence relation R is the

group [R] of automorphisms of (X,µ) which induce a permutation on every
R-class, that is

[R] = {ϕ ∈ Aut(X,µ) :∀ x ∈ X,ϕ(x)Rx}.

It is a separable group when equipped with the complete metric du de-
fined by

du(T,U) = µ({x ∈ X : T (x) 6= U(x)}.

TOME 71 (2021), FASCICULE 5
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The metric du is called the uniform metric and the topology it induces
is called the uniform topology. One also defines the pseudo full group of
R, denoted by [[R]], which consists of all partial isomorphisms ϕ such that
ϕ(x)Rx for all x ∈ domϕ.

2.6. L1 full groups

Definition 2.9 ([22]). — Let Φ be a graphing on a standard probability
space (X,µ). Its L1 full group [Φ]1 is the group of all T ∈ [RΦ] such that∫

X

dΦ(x, T (x)) dµ(x) < +∞.

The L1 full group of Φ is a Polish group for the topology induced by the
right-invariant complete metric d1

Φ defined by

d1
Φ(T,U) =

∫
X

dΦ(T (x), U(x)) dµ(x).

When Γ is a finitely generated group acting on a standard probability
space (X,µ) by measure-preserving transformations, we can also define the
associated L1 full group as follows: let S be a finite generating set of the
group Γ, then S is a graphing whose associated equivalence relation is the
equivalence relation RΓ whose equivalence classes are the Γ-orbits. Observe
that up to bilipschitz equivalence, the associated metric dS on the Γ-orbits
does not depend on S, so that two finite generating sets of Γ yield the same
L1 full group with the same topology. This is by definition the L1 full group
of the Γ-action, which we will often simply denote by [Γ]1 without referring
explicitly to the action.
Here is another way to think of the L1 full group of a Γ-action, similar

to what was done in [5, Section 3.2]. Consider the Polish space L1(X,µ,Γ)
of integrable maps X → Γ, i.e. maps f : X → Γ such that∫

X

dS(1, f(x)) dµ(x) < +∞.

To each element f of L1(X,µ,Γ) we associate a map Tf : X → X defined
by Tf (x) = f(x) · x. The subspace

[̃Γ]1 = {f ∈ L1(X,µ,Γ) : Tf ∈ [RΓ]}

is closed, and we define on it a law ∗ which is compatible with the group
law on [RΓ] by letting f ∗ g(x) = f(Tg(x))g(x). Then ([̃Γ]1, ∗) is a Polish
group, and [Γ]1 is topologically isomorphic to its quotient by the closed
normal subgroup {f ∈ [̃Γ]1 : Tf = idX} via the map f 7→ Tf .
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If we are given T ∈ [Γ]1, a lift of T to [̃Γ]1 is called a cocycle associated
to T . When the Γ action is free, f 7→ Tf is injective and so each T ∈ [Γ]1
has a unique associated cocycle cT : X → Γ given by the equation

T (x) = cT (x) · x.

An important feature of cocycles associated to elements of L1 full groups
is that they have finite entropy.

Proposition 2.10 (Austin, see [1, Lemma 2.1]). — Let Γ be a finitely
generated group. Then every element of L1(X,µ,Γ) has finite entropy.

We finally note the following lemma about cocycles which are measurable
with respect to an invariant sub-σ-algebra.

Lemma 2.11. — Let Γ y (X,µ) be a measure-preserving action of a
finitely generated group Γ, suppose A is a Γ-invariant sub- σ-algebra of the
Borel subsets of X. Let [Γ]A1 denote the set consisting of all elements of
[Γ]1 which admit an A-measurable cocycle. Then [Γ]A1 is a group.

Proof. — Let T,U ∈ [Γ]A1 , and let cT and cU be cocycles for T and U

which are A-measurable. Then the map c : X → Γ defined by

c(x) = cT (U(x))cU (x)

is a cocycle for TU , and c(x) = γ if and only if there are γ1, γ2 ∈ Γ such
that γ1γ2 = γ, cU (x) = γ2, cT (γ2x) = γ1. So c is clearly A-measurable as
wanted. �

Remark 2.12. — The same proof yields a similar statement for the whole
full group of the action.

2.7. Derived L1 full groups

Contrarily to many Polish groups that have been studied, L1 full groups
are not topologically simple in general, and can actually happen to have
a non trivial topological abelianization. The closure of their derived group
(i.e. the group generated by commutators) is thus distinct from them a
priori. Let us give it a shorter name.

Definition 2.13. — The derived L1 full group of a graphing Φ is the
closure of the derived group of the L1 full group of Φ. It is denoted by [Φ]′1.
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Given ϕ ∈ Φ and a Borel set A ⊆ X, let us define an involution Iϕ,A by:

Iϕ,A(x) =


ϕ(x) if x ∈ A \ ϕ(A)
ϕ−1(x) if x ∈ ϕ(A) \A
x otherwise.

We can now give two fundamental properties of the derived L1 full group.
The second one suggests to rather call it the symmetric L1 full group (see
Section 8.2).

Theorem 2.14 ([22, Lemma 3.11 and Theorem 3.15]). — Let Φ be an
aperiodic graphing. Then the following hold:

(a) every periodic element of the L1 full group of Φ actually belongs to
the derived L1 full group of Φ;

(b) the derived L1 full group of Φ is topologically generated by the set
of involutions {Iϕ,A : ϕ ∈ Φ, A ⊆ X}.

Observe that since Iϕ,A depends continuously on A ∈ MAlg(X,µ) and
MAlg(X,µ) is connected, we can deduce that [Φ]′1 is connected (cf. [22,
Corollary 3.14]). We still don’t know whether it is simply connected. An-
other important question is to understand what is the topological abelian-
ization of L1 full groups, i.e. what is [Φ]1/[Φ]′1. The only known case is that
of ergodic Z-actions, for which we then always have [Z]1/[Z]′1 = Z [22]. See
the last section of the paper for more on this.
Using (b) from the above statement along with its full group version [19,

Section 4], we also have the following.

Corollary 2.15. — Let Φ be an aperiodic graphing. Then the derived
L1 full group of Φ is dense in the full group [RΦ] for the uniform topology.

Given an aperiodic graphing Φ and anRΦ-invariant Borel set A, consider
the subgroup [ΦA]′1 consisting of all the elements of [Φ]′1 supported in A.
It is a closed normal subgroup of [Φ]′1, and the following result says that
these are the only ones.

Theorem 2.16 ([22, Theorem 3.24]). — Let Φ be an aperiodic graph-
ing. Then every closed normal subgroup of [Φ]′1 is of the form [ΦA]′1, where
A is RΦ-invariant.

As a corollary, one can show that a graphing is ergodic if and only if its
derived L1 full group is topologically simple [22, Corollary 3.25].
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2.8. Conditional measures

Given a measure preserving action Γ y (X,µ) of a finitely generated
group Γ, it will be important for us to know for which Borel sets A and B
we can find an element of T of the L1 full group of the action such that
T (A) is close to B. Because the L1 full group is dense in the full group
[RΓ], it suffices to understand the [RΓ]-orbits in the measure algebra. It is
a well-known fact that when the action is ergodic, there is T ∈ [RΓ] such
that T (A) = B if and only if µ(A) = µ(B). In the non ergodic case, one
needs to refine the measure µ to a conditional measure with respect to the
σ-algebra of Γ-invariant sets.

Definition 2.17. — Let R be a measure-preserving equivalence rela-
tion. Denote by MR the σ-algebra of R-invariant Borel subsets. The con-
ditional measure of A ∈ MAlg(X,µ) is the MR-measurable function µR
defined by

µR(A) = πR(χA),
where πR is orthogonal projection onto the closed subspace of L2(X,µ)
consisting of the MR-measurable functions.

Note that µR is well-defined up to measure zero. We now have the fol-
lowing.

Proposition 2.18 (Dye, see [22, Lemma 2.11]). — LetR be a measure-
preserving equivalence relation and A,B ∈ MAlg(X,µ). Then µR(A) =
µR(B) if and only if there is an involution T ∈ [R] such that T (A) = B.

Aperiodicity has an important reformulation in terms of conditional mea-
sures, which is also due to Dye who calls it Maharam’s lemma. For a proof
in our setup, see [21, Proposition 2.2].

Proposition 2.19 (Maharam’s lemma). — A measure-preserving
equivalence relation R is aperiodic if and only if for any A ∈ MAlg(X,µ),
and for any MR-measurable function f such that 0 6 f 6 µR(A), there
exists B ⊆ A such that the R-conditional measure of B equals f .

2.9. Alternating topological full groups

Alternating topological full groups were defined by Nekrashevych and
have been the source of outstanding new examples of finitely generated
groups [27]. They provide the right setup for generalizing Matui’s results
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on finite generatedness of derived groups of topological full groups of home-
omorphisms of the Cantor space [24]. Topological full groups were first
studied and defined by Giordano, Putnam and Skau [12]. Here we give a
restricted definition of (alternating) topological full groups which will be
sufficient for our purposes.
Let 2N be the Cantor space and let ν be a Borel probability measure on

it. Recall from [22] that a continuous graphing on the measured Cantor
space (2N, ν) is a graphing Φ such that for all ϕ ∈ Φ, the sets domϕ, rngϕ
are clopen and ϕ : domϕ→ rngϕ is a homeomorphism.

Definition 2.20. — Let Φ be a continuous graphing on (2N, ν). The
topological full group of Φ, denoted by [Φ]c, is the group of all homeomor-
phisms T of 2N such that for all x0 ∈ 2N there is a neighborhood U of x0
and a Φ-word w such that for all x ∈ U , T (x) = w(x).

Say that an element T of the topological full group of Φ is a basic 3-cycle
if there are a three clopen subsets U1, U2, U3 which partition the support
of T and two Φ-words w1, w2 such that w1(U1) = U2 and w2(U2) = U3 and
for all x ∈ X we have

T (x) =


w1(x) if x ∈ U1

w2(x) if x ∈ U2

w−1
1 w−1

2 (x) if x ∈ U3

x otherwise.

The alternating topological full group of a continuous graphing Φ is the
group A[Φ] generated by basic 3-cycles. One can check that the alternating
topological full group is a normal subgroup contained in the derived group
of the topological full group.
Let us observe that when Γ is a countable group acting by homeomor-

phisms on the Cantor space, then if S is any generating set for Γ, the
elements of S define a continuous graphing whose topological full group is
the topological full group of the groupoid of germs of the Γ-action in the
sense of [26, Example 2.2] (see also [26, Definition 2.6] and the two para-
graphs which follow it). Moreover, the alternating topological full group of
the continuous graphing S is equal to the alternating topological full group
of the groupoid of germs of the Γ-action.

Remark 2.21. — Since we do not require the action to be free or essen-
tially free in the topological sense, the etale groupoid of germs of the action
is not Hausdorff in general, in particular its unit space may not be closed,
although it is compact. As a consequence, Lemma 2.2 from [25] does not
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apply and elements of the topological full group may very well have a non
clopen support(2), as opposed to elements of the alternating topological full
group.

We have the following straightforward consequence of [26, Theorem 1.2]
and [26, Proposition 5.7] which will be crucial in our proof of Theorem A.

Theorem 2.22 (Nekrashevych). — Let Γ be a finitely generated group,
suppose Γ acts on the Cantor space by homeomorphism and that every Γ-
orbit has cardinality at least 5. Then the action is a topological subshift if
and only if its alternating topological full group is finitely generated.

3. Density of the alternating topological full group

In this section, we show that the alternating topological full group of
a continuous graphing is always dense in its derived L1 full group. We
first need to work a bit on the general setup, so (X,µ) is still a standard
probability space.
A measure-preserving transformation is called a 3-cycle when it has order

3, or equivalently when all its nontrivial orbits have cardinality 3. Given a
3-cycle T , there is A ⊆ X such that suppT = A t T (A) t T 2(A), and the
identity (1 2 3) = (1 2)(1 3)(1 2)(1 3) yields that T is a commu-
tator, so the 3-cycles of the L1 full group actually belong to the derived L1

full group.
We need to ensure that there are many 3-cycles. This is a consequence of

the following two lemmas, which are straightforward generalizations of [22,
Lemma 3.6] and [22, Lemma 2.12] respectively.
Recall the following notation: given a measure-preserving transformation

T and A ⊆ X, we denote by TA the transformation induced by T on A

(see Section 2.2). In what follows, we only use this construction when A

is T -invariant, and then TA is the map which acts as T on A and trivially
outside of A.

Lemma 3.1. — Let Φ be a graphing. Then for every periodic U ∈ [RΦ],
there exists an increasing sequence of U -invariant sets An ⊆ suppU such
that suppU =

⋃
n∈NAn and for all n ∈ N, UAn ∈ [Φ]1.

(2) In the topological setup, the support of a homeomorphism T : X → X is rather
defined as the closure as the set of x ∈ X such that T (x) 6= x.
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Proof. — Let U ∈ [RΦ] be periodic and for all n ∈ N, let An = {x ∈
suppU : dΦ(x, Uk(x)) < n for all k > 0}. By definition each An is U -
invariant, and since U is periodic,

⋃
n∈NAn = suppU , so µ(suppU \An)→

0. By the definition of An, each UAn belongs to [Φ]1. �

Lemma 3.2. — Let Φ be an aperiodic graphing. Then for every Borel
A ⊆ X, there is a 3-cycle U ∈ [RΦ] whose support is equal to A.

Proof. — By Maharam’s Lemma (Proposition 2.19), one can write A =
A1 t A2 t A3 where µRΦ(A1) = µRΦ(A2) = µRΦ(A3) = µRΦ(A)/3. By
a result of Dye (see Proposition 2.18), there are T1, T2 ∈ [RΦ] such that
T1(A1) = A2 and T2(A2) = A3). We then define T ∈ [RΦ] by

T (x) =


T1(x) if x ∈ A1

T2(x) if x ∈ A2

T−1
1 T−1

2 (x) if x ∈ A3

x otherwise.

The transformation T is the desired 3-cycle. �

As an immediate consequence of the two previous lemmas, we have:

Proposition 3.3. — Let Φ be an aperiodic graphing. Then for every
Borel A ⊆ X, there is a sequence of 3-cycles Un ∈ [Φ]1 such that (suppUn)
is an increasing sequence of subsets of A and µ(A \ suppUn)→ 0.

Proposition 3.4. — Let Φ be a graphing. Then [Φ]′1 is topologically
generated by 3-cycles.

Proof. — Let Xp be the periodic part of the graphing, i.e. the set of x
whose RΦ-class is finite, and let Xa = X \Xp. Then if one lets Φp (resp.
Φa) be the restriction of Φ to Xp (resp. Xa), the derived L1 full group of Φ
splits naturally as a direct product [Φp]′1 × [Φa]′1. So it suffices to establish
the theorem in the aperiodic and in the periodic case.
Let us start by supposing Φ is aperiodic. The group generated by 3-

cycles is normal in [Φ]′1 so its closure N is a closed normal subgroup of
[Φ]′1. By [22] we conclude that N is equal to the group of T ∈ [Φ]′1 whose
support is contained in the reunion of the supports of the 3-cycles. Using
the previous proposition, we see that the reunion of such supports is equal
to X, so N = [Φ]′1, which end the proof of the theorem in the aperiodic
case.
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Now suppose Φ is periodic. For every n ∈ N let Xn be the set of x ∈ X
whose RΦ-class has dΦ-diameter less than n. Then X =

⋃
n∈NXn, the Xn’s

are Φ-invariant and non-decreasing so if we let Gn = {T ∈ [Φ]1 : suppT ⊆
Xn} then the reunion of the Gn’s is dense in [Φ]1. It thus suffices to show
that commutator of elements of Gn is a product of 3-cycles belonging to
Gn, which comes from the fact that by boundedness of the orbits, each
Gn is a full group and every periodic element of a full group which is a
commutator is a product of 3-cycles. �

Proposition 3.5. — Let Φ be a continuous graphing on (2N, ν). Then
its alternating topological full group is dense in its derived L1 full group.

Proof. — By the previous proposition, it suffices to show that every 3-
cycle in [Φ]1 can be approximated by an element of the alternating topo-
logical full group. So let T be a 3-cycle in the L1 full group of Φ. Let A ⊆ X
such that suppT = A t T (A) t T 2(A).

Since the set of Φ-words is countable, we have a partition (An) of A and
Φ-words w1,n, w2,n such that for all x ∈ X we have

T (x) =


w1,n(x) if x ∈ An for some n ∈ N
w2,n(x) if x ∈ T (An) for some n ∈ N
w−1

1,nw
−1
2,n(x) if x ∈ T 2(An) for some n ∈ N

x otherwise.

In particular, for every n ∈ N the set An t T (An) t T 2(An) is T -invariant,
and if we let Tn := TAntT (An)tT 2(An), then by the dominated convergence
theorem we conclude T = limm→+∞

∏m
i=0 Tm. So it suffices to prove that

each Tn is a limit of elements of the alternating topological full group.
Let n ∈ N, then there is a sequence of clopen sets (Ui)i∈N such that

µ(An 4 Ui) → 0 [i → +∞]. If we let Vi = Ui \ (T (Ui) ∪ T 2(Ui)), then by
continuity we also have µ(An 4 Vi)→ 0. We now define Tn,i by

Tn,i(x) =


w1,n(x) if x ∈ Vi
w2,n(x) if x ∈ T (Vi)
w−1

1,nw
−1
2,n(x) if x ∈ T 2(Vi)

x otherwise.

Then Tn,i is clearly a basic 3-cycle, and hence belongs to the alternat-
ing topological full group of Φ. Moreover by the dominated convergence
theorem we have Tn,i → Tn [n→ +∞], which finishes the proof. �
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4. Topological rank of derived L1 full groups

In this section, we prove that the derived L1 full group of a measure-
preserving Γ-action has finite topological rank if and only if it is a subshift
(Theorem A). We want to use Nekrashevych’s result on finite generatedness
of alternating topological full groups, and the next section prepares the
ground for this.

4.1. From measure-preserving subshifts to topological subshifts

In this preparatory section we will show that every aperiodic measure-
preserving subshift is conjugate to a topological subshift on the Cantor
space where each orbit has cardinality at least 5. For this, we will freely
use the characterization of subshifts provided by Proposition 2.5.
Given a group Γ and a generating set S for Γ, we equip Γ with the graph

metric induced by its Cayley graph with respect to S. The closed ball of
radius n around the identity for this metric is denoted by BS(e, n).

Lemma 4.1. — Let Γ be a finitely generated group, suppose S ⊆ Γ is
a finite generating set and let Γ y X be a subshift with every orbit of
cardinality at least 5. Then we can find a finite generating Borel partition
P such that for every P ∈ P there are γ1, . . . , γ4 ∈ BS(e, 4) such that
P, γ1P, . . . , γ4P are disjoint.

Proof. — Let us first show that for every x ∈ X there are γ1, . . . , γ4 ∈
BS(e, 4) such that x, γ1x, . . . , γ4x are all distinct. Observe that if for some
n ∈ N we have |BS(e, n)x| = |BS(e, n+ 1)x| then BS(e, n)x is a finite
set which is invariant under each generator of Γ, hence Γ-invariant. In
particular we must have |BS(e, 4)x| > 5 so for every x ∈ X there are
γ1, . . . , γ4 ∈ BS(e, 4) such that x, γ1x, . . . , γ4x are all distinct.
Now apply Lemma 2.2 to the family (γλ−1)γ,λ∈BS(e,4) to get a partition

P such that for every P ∈ P there are γ1, . . . , γ4 ∈ BS(e, 4) such that
P, γ1P, . . . , γ4P are disjoint. The desired partition is obtained by taking
the join of P with a finite generating partition. �

Proposition 4.2. — Let Γ be a finitely generated group acting on
(X,µ) by an aperiodic measure-preserving subshift. Then the action is con-
jugate to a topological subshift on the Cantor space where every orbit has
cardinality at least 5.
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Proof. — Let P be as in the previous lemma and consider Ω =∨
γ∈BS(e,4) γP. Observe that for µ-almost every x∈X, there are γ1, . . . , γ4 ∈

BS(e, 4) such that x, γ1x,. . . ,γ4x all belong to distinct elements of Ω. Let
ϕΩ : X → Ω be the associated observable.

Now consider the Γ-equivariant map ΦΩ : X → ΩΓ given by x 7→
(ϕΩ(γ−1x))γ∈Γ. Observe that the set of sequences (ωγ)γ∈Γ such that for all
γ ∈ Γ there are γ1, . . . , γ4 ∈ BS(e, 4) such that ωγ , ωγγ−1

1
, . . . , ωγγ−1

4
are all

distinct is a closed Γ-invariant set containing the essential range of ΦΩ, so
the Γ-action on the essential range of ΦΩ is a topological subshift all whose
orbits have cardinality at least 5.

Moreover the measure µ has no atoms because the Γ-orbits are almost
all infinite. So the essential range of ΦΩ contains no isolated points and
thus must be homeomorphic to the Cantor space by a theorem of Brouwer
(see [17, Theorem 7.4]). We conclude that the Γ-action on the essential
range of ΦΩ is a topological subshift on the Cantor space which has the
desired properties. �

Remark 4.3. — I do not know whether one can improve the above result
so as to get an aperiodic topological subshift.

4.2. Proof of Theorem A

Let us recall the statement that we are aiming at.

Theorem 4.4. — Let Γ be a finitely generated group and consider
a measure-preserving aperiodic Γ-action on a standard probability space
(X,µ). Then the following are equivalent:

(i) the Γ-action has finite Rokhlin entropy and
(ii) the derived L1 full group of the Γ-action has finite topological rank.

Proof. — Let us start by the direct implication (i) ⇒ (ii). Suppose the
measure-preserving Γ-action has finite Rokhlin entropy. By Seward’s the-
orem (Theorem 2.8), we may assume that the action is a measurable sub-
shift, and by Proposition 4.2 we can further assume that it is a topological
subshift all whose orbits have cardinality at least 5. Nekrashevych’s result
(Theorem 2.22) yields that the associated alternating topological full group
is finitely generated. So the alternating topological full group is the desired
dense finitely generated subgroup of the derived L1 full group of the action
by Proposition 3.5.
We now prove the reverse implication (ii) ⇒ (i). Suppose that for some

n ∈ N we have T1,. . . , Tn ∈ [Γ]′1 which generate a dense subgroup of [Γ]′1. By
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definition for each i ∈ {1, . . . , n} the transformation Ti admits an associated
cocycle ci ∈ L1(X,µ,Γ). By Lemma 2.10 each cocycle ci has finite entropy.
Finally, let c be the observable associated to a partition (A1, A2) of X into
two disjoint sets such that for all x ∈ X, µRΓ(A1)(x) = µRΓ(A2)(x) = 1

2 ,
as provided by Maharam’s lemma (cf. Proposition 2.19).
The observable c1 × · · · × cn × c has finite entropy by subadditivity, let

us show that it is generating so that (i) holds. Let Ã be the σ-algebra
generated by the Γ-translates of the partition associated to the observable
c1× · · ·× cn× c, we will show that it separates the points of a full measure
subset of X, thus finishing the proof that the action has finite Rokhlin
entropy.
First, by Lemma 2.11, every element of the group generated by T1, . . . , Tn

admits a cocycle which is Ã-measurable. Furthermore, the following holds.

Claim. — The σ-algebra Ã is invariant under every element of the
group generated by T1, . . . , Tn.

Proof of claim. — We just saw that every element of the group generated
by T1, . . . , Tn admits a cocycle which is Ã-measurable. But such elements
must preserve Ã because if A ∈ Ã and U is an element of the full group of
RΓ admitting a cocycle which is Ã-measurable, we find a partition (Aγ)γ∈Γ

of A such that each Aγ belongs to Ã and for each x ∈ Aγ , U(x) = γx. So
U(A) =

⊔
γ∈Γ γ(Aγ) and since Ã is a Γ-invariant σ-algebra which contains

each Aγ we conclude that U(A) ∈ Ã. �

Let A be the closure of the image of Ã in MAlg(X,µ)(3), which is then
also invariant under every element of the group generated by T1, . . . , Tn. By
Lemma 2.3, in order to show that Ã separates the points of a full measure
subset of X, we only need to show that A = MAlg(X,µ). We first prove
that A satisfies the following property with respect to the RΓ-conditional
measure µRΓ :

(4.1) ∀ A ∈ A ∀ B ∈ MAlg(X,µ), µRΓ(A) = µRΓ(B)⇒ B ∈ A.

Indeed let A ∈ A, and suppose B ∈ MAlg(X,µ) satisfies µRΓ(A) =
µRΓ(B). By Proposition 2.18 we may find an involution U ∈ [RΓ] such
that U(A) = B. Using Lemma 3.1, we then find a sequence (Uk)k∈N of ele-
ments of the group generated by T1, . . . , Tn such that µ(Uk(A)4 B)→ 0.
Since A is closed and invariant under elements of the group generated by
T1, . . . , Tn, we conclude that B ∈ A.

(3)Actually Ã is automatically closed because Ã is a σ-algebra, but we won’t need that.
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Now observe recall that by the definition of our observable c, the algebra
A contains a set B whose RΓ-conditional measure is constant equal to 1/2.
By Maharam’s lemma, whenever A ∈ MAlg(X,µ) satisfies µRΓ(A)(x) 6
1/2 for all x ∈ X, we can write A as the intersection of two elements of
MAlg(X,µ) whose RΓ-conditional measure is constant equal to 1/2. So
by (4.1), A contains all sets whose RΓ-conditional measure is everywhere
at most 1/2. Using Maharam’s lemma once more, we see that every element
of MAlg(X,µ) can be written as the union of two elements of MAlg(X,µ)
whose RΓ-conditional measure is everywhere at most 1/2, so we conclude
A = MAlg(X,µ) as wanted. �

5. Amenability and L1 full groups

Recall that a Polish group G is extremely amenable when every con-
tinuous G-action on a compact Polish space has a fixed point, while G is
amenable if every continuous G-action on a compact Polish space admits
an invariant Borel probability measure. Following [28] we say that a Polish
group G is whirly amenable if it is amenable and, given any continuous G-
action on a compact Polish space K, the support of every invariant Borel
probability measure is contained in the set of fixed points.
One has the following implications: whirly amenability implies extreme

amenability which implies amenability. The first examples of whirly
amenable groups were found by Y. Glasner, B. Tsirelson and B. Weiss, who
showed that Lévy groups are whirly amenable [14, Theorem 1.1]. Note that
if G is a Polish group which contains a dense increasing union of whirly
amenable groups, then G is whirly amenable.

Let Φ be an amenable graphing, our aim is to show that its derived L1

full group is whirly amenable. Recall that a measure-preserving equivalence
relation is called finite if all its classes are finite. The two following lemmas
are essentially contained in [8], but we include a full proof for the reader’s
convenience.

Lemma 5.1. — Let Φ be an aperiodic graphing, suppose RΦ is written
as an increasing union of equivalence relations Rn. Then

⋃
n∈N[Rn] ∩ [Φ]′1

is dense in [Φ]′1.

Proof. — By Theorem 2.14 we only need to be able to approximate in-
volutions from [Φ]′1 by elements from

⋃
n∈N[Rn] ∩ [Φ]′1. Let U ∈ [Φ]′1 be

an involution, then the U -invariant sets An = {x ∈ X : xRnU(x)} satisfy
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⋃
n∈NAn = X since

⋃
nRn = RΦ. By the dominated convergence theo-

rem, we then have UAn → U . Moreover UAn is an involution so UAn ∈ [Φ]′1
and by construction UAn ∈ [Rn] so UAn ∈ [Rn] ∩ [Φ]′1 and the lemma is
proved. �

Lemma 5.2. — Let Φ be an aperiodic graphing, let R be a finite
subequivalence relation of RΦ whose equivalence classes have a uniformly
bounded Φ-diameter. Then [R] is a closed subgroup of [Φ]′1.

Proof. — The fact that there is a uniform bound M on the diameter
of the R-classes ensures us that [R] is a subgroup of [Φ]1. Moreover, the
inclusion map is M -lipschitz (for the uniform distance on [R] and d1

Φ on
[Φ]1) and its inverse is clearly 1-lipschitz, so [R] is closed in [Φ]1. Finally, [R]
only consists of periodic elements, and since these belong to [Φ]′1 (see [22,
Lemma 3.10]), we conclude that [R] is a closed subgroup of [Φ]′1. �

Theorem 5.3. — Let Φ be an amenable aperiodic graphing. Then [Φ]′1
is whirly amenable and [Φ]1 is amenable.

Proof. — Since [Φ]1 is an extension of [Φ]′1 by an abelian (hence amen-
able) group, the second statement follows from the first, so we only need
to prove that [Φ]′1 is whirly amenable.
By the Connes–Feldmann–Weiss theorem [6], we may write RΦ as an

increasing union of finite equivalence relations Rn. Let us now change these
so that their classes have uniformly bounded diameter.
We first find an increasing sequence of integers (ϕ(n))n∈N such that for

all n ∈ N,
µ({x ∈ X : diamΦ([x]Rn) > ϕ(n)}) < 1

2n .

Then by the Borel–Cantelli lemma, for almost all x ∈ X there are only
finitely many n ∈ N such that diamΦ([x]Rn) > ϕ(n). So if we define new
equivalence relations Sn by (x, y) ∈ Sn if (x, y) ∈ Rn and ∀ m > n,
diamΦ([x]Rm) 6 ϕ(n), we still have

⋃
n∈N Sn = R and the Sn-classes have

a uniformly bounded diameter as wanted.
By Lemma 5.1,

⋃
n∈N[Sn]∩ [Φ]′1 is dense in [Φ]′1. Then Lemma 5.2 yields

that [Sn]∩ [Φ]′1 = [Sn] and that the induced topology on [Sn] is the uniform
topology. Now recall that full groups of finite equivalence relations are
whirly amenable for the uniform topology (they are products of groups of
the form L0(Y, ν,Sn) where (Y, ν) is non-atomic, and those are Levy groups
by work of Y. Glasner, generalised by T. Giordano and V. Pestov [11,
Corollary 2.10]). We conclude that each [Sn] is whirly amenable so that
[Φ]′1 also is. �
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In [22, Theorem 5.1] it was shown that non amenable graphings have
non amenable L1 full groups and non amenable derived L1 full groups. So
Theorem B is established, and more generally the following holds.

Theorem 5.4. — Let Φ be an aperiodic graphing on a standard prob-
ability space (X,µ). The following are equivalent:

(1) the graphing Φ is amenable;
(2) the L1 full group [Φ]1 is amenable;
(3) the derived L1 full group [Φ]′1 is amenable.
(4) the derived L1 full group [Φ]′1 is extremely amenable.
(5) the derived L1 full group [Φ]′1 is whirly amenable.

The above argument can be refined so as to show that derived L1 full
groups of amenable graphings are actually Lévy groups, and that one can
find Levy families made of finite subgroups. The details are however tedious
and the increasing chain of finite subgroups is not explicit so we won’t
provide a proof here. It was asked in a first version of this paper whether
the following metrics (which are induced by the L1 metric on the L1 full
group of a 2-odometer on the subgroups S2n) could provide a concrete
Lévy family for the derived L1 full group of the odometer.

Definition 5.5. — Let Sn be the symmetric group over {1, . . . , n}.
Define Spearman’s footrule metric on it by

dnL1(σ, τ) = 1
n

n∑
i=1
|σ(i)− τ(i)| .

Let us however point out that, as suggested by the referee, the family
(Sn, d

n
L1) is not a Lévy family. Indeed, by a result of Diaconis and Gra-

ham, the random variable dnL1(id, σ) where σ is a uniform element of Sn

has asymptotically mean n/3 and variance 2n/45 [7, Theorem 1] (more-
over, suitably normalized, its law converges to the normal distribution). In
particular, for n large enough, the ε-neighborhood of the ball of radius n/3
will be very close in measure to that same ball, thus violating concentration
of measure.

6. Large scale geometry and L1 full groups

6.1. Large scale geometry of Polish groups

In this preliminary section, we recall how Rosendal’s framework allow
one to study Polish groups as geometric objects. First, a map f : X → Y
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between two metric spaces (X, dX) and (Y, dY ) is called a quasi-isometric
embedding if there is a constant C > 0 such that for all x1, x2 ∈ X,

−C + 1
C
dX(x1, x2) 6 dY (f(x1), f(x2)) 6 C + CdY (f(x1), f(x2)).

It is coarsely surjective if there is C > 0 such that every element of Y
is at distance at most C from f(X). Finally f is a quasi-isometry if it is
a coarsely surjective quasi-isometric embedding. We say that two metric
spaces (X, dX) and (Y, dY ) are quasi-isometric if there is a quasi-isometry
between them. It is not hard to check that quasi-isometry an equivalence
relation between metric spaces. The equivalence class of a metric space is
called its quasi-isometry type.
Two metrics d and d′ on the same set X are called quasi-isometric if

the identity map is a quasi isometry between (X, d) and (X, d′). Note that
the coarse surjectivity condition is then automatic so this just means that
there is C > 0 such that for all x1, x2 ∈ X,

−C + 1
C
d(x1, x2) 6 d′(x1, x2) 6 C + Cd(x1, x2).

A continuous right-invariant metric d on a Polish group G is called max-
imal if for every continuous right-invariant metric d′ on G, there is C > 0
such that for all g1, g2 ∈ G, d′(g1, g2) 6 C +Cd(g1, g2). It follows from the
definition that any two maximal right-invariant metrics on a Polish group
are quasi-isometric, so if a Polish group admits such a metric, then it has
a well-defined quasi-isometry type.
We finally give two conditions on a right-invariant metric which together

are equivalent to the maximality of the metric by [30, Proposition 2.52].

Definition 6.1. — A metric d on a set X is called large-scale geodesic
if there is K > 0 such that for any x, y ∈ X, there are x0, . . . , xn ∈ X with
x0 = x and xn = y such that d(xi, xi+1) 6 K and

n−1∑
i=0

d(xi, xi+1) 6 Kd(x, y).

Definition 6.2. — A right-invariant metric d on a topological group
G is called coarsely proper if for every neighborhood of the identity V and
every N ∈ N, there are a finite subset F ⊆ G and n ∈ N such that

Bd(e,N) ⊆ (FV )n.
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6.2. Derived L1 full groups of amenable graphings

In this section, we show that derived L1 full groups of amenable graph-
ings fit rather well into C. Rosendal’s framework, enabling their study as
geometric objects.
To be more precise, we show that the L1 metric on derived L1 full groups

of amenable graphings is maximal among left-invariant continuous metrics
up to quasi-isometry, which implies that derived L1 full groups of amenable
graphings have a well defined quasi-isometry type which is moreover in-
duced by the L1 metric.

Proposition 6.3. — Let Φ be an amenable graphing. Then every ele-
ment of [Φ]′1 is a limit of periodic elements.

Proof. — Using the Connes-Feldmann-Weiss theorem [6], we writeRΦ as
an increasing union of finite equivalence relations Rn. Then every element
of [Rn] is periodic and by Lemma 5.1 the union

⋃
n∈N[Rn] ∩ [Φ]′1 is dense

in [Φ]′1 so we are done. �

The next lemma is key to our results on the geometry of L1 full groups.

Lemma 6.4. — Let Φ be a graphing. Let T ∈ [Φ]1 be periodic. Then
for every N ∈ N, there are periodic elements V1, . . . , VN ∈ [Φ]1 such that
T = V1 · · ·VN and for every i ∈ {1, . . . , N},

d1
Φ(Vi, idX) = 1

N
d1

Φ(T, idX).

Proof. — Let M = d1
Φ(T, idX). Let (At)t∈[0,M ] be a continuous increas-

ing path from ∅ to suppT , and consider Bt =
⋃
n∈N(TU−1)n(At). Since

TU−1 is periodic, the map t 7→ Bt is still a continuous increasing path from
∅ to suppT now consisting of T -invariant sets.
Define a continuous increasing map ψ : [0,M ]→ [0,M ] by

ψ(t) =
∫
Bt

dΦ(x, T (x)).

We have ψ(0) = 0 and ψ(M) = M , so by the intermediate value theorem we
find t0 = 0 < t1 < · · · < tN−1 < tN = M such that for all i ∈ {0, . . . , N},
ψ(ti) = iM

N . We then let Ai = Bti \ Bti−1 for each i ∈ {1, . . . , N}. By
construction each Ai is T -invariant and suppT =

⊔n
i=1Ai. So if we define

Vi = TAi , we get T =
∏n
i=1 Vi. Finally for each i ∈ {1, . . . , n} the equality
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Ai = Bti \Bti−1 yields

d1
Φ(idX , Vi) =

∫
Bti

dΦ(x, T (x))−
∫
Bti−1

dΦ(x, T (x))

= ψ(ti)− ψ(ti−1) = M

N
as wanted. �

Remark 6.5. — Observe that the above proof also yields the existence
of a geodesic segment between any periodic element and the identity map.
Indeed, if ψ−1 is a right inverse of ψ defined above, we let Wt = TBψ−1(t)

,
and then (Wt)t∈[0,M ] is a geodesic segment from idX to T .

Proposition 6.6. — Let Φ be an amenable graphing, let K > 0 and
let N ∈ N. Then we have the following inclusions in the derived L1 full
group of Φ:

Bd1
Φ

(1,K/N)N ⊆ Bd1
Φ

(1,K) ⊆ Bd1
Φ

(1,K/N)N+1.

Proof. — The first inclusion is a straightforward consequence of the tri-
angle inequality and right invariance. For the second one, let T ∈ Bd1

Φ
(1,K),

then since periodic elements are dense we can find U ∈ Bd1
Φ

(1,K/N) such
that TU−1 is periodic and TU−1 ∈ Bd1

Φ
(idX ,K).

By the previous proposition, the are V1, . . . , VN ∈ Bd1
Φ

(idX ,K/N) such
that TU−1 = V1 · · ·Vn. We conclude that T = TU−1U =

(∏N
k=1 Vk

)
U so

T ∈ Bd1
Φ

(1,K/N)N+1 as wanted. �

Corollary 6.7. — Let Φ be an amenable graphing, then the L1 metric
on the derived L1 full group of Φ is maximal.

Proof. — By the previous proposition, the L1 metric is both large-scale
geodesic and coarsely proper. So [30, Proposition 2.52] yields that the L1

metric is maximal. �

We finally show that although derived L1 full groups of amenable graph-
ings do have a geometry, the latter is fundamentally infinite-dimensional.

Proposition 6.8. — Suppose Γ is an amenable group containing an
element of infinite order, and let Γ y (X,µ) be a free measure-preserving
action. Then for every n ∈ N, the derived L1 full group of the Γ action
contains a quasi-isometric copy of Rn.

Proof. — It suffices to produce a quasi-isometric copy of Zn since the
latter is quasi-isometric to Rn. Let T be the aperiodic measure-preserving
transformation which corresponds to the element of Γ of infinite order.
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Using Rokhlin’s lemma for T , we find A ⊆ X which intersect almost
every T -orbit and such that all sets A, T (A), . . . , T 2n−1(A) are disjoint.
For each i ∈ {0, . . . , n − 1} let Ti = TT 2i(A)T

−1
T 2i+1(A). Observe that since

TTT 2i(A)T
−1 = TT 2i+1(A), each Ti is a commutator and thus belongs to the

derived L1 full group. It is now straightforward to check that the marked
group generated by T1, . . . , Tn is quasi-isometric to Zn. �

As pointed out by the referee, it would be interesting to know whether
some infinite dimensional metric spaces such as `1 can be coarsely embed-
ded into derived L1 full groups. We end this section with a basic open
question on the geometry of derived L1 full groups.

Question 6.9. — Are the derived L1 full groups of the 2-odometer and
of the 3-odometer quasi-isometric?

Note that by [8], the derived L1 full groups of the 2-odometer and of
the 3-odometer are not isomorphic as abstract groups. Also, the countable
group of dyadic permutations S2∞ (resp. S3∞) is dense in the derived L1

full group of the 2-odometer (resp. 3-odometer), and the induced metric
is the inductive limit of the metrics from Definition 5.5, so this is really
a question about quasi-isometry for the non finitely generated countable
groups S2∞ and S3∞ equipped with these natural metrics.

6.3. L1 full groups of ergodic Z-actions

For measure-preserving Z-actions, we have a much better understanding
of elements of the L1 full group. This will allow us to show that the L1

metric on the whole L1 full group is maximal, and hence defines its quasi
isometry type. Since a measure-preserving Z-action is nothing but a single
measure-preserving transformation, we rather speak of L1 full groups of
measure-preserving transformations. Let us start by reminding Belinskaya’s
decomposition results for elements of the L1 full group [4].
Given a measure-preserving transformation T , we denote by [T ]1 its L1

full group. If T is aperiodic then every T -orbit is endowed with a linear
ordering 6T defined by x 6T y if and only if there is n > 0 such that
y = Tn(x). An element U of the full group of T is almost positive if for all
x ∈ X, there is N ∈ N such that for all n > N we have Un(x) >T x. It is
almost negative if for all x ∈ X, there is N ∈ N such that for all n > N

we have Un(x) 6T x. Every element of the L1 full group has a natural
decomposition with respect to such elements.
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Lemma 6.10. — Let T be a measure-preserving aperiodic transforma-
tion, let U ∈ [T ]1. Then there is a partition X = X−tXper tX+ of X into
U -invariant sets such that UX− is almost negative, UX+ is almost positive
and UXper is periodic.

Proof. — This is a direct consequence of [4, Theorem 3.2]. �

Observe that since the sets from the above decomposition are U -invariant
and partition X, we then have U = UX−UXperUX+ and

d1
T (idX , U) = d1

T (idX , UX−) + d1
T (idX , UXper ) + d1

T (idX , UX+).

Recall that if T is an aperiodic measure-preserving transformation, every
U ∈ [T ]1 has an associated cocycle cU : X → Z uniquely defined by the
equation U(x) = T cU (x)(x). We can then defined the index map I : [T ]1 →
R by I(U) =

∫
X
cU (x)dµ(x). In [22, Corollary 4.20], we prove that if T is

ergodic, the kernel of the index map is the derived L1 full group of T and
the index map takes values into Z. The conjunction of Proposition 4.15 and
Proposition 4.17 from [22] implies the following result.

Lemma 6.11. — Let U ∈ [T ]1 be almost positive, let n = I(U). Then
there is a family (Ai)ni=1 of subsets of X such that U = TA1 · · ·TAnV , where
V is periodic.

Theorem 6.12. — Let T be an ergodic measure-preserving transfor-
mation. Then the L1 metric on the L1 full group of T is maximal.

Proof. — We first show that for every N ∈ N, every element of [T ]1 of L1

norm(4) less than N can be written as a product of at most 11N elements,
all of which are either T , T−1, or periodic of L1 norm less than 1.
Let X = XpertX+tX− be the partition of X into U -invariant sets pro-

vided by Lemma 6.10. We start by noting that d1
T (UX+ , idx) 6 d1

T (U, idx)
and thus I(UX+) < N . We may thus write

UX+ = TA1 · · ·TAnV,

where n = I(UX+) < N and V is periodic. By Kac’s return time theo-
rem [16, Theorem 2’], each TAi is at distance 1 from idX , so by the triangle
inequality, we have d1

T (V, idX) < 2N .
Now for each i ∈ {1, . . . , n} we have TAi = (TAiT−1)T . Moreover TAiT−1

is periodic and d1
T (TAiT−1, idX) < 2. Since UX+ is equal to the product

(TA1T
−1)T · · · (TAnT−1)TV and d1

T (V, idX) < 2N , Lemma 6.4 applied to

(4)By L1 norm, we mean the L1 distance to idX .
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both V and the TAiT−1 yields that UX+ is a product of at most 5N ele-
ments, all of which are either periodic and in the open unit ball or equal
to T .

The same reasoning for UX− yields that UX− can be written as a product
of at most 5N elements, all of which are either periodic of norm < 1 or
equal to T−1.
Finally, Lemma 6.4 yields that UXper can be written as the product

of at most N periodic elements of norm < 1. We can thus conclude that
U = UX+UXperUX− can be written as the product of at most 11N elements,
all of which are either periodic of norm < 1 or belong to {T, T−1}.

This fact already yields that the L1 metric is large-scale geodesic, and
we now need to show that d1

T is coarsely proper. So let N ∈ N, let V be a
neighborhood of the identity. We find k ∈ N such that Bd1

T
(idX , 1/k) ⊆ V

and we deduce from the above fact along with Lemma 6.4 that

Bd1
T

(idX , N) ⊆ ({T, T−1}V )11kN .

The metric d1
T is thus both large-scale geodesic and coarsely proper, so

using [30, Proposition 2.52] we conclude that d1
T is maximal as wanted. �

6.4. Automatic quasi-isometry: proof of Theorem C

In this section we prove the following result, which directly yields Theo-
rem C.

Theorem 6.13. — Let Φ and Ψ be two amenable ergodic graphings on a
standard probability space (X,µ). Then every abstract group isomorphism
between their L1 full groups must be a quasi-isometry for their respective
L1 metrics.

Proof. — Let ρ : [Φ]1 → [Ψ]1 be an abstract group isomorphism. First
observe that by [22, Corollary 3.19], there is a measure-preserving trans-
formation S such that for all U ∈ [Φ]1, ρ(U) = SUS−1. In other words,
we can assume that ρ is the conjugacy by some S ∈ Aut(X,µ), and it
follows that ρ is du-isometric, in particular it is continuous for the uniform
topology. On [Φ]1 the uniform topology is refined by the L1 topology, and
since it separates points we get that it generates the Borel σ-algebra of [Φ]1
induced by the L1 topology. We conclude that ρ is a Borel group isomor-
phism, and it follows from Pettis’ lemma (see e.g. [3, Theorem 1.2.5]) that
ρ is a topological group isomorphism.
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In particular, ρ induces a topological group isomorphism between [Φ]′1
and [Ψ]′1, and since their respective L1 metrics are maximal (Corollary 6.7),
we conclude that ρ induces a quasi-isometry for their respective L1 metrics:
there is C > 0 such that for all T1, T2 ∈ [Φ]′1,

−C + 1
C
d1

Φ(T1, T2) 6 d1
Ψ(ρ(T1), ρ(T2)) 6 Cd1

Φ(T1, T2) + C

In order to establish the same inequality for elements of the whose L1 full
group, first note that by right-invariance, one may as well assume T1 = idX ,
and then note that by symmetry, it suffices to find C ′ > 0 such that for all
T ∈ [Φ]1,

d1
Φ(idX , ρ(T ) 6 C ′d1

Ψ(idX , T ) + C ′.

We will show that C ′ = 6C works.
Let T ∈ [Φ]1, then by a well-known lemma (see e.g. [22, Proposition 2.7]),

there is a partition (A1, A2, B1, B2, B3) of suppT such that

T (A1) = A2, T (B1) = B2 and T (B2) = B3.

We use this decomposition to define three involutions U1, U2, U3 as follows:

U1(x) =


T (x) if x ∈ A1 tB1

T−1(x) if x ∈ A2 tB2

x otherwise,

U2(x) =


T (x) if x ∈ B2

T−1(x) if x ∈ B3

x otherwise and

U3(x) =


T (x) if x ∈ A2 tB3

T−1(x) if x ∈ T (A2) t T (B3)
x otherwise.

By construction for each i = 1, 2, 3 we have d1
Φ(idX , Ui) 6 2d1

Φ(idX , T ),
moreover since U1, U2 and U3 are involutions they actually belong to the
derived L1 full group of Φ. We can then decompose T as

T = U1�A1tB1 t U2�B2 t U3�A2tB3 t idX\suppT .

Because ρ is the conjugacy by the transformation S, we then have

ρ(T ) = ρ(U1)�S(A1tB1) t ρ(U2)�S(B2) t ρ(U3)�S(A2tB3) t idX\S(suppT ) .

We thus have d1
Ψ(idX , ρ(T )) 6

∑3
i=1 d

1
Ψ(idX , Ui). Since for i = 1, 2, 3,

d1
Ψ(idX , ρ(Ui)) 6 Cd1

Φ(idX , Ui) + C 6 2Cd1
Φ(idX , T ) + C,
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we conclude that

d1
Ψ(idX , ρ(T )) 6

3∑
i=1

d1
Ψ(idX , Ui) 6 6Cd1(Φ(idX , T )) + 3C

as wanted. �

Note that if we knew that the L1 metric on L1 full groups of amenable
graphings is maximal, then the first two paragraphs of the above proof
would suffice to get the conclusion of Theorem 6.13. As explained in the
introduction, we actually conjecture that the following is true, which would
then imply that one can remove both the amenability and the ergodicity
hypothesis in Theorem 6.13.

Conjecture 6.14. — Let Φ be a graphing. Then the L1 metric on the
L1 full group of Φ is maximal.

We end this section by explaining why in Theorem 6.13 the conclu-
sion cannot be strengthened to bilipschitzness. Recall that in a topological
space, a subset is Gδ if it can be written as a countable intersection of open
sets, and that by the Baire category theorem, in a complete metric space
every countable intersection of dense open sets has to be dense.

Lemma 6.15. — Let T be an aperiodic transformation. Then the set of
all A ∈ MAlg(X,µ) such that the return time to A is unbounded is dense
Gδ in MAlg(X,µ).

Proof. — The set B of all A ∈ MAlg(X,µ) such that the return time to
A is unbounded is the intersection over n ∈ N of the sets

Bn :=
{
A ∈ MAlg(X,µ) : µ(T−n(A) \

n−1⋃
i=0

T−i(A)) > 0
}
,

so it is Gδ. Let us now fix n ∈ N and show that Bn is dense so as to finish
the proof. Let ε > 0, let N ∈ N such that n

N < ε. By aperiodicity we find
B ⊆ X with positive measure such that B, T (B), . . . , TNn(B) are disjoint,
and so in particular µ(B) < 1

Nn . Now observe that for any A ∈ MAlg(X,µ),
the set

(A ∪B ∪ Tn(B)) \
n−1⊔
i=1

T i(B)

is in Bn and is nµ(B) < ε-close to A, which shows that Bn is dense. �

Example 6.16. — Let T be an aperiodic measure-preserving transforma-
tion, and consider A ⊆ X with unbounded return time, as provided by
the previous lemma. Then the conjugacy by the induced transformation
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TA is not bilipschitz: for each n we may find B ⊆ A such that T (B),. . . ,
Tn(B) are all disjoint from A, and then if U is the involution defined by
U = T�BtT−1

�T (B)tidX\(BtT (B), we have d1
T (idX , TAUT−1

A ) > nd1
T (idX , U).

7. Topological rank two for rank one transformations

In this section we prove that every rank one measure-preserving trans-
formation has an L1 full group whose topological rank is equal to two. Let
us recall the definition of such transformations and first introduce some
useful terminology.

Definition 7.1. — Let T be a measure-preserving transformation and
A ⊆ X Borel. LetNT (A) ∈ N be the greatest integer such that A, T (A), . . . ,
TNT (A)−1(A) are all disjoint. We then have a Rokhlin partition PA,T =
(A, T (A), . . . , TNT (A)−1(A)) of YA,T :=

⋃NT (A)−1
i=0 T i(A) and we let MA,T

be the sets of finite unions of elements of PA,T .

Note that Rokhlin’s lemma guarantees the existence of Rokhlin partitions
PA,T with arbitrarily small atoms and µ(YA,T ) arbitrarily close to 1.

Definition 7.2. — A measure-preserving transformation T is rank one
if for every ε > 0 and every finite family (Bi)ki=1 of Borel sets there is a Borel
set A and Borel sets A1, . . . , Ak ∈MA,T such that for all i ∈ {1, . . . , k},

µ(Ai 4Bi) < ε.

It is not hard to check from the definition that rank one transformations
are ergodic and form a Gδ set in Aut(X,µ) for the weak topology (see [20,
Lemme 5.26] for a detailed proof). An easy example of a rank one transfor-
mation is provided by the odometer, and so by Halmos’ conjugacy lemma
(see [18, Theorem 2.4]), rank one transformations form a dense Gδ set in
Aut(X,µ).

The following theorem of Baxter says that rank one transformations are
actually quite close to odometers.

Theorem 7.3 ([2]). — Let T be a rank one transformation. Then there
is a decreasing sequence (An) of Borel subsets of X such that MAn,T is
increasing and its union is µ-dense in the Borel σ-algebra.

A sequence (An) as in the previous theorem will be called a rank one
basis of T , so in our terminology a measure-preserving is rank one if and
only if it admits a rank one basis. Observe that if (An) is a rank one basis
for T then the measure of An then tends to zero and NT (An)→ +∞.
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Example 7.4. — Let T0 be the dyadic odometer on X = {0, 1}N, and for
every n ∈ N we let An denote the set of sequences (xi) ∈ {0, 1}N such that
x0 = · · · = xn = 0. Then (An) is a rank one basis for T0 with NT0(An) = 2n
and the additional property that YAn,T = X for every n ∈ N.

We will now generalize to rank one transformations the fact that dyadic
transformations are dense in the derived L1 full group of the odometer.
Let us first see how Definition 7.1 provides us natural embeddings of the
symmetric group in the derived L1 full group.
Let T be a measure-preserving transformation and A ⊆ X be Borel. We

then define the embedding

ρA : S({0, . . . , NT (A)− 1})→ [T ]′1
by: for all σ ∈S({0, . . . , N(A)−1}) and all x∈YA,T , if i∈{0, . . . , N(A)−1}
is such that x ∈ T i(A), then

ρA(σ)(x) = Tσ(i)−i(x),

and ρA(σ)(x) for x 6∈ YA,T . Observe that by construction for all i ∈
{0, . . . , N(A)− 1} we have ρA(σ)(T i(A)) = Tσ(i)(A). We then let

SA,T := ρA(S({0, . . . , N(A)−1})) and AA,T := ρA(A({0, . . . , N(A)−1})).

Observe that if A ⊆ B and MA,T ⊆MB,T then SA,T 6 SB,T and AA,T 6
AB,T . The following generalizes to L1 full groups a result from the thesis
of the author [20, Lemme 5.31].

Proposition 7.5. — Let (An) be a rank one basis of a measure-pres-
erving transformation T . Then ⋃

n∈N
AAn,T

is dense in [T ]′1.

Proof. — Let Un be the involution defined by Un = ϕAn((0 1)), then
d1
T (Un, 1) → 0. Since SAn,T = AAn,T ∪ UnAAn,T , we conclude that the

density of
⋃
n∈N AAn,T will follow from that of

⋃
n∈N SAn,T which will thus

prove instead.
Since [T ]′1 is topologically generated by involutions of the form IT,A (cf.

Theorem 2.14), we only need to approximate such involutions by elements
of
⋃
n∈N SAn,T . So let A ⊆ X, we then have a sequence (Bn) of elements

of MAn,T with Bn → A. Furthermore we may assume that Bn is disjoint
from An t TN(An)−1 since the measure of An t TN(An)−1 tends to zero as
n tends to infinity. This implies IBn,T ∈ SAn,T and since IBn,T → IA,T we
get the desired conclusion. �
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Lemma 7.6. — Let T be a measure preserving transformation, let A ⊆
X and let n ∈ N such that 3 6 n 6 NT (A)− 2. Consider the element U =
ρA((0 1 · · · n − 1)). Then the group generated by T and U contains
AA,T .

Proof. — By conjugating U by powers of T , we see that the group gener-
ated by T and U contains all the ρA((i i+1 · · · i+n−1)) for i+n−1 6
N(A). The lemma then follows from the fact that A({0, . . . , N(A)− 1}) is
contained in the group generated by the (i i + 1 · · · i + n − 1) for
0 6 i 6 N(A) − n. We briefly recall the proof of the latter fact for the
reader’s convenience.
Denote by G the group generated by the (i i+ 1 · · · i+ n− 1) for

0 6 i 6 N(A)− n. First note that G contains the permutation

(n n− 1 · · · 1)(0 1 · · · n− 1) = (0 n n− 1)

so it also contains (0 n n − 1)2 = (0 n − 1 n). Conjugating by a
power of (1 2 · · · n), we obtain that G contains the element (0 1 2).
Conjugating again by appropriate cycles we get that G contains all the
(i i+ 1 i+ 2) for 0 6 i 6 n− 3, and since the latter generate the group
A({0, . . . , N(A)− 1}) the result follows. �

The usual way of disjointifying a countable family of sets (Bn) is to let
B′n := Bn\

⋃
m<nBm, but note that letting B′n = Bn\

⋃
m>nBm also works.

We will need to apply this idea to measure-preserving transformations so
as to make their support disjoint.
For p ∈ N, let us call a p-cycle a transformation all whose orbits have

cardinality either 1 or p. Given a countable family (Un)n∈N where each Un
is a pn-cycle, we explain how to change them so that they have disjoint
support. For each n, we let Vn be the transformation induced by Un on the
biggest Un-invariant set contained in suppUn \

⋃
m>n suppUm. Note that

since Un is a pn-cycle, we can easily compute the support of Vn which is

suppVn = suppUn \
(
pn−1⋃
i=0

U in

( ⋃
m>n

suppUm

))
.

Of course this support might be empty, but observe that if the supports of
the remaining Um’s are very small then Vn will actually be very close to
Un. The sequence (Vn) obtained this way is called the disjointification of
the sequence (Un).

We are now ready to prove the main result of this section.

Theorem 7.7. — Let T be a rank one transformation. Then the topo-
logical rank of its L1 full group [T ]1 is equal to 2.

ANNALES DE L’INSTITUT FOURIER



A MEASURABLE ANALOGUE OF TOPOLOGICAL FULL GROUPS II 1921

Proof. — Let (pn)n∈N be the increasing enumeration of prime numbers.
Let εn be a sequence of positive real numbers decreasing to zero, e.g. εn =
2−n. Let (An) be a one-dimensional ranking of T .
Using Lemma 7.6, one can now build by induction an increasing sequence

of integers (kn) and positive real numbers (δn) such that for all n, if we let

Un := ϕAkn ((0 1 · · · pn − 1))

then the following conditions are satisfied.
(i) Any element Vn which is δn-close to Un satisfies that the group

generated by T and Vn contains every element of AAkn,T up to an
εn error.

(ii) For every m < n, we have pm
∑n
k=m+1 µ(suppUk) < δm.

(iii) We have kn > 4n2n+2n .
Consider the sequence (Vn) defined as the disjointification of the Un’s.

Thanks to condition (ii) we have that Vn is δn-close to Un. By condition (i)
the group 〈T, Vn〉 contains every element of AAkn,T up to an εn error.
Now let V :=

∏
n∈N Vn. We first establish a general inequality which will

yield that V ∈ [T ]1 and moreover the closed group generated by V contains
every Vn.

Claim. — For all n ∈ N we have(∏
i<n

pi

)∑
i>n

pi
ki

 6 2−n2n .(7.1)

Proof of claim. — We first need an explicit bound on pn. A well-known
way to get such a bound is as follows: Euclid’s argument that there are
infinitely many prime numbers actually shows that pn+1 6 p0 · · · pn + 1.
From this, a straightforward induction yields the bound

pn 6 22n .

Now by condition (iii) we have kn > 4n2n+2n , so for every n > 1 we have

∑
i>n

pi
ki
6 4−n2n

∑
i>n

22i

42i(7.2)

6 4−n2n(7.3)

Now
∏
i<n pi 6 (pn)n 6 2n2n so combining this with the previous inequality

we see that (7.1) holds. �
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Now observe that for every n ∈ N we have d1
T (Vn, idX)1 6 d1

T (Un, idX) 6
2pn
kn

. The inequality (7.1) for n = 0 yields
∑
i>0

2pi
ki

< +∞ so that V ∈ [T ]1
as announced.
Fix n ∈ N. For every m > n + 1 let Pm =

∏
i<m,i6=n pi and let tm ∈

{1, . . . , pn − 1} such that Pmtm = 1 mod pn. Now observe that

V Pmtm = Vn
∏
i>m

V Pmtmi .

Since tm 6 pn, we have Pmtm 6
∏
i<m pi so that

d1
T

(∏
i>m

V Pmtmi , idX

)
6

(∏
i<m

pi

)∑
i>k

d1
T (Vi, idX).

But for every i we have ‖Vi‖1 6
2pi
ki

so we conclude by inequality (7.1) that
we have d1

T (
∏
i>m V

Pmtm
i , idX)→ 0 and hence

V Pmtm → Vn [m→ +∞].

So for every n ∈ N the closed subgroup generated by V contains Vn.
Since the group 〈T, Vn〉 contains every element of AAkn,T up to an εn

error and εn → 0, we conclude by Proposition 7.5 that the group generated
by T and V is dense in [T ]1 which has thus topological rank at most 2. Since
the L1 full group [T ]1 is not abelian, we conclude that [T ]1 has topological
rank 2 as wanted. �

8. Further remarks and questions

8.1. Lp orbit equivalence and Lp full orbit equivalence

It is an instructive exercise to show that given two measure preserving
actions α : Γ → Aut(X,µ), β : Λ → Aut(X,µ) and a measure-preserving
transformation T , the following are equivalent:

(i) T sends α(Γ)-orbits to β(Λ)-orbits ;
(ii) Tα(Γ)T−1 is a subgroup of [β(Λ)] and T−1β(Λ)T is a subgroup of

[α(Γ)];
(iii) T [α(Γ)]T−1 = [β(Γ)].

If T satisfies any of the above three conditions, one says that T is an orbit
equivalence between the actions α and β, and that the latter are orbit
equivalent.
We then have two natural Lp versions of orbit equivalence, which are

direct translations of item (ii) and (iii) from the above equivalence. The
first one was defined by Austin in [1] and the second appears to be new.
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Definition 8.1. — Let p ∈ [1,+∞]. Two measure-preserving actions
of finitely generated groups α : Γ→ Aut(X,µ) and β : Λ→ Aut(X,µ) are
called Lp-orbit equivalent if there is T ∈ Aut(X,µ) such that

Tα(Γ)T−1 6 [β(Λ)]p and T−1β(Λ)T 6 [α(Γ)]p.

Remark 8.2. — For p = +∞, the group [α(Γ)]p is the group of all T ∈
[α(Γ)] such that the distance from T (x) to x is essentially bounded. The
L∞ metric on this group is the discrete metric, so it is not a Polish group.

Definition 8.3. — Let p ∈ [1,+∞]. Two measure-preserving actions
of finitely generated groups α : Γ→ Aut(X,µ) and β : Λ→ Aut(X,µ) are
called Lp-fully orbit equivalent if there is T ∈ Aut(X,µ) such that

T [α(Γ)]pT−1 = [β(Λ)]p.

It is clear that Lp full orbit equivalence implies Lp orbit equivalence,
and that L∞ orbit equivalence is equivalent to L∞ full orbit equivalence.
Moreover, for all p < q we have that Lq orbit equivalence implies Lp orbit
equivalence, but it is unclear that Lq full orbit equivalence implies Lp full
orbit equivalence. Also note that all these notions collapse to flip-conjugacy
for ergodic Z-actions by Belinskaya’s theorem.
A natural intermediate question is to ask what it means for two graphings

to share the same L1 full group, hoping that the identity map has to be
induce an L∞ orbit equivalence between them. However, this is not so, as
the following example of Sébastien Gouëzel shows.

Theorem 8.4 (Gouëzel). — Given an aperiodic T ∈ Aut(X,µ), there
is T ′ ∈ Aut(X,µ) such that [T ]1 = [T ′]1 but T ′ does not belong to the L∞
full group of T .

Proof. — First note that for every S ∈ Aut(X,µ) we have [STS−1]1 =
S[T ]1S−1, so for every S ∈ [T ]1 we have [STS−1]1 = [T ]1. So it suffices to
find S ∈ [T ]1 such that T ′ = STS−1 does not belong to the L∞ full group
of T .

Now observe that given any S ∈ [T ]1, the function x 7→ dT (x, STS−1(x))
is bounded if and only if the function x 7→ dT (S(x), ST (x)) is bounded. It
thus suffices to find S ∈ [T ]1 such that the function x 7→ dT (S(x), ST (x))
is unbounded. This can be achieved by taking A ⊆ X with unbounded
return time via Lemma 6.15, and considering the induced transformation
S = TA. Indeed if x ∈ A has return time nT,A(x) > 2 then ST (x) = T (x)
and so dT (S(x), ST (x)) = nT,A(x)− 1. �

Gouëzel’s example arises as a conjugate of T by some S ∈ [T ]1, but it is
natural to ask more generally which S ∈ Aut(X,µ) satisfy [STS−1]1 = [T ]1.
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Note that such an S has to be an automorphism of the equivalence relation
RT . Two sources of such S are provided by the group of measure-preserving
transformations which conjugate T to T±1, and elements of the L1 full
group of T . Still, we do not have a good understanding of the group of
S ∈ Aut(X,µ) satisfying [STS−1]1 = [T±1]1, and the following question is
open.

Question 8.5. — Let T be an ergodic measure-preserving transforma-
tion. Is the group of S ∈ Aut(X,µ) satisfying [T ]1 = [STS−1]1 Borel? If
so, is it Polishable?

Note that by Fremlin’s reconstruction theorem, every abstract automor-
phism of [T ]1 has to be the conjugacy by some S ∈ Aut(X,µ), so the above
question is actually about the automorphism group of [T ]1. Also note that
the automorphism group of the full group of any measure preserving equiv-
alence relation is Polishable, see [18, Theorem 6.1].

8.2. Symmetric Lp full groups

The notions of symmetric (and alternating) topological full groups have
natural analogues in our setup. Recall from [22, Section 5.3] that for any
p ∈ [1,+∞[ and any graphing Φ, the Lp full group of Φ is defined as the
group of all elements T of the full group of RΦ such that∫

X

dΦ(x, T (x))p dµ(x) < +∞.

It is a Polish group for the metric dpΦ defined by

dpΦ(T1, T2) =
[∫

X

dΦ(T1(x), T2(x))p dµ(x)
]1/p

,

and we define the following closed normal subgroups.

Definition 8.6. — The symmetric Lp full group of a graphing Φ is the
closed subgroup of [Φ]p generated by all n-cycles for n > 2. The alternating
Lp full group is defined as the closed subgroup generated by all 3-cycles.

Note that if p = 1, both subgroups coincide with the derived L1 full group
of Φ, and I don’t know whether the same holds for p > 1. Nevertheless, if Φ
is aperiodic, the same proof as Proposition 3.4 shows that the alternating
Lp full group of Φ coincides with its symmetric Lp full group. One can also
adapt the arguments from [22] to show that in the aperiodic case, closed
normal subgroups of the symmetric Lp full group correspond to invariant
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sets; in particular the symmetric Lp full group of Φ is topologically simple
iff Φ is ergodic. Moreover, the proof of Theorem A can easily be adapted
to show the following.

Theorem 8.7. — The topological rank of the symmetric Lp full group
of a measure-preserving aperiodic action of a finitely generated group is
finite if and only if the action has finite Rokhlin entropy.

In a work in progress with C. Conley and R. Tucker-Drob, we show that
for ergodic Z-actions, the symmetric Lp full group coincides with the de-
rived Lp full group, and that the topological abelianization of the whole Lp
full group is Z, just as in the L1 case. In particular, we can deduce that the
whole Lp full group of an ergodic measure-preserving transformation has
finite topological rank if and only if the transformation has finite entropy,
and answer positively Question 5.5 from [22] in the case the graphing comes
from a Z-action.

8.3. Topological rank of (derived) L1 full groups

Theorem A is not satisfactory in two ways: first, as in the Z case, a
more quantitative statement would be desirable. In particular, establishing
a lower bound on the topological rank in terms of the Rokhlin entropy
would be very nice. Second, it would be more natural to have a similar
statement for the whole L1 full group, but in order to do so one has to
understand the topological abelianization of L1 full groups. We would like
to ask the following question, noting that a positive answer would imply
that Theorem A also holds for the whole L1 full group.

Question 8.8. — Let Γ be a finitely generated group. Is the topological
abelianization of the L1 full group of any ergodic measure-preserving Γ-
action always topologically finitely generated?

At the moment, the question is open even for Γ = Z2. It was answered in
the affirmative for Γ = Z in [22], and with Conley and Tucker-Drob we have
a proof that the answer is also yes when Γ is the infinite dihedral group
(we actually show that in this case the topological abelianization is always
trivial, thus obtaining examples of topologically simple L1 full groups).
Also note that the topological rank of the topological abelianization can be
greater than the rank of the acting group: for a free ergodic Z2 action, if the
two canonical generators have diffuse ergodic decomposition then R2 can
be obtained as a quotient of the topological abelianization by integrating
the cocycles, but it has topological rank 3 > 2.
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