
Université Grenoble Alpes

ANNALES DE
L’INSTITUT FOURIER

Thomas Gobet, Anthony Henderson & Ivan Marin

Braid groups of normalizers of re�ection subgroups
Tome 71, n

o
6 (2021), p. 2273-2304.

https://doi.org/10.5802/aif.3440

Article mis à disposition par ses auteurs selon les termes de la licence

Creative Commons attribution – pas de modification 3.0 France

http://creativecommons.org/licenses/by-nd/3.0/fr/

C EN T R E
MER S ENN E

Les Annales de l’Institut Fourier sont membres du

Centre Mersenne pour l’édition scienti�que ouverte

www.centre-mersenne.org e-ISSN : 1777-5310

https://doi.org/10.5802/aif.3440
http://creativecommons.org/licenses/by-nd/3.0/fr/
https://www.centre-mersenne.org/


Ann. Inst. Fourier, Grenoble
71, 6 (2021) 2273-2304

BRAID GROUPS OF NORMALIZERS OF REFLECTION
SUBGROUPS

by Thomas GOBET,
Anthony HENDERSON & Ivan MARIN (*)

Abstract. — Let W0 be a reflection subgroup of a finite complex reflection
group W , and let B0 and B be their respective braid groups. In order to construct
a Hecke algebra H̃0 for the normalizer NW (W0), one first considers a natural
subquotient B̃0 of B which is an extension of NW (W0)/W0 by B0. We prove that
this extension is split when W is a Coxeter group, and deduce a standard basis for
the Hecke algebra H̃0. We also give classes of both split and non-split examples in
the non-Coxeter case.
Résumé. — SoitW0 un sous-groupe de réflexions d’un groupe de réflexions com-

plexe fini W , et soient B0 et B leurs groupes de tresses respectifs. Dans le but de
construire une algèbre de Hecke H̃0 associée au normalisateur NW (W0), on consi-
dère dans un premier temps un sous-quotient naturel B̃0 de B qui est une extension
de NW (W0)/W0 par B0. On prouve que cette extension est scindée lorsque W est
un groupe de Coxeter, ce qui permet de construire une base standard de l’algèbre
de Hecke H̃0. Dans le cas des groupes de réflexions complexes finis qui ne sont pas
des groupes de Coxeter, on donne des exemples de cas de figure où l’extension est
scindée, ainsi que d’autres exemples où elle ne l’est pas.

1. Introduction

Let W be a finite complex reflection group and W0 a reflection sub-
group of W . We write NW (W0) for the normalizer of W0 in W . There are
various cases in which NW (W0) is a semidirect product of W0 and some
complementary subgroup, i.e. there is a known splitting of the short exact
sequence of groups
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(1.1) 1→W0 → NW (W0)→ NW (W0)/W0 → 1.

For one such case: when W is a finite Coxeter group, a choice of simple
system for W determines a complement of W0 in NW (W0), as observed
by Howlett [7] and recalled in greater generality in Lemma 3.3 below. For
another: when W0 is a parabolic subgroup of W , then it always has a
complement in NW (W0), as shown by Muraleedaran and Taylor [12]. On
the other hand, there are cases where no complement exists, i.e. the short
exact sequence (1.1) does not split: see Section 6.1.
Let B be the braid group associated to the complex reflection group W ,

defined topologically as in [5]. We can identify the braid group B0 of W0
with a subquotient of B. In [11, Section 2.2] the third author introduced
another subquotient B̃0 of B, which can be thought of loosely as the braid
group of NW (W0), although it actually depends on the pair (W,W0). (The
notation B̃0 is new to this paper, and refers to the G = NW (W0) special
case of the group denoted BG in loc. cit.) The definition of B̃0, recalled
in Section 2 below, is such that we have a natural short exact sequence
of groups

(1.2) 1→ B0 → B̃0 → NW (W0)/W0 → 1,

lifting the short exact sequence (1.1).
The main question addressed in this paper is: when can we write B̃0

as a semidirect product of B0 and some complementary subgroup? More
precisely, assuming we are in a case where we have a splitting of (1.1), does
that splitting lift to a splitting of (1.2)?
One main reason for considering these questions, which was in fact the

original motivation, is the study of the Hecke algebra H̃0 associated to
NW (W0), which was defined in [11] as a certain quotient of the group
algebra of B̃0. A splitting of (1.2) implies a semidirect product decompo-
sition of H̃0. These algebras H̃0 are the building blocks of the algebra CW
constructed in [10] to describe the “Artin part” of the Yokonuma–Hecke
algebra, in the sense that CW is Morita-equivalent to a direct sum of such
Hecke algebras H̃0. As explained in [10], when W is the symmetric group,
the algebra CW coincides with the diagram algebra of braids and ties of
Aicardi and Juyumaya.
In Section 3 we will show that when W is a finite Coxeter group and

W0 is an arbitrary reflection subgroup, the known splitting of (1.1) does
lift to a splitting of (1.2); see Theorem 3.13. In Section 3.5 we use this to
define a standard basis, and a presentation, of H̃0 in this case. Our proof
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of the splitting of (1.2) applies also when W0 is a reflection subgroup of an
infinite Coxeter group W , on the assumption that the Artin group of W0
occurs as a subquotient of the Artin group of W in the same manner as in
the finite case; see (3.4) for the precise statement of this assumption.
In Section 4 we explain an alternative proof of the splitting of (1.2) in the

Coxeter case, which is in some ways more conceptual; see Theorem 4.6. One
aspect of this second proof may be of independent interest: in Section 4.2
we give a groupoid description of the complement of W0 in NW (W0) when
W is a (possibly infinite) Coxeter group and W0 is an arbitrary reflection
subgroup, which was inspired by, but is different from, the description given
by Brink and Howlett [4] in the case whereW0 is parabolic (see Remark 4.5
for a comparison).
The proofs we give in Sections 3 and 4 are both intrinsically Coxeter-

theoretic, which suggests that, when we return to the setting of general
complex reflection groups W , the splitting of (1.2) can most reasonably be
expected in those cases which are most Coxeter-like. In Section 5 we will
show that when W = G(d, 1, n) and W0 = G(d, 1, k), the obvious splitting
of (1.1) does lift to a splitting of (1.2). On the other hand, in Section 6.2
we will give examples where (1.1) splits but (1.2) does not split.

Acknowledgments

We are grateful to Bob Howlett, Steen Ryom-Hansen, Mario Salvetti,
and Don Taylor for helpful conversations, and to an anonymous referee for
their suggestions.

2. Definitions and preliminaries

The goal of this section is to recall the definitions referred to in the
introduction, in particular of the group B̃0, the short exact sequence (1.2),
and the Hecke algebra H̃0. For more details, see [5, 11].
Let W < GLn(C) be a finite complex reflection group, let A denote the

arrangement of reflecting hyperplanes in Cn for the reflections in W , and
let X = Cn \

⋃
H ∈AH be the complement of that arrangement, on which

W acts freely. We fix a base-point x̃ ∈ X, let [x̃]W denote its image in
the quotient X/W , and define the pure braid group P = π1(X, x̃) and
braid group B = π1(X/W, [x̃]W ). We denote by π : B � W the natural
projection, whose kernel is identified with P .

TOME 71 (2021), FASCICULE 6
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Recall from [5, Theorem 2.17(1)] that B is generated by the elements
known as braided reflections around the hyperplanes in A. For H ∈ A, let
mH denote the order of the cyclic subgroup of W fixing H, let sH ∈ W
denote the distinguished reflection with hyperplane H, i.e. the one with
determinant exp(2π

√
−1/mH), and let σH ∈ B be a braided reflection

around H such that π(σH) = sH , as in [5, Lemma 2.14]. Such a braided
reflection σH is unique up to P -conjugacy; more generally, if β ∈ B,
then βσHβ−1 is a braided reflection around the hyperplane π(β)(H). The
element σmH

H ∈ P and its P -conjugates are the homotopy classes of the
particular loops in X based at x̃ which are known as meridians around H.
By [5, Theorem 2.18(1)], P is generated by the set of all the meridians
around hyperplanes in A. In fact, by [5, Proposition 2.8], it suffices to take
one (well-chosen) meridian per hyperplane.
Now let W0 be a reflection subgroup of W , let A0 ⊆ A be the col-

lection of reflecting hyperplanes of W0, and let X0 = Cn \
⋃
H ∈A0

H.
Again we have the pure braid group P0 = π1(X0, x̃) and braid group
B0 = π1(X0/W0, [x̃]W0), and the projection π0 : B0 �W0 with kernel P0.
The inclusion of X in X0 induces a surjection P � P0, whose kernel is

the subgroup K0 of P generated by meridians around the hyperplanes in
A \A0. As explained in [11, Section 2.2], we can identify π1(X/W0, [x̃]W0)
with the subgroup π−1(W0) of B, and thus the surjection P � P0 extends
to a surjection π−1(W0) � B0 which still has kernel K0. Hence B0 can
be identified with the subquotient π−1(W0)/K0 of B, in such a way that
π : π−1(W0)�W0 factors through π0 : B0 �W0.
In the case whenW0 is a parabolic subgroup ofW , i.e.W0 is the pointwise

stabilizer in W of some subspace of Cn, it is shown in [5, Proposition 2.29]
that there is a splitting of the surjection π−1(W0) � B0, well-defined up
to conjugacy by P and compatible with π and π0. Hence in this case we
have a commutative diagram

(2.1) 1 // P0 //
_�

��

B0
π0 //

_�

��

W0 //
_�

��

1

1 // P // B
π // W // 1

and we can regard B0 as a subgroup of B rather than a subquotient. How-
ever, for non-parabolic reflection subgroups W0, the surjection π−1(W0)�
B0 is not split in general.
Let NW (W0) denote the normalizer of W0 in W , and define

B̂0 = π−1(NW (W0)) 6 B.

ANNALES DE L’INSTITUT FOURIER
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Let σH be a braided reflection around a hyperplane H ∈ A \ A0 and let
β ∈ B̂0. Then σmH

H is a generator of K0, and as π(β) normalizes W0 we
have π(β)(H) /∈ A0, hence βσmH

H β−1 ∈ K0. This shows that K0 is still
normal in B̂0. The group B̃0 mentioned in the introduction is defined to
be the quotient B̂0/K0. Note that B̃0 contains B0 = π−1(W0)/K0 as a
subgroup.
Let π̃0 : B̃0 � NW (W0) be the projection induced by π. Then we have a

commutative diagram

(2.2) 1 // B0 //

π0

��

B̃0 //

π̃0
��

NW (W0)/W0 //

=
��

1

1 // W0 // NW (W0) // NW (W0)/W0 // 1

in which both rows are short exact sequences. These are the short exact
sequences (1.1) and (1.2) mentioned in the introduction. It is trivial that
any splitting of the top row would induce a splitting of the bottom row. In
this paper, we consider cases where we have a splitting of the bottom row
(equivalently, we have a subgroup of NW (W0) complementary to W0) and
investigate whether it lifts to a splitting of the top row.
Recall from [5] the definition of the Hecke algebra H0 associated to W0,

which is a quotient of the group algebra kB0 by certain Hecke relations.
Here k can be taken to be the generic ring Z[aH, i, a±1

H, 0] where aH, i are
indeterminates indexed by W0-orbits of hyperplanes H ∈ A0 and integers
0 6 i < mH .
Recall from [11] that the Hecke algebra H̃0 associated to NW (W0) is

defined as the quotient of kB̃0 by the same Hecke relations as in the defini-
tion of H0. If the short exact sequence (1.2) splits, then kB̃0 is a semidirect
product of kB0 with the group NW (W0)/W0, and consequently H̃0 is a
semidirect product of H0 with the group NW (W0)/W0.
As a general notational convention, on those occasions when we need

to consider reflection subgroups of W other than our fixed W0, we denote
them as W1 or W2, etc. Our notation for the objects associated to Wi is
then obtained by replacing 0 by i in the notation for the analogous objects
for W0.

TOME 71 (2021), FASCICULE 6
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3. Reflection subgroups of Coxeter groups

Our aim in this section is to prove that the short exact sequence (1.2)
does split in the case when W is a finite Coxeter group, that is, the com-
plexification of a real reflection group, and W0 is an arbitrary reflection
subgroup. Our argument applies equally well to infinite Coxeter groups, as
long as we make the assumption stated as (3.4) below. For most of this sec-
tion, we let (W,S) be an arbitrary Coxeter system with W and S possibly
infinite. From Section 3.4 onwards we re-impose the assumption that W is
finite (except for Remarks 3.17 and 3.18).
In the setting of an arbitrary Coxeter system, we use the letter B to

denote the Artin group of (W,S) (which is consistent with our previous
usage ifW is finite; see Section 3.4). Let Σ be the standard set of generators
of B which is in canonical bijection with the (possibly infinite) set S of
generators of W . As a notational convention, if s or si or si1 , for example,
denotes an element of S, we write the corresponding element of Σ as σ or σi
or σi1 , respectively. By definition of B, we have a projection homomorphism
π : B �W which extends and is uniquely determined by the bijection from
Σ to S. Recall that the pure Artin group P := ker(B � W ) is generated
by elements of the form βσ2β−1 where β ∈ B and σ ∈ Σ. The projection
π has a (non-homomorphic) section W → B : w 7→ w where w is the
positive lift of w: explicitly, if w = s1s2 · · · sk is a reduced expression, then
w = σ1σ2 · · · σk.

3.1. Reflection subgroups and normalizers

We refer the reader to [6] for those results stated in this subsection for
which no specific reference is given.

We denote by T the set
⋃
w∈W wSw−1 of reflections of W . We define

the (left) inversion set of w ∈W as

N(w) := {t ∈ T ; `(tw) < `(w)} ,

where ` is the usual length function relative to the simple system S. Given
any reduced expression s1s2 · · · sk for w ∈W , we have

N(w) = {s1, s1s2s1, . . . , s1s2 · · · sk−1sksk−1 · · · s2s1} ,

where the elements listed on the right-hand side are distinct. In particular,
we have |N(w)| = `(w).

ANNALES DE L’INSTITUT FOURIER
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We have defined N(w) in terms of left inversions, following [6], which
means that the right inversion set of w is

(3.1) N(w−1) = {t ∈ T ; `(wt) < `(w)} = w−1N(w)w.

For any w1, w2 ∈W we have the cocycle rule

(3.2) N(w1w2) = N(w1) + w1N(w2)w−1
1 ,

where on the right-hand side + means symmetric difference. So `(w1w2) =
`(w1) + `(w2) if and only if N(w1)∩w1N(w2)w−1

1 = ∅, which is equivalent
to N(w−1

1 ) ∩N(w2) = ∅.
Let W0 be a reflection subgroup of W , that is, a subgroup generated by

a (possibly infinite) subset of T .

Lemma 3.1 (A special case of [6, Theorem 3.3]). — The reflection sub-
group W0 is a Coxeter group in a canonical way, with (possibly infinite)
Coxeter generating set given by

S0 =
{
t ∈ T ;N(t) ∩W0 = {t}

}
.

Relative to this Coxeter structure, the set of reflections of W0 is T ∩W0
and the inversion set of w ∈W0 is N(w) ∩W0.

Lemma 3.2 (See [6, Corollary 3.4(ii)]). — For w ∈ W , the following
conditions are equivalent:

(1) w has minimal length in its coset W0w;
(2) N(w) ∩W0 = ∅.

Moreover, in any coset W0x ⊆W there is a unique element which satisfies
these conditions.

Proof. — It is clear that (1) implies (2), and that in any cosetW0x there
is at least one element satisfying (1). From Lemma 3.1 we know that the
identity is the only element of W0 satisfying (2), and using (3.2) it is easy
to deduce that in any cosetW0x there is at most one element satisfying (2).
The result follows. �

We are interested in the normalizer NW (W0) of W0 in W . Define

U0 := {w ∈ NW (W0);N(w) ∩W0 = ∅} .

From (3.1) we see that this definition would be unchanged if we used right
inversions:

U0 =
{
w ∈ NW (W0);N

(
w−1) ∩W0 = ∅

}
.

TOME 71 (2021), FASCICULE 6
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Lemma 3.3 (See [7, Lemma 2 and Corollary 3]). — U0 is a subgroup
of NW (W0) which is complementary to W0. Thus we have a semidirect
product decomposition

NW (W0) = W0 o U0.

The conjugation action of U0 onW0 preserves the Coxeter generating set S0.

Proof. — That U0 is a subgroup of NW (W0) follows easily from (3.2),
and Lemma 3.2 implies that it is complementary to W0. Finally, if u ∈ U0
and t ∈ S0, then

N
(
utu−1) ∩W0

=
(
N(u) + uN(t)u−1 + utN

(
u−1) tu−1) ∩W0

= (N(u) ∩W0) + u (N(t) ∩W0)u−1 + ut
(
N
(
u−1) ∩W0

)
tu−1

= ∅+
{
utu−1}+ ∅ =

{
utu−1} ,

so utu−1 ∈ S0 as required. �

Example 3.4. — Let (W,S) be of type G2, with S := {s1, s2}. That is,

W =
〈
s1, s2

∣∣ s2
1 = s2

2 = 1, s1s2s1s2s1s2 = s2s1s2s1s2s1
〉
.

Let W0 < W be the subgroup of type A2 generated by the reflections s1
and s2s1s2. Then it is easy to see that S0 = {s1, s2s1s2} and U0 = {1, s2}.
In this case W0 is normal in W , and the semidirect product decomposition
of Lemma 3.3 is W = W0 oU0. We will return to this simple example later
in the section.

Remark 3.5. — An alternative interpretation of the complementary sub-
group U0 is in terms of roots. We will not use this point of view in any
proofs, but we describe it briefly for use in examples and remarks. Form
a geometric representation V of (W,S) as in [6, Section 4], and let Π =
{αs ; s ∈ S} denote the given basis of V in canonical bijection with S. Let
Φ = WΠ be the set of all roots, and Φ+ = {αt ; t ∈ T} the set of positive
roots in canonical bijection with T . Then Φ is the disjoint union of Φ+ and
Φ− := −Φ+, and for w ∈W we have

N(w) =
{
t ∈ T ; w−1(αt) ∈ Φ−

}
as in [6, Lemma 4.3].
The reflection subgroup W0 gives rise to the subsets Φ+

0 := {αt ; t ∈
T ∩W0} and Π0 := {αt ; t ∈ S0} of Φ+ and the subset Φ−0 := −Φ+

0 of Φ−.
As a consequence of [6, Theorem 4.4], Φ0 := W0Π0 is the disjoint union of

ANNALES DE L’INSTITUT FOURIER
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Φ+
0 and Φ−0 , and every element of Φ+

0 can be written as a positive linear
combination of elements of Π0.
For any w ∈ W , we have N(w−1) ∩W0 = ∅ if and only if w(Φ+

0 ) ⊆ Φ+,
which by the last remark is equivalent to w(Π0) ⊆ Φ+. Combining this
with the fact that the conjugation action of U0 preserves S0, we see that

U0 =
{
w ∈W ; w

(
Φ+

0
)

= Φ+
0
}

= {w ∈W ; w (Π0) = Π0} .

Example 3.6. — Let (W,S) be of type D4, with S := {s1, s2, s3, s4},
where s1, s2, s4 are the simple reflections which commute with each other.
The corresponding roots α1, α2, α4 ∈ Π are perpendicular to each other for
the uniqueW -invariant inner product on V , and they are also perpendicular
to the highest root α1 +α2 + 2α3 +α4 = αt where t = s3s1s2s4s3s4s2s1s3.
Let W0 < W be the subgroup of type 4A1 generated by s1, s2, s4, t. Then
S0 = {s1, s2, s4, t} and Π0 = {α1, α2, α4, αt}. In this case U0 = {w ∈
W ; w(Π0) = Π0} = {1, s3s1s2s3, s3s2s4s3, s3s1s4s3} is isomorphic to the
Klein 4-group, with its three non-identity elements acting on Π0 as the
three fixed-point-free involutions.

Remark 3.7. — If W1 is another reflection subgroup of W which is con-
jugate to W0, then by Lemma 3.2 we can find w̃ ∈ W such that W0 =
w̃W1w̃

−1 and N(w̃) ∩W0 = ∅. A calculation which is very similar to that
in the proof of Lemma 3.3 shows that S0 = w̃S1w̃

−1 and U0 = w̃U1w̃
−1.

This observation is particularly useful when W0 is a parabolic subgroup
of W , i.e. a conjugate of a standard parabolic subgroup W1 = 〈S1〉 for
some subset S1 ⊆ S. (Our use of the notation S1 is consistent, because
it does equal the canonical Coxeter generating set of W1.) The comple-
mentary subgroup U1 for such a standard parabolic subgroup W1 6 W

was described by Howlett [7] in the case when W is finite and by Brink–
Howlett [4] in general.

3.2. Reducing non-reduced expressions

The well-known Deletion Condition states that if (s1, . . . , sk) is a se-
quence of elements of S such that s1 · · · sk is non-reduced, meaning that
`(w) < k where w = s1 · · · sk, then there exist a1, b1 ∈ {1, . . . , k} with
a1 < b1 such that

w = s1 · · · ŝa1 · · · ŝb1 · · · sk.
Moreover, one can in fact stipulate that a1 ∈ {1, . . . , k} is maximal such
that sa1 · · · sk is non-reduced; we make this choice of a1 henceforth, and it

TOME 71 (2021), FASCICULE 6
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determines a unique choice of b1. (In fact, b1 is the smallest integer greater
than a1 such that sa1 · · · sb1 is non-reduced.) Note that sa1+1 · · · sb1 and
sa1 · · · sb1−1 are reduced expressions for the same element. Moreover, sa1+1
· · · ŝb1 · · · sk is reduced, because

` (sa1+1 · · · ŝb1 · · · sk) = ` (sa1 · · · sk) = k − a1 − 1

since sa1+1 · · · sk is reduced by the choice of a1.
Now if s1 · · · ŝa1 · · · ŝb1 · · · sk is still not reduced, we can define a2, b2 ∈

{1, . . . , k − 2} in the same way, and we have a2 < a1 by the last remark.
In this way, starting with a sequence (s1, . . . , sk) of elements of S, we

define a sequence of pairs

(a1, b1), (a2, b2), . . . , (ar, br) with a1 > a2 > · · · > ar.

After making all the successive deletions of two terms of the sequence indi-
cated by these pairs, one obtains a reduced expression for w = s1 · · · sk, so
that `(w) = k− 2r. (If the original expression s1 · · · sk is already reduced,
then r = 0 and the sequence of pairs is empty.)
The relevance of this construction for us lies in the following computation

in B.

Lemma 3.8. — Let (s1, . . . , sk) be any sequence of elements of S, and
define (a1, b1), · · · , (ar, br) as above. If σi denotes the generator of B cor-
responding to si, and w ∈ B denotes the positive lift of w = s1 · · · sk, then
we have the following equality in B:

σ1 · · · σk =(
σ1 · · · σa1−1σ

2
a1
σ−1
a1−1 · · · σ

−1
1
) (
σ1 · · · σa2−1σ

2
a2
σ−1
a2−1 · · · σ

−1
1
)

· · ·
(
σ1 · · · σar−1σ

2
ar
σ−1
ar−1 · · · σ

−1
1
)
w.

Proof. — Arguing by induction on r, we need only prove that if r > 1,
then

σ1 · · · σk =
(
σ1 · · · σa1−1σ

2
a1
σ−1
a1−1 · · · σ

−1
1
)
σ1 · · · σ̂a1 · · · σ̂b1 · · · σk.

This follows immediately from the equality σa1+1 · · · σb1 = σa1 · · · σb1−1,
which holds since sa1+1 · · · sb1 = sa1 · · · sb1−1 are reduced expressions of
the same element of W . �

Lemma 3.9. — Let (s1, . . . , sk) be a sequence of elements of S obtained
by concatenating reduced expressions for two elements of W , namely w1 =
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s1 · · · sp and w2 = sp+1 · · · sk. Define (a1, b1), . . . , (ar, br) as above. Then

N(w1) ∩ w1N(w2)w−1
1

= {s1s2 · · · sa1−1sa1sa1−1 · · · s2s1, . . . , s1s2 · · · sar−1sar
sar−1 · · · s2s1},

where the elements listed on the right-hand side are distinct.

Proof. — Let w = w1w2 = s1 · · · sk. In this proof, to save space, we use
the temporary notation

t[a, b] := sasa+1 · · · sb−1sbsb−1 · · · sa+1sa, for 1 6 a < b 6 k.

Recall that N(w1) = {t[1, 1], t[1, 2], . . . , t[1, p]} and that these p elements are
distinct. Note that we have a1 6 p, since sp+1 · · · sk is reduced. So the r
elements t[1, ai] listed in the statement are distinct and all belong to N(w1).
From (3.2) we see that N(w1) ∩ w1N(w2)w−1

1 = N(w1) \ N(w) and that
this set has cardinality `(w1)+`(w2)−`(w)

2 = r, so it suffices to prove that
t[1, ai] /∈ N(w) for all i.

We prove this last statement by induction on r, the r = 0 case being
vacuously true. Assume that r > 1. From (3.2) we have

(3.3) N(w) ={
t[1, 1], t[1, 2], . . . , t[1, ar]

}
+ s1 · · · sar

N (sar+1 · · · sk) sar
· · · sa1 .

The induction hypothesis applies to the sequence (sar+1, . . . , sk), for which
the corresponding sequence of pairs is (a1 − ar, b1 − ar), (a2 − ar, b2
−ar), . . . , (ar−1−ar, br−1−ar), and tells us that t[ar+1, ai] /∈ N(sar+1 · · · sk)
for all i < r. As t[1, 1], t[1, 2], . . . , t[1, p] are all distinct, we conclude that for
i < r, t[1, ai] does not belong to either set on the right-hand side of (3.3).
On the other hand, by definition of ar we have sar

∈ N(sar+1 · · · sk), so
t[1, ar] belongs to both sets on the right-hand side of (3.3). In either case
we are done. �

3.3. Properties of positive lifts

Now we return to considering the constructions associated with the
choice of a reflection subgroup W0 of our Coxeter group W .

We let K0 be the subgroup of P = ker(π : B � W ) generated by the
elements of the form βσ2β−1 where β ∈ B and σ ∈ Σ are such that the
reflection π(βσβ−1) ∈ T does not belong toW0. This is consistent with our
previous definition of K0 in the case thatW is finite; see Section 3.4 below.
It is clear that K0 is normal in π−1(W0) and in B̂0 = π−1(NW (W0)). Thus,
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we can still define B̃0 = B̂0/K0 in this context, along with the projection
π̃0 : B̃0 � NW (W0) induced by π.

Define a map
ψ : NW (W0)→ B̃0

by ψ(w) = wK0. Note that ψ is injective, because π̃0 ◦ ψ = id. The map
ψ is not a homomorphism but has the following “partial homomorphism”
property:

Proposition 3.10. — Let w1, w2 ∈ NW (W0). If we have N(w−1
1 ) ∩

N(w2) ∩W0 = ∅, then ψ(w1w2) = ψ(w1)ψ(w2).

Proof. — Let w = w1w2. We must prove that wK0 = w1 w2K0. We
form a sequence (s1, . . . , sk) of elements of S by concatenating a reduced
expression for w1 and a reduced expression for w2, as in Lemma 3.9. Ap-
ply Lemma 3.8 to this sequence: the left-hand side is exactly w1 w2, so
it suffices to prove that each of the elements σ1 · · · σai−1σ

2
ai
σ−1
ai−1 · · · σ

−1
1

on the right-hand side belongs to K0. By definition of K0, it suffices to
show that the reflection s1 · · · sai

· · · s1 does not belong to W0. But by
Lemma 3.9, this reflection belongs to N(w1) ∩ w1N(w2)w−1

1 , and our hy-
pothesis is equivalent to N(w1) ∩ w1N(w2)w−1

1 ∩W0 = ∅. �

Corollary 3.11. — The restriction ψ : W0 ↪→ π−1(W0)/K0 is multi-
plicative on reduced expressions for the Coxeter system (W0, S0). In other
words, we have the following:

(1) If w1, w2 ∈ W0 are such that `0(w1w2) = `0(w1) + `0(w2) where `0
denotes the length function onW0 relative to the generating set S0,
then ψ(w1w2) = ψ(w1)ψ(w2).

(2) If w ∈ W0 has a reduced expression w = t1t2 · · · tk in terms of the
generating set S0, then ψ(w) = ψ(t1)ψ(t2) · · · ψ(tk).

(3) With B0 denoting the Artin group of the Coxeter system (W0, S0),
there is a unique group homomorphism ψ̃ : B0 → π−1(W0)/K0
such that, for any w ∈ W0 with positive lift β ∈ B0, we have
ψ̃(β) = ψ(w).

Proof. — We first prove (1). Since the inversion sets of w−1
1 and w2

relative to the Coxeter system (W0, S0) are N(w−1
1 )∩W0 and N(w2)∩W0

respectively, the assumption that `0(w1w2) = `0(w1) + `0(w2) means that(
N
(
w−1

1
)
∩W0

)
∩ (N (w2) ∩W0) = ∅.

Hence the hypothesis of Proposition 3.10 is satisfied and (1) follows. Now (2)
is an immediate consequence of (1), and (3) follows from (2) because the
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braid relations defining B0 are equalities between positive lifts of reduced
expressions. �

Corollary 3.12. — Let w1, w2 ∈ NW (W0). If at least one of w1, w2
belongs to U0, then ψ(w1w2) = ψ(w1)ψ(w2). In particular, we have:

(1) The restriction ψ : U0 ↪→ B̃0 is a group homomorphism.
(2) For all u ∈ U0 and t ∈ S0 we have ψ(u)ψ(t) = ψ(utu−1)ψ(u).

Proof. — Since

U0 = {w ∈ NW (W0);N(w) ∩W0 = ∅}

=
{
w ∈ NW (W0);N

(
w−1) ∩W0 = ∅

}
,

this follows immediately from Proposition 3.10. �

To recover our short exact sequence (1.2) we need to make the following
assumption:

(3.4) The homomorphism

ψ̃ : B0 → π−1(W0)/K0 of Corollary 3.11(3) is an isomorphism.

We will show in Proposition 3.16 that (3.4) holds when W is finite, using
the interpretation of B and B0 as fundamental groups of orbit spaces of
hyperplane complements as in Section 2. Remarks 3.17 and 3.18 discuss
the case when W is infinite.
Under the assumption (3.4), we have an injective homomorphism B0 ↪→

B̃0 which is the composition of ψ̃ with the inclusion of π−1(W0)/K0 in
B̃0. We will show in Proposition 3.16 that, when W is finite, this injective
homomorphism coincides with the one defined previously, so we can without
ambiguity identify B0 with a subgroup of B̃0 in the current more general
setting. It is clear from the definitions that this inclusion of B0 in B̃0 again
fits into a short exact sequence (1.2) forming the top row of the commuta-
tive diagram (2.2) where the bottom row is the short exact sequence (1.1).
We can now state the main result of this section.

Theorem 3.13. — Let W be a Coxeter group and W0 a reflection sub-
group of W such that assumption (3.4) holds; for example, this holds if
W is finite. Then the splitting of the short exact sequence (1.1) given by
Lemma 3.3 lifts to a splitting of the short exact sequence (1.2). Namely,
after identifying NW (W0)/W0 with U0, the splitting of (1.2) is the homo-
morphism ψ : U0 ↪→ B̃0. Hence we have a semidirect product decomposition

B̃0 = B0 o ψ(U0).
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The conjugation action of ψ(U0) on B0 preserves the Artin generating set
Σ0 of B0, and for u ∈ U0, the action of ψ(u) on Σ0 is the same as the
conjugation action of u on S0.

Proof. — This follows from Corollary 3.12 in view of (3.4). �

Example 3.14. — We return to the setting of Example 3.4, with W =
〈s1, s2〉 of type G2 andW0 = 〈s1, s2s1s2〉 of type A2. In this case, the Artin
group corresponding to W is

B = 〈σ1, σ2 | σ1σ2σ1σ2σ1σ2 = σ2σ1σ2σ1σ2σ1〉 .

The relevant subgroups of B are as follows:
• K0 is the subgroup of B normally generated by σ2

2 ,
• π−1(W0) is the subgroup of B normally generated by σ1 and σ2

2 ,
• B̂0 = B itself, since W0 is normal in W .

Clearly ψ : W → B̃0 = B/K0 is not a homomorphism, because ψ(s1)2 =
σ2

1K0 6= 1K0 = ψ(s2
1). However, as an example of Corollary 3.11, when

w1 = s2s1s2s1 and w2 = s2s1s2, we have

ψ(w1)ψ(w2) = σ2σ1σ2σ1σ2σ1σ2K0 = σ2
2σ1σ2σ1σ2σ1K0

= σ1σ2σ1σ2σ1K0 = ψ(w1w2).

Moreover, the restriction of ψ to U0 = 〈s2〉 is a homomorphism, in ac-
cordance with Corollary 3.12. Corollary 3.11(3) and the assumption (3.4),
true for finite W , imply that we can regard the Artin group B0 of type
A2 as a subgroup of B̃0 by identifying the Artin generators of B0 with
σ1K0 and σ2σ1σ2K0. Then Theorem 3.13 states that we have a semidirect
product decomposition B̃0 = B0 o 〈σ2K0〉, where the conjugation action of
ψ(s2) = σ2K0 interchanges σ1K0 and σ2σ1σ2K0.

Example 3.15. — Continue the notation of Example 3.6, where W is
of type D4 and W0 of type 4A1. In this case, the Artin group B0 is Z4,
identified with the subgroup of B̃0 = B̂0/K0 generated by

σ1K0, σ2K0, σ4K0, σ3σ1σ2σ4σ3σ1σ2σ4σ3K0.

Theorem 3.13 states that we have a semidirect product decomposition B̃0 =
Z4 oψ(U0), where ψ(U0) is the Klein 4-group 〈σ3σ1σ2σ3K0, σ3σ2σ4σ3K0〉.

3.4. The finite Coxeter case

For the remainder of the section we assume that W is a finite Coxeter
group. Thus we are in the setting of Section 2, but in addition there is a real
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form V of the complex reflection representation Cn on which W acts as a
finite real reflection group. We endow V with a W -invariant inner product.
For t ∈ T , we write Ht for the hyperplane ker(t − id) in Cn, and V ∩ Ht

for the real hyperplane in V . We have a bijection T
∼→ A : t 7→ Ht. The

real hyperplane complement V ∩ X = V \
⋃
t∈T (V ∩ Ht) is the union of

contractible connected components called chambers, which are permuted
simply transitively by W . Let C be a chamber which is compatible with
the simple system S, i.e. a chamber whose walls are open subsets of the
hyperplanes V ∩Hs for s ∈ S. Then the chambers adjacent to C are those
of the form s(C) for s ∈ S. For any w ∈W , the inversion set N(w) consists
exactly of those reflections t ∈ T such that V ∩Ht separates C from w(C).

We choose our base-point x̃ to belong to C. The two groups for which
we have used the notation B, namely the Artin group of (W,S) and the
fundamental group π1(X/W, [x̃]W ), can be identified in a standard way so
that the natural projections π : B �W coincide. Recall how this standard
identification works on the generators: for s ∈ S, the generator σ = s of the
Artin group is identified with a special choice of braided reflection σHs

. As
in [3, 5] (for instance), this braided reflection is defined to be the homotopy
class of the image in X/W of a specific path from x̃ to s(x̃) in X, which is
a perturbation of the straight-line path from x̃ to s(x̃) in V . Note that s(x̃)
belongs to the chamber s(C) which is adjacent to C. Let x̃s ∈ C denote
the orthogonal projection of x̃ onto the common wall of these chambers.
Then the straight-line path from x̃ to s(x̃) in V crosses V ∩Hs at x̃s, and
does not intersect any other hyperplane in A. To produce the desired path
from x̃ to s(x̃) in X, one removes a small interval centred at x̃s from the
straight-line path in V , and replaces it with a semicircle in Cn around Hs.

The element σ2 ∈ P is then identified with the homotopy class of a
special meridian around Hs, namely the loop in X which travels on the
straight line from x̃ almost as far as x̃s, then traverses a full circle in Cn
around Hs, and then returns along the same straight line to x̃. For any
β ∈ B, the element βσ2β−1 ∈ P is a meridian around Hπ(βσβ−1), and
every meridian around a hyperplane in A is of this form for some β ∈ B
and σ ∈ Σ. This is why the two descriptions we have given of generating
sets for P = ker(B � W ), and the two definitions we have given of its
subgroup K0, are consistent.

The reflection subgroup W0 has its own chambers, the connected com-
ponents of V ∩ X0, each of which contains a number of chambers for W .
Let C0 be the unique chamber for W0 which contains C, so in particular
x̃ ∈ C0. Then the walls of C0 are open subsets of the hyperplanes V ∩Ht
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••

Hs1

Hs2

Hs2s1s2

Ht

C

C0

P1

P ′2

t(x̃) x̃

Figure 3.1. Chambers and paths for 〈s1, t〉 < G2 with t = s2s1s2s1s2

for t ∈ S0. Replacing (W,S) with (W0, S0) in the above, we get an analo-
gous standard identification between the two groups for which we have used
the notation B0, namely the Artin group of (W0, S0) and the fundamental
group π1(X0/W0, [x̃]W0).
On the other hand, in Corollary 3.11 we saw a homomorphism ψ̃ from

the Artin group of (W0, S0) to the subquotient π−1(W0)/K0 of the Artin
group of (W,S), uniquely specified by the non-homomorphic map ψ : W0 ↪→
π−1(W0)/K0 defined by ψ(w) = wK0. Once we make the standard identi-
fication of the Artin group of (W,S) with π1(X/W, [x̃]W ), the subquotient
π−1(W0)/K0 becomes identified with π1(X0/W0, [x̃]W0) as we saw in Sec-
tion 2. So ψ̃ becomes a homomorphism from B0 to itself. The following
result proves that (3.4) holds when W is finite, and also that our use of the
notation B0 is consistent and unambiguous.

Proposition 3.16. — Interpreted as above, ψ̃ : B0 → B0 is the iden-
tity. Equivalently, for any w ∈W0, ψ(w) equals the positive lift of w to B0
relative to the Coxeter generating set S0.

Proof. — In view of Corollary 3.11, we need only check that, for any
t ∈ S0, ψ(t) equals the corresponding Artin generator of B0. For this, let
t = s1s2 · · · sk · · · s2s1 be a palindromic reduced expression for t in the
generating set S. (Recall that any reflection t has a palindromic reduced
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expression: starting with an arbitrary reduced expression s1s2 · · · s2k−1 for
t, one can easily show as in [6, Lemma 2.7] that t = s1s2 · · · sk · · · s2s1.)

We have two different ways to define a loop in X0/W0 based at [x̃]W0

associated to t, and we need to check that they are homotopic. The standard
loop L1, whose homotopy class is the generator of B0 corresponding to t,
is the image in X0/W0 of the path P1 from x̃ to t(x̃) in X0 obtained by
perturbing the straight-line path in V , replacing a small interval centred
on x̃t with a semicircle in Cn around Ht.
The alternative loop L2, whose homotopy class is ψ(t), actually lies in

the subset X/W0 ⊆ X0/W0, and its image in X/W has homotopy class
σ1σ2 · · · σk · · · σ2σ1 ∈ B. One can construct L2 as the image in X/W0 of
a path P2 from x̃ to t(x̃) in X obtained by perturbing the piecewise-linear
path P3 in V which travels from x̃ on a straight line to s1(x̃), thence on
a straight line to s1s2(x̃), thence on a straight line to s1s2s3(x̃), and so
on until one reaches t(x̃). Note that the straight line segments of P3 cross
exactly one hyperplane each, namely the hyperplanes corresponding to the
elements of N(t) in the order listed as follows:

N(t) = {s1, s1s2s1, · · · , s1s2 · · · sk · · · s2s1, · · · ,
s1s2 · · · sk · · · s2s1s2 · · · sk · · · s2s1} .

To obtain the path P2, one perturbs P3 by replacing small intervals centred
on the various hyperplane crossing points with semicircles in Cn about the
hyperplanes.
Since t ∈ S0, the only element of N(t) ∩W0 is t itself, appearing in the

middle position in the above list. Accordingly, of the hyperplanes which P3
crosses, only the middle one Ht belongs to A0. Hence, when viewed as a
path from x̃ to t(x̃) in X0 rather than X, P2 is homotopic to another path
P ′2 which coincides with P3 except for maintaining the perturbation about
the hyperplane Ht. Note that the first half of P3 lies entirely in C0, and the
second half lies entirely in t(C0). Since these chambers are contractible, P ′2
is homotopic to the standard path P1, and we are done. (See Figure 3.1 for
a picture showing the paths P1 and P ′2 in a sample case.) �

Remark 3.17. — The same argument shows that (3.4) also holds when
W is of affine type. In this case one can interpretW as a reflection group on
a Euclidean space V with an arrangement consisting of affine rather than
linear hyperplanes, and with chambers of finite volume, as in [2, Chap-
ter V, §4, no. 9]. The statements relating to W and B in the discussion
before Proposition 3.16 remain true in this context, as seen in [13, 8] (for
instance). By the classification of reflection subgroups of affine W given
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in [6, Theorem 5.1(ii)], the representation of W0 on V is a direct product
of standard reflection representations of finite and affine Coxeter groups.
Consequently, the statements relating to W0 and B0 in the discussion be-
fore Proposition 3.16 also remain true. The proof of Proposition 3.16 then
goes through unchanged.

Remark 3.18. — We do not yet know for which reflection subgroups of
more general Coxeter groups the statement (3.4) holds. One observation
we can make is that when S is finite and W0 is a parabolic subgroup of W ,
the homomorphism ψ̃ is injective. To prove this, using Remark 3.7 we can
assume that S0 ⊆ S. In this case it was shown by van der Lek [8, Theo-
rem 4.13] that the natural homomorphism B0 → B, mapping each Artin
generator ofB0 to the corresponding Artin generator ofB, is injective, so we
can identify B0 with a subgroup of π−1(W0). Then ψ̃ is the composition of
the inclusion B0 ↪→ π−1(W0) with the projection π−1(W0)� π−1(W0)/K0,
so it is injective if and only if P0 ∩ K0 = {1}. But by the proof of [8,
Lemma 4.11], the inclusion P0 ↪→ P has a left inverse P � P0, and from
the topological definition of the latter it is clear that each generator of K0
belongs to ker(P � P0).

3.5. Hecke algebras

Continue to assume that W is a finite Coxeter group. The semidirect
product decomposition of B̃0 induces a semidirect product decomposition
of the corresponding Hecke algebra H̃0, which allows us to write down a
standard basis for that algebra. Recall that for w ∈ W0, the image of the
positive lift ψ(w) ∈ B0 in the Hecke algebra H0 is written Tw, and the
elements {Tw}w∈W0 form the standard basis of H0. We simply extend this
notation to w ∈ NW (W0), writing Tw for the image in H̃0 of ψ(w) ∈ B̃0.

Theorem 3.19. — The elements {Tw}w∈NW (W0) form a basis of H̃0.
The subset {Tw}w∈W0 spans a subalgebra which can be identified with H0
with its standard basis. The subset {Tu}u∈U0 spans a subalgebra which
can be identified with the group algebra kU0 with its obvious basis. Multi-
plication induces a k-module isomorphism H0 ⊗k kU0

∼→ H̃0 and we have

TwTu = Twu = TuTu−1wu for w ∈W0, u ∈ U0.

Proof. — This follows by combining the definition of H̃0 with Theo-
rem 3.13 and Corollary 3.12. �
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Let (SU , RU ) be a presentation by generators and relations for the monoid
U0, where SU is stable under taking inverses. It follows from Theorem 3.19
that a presentation of H̃0 is obtained by taking as generating set {Ts}s∈S0∪
{Tu}u∈SU

with the following relations:
• the relations of the Hecke algebra H0 on the elements Ts for s ∈ S0,
• the relations RU on the elements Tu for u ∈ SU (which entail in

particular that TuTu−1 = Tu−1Tu = 1 for all u ∈ SU ),
• the relations Tu−1TsTu = Tu−1su for all u ∈ SU , s ∈ S0.

Recall that whenW0 is a parabolic subgroup ofW , a presentation (SU , RU )
of U0 can be given using the results of [4, 7]. We are not aware of any
similarly nice recipe for a presentation of U0 when W0 is an arbitrary
reflection subgroup ofW , but see Lemma 4.3 below for a related statement.

4. Groupoid descriptions of normalizers

In this section we present an alternative proof of the splitting of (1.2),
which we find enlightening. The main idea is to adopt a more canonical
point of view: instead of choosing a reflection subgroup W0 of our Coxeter
group W , we consider a groupoid (or rather, several groupoids) involving
not just W0 but all its conjugate subgroups. Thus we in fact upgrade the
statement about groups to one about groupoids. The constructions and re-
sults of this section are valid for an arbitrary (not necessarily finite) Coxeter
group, except for the splitting of the short exact sequence (1.2) (proved after
Theorem 4.6 below), which as before is valid under the assumption (3.4).
This idea was inspired by the Brink–Howlett groupoid description [4] of

the subgroup U0 in the case where W0 is a parabolic subgroup of W . How-
ever, our groupoids are different from theirs, and are defined for reflection
subgroups which are not necessarily parabolic. We will comment further
on the relationship between our groupoids and theirs in Remark 4.5.

4.1. Preliminaries on groupoids

A reference for the small amount of category theory we will need is [9].
A groupoid is a small category G in which every morphism is invertible.
We say that two objects x, y of G are in the same connected component
if HomG(x, y) is non-empty. If this holds, then the groups EndG(x) and
EndG(y) are isomorphic, with every morphism ϕ ∈ HomG(x, y) defining an
isomorphism EndG(x) ∼→ EndG(y) by conjugation.
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Recall from [9, Section II.8] the general concepts of congruences on a
category and quotient categories. To specify a congruence on a groupoid
amounts to specifying a collection K• = (Kx) of subgroups Kx < EndG(x)
for each object x of G, satisfying the compatibility condition that for any
ϕ ∈ HomG(x, y) we have ϕKxϕ

−1 = Ky. Note that this condition implies
in particular that Kx C EndG(x) for every x. Given such K• = (Kx),
the quotient groupoid G/K• has the same objects as G, and morphism
sets HomG/K•(x, y) = HomG(x, y)/ ∼, where the equivalence relation ∼ is
defined by specifying that, for any ψ,ψ′ ∈ HomG(x, y),

ψ ∼ ψ′ ⇐⇒ ψ−1ψ′ ∈ Kx,

which is equivalent to

ψ′ψ−1 ∈ Ky.

The composition of morphisms in G/K• is induced by that in G. In other
words, we have a full functor G � G/K• which is the identity on objects
and maps each morphism ϕ ∈ HomG(x, y) to the equivalence class ϕKx =
Kyϕ ∈ HomG/K•(x, y).

4.2. Groupoids of reflection subgroups

Let (W,S) be a Coxeter system. Consider the groupoid N whose objects
are the reflection subgroups of W , with

HomN (W1,W2) :=
{
w ∈W ;wW1w

−1 = W2
}

and composition given by multiplication in W . Thus for any reflection sub-
group W0 of W , the group EndN (W0) is exactly the normalizer NW (W0).
The connected components of N are the conjugacy classes of reflection sub-
groups of W . For what follows, it would make no difference if we restricted
attention to a single conjugacy class of reflection subgroups, so a reader
who prefers groupoids to be connected may imagine that we have done so.

When it is necessary to distinguish between elements of W and the var-
ious morphisms in N which they represent, we will write the elements of
HomN (W1,W2) as arrows W2

w←− W1. We use left-facing arrows so that
the morphisms compose in the expected order:(

W3
w←−W2

w′←−W1

)
=, W3

ww′←−W1.

The main advantage of considering these groupoids is that, although we
do not know a general presentation of the group NW (W0), it is easy to give
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a presentation for the groupoid N as a whole, in the sense of presentations
of categories [9, Section II.8].

Lemma 4.1. — As a category, N has the following presentation:
• the generators are the morphisms sW1s

s←−W1, for s any element
of S and W1 any object of N ;

• the relations are the Coxeter relations

(
W1

s←− sW1s
s←−W1

)
= idW1 ,stst · · ·︸ ︷︷ ︸

m

W1 · · · tsts︸ ︷︷ ︸
m

s←− tst · · ·︸ ︷︷ ︸
m−1

W1 · · · tst︸ ︷︷ ︸
m−1

t←− · · · ←−W1


=

tsts · · ·︸ ︷︷ ︸
m

W1 · · · stst︸ ︷︷ ︸
m

t←− sts · · ·︸ ︷︷ ︸
m−1

W1 · · · sts︸ ︷︷ ︸
m−1

s←− · · · ←−W1

 ,

for s 6= t ∈ S such that st has finite order m in W .

Proof. — This is obvious from the fact that W itself has such a Coxeter
presentation. �

Now let U be the sub-groupoid of N which has the same set of objects
but with

HomU (W1,W2) :=
{
w ∈W ;wW1w

−1 = W2, N(w) ∩W2 = ∅
}
.

Note that by (3.1) the condition N(w) ∩ W2 = ∅ could be replaced by
N(w−1)∩W1 = ∅. The fact that this condition does define a sub-groupoid of
N is an easy consequence of (3.2). For any objectW0, the group EndU (W0)
is exactly the complementary subgroup U0 of W0 in NW (W0) considered
in the previous section.
Let T• denote the “tautological” collection of subgroupsW0 < EndN (W0)

for all objects W0 of N , and let N := N/T• be the quotient groupoid
with EndN (W0) = NW (W0)/W0. The splitting of (1.1) has the following
groupoid version:

Lemma 4.2. — The composition U ↪→ N � N is an isomorphism of
groupoids.

Proof. — Note that all the functors involved are the identity on the set
of objects. It follows from Lemma 3.2 that the connected components of U
are the same as those of N , and hence the same as those of N . Therefore
the claim follows from the group isomorphism U0

∼→ NW (W0)/W0 proved
in Lemma 3.3. �
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Of the generating morphisms sW1s
s←− W1 of N , those which belong

to the sub-groupoid U are those where s /∈ W1, or equivalently s /∈ sW1s.
(Note that it is possible to have s /∈ W1 and sW1s = W1.) A crucial
observation is that these morphisms generate U .

Lemma 4.3. — As a category, U has the following presentation:
• the generators are those generators sW1s

s←−W1 ofN which belong
to U , i.e. satisfy the additional condition that s /∈W1;

• the relations are the same Coxeter relations as in the above pre-
sentation of N , whenever those relations involve only generators
belonging to U .

Proof. — Suppose that W2
w←− W1 is a morphism of N and let w =

s1s2 · · · sk be a reduced expression for w. Then W2
w←− W1 equals the

following composition of generators of N :

W2
s1←− s1W2s1

s2←− s2s1W2s1s2
s3←− · · · sk←−W1.

Since N(w) = {s1s2 · · · si−1sisi−1 · · · s2s1; 1 6 i 6 k}, we have

N(w) ∩W2 = ∅ ⇐⇒ si /∈ si−1 · · · s1W2s1 · · · si−1, 1 6 i 6 k.

Thus W2
w←− W1 is a morphism of U if and only if all the generators

involved in the above expression belong to U . The claim now follows from
Lemma 4.1. �

Example 4.4. — Let (W,S) be of type D4 and define W0 = 〈s1, s2, s4, t〉
as in Example 3.6, with t = s3s1s2s4s3s4s2s1s3. The other reflection sub-
groups in the conjugacy class of W0 are

W1 = s3W0s3 = 〈s1s3s1, s2s3s2, s4s3s4, s1s2s4s3s4s2s1〉

and

W2 = s1W1s1 = s2W1s2 = s4W1s4

= 〈s3, s1s2s3s2s1, s1s4s3s4s1, s2s4s3s4s2〉 .

As a consequence of Lemma 4.3, the connected component of U with
objects W0,W1,W2 is completely encoded by the multi-graph where the
(bi-directional) edges represent the conjugations by elements of S not be-
longing to the subgroups involved:

W0 W1 W2
s3 s2

s1

s4
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That is, the morphisms in U between these objects are equivalence classes of
directed walks in this multi-graph, where the equivalence relation on walks
is that given by the Coxeter relations. For example, the three non-identity
elements of U0, namely s3s1s2s3, s3s2s4s3, and s3s1s4s3, are walks from
W0 to W2 and back again. The Coxeter relations imply that, for example,
walking from W1 to W2 along the s1 edge and then walking back along the
s2 edge is equivalent to walking first along the s2 edge and then back along
the s1 edge; and walking from W1 to W2 and back along the same edge is
equivalent to not moving.

Remark 4.5. — One can give an alternative description of the groupoid U
in terms of the root system Φ of (W,S), as in Remark 3.5. The map sending
W0 to the subset Π0 ⊆ Φ+ is a bijection between reflection subgroups ofW
and subsets of Φ+ satisfying the condition of [6, Theorem 4.4]; call these
the simple subsets of Φ+. For w ∈ W , we have N(w−1) ∩W1 = ∅ if and
only if w(Π1) is a subset of Φ+, in which case it is clearly a simple subset.
Hence U is isomorphic to the groupoid U ′ where the objects are simple
subsets of Φ+ and

HomU ′ (Π1,Π2) := {w ∈W ;w(Π1) = Π2} .
Note that, under this isomorphism, the generators of U described in Lem-
ma 4.3 correspond to the morphisms s(Π1) s←− Π1 where s ∈ S and
αs /∈ Π1.
In [4], Brink and Howlett effectively study the full sub-groupoid U ′′ of U ′

where the objects are the subsets of Π, all of which are simple in the above
sense; the corresponding reflection subgroups are the standard parabolic
subgroups ofW . In fact, they restrict attention to the connected component
G(J,W ) of U ′′ containing a fixed subset J ⊆ Π, and give a presentation
of G(J,W ) in [4, Theorem A] and a “semidirect product decomposition”
of G(J,W ) in [4, Theorem B]. Since G(J,W ) has fewer objects in general
than the connected component of U ′ which contains it, their presentation is
both more complicated than that given in Lemma 4.3, and more useful as a
way of describing the endomorphism groups U0. However, their results say
nothing about the connected components of U consisting of non-parabolic
reflection subgroups.

4.3. Artin groupoids

As in the previous section, let B denote the Artin group associated to
(W,S), and let π : B � W be the projection with its non-homomorphic
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section w 7→ w. Define a groupoid B̂ with the same set of objects as N , but
with

HomB̂ (W1,W2) :=
{
β ∈ B;π(β)W1π(β)−1 = W2

}
.

For any object W0 we have EndB̂(W0) = π−1(NW (W0)) = B̂0. It is easy to
see that the subgroups K0 C B̂0 defined in the previous section constitute
a compatible collection, so that we can form the quotient groupoid B̃ :=
B̂/K• with EndB̃(W0) = B̃0.
The projection π : B � W induces a full functor B̂ � N . Since

K0 < ker(π), this functor factors through a full functor Π̃ : B̃ � N .
By definition, Π̃ is the identity on objects and induces the projections
π̃0 : B̃0 � NW (W0) on endomorphism groups.
The point now is that U can be embedded in B̃ by taking positive lifts:

Theorem 4.6. — There is a faithful functor Ψ : U ↪→ B̃ which is the
identity on objects and maps each morphism w ∈ HomU (W1,W2) to wK1 ∈
HomB̃(W1,W2). We have the following commutative diagram of functors.

B̃

Π̃����
U

Ψ
??

� � //

∼ ��

N

����
N

Proof. — Recall the presentation of U given in Lemma 4.3. We first want
to show that there exists a functor Ψ : U → B̃ which is the identity on
objects and maps each generating morphism sW1s

s←− W1 of U to the
morphism sW1s

σK1←− W1 of B̃, where σ is the Artin generator of B corre-
sponding to s ∈ S. We need only check that these morphisms in B̃ satisfy
the required Coxeter relations. The relation(

W1
σ(σK1σ

−1)
←− sW1s

σK1←−W1

)
= idW1

is equivalent to σ2 ∈ K1, which holds because s /∈W1 by assumption. The
braid-type relations hold simply because the analogous braid relations hold
in B.
Now it is clear that the functor Ψ : U → B̃ defined in this way maps each

morphism W2
w←− W1 of U to the morphism W2

wK1←− W1 of B̃. The top
commutative triangle follows, and implies that Ψ is faithful. The bottom
commutative triangle is from Lemma 4.2. �
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Restricting the functors in Theorem 4.6 to the endomorphism groups at
a particular object W0, we deduce the following commutative diagram of
groups.

(4.1) B̃0

π̃0
����

U0

ψ

99

� � //

∼
%%

NW (W0)

����
NW (W0)/W0

Thus, we have a new proof of the existence of the homomorphism ψ :
U0 ↪→ B̃0 which splits the short exact sequence (1.2) as in Theorem 3.13
(still under the assumption (3.4), so that this short exact sequence exists).

Remark 4.7. — As noted in Remark 4.5, a particularly interesting sub-
groupoid of U is the Brink–Howlett groupoid obtained by restricting to
standard parabolic subgroups of W . As a consequence of Theorem 4.6 we
have an embedding of this Brink–Howlett groupoid in B̃ also.

5. An example of splitting for the group G(d, 1, n)

In this section, we prove that the short exact sequence (1.2) splits when
W is the complex reflection group G(d, 1, n) and W0 is the parabolic sub-
group G(d, 1, k) for 1 6 k 6 n − 1. We will see in Example 6.6 that this
splitting does not hold for arbitrary parabolic subgroups W0 < G(d, 1, n).

5.1. Preliminaries

Fix n > 1, d > 2. Recall that the group W = G(d, 1, n) has a Coxeter-
like presentation with generating set S = {t1, s1, · · · , sn−1}, with relations
given by the type Bn braid relations (with t1s1t1s1 = s1t1s1t1), the relation
td1 = 1, and the relations s2

i = 1 for all 1 6 i 6 n− 1. This presentation is
encapsulated in the following diagram from [5].

d 2 2 · · · 2
t1 s1 s2 sn−1
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In the standard realization ofW as the group of monomial n×n matrices
whose nonzero entries are dth roots of unity, t1 is the diagonal matrix
with exp(2π

√
−1/d) in the first diagonal entry and 1 in the other diagonal

entries, and s1, s2, · · · , sn−1 are the standard permutation matrices for the
adjacent transpositions.
Note that when d = 2 we recover the Coxeter group of type Bn. By [5,

Theorem 3.6], the braid group B of W can be identified with the Artin
group of type Bn, whatever the value of d. We denote its standard Artin
generating set by Σ = {τ1, σ1, · · · , σn−1}, where π(τ1) = t1 and π(σi) = si;
these Artin generators are braided reflections in the sense of Section 2.
Then P = ker(π : B � W ) is generated by elements of two types: the
first type of generator is βτd1 β−1 for some β ∈ B, which topologically is a
meridian around the hyperplane for the order-d reflection π(βτ1β−1), and
the second type of generator is βσ2

i β
−1 for β ∈ B and 1 6 i 6 n− 1, which

topologically is a meridian around the hyperplane for the order-2 reflection
π(βσiβ−1).

A major difference between the d = 2 Coxeter case and the d > 3
non-Coxeter case is that in the latter case there is no natural way to
define a positive lifting map W → B. However, consider the reflections
ti := si−1 · · · s1t1s1 · · · si−1 for 2 6 i 6 n. In matrix terms, ti is the diago-
nal matrix with exp(2π

√
−1/d) in the ith diagonal entry and 1 in the other

diagonal entries. In the d = 2 case, si−1 · · · s1t1s1 · · · si−1 is a reduced ex-
pression, so the positive lift of ti is σi−1 · · · σ1τ1σ1 · · · σi−1. This motivates
defining the “positive lift” τi := σi−1 · · · σ1τ1σ1 · · · σi−1 for arbitrary d.

5.2. A direct product decomposition

Now fix 1 6 k 6 n − 1 and let S0 = {t1, s1, · · · , sk−1} and W0 = 〈S0〉
∼= G(d, 1, k). From the matrix realization it is easy to see that

(5.1) NW (W0) = W0 × U0

where U0 := 〈SU 〉 ∼= G(d, 1, n− k) for SU := {tk+1, sk+1, sk+2, . . . , sn−1}.
The notation U0 is intended to be reminiscent of the Coxeter case, and
indeed when d = 2 this subgroup U0 does coincide with that in Lemma 3.3;
the semi-direct product happens to be direct in this case. Since both W0
and U0 are groups of the same form as W , the above comments about W
apply also to them with the obvious modifications.
The group K0 = ker(P � P0) is generated by those generators βτd1 β−1

and βσ2
i β
−1 of P for which the corresponding hyperplane is not in A0, i.e.

for which the reflection π(βτ1β−1) or π(βσiβ−1) does not belong to W0.
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Since W0 is a parabolic subgroup of W , we have an injective homomor-
phism B0 ↪→ B as in (2.1) whose image is a complement to K0 in π−1(W0).
In this case, the homorphism is the obvious one from the Artin group of
type Bk to the Artin group of type Bn, sending τ1 to τ1 and σj to σj for
1 6 j 6 k− 1. So the inclusion B0 ↪→ B̃0 maps τ1 to τ1K0 and σj to σjK0
for 1 6 j 6 k − 1.
We can now prove an analogue of Theorem 3.13 in the present case,

where the splitting is still in some sense given by taking positive lifts.

Proposition 5.1. — With W = G(d, 1, n) and W0 = G(d, 1, k) as
above, the splitting of the short exact sequence (1.1) given by (5.1) lifts
to a splitting of the short exact sequence (1.2). Namely, after identifying
NW (W0)/W0 with U0, the splitting of (1.2) is an injective group homo-
morphism ψ : U0 ↪→ B̃0 which is defined on the generating set SU by

ψ (tk+1) = τk+1K0 and ψ(si) = σiK0, for k + 1 6 i 6 n− 1.

We have a direct product decomposition

B̃0 ∼= B0 × ψ(U0).

Proof. — We first want to show that there exists a group homomorphism
ψ : U0 → B̃0 which has the stated definition on the generators. For this,
we must show that the elements τk+1K0, σk+1K0, · · · , σn−1K0 of B̃0 sat-
isfy the relations in the Coxeter-like presentation of U0 ∼= G(d, 1, n − k)
analogous to that given above for W .
For the braid relations in this presentation, we can in fact see that they

hold already for the elements τk+1, σk+1, · · · , σn−1 in the type-Bn Artin
group B. This is clear for the braid relations not involving τk+1, since those
are themselves relations in the Artin presentation of B. Hence we only need
to check that

(5.2)
τk+1σi = σiτk+1, for k + 2 6 i 6 n,

and τk+1σk+1τk+1σk+1 = σk+1τk+1σk+1τk+1.

Note that the truth of (5.2) is independent of d, so we can temporarily
assume that we are in the d = 2 Coxeter case. Then (5.2) follows from the
observations that

(5.3)
tk+1si = sitk+1, for k + 2 6 i 6 n,

tk+1sk+1tk+1sk+1 = sk+1tk+1sk+1tk+1,

and moreover that the lengths add in each of the expressions in (5.3).
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It remains to show that the order relations hold in B̃0. For k + 1 6 i 6
n − 1 we have si /∈ W0, so σ2

i ∈ K0 which means that (σiK0)2 = 1K0 as
required. We also need to show that (τk+1K0)d = 1K0. Note that

(5.4) τk+1 =
(
σk · · · σ1τ1σ

−1
1 · · · σ−1

k

) (
σk · · · σ2σ

2
1σ
−1
2 · · · σ−1

k

)(
σk · · · σ3σ

2
2σ
−1
3 · · · σ−1

k

)
· · · σ2

k.

Now all the factors on the right-hand side of (5.4) except the first factor
belong to K0, since for all 1 6 i 6 k, the reflection sk · · · si · · · sk has
order 2 and is not in W0. Hence

(5.5)
(τk+1K0)d =

(
σk · · · σ1τ1σ

−1
1 · · · σ−1

k

)d
K0

=
(
σk · · · σ1τ

d
1 σ
−1
1 · · · σ−1

k

)
K0 = 1K0,

where the last equation holds since sk · · · s1t1s1 · · · sk = tk+1 is a reflec-
tion of order d which is not in W0. This concludes the proof that the
homomorphism ψ : U0 → B̃0 exists.

Since π̃0(ψ(u)) = u holds when u is one of the generators of U0, it holds
for all u ∈ U0. Hence ψ : U0 ↪→ B̃0 is injective and is a splitting of (1.2).
Finally, to show that the semidirect product B0 o ψ(U0) is direct, we

need to show that each of τ1K0, σ1K0, · · · , σk−1K0 commutes with each of
τk+1K0, σk+1K0, · · · , σn−1K0 in B̃0. Since each of τ1, σ1, · · · , σk−1 com-
mutes with each of σk+1, · · · , σn−1 as part of the Artin relations of B, it
suffices to show that τ1τk+1 = τk+1τ1 and σiτk+1 = τk+1σi for 0 6 i 6 k−1.
These equations can be proved in the same way as (5.2). �

6. Counter-examples in the general case

In this section we demonstrate that the short exact sequence (1.2) need
not split in the general setting of Section 2, when W is a finite complex
reflection group. It is notable that in some of our counter-examples the
groupW is close to being a Coxeter group, in the sense that it is a Shephard
group, or in the sense that all its reflections have order 2; nevertheless the
relationship betweenW and its subgroupW0 fails to be sufficiently like the
Coxeter case.

6.1. Non-parabolic reflection subgroups with no complement in
their normalizer

As mentioned in the introduction, it was shown by Muraleedaran and
Taylor [12] that when W0 is a parabolic subgroup of W , there is always a

ANNALES DE L’INSTITUT FOURIER



BRAID GROUPS OF NORMALIZERS OF REFLECTION SUBGROUPS 2301

subgroup ofNW (W0) which is complementary toW0. There are cases where
W0 is a non-parabolic reflection subgroup and there is no such complement,
i.e. the short exact sequence (1.1) does not split. This of course rules out
the splitting of (1.2).

Example 6.1. — Suppose that W = 〈s〉 is cyclic of order d > 2. If e
is a divisor of d with 1 < e < d, then W0 = 〈se〉 is a non-parabolic
reflection subgroup of W of order d/e. If gcd(e, d/e) > 1, there is clearly
no complement to W0 in W .

One could eliminate Example 6.1 by restricting to the case when W0 is a
full reflection subgroup of W , meaning that W0 contains all the reflections
in W whose hyperplane is in A0. However, this still leaves many examples;
we content ourselves with two.

Example 6.2. — Let W be the rank-2 imprimitive irreducible reflection
group G(4, 2, 2) of order 16, in which the reflections are the order-2 unitary
reflections of C2 with hyperplanes defined by the linear forms z1, z2, z1 +
z2, z1 − z2, z1 +

√
−1 z2, z1 −

√
−1 z2. Let W0 be the reflection subgroup

of order 4 generated by the reflections with hyperplanes defined by z1, z2.
Then NW (W0) = W , but there is no complement to W0 in W . Indeed, if
there was such a complement U0, then U0∩G(4, 4, 2) would be a complement
to the centre in a dihedral group of order 8.

Example 6.3. — Let W be the rank-2 primitive irreducible reflection
group of order 48 known as G6 in the Shephard-Todd numbering (a Shep-
hard group). The reflection subgroup W ′ of W generated by the six re-
flections of order 2 is a copy of G(4, 2, 2). If we let W0 C W ′ be as in the
previous example, then NW (W0) = W ′, so once again there is no comple-
ment to W0 in NW (W0).

6.2. Central elements of braid groups

Even when (1.1) splits, there can be an obstruction to the splitting
of (1.2) coming from the centre Z(B) of B. This obstruction can be seen
already in the most trivial non-parabolic example.

Example 6.4. — Continue the notation of Example 6.1, without assum-
ing gcd(e, d/e) > 1. Then B̃0 = B = 〈σ〉 is infinite cyclic and B0 is the
nontrivial subgroup 〈σe〉, so (1.2) does not split, regardless of whether (1.1)
splits.
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We now show that a similar phenomenon happens more generally, in-
cluding in some cases when W0 is a parabolic subgroup of W .
We assume henceforth that W is irreducible. The centre Z(W ) is then

cyclic and acts on Cn by scalar multiplication. Let d := |Z(W )| and let
zW denote the generator of Z(W ) which acts on Cn as multiplication by
exp(2π

√
−1/d).

Recall from [5, Lemma 2.4] that there is a canonical central element
zP ∈ P = π1(X, x̃), the homotopy class of the loop [0, 1] → X : t 7→
exp(2π

√
−1 t)x̃. Define zP0 ∈ P0 = π1(X0, x̃) similarly, as the homotopy

class of the very same loop. Then under our identification of P0 with P/K0,
zP0 corresponds to zPK0.
Let zB ∈ B = π1(X/W, [x̃]W ) be the homotopy class of the loop in

X/W which is the image of the path [0, 1] → X : t 7→ exp(2π
√
−1 t/d)x̃

from x̃ to zW (x̃). It is shown in [5, Lemma 2.22] that zB ∈ Z(B), that
π(zB) = zW and that zdB = zP . (In fact, it is known that Z(B) = 〈zB〉,
by [5, Theorem 2.24] and [1, Theorem 12.8]; we will not need this.)

Proposition 6.5. — Suppose that W is irreducible with d = |Z(W )|
and that W0 is a reflection subgroup of W .

(1) If (1.2) splits, then there is an element γ ∈ B0 such that γd = zP0 .
(2) If NW (W0) = W0 × Z(W ), then the converse to (1) also holds.

Proof. — Note that zBK0 ∈ B̃0 maps to zWW0 ∈ NW (W0)/W0 under
the homomorphism in (1.2). Since (zWW0)d = 1W0 holds in NW (W0)/W0,
the splitting of (1.2) implies that for some γ ∈ B0 we have (γ−1(zBK0))d =
1K0 in B̃0. Moreover, if NW (W0) = W0×Z(W ), then the splitting of (1.2)
is equivalent to the existence of such γ ∈ B0. Since zBK0 ∈ Z(B̃0) and
(zBK0)d = zPK0 = zP0 , the equation (γ−1(zBK0))d = 1K0 in B̃0 is equiv-
alent to the equation γd = zP0 in B0. �

In the special case when W0 = 〈s〉 is cyclic of order m > 2, we have
that B0 = 〈σ〉 is infinite cyclic with σm = zP0 , so the existence of γ ∈ B0
such that γd = zP0 is equivalent to d | m. This means that if d - m,
Proposition 6.5(1) guarantees that (1.2) does not split. Example 6.4 was
such a case, and we can now easily find similar non-splitting examples with
W0 parabolic. The examples below all have the property that NW (W0) =
W0 × Z(W ).

Example 6.6. — Let W = G(3, 1, 2), for which d = 3, and let W0 be a
rank-1 parabolic subgroup generated by a reflection of order 2. Then (1.2)
does not split.
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Example 6.7. — Let W = G(4, 2, 2) as in Example 6.2, for which
d = 4, and let W0 be any rank-1 parabolic subgroup, necessarily of or-
der 2. Then (1.2) does not split.

Example 6.8. — Let W be the rank-2 primitive irreducible reflection
group of order 24 known as G4 in the Shephard–Todd numbering, for which
d = 2. It is a Shephard group, with braid group the Artin group of type A2.
Let W0 be a rank-1 parabolic subgroup, necessarily of order 3. Then (1.2)
does not split.

Much is known about the existence of roots of the canonical element zP
in the braid group B. In particular, if W is irreducible and well-generated,
meaning that it can be generated by n reflections, then Bessis proved in [1,
Theorem 12.4(i)] that for any positive integer m, there exists an element
γ ∈ B such that γm = zP if and only if m is regular for W (the “if”
direction is easy). Recall that the regular numbers for W are the orders of
those roots of unity which arise as eigenvalues for elements of W where the
corresponding eigenvector belongs to the hyperplane complement X. The
regular numbers can be deduced from the degrees and codegrees of W as
explained in [1, Theorem 1.9(1)].
So Proposition 6.5 implies the following result.

Corollary 6.9. — Suppose that W is irreducible with d = |Z(W )|,
and that W0 is a reflection subgroup of W such that each irreducible con-
stituent of W0 is well-generated.

(1) If (1.2) splits, then d is regular for each irreducible constituent of
W0.

(2) If NW (W0) = W0 × Z(W ), then the converse to (1) also holds.
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