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EXOTIC GROUP C∗-ALGEBRAS OF SIMPLE LIE
GROUPS WITH REAL RANK ONE

by Tim DE LAAT & Timo SIEBENAND (*)

Abstract. — Exotic group C∗-algebras are C∗-algebras that lie between the
universal and the reduced group C∗-algebra of a locally compact group. We con-
sider simple Lie groups G with real rank one and investigate their exotic group
C∗-algebras C∗

Lp+ (G), which are defined through Lp-integrability properties of
matrix coefficients of unitary representations. First, we show that the subset of
equivalence classes of irreducible unitary Lp+-representations forms a closed ideal
of the unitary dual of these groups. This result holds more generally for groups with
the Kunze–Stein property. Second, for every classical simple Lie group G with real
rank one and every 2 6 q < p 6 ∞, we determine whether the canonical quotient
map C∗

Lp+ (G)� C∗
Lq+ (G) has non-trivial kernel. Our results generalize, with dif-

ferent methods, recent results of Samei and Wiersma on exotic group C∗-algebras
of SO0(n, 1) and SU(n, 1). In particular, our approach also works for groups with
property (T).
Résumé. — Les C∗-algèbres exotiques des groupes sont des

C∗-algèbres, qui se situent entre la C∗-algèbre universelle et la
C∗-algèbre réduite d’un groupe localement compact. Nous considérons des groupes
de Lie simples G de rang réel un et nous étudions leurs C∗-algèbres exotiques
C∗

Lp+ (G), qui sont définies par des propriétés d’intégrabilité Lp des coefficients des
représentations unitaires. Nous montrons que les classes d’équivalence de représen-
tations Lp+ unitaires irréductibles forment un idéal fermé du dual unitaire de ces
groupes. Ce résultat vaut plus généralement pour les groupes avec la propriété de
Kunze–Stein. Pour chaque groupe de Lie simple classique G de rang un et chaque
2 6 q < p 6∞, nous déterminons si l’application canonique C∗

Lp+ (G)� C∗
Lq+ (G)

a un noyau non trivial. Nos résultats généralisent, avec des méthodes différentes,
des résultats récents de Samei et Wiersma sur les C∗-algèbres exotiques des groupes
SO0(n, 1) et SU(n, 1). En particulier, notre approche s’applique également à des
groupes avec la propriété (T).
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1. Introduction and main results

With every locally compact group G, we can associate two natural group
C∗-algebras, namely the universal group C∗-algebra C∗(G) and the reduced
group C∗-algebra C∗r (G). The left-regular representation λ : G→ B(L2(G))
of G extends to a quotient map C∗(G)� C∗r (G) and this quotient map is
a ∗-isomorphism if and only if G is amenable.

If G is not amenable, there may be many group C∗-algebras lying
“between” the universal and the reduced group C∗-algebra. An exotic group
C∗-algebra of a locally compact group G is a C∗-completion A of Cc(G)
such that the identity map from Cc(G) to itself extends to non-injective
quotient maps from C∗(G) to A and from A to C∗r (G):

C∗(G)� A� C∗r (G).

In recent years, exotic group C∗-algebras and related constructions, such
as exotic crossed products, have received an increased amount of attention,
partly because of their relation with the Baum–Connes conjecture (see
e.g. [1, 4, 5]).
The systematic study of exotic group C∗-algebras (of discrete groups)

goes back to Brown and Guentner [3], who introduced and studied the
notion of ideal completion. If Γ is a countable discrete group and D is
an appropriate algebraic two-sided ideal of `∞(Γ) (e.g. D = `p(Γ), with
1 6 p 6 ∞), the ideal completion C∗D(Γ), which is defined as the comple-
tion of the group ring of Γ with respect to the natural norm defined through
all unitary representations with sufficiently many matrix coefficients lying
in the ideal D, is a potentially exotic group C∗-algebra. Okayasu proved
that for 2 6 q < p 6 ∞, the canonical quotient map C∗`p(Fd) � C∗`q (Fd)
between ideal completions of the non-abelian free group Fd has non-trivial
kernel [23]. This result was independently obtained by Higson and by
Ozawa, and it was extended to discrete groups containing a non-abelian
free group as a subgroup by Wiersma [29]. It is an open question whether
every non-amenable (discrete) group admits exotic group C∗-algebras.
In the setting of (non-discrete) locally compact groups, the Lp-integrabi-

lity properties (for different values of p) of matrix coefficients of unitary rep-
resentations of the group also form an important source of potentially exotic
group C∗-algebras. For p ∈ [1,∞], a unitary representation π : G → B(H)
is called an Lp-representation if suitable many of its matrix coefficients are
elements of Lp(G) (see Definition 3.1 for the precise definition). The repre-
sentation π is called an Lp+-representation if π is an Lp+ε-representation
for every ε > 0.
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The aim of this article is to investigate the exotic group C∗-algebras
C∗Lp+(G) (see Section 3 for the precise construction), which are constructed
from the Lp+-representations of G, for connected simple Lie groups with
real rank one and finite center. To this end, we first prove a structural result
on the subset of the unitary dual Ĝ consisting of (irreducible unitary) Lp+-
representations of such groups, which more generally holds for groups with
the Kunze–Stein property (see Section 4). This result captures a key idea
of Samei and Wiersma (cf. [24, Theorem 5.3]) in the setting of the Fell
topology.
First, recall that a subset S ⊂ Ĝ is called an ideal if for every rep-

resentation π ∈ S and every unitary representation ρ of G, the unitary
representation π ⊗ ρ is weakly contained in S.

Theorem 1.1. — Let G be a Kunze–Stein group, and let ĜLp+ denote
the subset of Ĝ consisting of (equivalence classes of) Lp+-representations.
Then ĜLp+ is a closed ideal of Ĝ.

This result was already known for the groups SO0(n, 1) and SU(n, 1),
with n > 2, from the work of Shalom [26, Theorem 2.1]. Related results
were shown in [7, 12, 18, 19, 21, 22].

Theorem 1.1 leads to a natural strategy to find and distinguish exotic
group C∗-algebras. The idea is to determine for which values of p, the
ideals ĜLp+ are pairwise different. To this end, it suffices to show that
there are representations with sufficiently many matrix coefficients which
are Lp-integrable for certain p, but not Lq-integrable when p > q.

Our second result is an application of this approach in the setting of
simple Lie groups with real rank one. Let G be a connected simple Lie
group with real rank one and finite center. Then G is locally isomorphic
to one of the following groups: SO0(n, 1), SU(n, 1), Sp(n, 1) (with n > 2)
or F4(−20). The first three are called the (connected) classical simple Lie
groups with real rank one, whereas F4(−20) is an exceptional Lie group.

Given a locally compact group G, we define Φ(G) as follows:

Φ(G) := inf
{
p ∈ [1,∞] |∀ π ∈ Ĝ \ {τ0}, π is an Lp+-representation

}
,

where τ0 denotes the trivial representation of G. The constant Φ(G) is
known for the three aforementioned classical Lie groups and is given by

(1.1) Φ(G) =


∞ if G = SO0(n, 1),
∞ if G = SU(n, 1),
2n+ 1 if G = Sp(n, 1).

TOME 71 (2021), FASCICULE 5
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The cases SO0(n, 1) and SU(n, 1) essentially follow from Harish–Chandra’s
rich work. It also follows directly from Proposition 5.4.
The number Φ(Sp(n, 1)) was computed in [18].

Our second result characterizes the exotic group C∗-algebras of the type
C∗Lp+(G) for the classical simple Lie groups with real rank one.

Theorem 1.2. — Let G be a (connected) classical simple Lie group
with real rank one. Then for 2 6 q < p 6 Φ(G) (where Φ(G) is as in (1.1)),
the canonical quotient map

C∗Lp+(G)� C∗Lq+(G)

has non-trivial kernel. Furthermore, for every p, q ∈ [Φ(G),∞), we have

C∗Lp+(G) = C∗Lq+(G).

Furthermore, if H is a connected simple Lie group with finite center that
is locally isomorphic to a classical simple Lie group G with real rank one,
then the same result holds for H with Φ(H) = Φ(G).

Additional to Theorem 1.2, we obtain partial results for the exceptional
Lie group F4(−20) (see Theorem 5.7).

Exotic group C∗-algebras of Lie groups were considered before in [28],
in which Wiersma proved that for 2 6 q < p 6 ∞, the quotient map
C∗Lp+(SL(2,R)) � C∗Lq+(SL(2,R)) has non-trivial kernel, by studying the
representation theory of SL(2,R). Note that SL(2,R) is locally isomorphic
to SO0(2, 1), and hence included in Theorem 1.2. More recently, Samei and
Wiersma deduced the existence of continua of exotic group C∗-algebras
for certain groups having the “integrable Haagerup property” and the
rapid decay property or the Kunze–Stein property. They obtained the cases
G = SO0(n, 1) and SU(n, 1) of Theorem 1.2 above. Their method, which is
of geometric nature, is inherently unable to deal with groups with Kazh-
dan’s property (T) (see [2] for background on property (T)), examples
of which are Sp(n, 1) and F4(−20). In the methods used in this article, the
(integrable) Haagerup property does not play a role, and our method works
equally well for the groups Sp(n, 1) and F4(−20).

The article is organized as follows. After recalling some preliminaries
in Section 2, we recall the algebras C∗Lp+(G) and prove some new results
about them in Section 3. Section 4 is concerned with the unitary dual and
the algebras C∗Lp+(G) of Kunze–Stein groups G. In particular, we prove
Theorem 1.1 in that section. In Section 5, we prove Theorem 1.2.
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2. Preliminaries

2.1. Matrix coefficients and weak containment

Let G be a locally compact group, and let π : G → B(H) be a unitary
representation. Recall that a matrix coefficient of π is a function from G

to C of the form πξ, η : s 7→ 〈π(s)ξ, η〉, where ξ, η ∈ H. Such functions are
continuous bounded functions on G. Matrix coefficients of the form πξ, ξ
(i.e. with ξ = η) are called diagonal matrix coefficients.
A unitary representation π1 of G is said to be weakly contained in a

unitary representation π2 of G if every diagonal matrix coefficient of π1
can be approximated by finite sums of diagonal matrix coefficients of π2
uniformly on compact subsets of G. For details, we refer to [9].

2.2. Unitary dual and Fell topology

Let G be a locally compact group, and let Ĝ denote its unitary dual,
i.e. the set of equivalence classes of irreducible unitary representations
equipped with the Fell topology. If S is a subset of Ĝ, then the closure
S of S in the Fell topology consists of all elements of Ĝ which are weakly
contained in S. Let Ĝr denote the subspace of Ĝ consisting of all ele-
ments of Ĝ which are weakly contained in the left regular representation
λ : G→ B(L2(G)). For details, we refer to [9].

2.3. Constructions of exotic group C∗-algebras

Let us recall two well-known constructions of exotic group C∗-algebras,
which go back to [1, 13].
Let G be a locally compact group, and let µG be a Haar measure on

G. A group C∗-algebra associated with G is a C∗-completion A of Cc(G)
with respect to a C∗-norm ‖.‖µ which satisfies ‖f‖u > ‖f‖µ > ‖f‖r for
all f ∈ Cc(G), where ‖f‖u and ‖f‖r denote the universal and the reduced

TOME 71 (2021), FASCICULE 5
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C∗-norm, respectively. In this case, the identity map Cc(G) → Cc(G) in-
duces canonical surjective ∗-homomorphisms C∗(G)� A and A� C∗r (G).
If both these quotient maps have non-trivial kernel, then A is called an
exotic group C∗-algebra. This is equivalent to the definition in Section 1.

Let G be a locally compact group, and let Ĝ and Ĝr be as before. A
subset S ⊂ Ĝ is called admissible if Ĝr ⊂ S. If S is admissible, then

‖f‖S := sup {‖π(f)‖|π ∈ S}

defines a C∗-norm on Cc(G). The corresponding completion C∗S(G) is a po-
tentially exotic group C∗-algebra. Furthermore, if S is admissible, we have
Ĉ∗S(G) = S, where Ĉ∗S(G) is the spectrum of the group C∗-algebra C∗S(G).
More precisely, there is a bijective map from S to Ĉ∗S(G) mapping a repre-
sentation π : G → B(H) to the corresponding irreducible ∗-representation
π∗ : C∗S(G)→ B(H) given by π∗(f) =

∫
f(s)π(s) dµG(s) for f ∈ Cc(G).

A subset S ⊂ Ĝ is said to be an ideal if for every representation π ∈ S
and every unitary representation ρ of G, the unitary representation π ⊗ ρ
is weakly contained in S. Note that the Fell absorption principle implies
that every non-empty ideal S ⊂ Ĝ is admissible. For more details on the
above construction, we refer to [1].
Let us now discuss another approach, from [13]. Recall that the Fourier–

Stieltjes algebra B(G), consisting of all matrix coefficients of unitary rep-
resentations of G, is a subalgebra of the algebra of continuous bounded
functions on G. It can be canonically identified with the dual space C∗(G)∗
of the universal group C∗-algebra C∗(G) through the pairing induced by

〈ϕ, f〉 =
∫
ϕfdµG

for ϕ ∈ B(G) and f ∈ Cc(G) ⊂ C∗(G). Furthermore, B(G) admits, in a
canonical way, a left and a right G-action (see [13, Section 3]). Let Br(G) ⊂
B(G) denote the dual space of the reduced group C∗-algebra C∗r (G). It was
shown in [13, Lemma 3.1] that if E ⊂ B(G) is a weak*-closed, G-invariant
subspace of B(G) containing Br(G), then

C∗E(G) = C∗(G)/⊥E

is a group C∗-algebra, where ⊥E = {x ∈ C∗(G) | 〈ϕ, x〉 = 0 ∀ ϕ ∈ E} is
the pre-annihilator of E.
Let us explain the connection between the two approaches mentioned

above. This connection is essentially contained in [13], but we give a proof
which is in line with our framework and conventions.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.1. — A non-empty closed set S ⊂ Ĝ is an ideal if and
only if the canonical comultiplication ∆: C∗(G)→M(C∗(G)⊗C∗(G)) fac-
tors through a coaction ∆S : C∗S(G)→M(C∗S(G)⊗C∗(G)). Here C∗S(G)⊗
C∗(G) denotes the minimal tensor product of the C*-algebra C∗S(G) and
C∗(G).

Proof. — First, suppose that S is an ideal, and let q : C∗(G) → C∗S(G)
be the canonical quotient map and σ : G → B(H) a unitary representa-
tion of G such that the integrated form σ∗ : C∗(G) → B(H) is a faithful
(non-degenerate) *-representation of C∗(G). The *-representation π∗ =
(
⊕

ρ∈S ρ)∗⊗σ∗ is a faithful (non-degenerate) *-representation of C∗S(G)⊗
C∗(G). Therefore, it extends to a faithful *-representation of the multi-
plier algebra of the algebra C∗S(G) ⊗ C∗(G), which we denote with π∗
again. Note that the *-representation π∗ ◦ (q ⊗ id) ◦∆ of C∗(G) is the in-
tegrated form of

⊕
ρ∈S ρ ⊗ σ. Since S is assumed to be an ideal, this

implies that π∗ ◦ (q ⊗ id) ◦∆ factors through the canonical quotient map
q : C∗(G)→ C∗S(G). Finally, since π∗ is faithful, we obtain that (q⊗ id)◦∆
factors through q, which proves the first direction.
Now, suppose that C∗S(G) is a group C∗-algebra with Ĉ∗S(G) = S such

that the comultiplication ∆: C∗(G)→M(C∗(G)⊗C∗(G)) factors through
a coaction ∆S : C∗S(G) → M(C∗S(G) ⊗ C∗(G)). Let ρ ∈ S, and let π be
any unitary representation of G. Again, we denote the integrated form
of ρ and π by ρ∗ and π∗, respectively. Then π∗ ⊗ ρ∗ is a non-degenerate
*-representation of C∗(G)⊗C∗S(G). Hence, it extends to a non-degenerate
*-representation of the multiplier algebra M(C∗(G) ⊗ C∗S(G)), which we
denote with π∗ ⊗ ρ∗ again. The *-representation (π∗ ⊗ ρ∗) ◦ ∆S is the
integrated form of the unitary representation π ⊗ ρ of G. This shows that
π ⊗ ρ is weakly contained in S. �

Combining this proposition with [13, Corollary 3.13], we obtain the fol-
lowing result, which is probably well known to experts, but to our knowl-
edge not explicitly contained in the literature.

Proposition 2.2. — Let G be a locally compact group and C∗µ(G) a
group C∗-algebra of G. The following are equivalent:

(i) The set Ĉ∗µ(G) ⊂ Ĝ is a closed ideal in Ĝ.
(ii) The dual space C∗µ(G)∗ of C∗µ(G) is a G-invariant ideal in B(G).

TOME 71 (2021), FASCICULE 5
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2.4. Covering groups of Lie groups

A covering group of a connected Lie group G is a Lie group G̃ with a
surjective Lie group homomorphism σ : G̃ → G in such a way that (G̃, σ)
is a (topological) covering space of G.
A universal covering space is a covering space which is simply connected.

Every connected Lie group G admits a universal covering space G̃, which
admits a canonical Lie group structure. Such a universal covering group G̃
of G is uniquely determined up to isomorphism. Universal covering groups
satisfy the exact sequence 1→ π1(G)→ G̃→ G→ 1, where π1(G) denotes
the fundamental group of G. For details, we refer to [15, Section I.11].

2.5. Class one representations and spherical functions

We briefly recall Gelfand pairs, spherical functions and class one repre-
sentations, which we will need for the proof of Theorem 1.2.

Let G be a locally compact group, let µG be a Haar measure, and let
K < G be a compact subgroup of G. A function ϕ : G→ C is called K-bi-
invariant if ϕ(k1sk2) = ϕ(s) for all s ∈ G and k1, k2 ∈ K. Let Cc(K\G/K)
denote the ∗-subalgebra of the convolution algebra Cc(G) consisting of all
K-bi-invariant functions on G with compact support. The pair (G,K) is
called a Gelfand pair if the algebra Cc(K\G/K) is commutative.

Let (G,K) be a Gelfand pair. A continuous K-bi-invariant function
ϕ : G→ C is called a spherical function if

χ : f 7→
∫
f(s)ϕ

(
s−1) dµG(s)

defines a non-trivial character of Cc(K\G/K). Here, µG denotes a Haar
measure on G.
A pair (G,K) consisting of a locally compact group G with a compact

subgroup K is a Gelfand pair if and only if for every irreducible unitary
representation π : G → B(H), the subspace HK of H consisting of π(K)-
invariant vectors is at most one-dimensional. An irreducible unitary rep-
resentation π : G → B(H) for which dim(HK) = 1 is called a class one
representation. For a Gelfand pair (G,K), we write (ĜK)1 for the (equiv-
alence classes of) class one representations in Ĝ. The space (ĜK)1 is also
called the spherical unitary dual.
Let π : G → B(H) be a class one representation of the Gelfand pair

(G,K), and let ξ ∈ HK be a π(K)-invariant vector of norm one. Then the

ANNALES DE L’INSTITUT FOURIER
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diagonal matrix coefficient πξ, ξ is a positive definite spherical function. This
assignment defines a bijection between (ĜK)1 and the set of all positive
definite spherical functions of the Gelfand pair (G,K).
For an introduction to the theory of Gelfand pairs, spherical functions

and class one representations, we refer to [8].

3. The algebras C∗Lp+(G)

We now recall and discuss the algebras C∗Lp+(G), which are the (poten-
tially) exotic group C∗-algebras of our interest. To this end, we first recall
Lp-representations and Lp+-representations.

Definition 3.1. — Let G be a locally compact group, let π : G→ B(H)
be a unitary representation, and let p ∈ [1,∞].

(i) We say that π is an Lp-representation if there is a dense subspace
H0 ⊂ H such that πξ, η ∈ Lp(G) for all ξ, η ∈ H0.

(ii) We say that π is an Lp+-representation if π is an Lp+ε-representa-
tion for all ε > 0.

Recall that whenever a function f ∈ Cb(G) is contained in Lp(G) for
some p ∈ [1,∞], then f is contained in Lq(G) for all q > p. In particular,
this is true for matrix coefficients of unitary representations.

Remark 3.2. — Suppose that π : G → B(H) is a unitary representation
and that p ∈ [1,∞]. It follows by the polarization identity that π is an
Lp-representation if and only if there is a dense subspace H0 ⊂ H such
that πξ, ξ ∈ Lp(G) for all ξ ∈ H0. This definition of Lp-representation is
used in [24].
Also, note that in the literature different terminology, e.g. strongly Lp-

and strongly Lp+-representation, is used for what we call Lp-representation
and Lp+-representation.

The following result gives a sufficient condition for a cyclic representation
to be an Lp-representation.

Proposition 3.3. — Let π : G→ B(H) be a cyclic unitary representa-
tion with cyclic vector ξ ∈ H such that πξ, ξ ∈ Lp(G) for some p ∈ [1,∞].
Then π is an Lp-representation.

Proof. — The case p =∞ is trivial, so suppose that p ∈ [1,∞).

TOME 71 (2021), FASCICULE 5
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Since π has cyclic vector ξ ∈ H, the subspace H0 = span{π(s)ξ | s ∈ G}
is dense in H. Let s1 and s2 be arbitrary elements of G, and let ζ1 := π(s1)ξ
and ζ2 := π(s2)ξ. Then∫
|πζ1, ζ2 |

p
dµG =

∫ ∣∣〈π (s−1
2 ts1

)
ξ, ξ
〉∣∣p dµG(t) = ∆G

(
s−1

1
) ∫
|πξ, ξ|p dµG,

where µG denotes a Haar measure on G and ∆G denotes the associated
modular function. Hence, πζ1, ζ2 ∈ Lp(G) for all ζ1, ζ2 ∈ {π(s)ξ | s ∈ G}.
This implies that πζ1, ζ2 ∈ Lp(G) for all ζ1, ζ2 ∈ H0, which completes the
proof of Proposition 3.3. �

Recall the construction of the potentially exotic group C∗-algebra C∗S(G)
from Section 2.3. Our main interest is to consider the subset S of Ĝ consist-
ing of (equivalence classes of) Lp+-representations (or Lp-representations)
of a locally compact group G. Note that in general, however, these sets may
be empty, which is for example the case for non-compact locally compact
abelian groups.
For a locally compact group G and p ∈ [2,∞], let C∗Lp(G) and C∗Lp+(G)

be the group C∗-algebras obtained as the completions of Cc(G) with respect
to the C∗-norms

‖ · ‖Lp : Cc(G)→ [0,∞), f 7→ sup {‖π(f)‖|π is a Lp-representation}

and

‖ · ‖Lp+ : Cc(G)→ [0,∞), f 7→ sup
{
‖π(f)‖

∣∣π is a Lp+-representation
}
,

respectively.
It is well known that C∗(G) = C∗L∞(G) and C∗r (G) = C∗L2(G). The

following result follows directly from Proposition 2.2.

Proposition 3.4. — Let p ∈ [2,∞]. Then the dual spaces Ĉ∗Lp(G) and
̂C∗Lp+(G) of C∗Lp(G) and C∗Lp+(G), respectively, are ideals in Ĝ.

4. On the unitary dual of Kunze–Stein groups

Recall that a locally compact group G is called a Kunze-Stein group if
the convolution productm : Cc(G)×Cc(G)→ Cc(G), (f, g) 7→ f∗g extends
to a bounded bilinear map Lq(G)× L2(G)→ L2(G) for all q ∈ [1, 2).

This property originated from the work of Kunze and Stein [17], who
showed the above property for the group SL(2,R). In 1978, Cowling proved
that connected semisimple Lie groups with finite center are Kunze–Stein
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groups [6]. Other classes of Kunze–Stein groups were provided in [6, 20]
and [27].
The aim of this section is to prove Theorem 1.1, starting from the fol-

lowing result by Samei and Wiersma (see [24, Theorem 5.3]).

Theorem 4.1 (Samei–Wiersma). — Let G be a Kunze–Stein group,
and let 2 6 p < ∞. For a unitary representation π : G → B(H), the
following are equivalent:

(i) The representation π extends to a *-representation of C∗Lp+(G).
(ii) We have Bπ ⊂ Lp+ε(G) for all ε > 0,

where Bπ denotes the closure in the weak∗-topology (on B(G)) of the linear
span of all matrix coefficients of π, i.e. the functions πξ, η, with ξ, η ∈ H.

We first prove the following result.

Proposition 4.2. — Let G be a Kunze–Stein group, let p ∈ [2,∞], let
π be an irreducible unitary representation of G, and let ξ ∈ H be a nonzero
vector. Then π is an Lp+-representation if and only if πξ, ξ ∈ Lp+ε(G) for
all ε > 0.

Proof. — The case p = ∞ is trivial, so suppose p ∈ [2,∞). If π is an
Lp+-representation then πξ, ξ ∈ Lp+ε(G) for all ε > 0 by Theorem 4.1. On
the other hand, suppose that πξ, ξ ∈ Lp+ε(G) for all ε > 0. Since ξ is a cyclic
vector, the representation π is an Lp+-representation by Proposition 3.3.

�

Proposition 4.3. — Let G be a Kunze–Stein group, let p ∈ [2,∞), let
π be an Lp+-representation of G and ρ another unitary representation of
G which is weakly contained in π. Then ρ is an Lp+-representation.

Proof. — Let π∗ and ρ∗ denote the integrated forms of π and ρ, respec-
tively. Since π is an Lp+-representation, π∗ factors through the canoni-
cal quotient map C∗(G) → C∗Lp+(G). Since ρ is weakly contained in π,
we have that kerπ∗ ⊂ ker ρ∗. Hence ρ∗ factors through the quotient map
C∗(G)→ C∗Lp+(G) as well. Equivalently, ρ extends to a *-representation of
C∗Lp+(G). By Theorem 4.1, it follows that ρ is an Lp+-representation. �

For p ∈ [2,∞], let

ĜLp :=
{

[π] ∈ Ĝ
∣∣∣π is an Lp-representation

}
and

ĜLp+ :=
{

[π] ∈ Ĝ
∣∣∣π is an Lp+-representation

}
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If 2 6 q < p 6∞, then we have

ĜLq ⊂ ĜLq+ ⊂ ĜLp .

As mentioned before, the sets ĜLp and ĜLp+ could, in general, be empty.
However, for Kunze–Stein groups, we can prove Theorem 1.1. First, we
identify the dual space ̂C∗Lp+

(G) with ĜLp+ .

Lemma 4.4. — Let G be a Kunze–Stein group and p ∈ [2,∞]. Then
̂C∗Lp+

(G) = ĜLp+ .

Proof. — Let π ∈ ĜLp+ be an irreducible unitary representation. By def-
inition of C∗Lp+(G), the representation π extends to C∗Lp+(G). This implies
that the integrated form π∗ of π lies in ̂C∗Lp+(G). On the other hand, if
π∗ ∈ ̂C∗Lp+(G) then by Theorem 4.1, π is an Lp+-representation and hence
π ∈ ĜLp+ . �

Proof of Theorem 1.1. — The statement of the theorem now follows di-
rectly from Lemma 4.4, Proposition 3.4 and Proposition 4.3 (see Section 2.2
for a description of the closure of a subset of Ĝ). �

5. Simple Lie groups of real rank one

In this section, we investigate the group C∗-algebras C∗Lp+(G) for con-
nected simple Lie groups G with real rank one and finite center. In partic-
ular, we prove Theorem 1.2.
From now on, we assume G to be a connected non-compact simple Lie

group with finite center and K a maximal compact subgroup of G. It is
well known that a pair (G,K) consisting of such groups is a Gelfand pair
(see [10, Corollary 1.5.6] or [11, Chapter VI, Theorem 1.1]). Recall also
that all maximal compact subgroups of G are conjugate under an inner
automorphism of G.

Let g be the Lie algebra of G, let k be the Lie algebra of K, and let
g = k ⊕ p be the corresponding Cartan decomposition of g. After fixing
a maximal abelian subalgebra a of p and choosing a positive root system
∆+(g, a) from the root system ∆(g, a), we obtain the polar decomposition
G = KA+K of G, where A+ = exp(a+) and a+ is the Weyl chamber
corresponding to ∆+(g, a).
The Haar measure µG on G can be normalized in such a way that for

every f ∈ Cc(G), we have

(5.1)
∫
G

fdµG =
∫
K

∫
A+

∫
K

f(k1ak2)J(a) dµK(k1) dµA(a) dµK(k2)
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where µK is the normalized Haar measure on K, the measure µA is the
Haar measure on A, and for a ∈ A,

(5.2) J(a) =
∏

α∈∆+(g, a)

(
eα(log a) − e−α(log a)

)dim(gα)
,

where gα is the root space corresponding to α (see [10, Proposition 2.4.6]).
For details on the assertions made above, we refer to [10], [11] and [15].
There is an intimate relationship between the class one representations

of a connected simple Lie group and the class one representations of a
finite covering group of this Lie group, as is shown by the following result.
This result is certainly known, but since we could not find an appropriate
reference, we give a proof.

Lemma 5.1. — Let G be a connected non-compact simple Lie group
with finite center, K < G a maximal compact subgroup and q : G̃ → G

a connected finite covering group. Then G̃ is a connected non-compact
simple Lie group, K̃ := q−1(K) is a maximal compact subgroup of G̃, and
q induces a bijection

q∗ :
(
ĜK

)
1
→
(̂̃
GK̃

)
1
, [π] 7→ [π ◦ q].

Furthermore, suppose that p ∈ [2,∞). Then [π] ∈ (ĜK)1 is represented
by an Lp+-representation if and only if q∗([π]) is represented by an Lp+-
representation.

Proof. — Since q is a finite covering, q is a proper map, and hence K̃ =
q−1(K) is a compact subgroup of G̃. Suppose C is a compact subgroup of G̃
with K̃ ⊂ C. Then q(C) is a compact subgroup of G andK = q(K̃) ⊂ q(C).
The maximality of K implies K = q(C). Hence, C ⊂ q−1(K) = K̃.
Note that q∗ is well defined. Furthermore, q∗ is obviously injective. It

remains to show that q∗ is surjective. To this end, let π : G̃ → B(Hπ)
be a class one representation. Then there is a K̃-invariant vector ξ ∈ Hπ
of norm one, and ω̃ = 〈π(·)ξ, ξ〉 is a positive definite spherical function.
Since G is a quotient group of G̃ by a subgroup Γ < Z(G̃), we know
that ω̃ factors through q : G̃ → G, by, say, ω : G → C. It is immediate
that ω is a positive definite normalized function as well. Let π′ : G →
B(H) be the cyclic unitary representation with cyclic vector ξ′ ∈ H of G
and ω = 〈π′(·)ξ′, ξ′〉. Then π′ ◦ q is a cyclic unitary representation with
〈π′ ◦ q(·)ξ′, ξ′〉 = ω ◦ q = ω̃ = 〈π(·)ξ, ξ〉. Hence π′ ◦ q and π are unitary
equivalent. This implies that π factors through q : G̃→ G, which concludes
the proof of the assertion that q∗ is a bijection.
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Let π : G→ B(Hπ) be a class one representation, let ξ ∈ Hπ be a π(K)-
invariant vector of norm one, and let ω = πξ, ξ the associated positive
definite spherical function. If π is an Lp+-representation, then, due to The-
orem 4.1, ω ∈ Lp+ε(G) for all ε > 0. It follows that ω ◦ q ∈ Lp+ε(G̃) for
all ε > 0, by the quotient integral formula for Haar integrals. Hence, π ◦ q
is an Lp+-representation (see Proposition 4.2). A similar argument shows
the opposite direction. �

We now specialize to the real rank one case. From now on, let G be
a connected simple Lie group with real rank one and finite center. It is
well known that such a G is locally isomorphic to one of the following Lie
groups: SO0(n, 1), SU(n, 1), Sp(n, 1), with n > 2, or to the exceptional Lie
group F4(−20). The three of these groups arise as the isometry groups of the
classical rank one symmetric spaces of the non-compact type. Explicitly,
they are given by

SO(n, 1) = {g ∈ SL(n+ 1,R)|g∗In, 1g = In, 1} ,
SU(n, 1) = {g ∈ SL(n+ 1,C)|g∗In, 1g = In, 1} ,
Sp(n, 1) = {g ∈ GL(n+ 1,H)|g∗In, 1g = In, 1} ,

where In, 1 = diag(1, . . . , 1,−1), i.e. the diagonal (n+ 1)× (n+ 1)-matrix
with the first n diagonal entries equal to 1 and the n + 1th entry equal to
−1. These three groups are called the classical simple Lie groups with real
rank one. The group F4(−20) is an exceptional Lie group. We refer to [15]
for more details.

Remark 5.2. — The universal covering group of SO0(n, 1) (n > 3) has
finite center, the group Sp(n, 1) (n > 2) is itself simply connected (so it
is its own universal covering group) and has finite center, and the group
F4(−20) is simply connected and has trivial center (see e.g. [15] or [30]).
The universal covering group of SU(n, 1) (n > 2) and SO(2, 1) have center

isomorphic to Z. Since every non-trivial quotient group of Z is a finite group,
every group which is locally isomorphic to SU(n, 1) (n > 2) or SO(2, 1) must
either have finite center or be isomorphic to S̃U(n, 1) (n > 2) or to S̃O(2, 1).
Because of the accidental local isomorphism SO(2, 1) ≈ SU(1, 1), it follows
that if G is a connected simple Lie group with real rank one and infinite
center, then it is isomorphic to S̃U(n, 1) for some n > 1. For details, see
e.g. [15].

Much of the theory recalled below goes back to Harish–Chandra’s sem-
inal work. For the purposes of this article, however, the exposition in the
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monograph by Gangolli and Varadarajan [10] seems more suitable, and we
use this monograph as a reference.
Let G be a classical simple Lie group with real rank one, and let Φ(G)

be as in (1.1). Let G = KAN be an Iwasawa decomposition of G, and let
P = MAN be a minimal parabolic subgroup. Here M is the centralizer of
A in K. We write a for the Lie algebra of A and a∗ (resp. a∗C) for the dual
space homR(a,R) (resp. homR(a,C)) of a (resp. aC). Finally, let

ρ = 1
2

∑
α∈∆+(g, a)

dim(gα)α.

The induced representation πλ of the character

P = MAN → C, man 7→ eλ(log a)

to G, with λ ∈ a∗C, yields a not necessarily unitary group representation
(which is unitary if λ ∈ ia∗) with a K-invariant vector ξλ of norm one.
Hence, the matrix coefficient

ψλ = 〈πλ(·)ξλ, ξλ〉

defines a spherical function for (G,K).
In what follows, we identify a∗C with C via the linear map from a∗C to C

mapping an element γ ∈ ∆+(g, a) with 1
2γ 6∈ ∆+(g, a) to 1.

As above let (ĜK)1 denote the set of all irreducible unitary class one
representations. We recall the following result by Kostant [16] (see also [25,
Lemma 5.2]).

Lemma 5.3.
(i) The following holds:

ρ =


n−1

2 if G = SO0(n, 1),
n if G = SU(n, 1),
2n+ 1 if G = Sp(n, 1),
11 if G = F4(−20).

(ii) The mapping

ia∗+ ∪ [0, ρ0(G))→
(
ĜK

)
1
\ {τ0}, λ 7→ πλ
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is bijective, where

ρ0(G) =


n−1

2 if G = SO0(n, 1),
n if G = SU(n, 1),
2n− 1 if G = Sp(n, 1),
5 if G = F4(−20).

We now characterize which of the class one representations πλ recalled
above, with λ ∈ [0, ρ0(G)), are Lp+-representations.

Proposition 5.4. — Let G be SO0(n, 1), SU(n, 1), Sp(n, 1) or F4(−20),
and let λ ∈ [0, ρ0(G)). Then the class one representation πλ is an Lp+-
representation if and only if λ satisfies

p(ρ− λ) > 2ρ.

The proof of this result follows from [14, Theorems 8.47 and 8.48]. Specif-
ically, the result we need can be found in [25, p. 847–848]. It follows from
the known asymptotic behaviour of ψλ = 〈πλ(·)ξλ, ξλ〉 on A+. For the
convenience of the reader, we sketch the proof.
Proof. — The asymptotic behaviour of the spherical function ψλ on A+

is given by
ψλ(a) ∼ e(λ−ρ) log a

as a→∞ (see [25, p. 847]), and the asymptotic behaviour of the function
J from (5.2) on A+ is given by

J(a) ∼ e2ρ log a

as a→∞ (see [25, p. 848]). Using (5.1), it follows that

ψλ ∈ Lp+ε(G)

for all ε > 0 and all λ ∈ [0, ρ0(G)] if and only if

p(ρ− λ) > 2ρ. �

For any Gelfand pair (G,K), let ΦK(G) ∈ [1,∞] be defined as

ΦK(G) :=

inf
{
p ∈ [1,∞]

∣∣∣∀ π ∈ (ĜK)
1
\{τ0}, π is an Lp+-representation

}
,

where τ0 denotes the trivial unitary representation of G. It is clear that
ΦK(G) 6 Φ(G).

ANNALES DE L’INSTITUT FOURIER



EXOTIC GROUP C∗-ALGEBRAS OF SIMPLE LIE GROUPS 2133

Proposition 5.5. — Let G be a connected simple Lie group with real
rank one and finite center that is not locally isomorphic to F4(−20). Then,
we have ΦK(G) = Φ(G).

Proof. — Suppose that G is a connected Lie group with finite center
locally isomorphic to SO0(n, 1) or SU(n, 1). Then Lemma 5.1 and Propo-
sition 5.4 immediately imply that ΦK(G) =∞ > Φ(G).
From Proposition 5.4 and the identity Φ(Sp(n, 1)) = 2n + 1, it follows

that Φ(Sp(n, 1)) = ΦK(Sp(n, 1)). Since Sp(n, 1) is simply connected, every
connected Lie group G that is locally isomorphic to Sp(n, 1) is isomorphic
to a quotient group of Sp(n, 1), with Sp(n, 1) as its universal covering group.
Hence, we have Φ(G) 6 Φ(Sp(n, 1)) = ΦK(Sp(n, 1)) = ΦK(G). Here the
last equality follows by Lemma 5.1 again. �

Remark 5.6. — Note that Proposition 5.5 and Lemma 5.1 imply that
Φ(G) = Φ(G′) for locally isomorphic connected Lie groups G and G′ with
real rank one and finite center whenever G is not locally isomorphic to
F4(−20).

We now give the proof of Theorem 1.2.
Proof of Theorem 1.2. — For the proof of the first assertion we only

need to show that
ĜLp+ ( ĜLq+

for 2 6 p < q 6 Φ(G) (see Lemma 4.4). To this end, let p, q ∈ [2,Φ(G)] with
p < q. By Proposition 4.2, an irreducible unitary representation is an Lp+-
representation if and only if a non-trivial vector state of the representation
lies in Lp+ε(G) for all ε > 0. Furthermore, the positive definite spherical
functions are in one-to-one correspondence with class one irreducible uni-
tary representations (see Section 2.5). By Lemma 4.4, together with the
fact that the GNS-construction of every positive definite spherical function
is an irreducible unitary representation, it suffices to show that there is a
positive definite spherical function ψ for the Gelfand pair (G,K) that lies in
Lp+ε(G) for all ε > 0 but not in Lq+ε(G) for all ε > 0. Lemma 5.1 implies
that we can restrict ourselves to the classical cases, i.e. the cases where
G is equal to SO0(n, 1), SU(n, 1) or Sp(n, 1). Now Lemma 5.3 and Propo-
sition 5.4 complete the proof of the first assertion. The second assertion
follows from the definition of Φ(G). �

Note that for every connected simple Lie group G with finite center and
property (T), it was already known from the work of Cowling [7] that there
exists a p0 ∈ [2,∞) (depending on G) such that every matrix coefficient of
a unitary representation of G is in Lp(G) for every p > p0.
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Let us now consider the exceptional Lie group F4(−20). Unfortunately, we
cannot obtain a description as complete as for the classical Lie groups as
in Theorem 1.2. The reason for this is that we do not know what the value
of Φ(F4(−20)) is. However, from considering the class one representations
of F4(−20) in combination of a result of Cowling, we still obtain a partial
result.

Theorem 5.7. — For 2 6 q < p 6 11
3 , the canonical quotient map

C∗Lp+

(
F4(−20)

)
� C∗Lq+

(
F4(−20)

)
has non-trivial kernel. Furthermore, for every p, q ∈ [ 22

3 ,∞), we have

C∗Lp+

(
F4(−20)

)
= C∗Lq+

(
F4(−20)

)
.

For the proof of this theorem, we will use the following Lemma, which is
a special case of a result due to Cowling (see [7, Lemme 2.2.6]).

Lemma 5.8. — LetG be a connected simple Lie group with finite center,
and let K be a maximal compact subgroup of G. Suppose that there exists
a p ∈ [2,∞) such that all non-constant positive-definite spherical functions
of the Gelfand pair (G,K) belong to Lp+ε(G) for all ε > 0. Then every non-
trivial irreducible unitary representation of G is an L2p+-representation.

Proof of Theorem 5.7. — The first assertion follows in the same way as
the first part of Theorem 1.2, relying on Lemma 5.3 and Proposition 5.4.
For the second assertion, we use Lemma 5.8. Indeed, note that by Propo-

sition 5.4, every non-trivial class one representation of G = F4(−20) is an
L

11
3 +-representation, so every non-constant positive-definite spherical func-

tion belongs to L 11
3 +ε for all ε > 0. Hence, by the lemma, every non-trivial

irreducible unitary representation of G is an L
22
3 +-representation, which

implies the second assertion. �

In order to improve Theorem 5.7, one would need to study the asymptotic
behaviour of the isolated series representations.
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