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PERTURBATION OF HARMONIC STRUCTURES
AND AN INDEX-ZERO THEOREM

by Bertram WALSH (1)

0. Introduction.

This paper gives a complete solution to the problem that mo-
tivates the paper [11] : given a pair (W , 90) consisting of a locally
compact space and a complete presheaf of vector spaces of conti-
nuous functions on open subsets of W satisfying the assumptions of
an axiomatic theory of "harmonic" functions, and supposing W
compact, determine the sheaf cohomology groups H^W ,96), q > 1.
The treatment here is much more general : the hypothesis placed on
36 is much less severe than that of the local validity of the axioms
of Brelot [3] or even of the weaker axioms of Bauer [I], so that
the present material is applicable not only to elliptic differential
equations but also to some parabolic equations. However, most of
the attention is given to the case in which W is compact (normal
structures in the sense of [11] are not considered at all). The end
result is easily stated : for compact W,

dim ir(W ,36) = dim H^W ,36) < oo ,

and (as in [11]) H^W ,36) = 0 for q > 2. In the classical setting
in which W is a compact manifold and 36 the solutions of a second-
order elliptic differential equation on the manifold, the equality of
the dimensions of H°(W,36) and 11 ,̂36) is equivalent to the
equality of the dimensions of the spaces of solutions of the given
equation and of its adjoint ; we give an axiomatic version of that
classical theorem in 4.2.5 below. In order to establish these end
results, we introduce a notion of perturbation of the given presheaf

(1) Partially supported by NSF GP-11625.
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96 that we believe is of independent interest. This notion is an
analogue in the axiomatic setting of the replacement of a given dif-
ferential operator L by an operator of the form u ———> Lu + f'u,
although it is much more general even in the classical cases. This
perturbation theory does not depend on the compactness of W,
and we intend in subsequent papers to make use of it for purposes
other than that for which we introduce it here.

The ground plan of the paper is as follows. § 1 is devoted to
matters which are well known for the most part, but unfortunately
not well known in the generality needed here. We introduce axioms
for the presheaves that we are going to study, develop some of their
basic properties, and then discuss such things as the notions of specific
restriction and the extension theorem of [7], the sheaves <% and &
of [II] , and some of the properties of the potential "kernels"
of [9]. The axioms are probably not much different from those of [2],
although a local Trennungsaxiom is added. It is with some trepida-
tion that we introduce another set of axioms into a fipid already
burdened with so many of them ; however, in § 3 below we have
to construct new sheaves ^ out of the given sheaf 96, and it is a great
technical convenience to work in an axiomatic framework in which
the ^'s inherit the properties that 96 is known to possess. Most
of § 1 is implicitly devoted to showing that the proofs of the theorems
we need from [7], [9] and [11] are valid in the present axiomatic
setting. Since this paper is not primarily expository, however, we
have refrained from transcribing the proofs, and we simply refer
the reader, whom we have armed with appropriate lemmas (minimum
principles, etc.), to the theorems and proofs given in those papers ;
he should be able to verify their validity in the present context
with no great difficulty. § 2 consists mostly of technical preparation
for later sections, although we do prove one reasonably general
theorem (2.1.2). § 3 is the perturbation theory. Finally, § 4 contains
the end results of the paper, theorems 4.1.4 and 4.2.5.

A word about some standard notation : if Z is a topological
space, 6 (Z), Q^ (Z), 6^ (Z) and 3C(Z) denote its spaces of all continuous
(real-valued) functions, all continuous functions vanishing at o°, all
bounded continuous functions and all continuous functions of com-
pact support, respectively. <°(Z) and spaces of not-necessarily-boun-
ded continuous functions are given the topology of uniform conver-
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gence on compacta ; spaces of bounded functions are given the to-
pology of uniform convergence. In addition to that last topological
convention, however, we make a metric one : if E is a space of
bounded real-valued functions on some set, E will be given the su-
premum norm, which will invariably be denoted by 11 ||̂ , unless
very explicit mention is made to the contrary (cf. 1.7.3 and 1.7.4
below) ; if F is a normed space, the linear-transformation space
S(E ,.F) will invariably be given the operator norm corresponding
to the || ||̂  norm on E and the norm given on F, unless explicit
mention is made to the contrary. The pointwise infimum and su-
premum of two real-valued functions f and g will be denoted by
f ̂  g and / v g respectively.

1. Axioms and other preliminaries.

1.1. Axioms. — We shall use four axioms. Rather than listing all
of them at once, we shall discuss each a bit before stating the next.

AXIOM I. — W is a connected, locally connected locally compact
Hausdorff space with a countable basis, 9€ is a complete presheaf of
vector spaces of real-valued continuous functions over the base space W.

This requires no discussion. We define regular sets in the usual
way [1, p. 10], but we use H(/, V) instead of Hy.

AXIOM II. — To every x € W is assigned a connected open neigh-
borhood Vy on which there exists a strictly positive section 0/86,
and a neighborhood basis U (jc) consisting of regions that are relatively
compact in Vy and regular for 96.

The representing measures for points in regular open sets are
defined in the usual way [1, p. 12] ; the representing measure for
a point x in a regular set V will be denoted by p^.

AXIOM III. — If V is an open subset of W, then every uniformly
bounded subset of SCy is equicontinuous.

It is evident that local uniform boundedness is sufficient for
equicontinuity, and that such equicontinuity is uniform on compacta.

We define superharmonic functions in essentially the usual way,
except that it is convenient to build local boundedness into the
definition.
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DEFINITION I . I . I . - Given an open set U in W, a superharmonic
function on U is a lower-semicontinuous, locally bounded real-valued
function s on U, such that for every x G U and every V E U (x) with
V C U, the inequality H( / ,V)<5 holds throughout V whenever
/E e(3V) has the property that f<s\9V.

Clearly a restriction of a superharmonic function is a super-
harmonic function. By the definition of the representing measure
and of the (upper) integral for bounded lower-semicontinuous func-
tions, the last defining condition is exactly that j sdp^<.s(x).
It should be noted that the convergence axiom III is sufficiently
strong that for any bounded function / on the boundary of a regular
set V, the functions x -——> f f dp^ and x -——> j f dp^
belong to 3^.

AXIOM IV. - On each of the sets Vy of axiom II, sufficiently
many continuous superharmonic functions exist that they separate
the points of U^ strongly (i.e., for any pair of distinct points y and
z in Vy there exist continuous superharmonic s and t defined in U^,
such that s ( y ) t(z) ̂  t ( y ) s(z)).

1.2. Superharmonic functions.

DEFINITION 1.2.1. — Given open U C W and a basis » for the
topology of U consisting of open sets regular with respect to9€,
a 8 -nearly superharmonic function on an open set X C U is a locally
bounded real-valued function s on X with the property that for every

— /'^t \rV E S with V C X and every x E V, the inequality f s dpy < s(x)
holds. If s is lower-semicontinuous, s will be called ̂ -superharmonic.

The considerations of [1, Ch. I, § 3] now operate to prove
the Bauer minimum principle :

LEMMA 1.2.2. — If u is a nonnegative » -superharmonic function
on U, if the 8 -superharmonic functions on U strongly separate the
points of U, and if every compact subset of U has a neighborhood
on which there exists a strictly positive section of!f€, then u~^(0)
is not compact in U.
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PROPOSITION 1.2.3. - Let u and U be as in 7.2.2, except that
u is not assumed nonnegative. Suppose Z is a compactification of U
such that ( 1 ) u has a lower-semicontinuous extension to Z and ( 2 )
there is a continuous strictly positive function on Z "whose restriction
to U is ^-superharmonic. Then if u is nonnegative on Z\U, it is
nonnegative on all of Z.

COROLLARY 1.2.4. - IfX C W is an open set and » is a basis for
the topology of X, such that the 8 -superharmonic functions on X
strongly separate the points of X, and if there is a strictly positive
section of 9€ defined on a neighborhood of every compact subset
of X, then the inequality j s dp^ < s(x) holds for every »-super-
harmonic function s on X, regular relatively compact V with V C X,
and x C V.

In particular, we can apply this corollary to those open sets
X C w with the property that the continuous superharmonic functions
defined on X separate the points of X strongly and a strictly positive
section of 96 is defined on a neighborhood of every compact subset
of X : we merely take » = {V : V G U(x) for some x E X, and
V c X}. It is useful to make the following definition.

DEFINITION 1.2.5. - A K-set is an open set U C W such that
there exists a neighborhood Z of V such that the continuous super-
harmonic functions on Z strongly separate points of Z and a strictly
positive element of 3€^ exists.

It is evident that the bases UOc) of axiom II are composed of
B-sets.

COROLLARY 1.2.6. — If 8 is a basis for the topology of an open
set U C W, let »o denote the family of elements of » that are B-sets.
Then for a regular V E »^, the inequality j s d p ^ < s ( x ) holds
for each superharmonic function s on U and each x €E V. In parti-
cular, every superharmonic function on U is »Q-superharmonic.

Now let a » -superharmonic function s be given on an open
set U. If Y C U is a B-set, it is clear that «y = {V G » : V C Y} is
a basis for the topology of Y, obviously composed of B-sets. By
1.2.6, all superharmonic functions on Y are 8 y'^P^harmonic ;
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in particular, the family of all S^y"811?^3™011^ functions separates
points of Y, which is the hypothesis required in 1.2.4. By that
corollary, the inequality j s d p ^ < s ( x ) holds for every regular
relatively compact set V C Y, and thus in particular it holds for
the elements of U (x) for each x E U. Hence

COROLLARY 1.2.7. - For any », a »-superharmonic function on
an open set in W is superharmonic.

The considerations of [1, Ch. II, § 1] show with virtually
no modification that the following proposition holds ; we have
already made the crucial observation that jc ——> f*fdp^ is
harmonic on V for any bounded / on 3V.

PROPOSITION 1.2.8. — The operation of lower-semicontinuous regu-
larization takes 8 -nearly superharmonic functions into superharmonic
functions, and is additive and positively homogeneous ; ifv is 8 -nearly
superharmonic on V C W, then

v(x) == lim ^ Pr cfp^ : jc € V C V C U , V G « [
Vajc ( )

and the limit is increasing for sufficiently small V at each point x.

One can attach superharmonic functions to each other at
boundaries in the usual way :

PROPOSITION 1.2.9. — Let s be a superharmonic function on an
open set U C w, and Y an open subset of U. //1 is a superharmonic
function on Y with lim inf t(y) > s(x) for each x E 3Y, then the

\^y->x
function u defined as s in U\Y and as s A t in Y is superharmonic
on U.

The crucial point, as usual, is that one can restrict one's attention
to "small" sets.

COROLLARY 1.2.10. - // U is an open subset of W and Y C U
a regular B-set, then for any superharmonic function s defined on U,
the function 5-y defined as s in U\Y and as x ——> f s dpj in
Y is a superharmonic function.
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This last corollary shows that balayage of superharmonic func-
tions results in new superharmonic functions, as long as the balayage
takes place over sufficiently small sets. That 5y < s, incidentally,
is obvious.

1.3. Potentials. — As usual, a potential on an open set U is a non-
negative superharmonic function p on U with the property that
if h E 96y and h < p, then h < 0. This definition makes sense even
if U = W and W is compact, and the zero function is always a po-
tential. Given a basis » for the topology of U composed of regular
B-sets, one can define a ft -saturated family of superharmonic func-
tions essentially as in [1, p. 53], and given a superharmonic functions
on U one can define the % -saturated hull of s as

^ : ={(((^)v,) . . . )v„^EN , V ^ , . . . , ¥ „ € « }

as in [1, p. 53]. One then has the expected

PROPOSITION 1.3.1. — IfV is an open set in W, s and f are super-
and subharmonic functions on U respectively with f < s, and 8 is
a basis for the topology of U consisting of regular B-sets, then
h = inf s^ is harmonic on U and f < h < s.

Proof. — For any V E » one has f^fy^Sy<s,hy induction,
every element of s^ dominates /, and so does the infimum h, which
is harmonic by the usual argument (valid in the presence of axiom
III).

It is obvious that h is the greatest harmonic minorant of s
(any other harmonic minorant is a candidate for use as /) so h is
independent of the choice of » . Clearly s — h is a potential. If p is
a potential and u is superharmonic, then taking / = — u and s = p
gives — M < A = 0 < p, and the corollary

COROLLARY 1.3.2. — If u is superharmonic on U, p is a potential
on U, and — p < u, then 0 < u. More generally, if V C U is an open
set and v is a superharmonic function on V such that — p < v and
lim mf^yV > 0, then v > 0 on V. I f p is strictly positive on V and
— p < v is known to hold only outside a compact subset of V, it is
still true that v > 0.
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Proof. — The first assertion is obvious. For the second, define
w as v A 0 in V and as 0 in U\V ; then w is superharmonic on U
by 1.2.9 above, and - p < w, so 0 < w and w |V < y. For the
third, replace p by such a large positive multiple ap that - ap < v
holds.

Each of the various assertions of this corollary is sometimes
known as the "minimum principle". A particular consequence of
the corollary is the fact that if W is compact, then all superharmonic
functions on W are nonnegative (and the only harmonic function
the zero function) whenever a strictly positive potential exists
on W.

The fact that the sum of two (or even a locally uniformly
convergent, locally uniformly bounded series of) potentials is a
potential, and the uniqueness, positivity and additivity of the decom-
position s = p + h of a superharmonic function with a subharmonic
minorant into the sum of a potential and a harmonic function can
be proved by standard methods in the present context. We omit
the details.

The following definition simply introduces some notation we
should need later anyway.

DEFINITION 1.3.3. — The cone of continuous potentials on an
open set U C w will be denoted by $u, and the space *u - *u
(a lattice under the pointwise operations) by Cy. Similarly, the
cone of bounded continuous potentials on U will be denoted by ,̂
and the space it generates by 0 ^. //U is relatively compact, V^j will
denote the subcone of S^ consisting of those elements that have
a continuous extension to U that is zero on 8U, and 0^j will de-
note the space generated by 9^.

We shall also need the following approximation theorem.

PROPOSITION 1.3.4. - Let U be an open set in W. The follo-
wing conditions are equivalent :

a) The continuous nonnegative superharmonic functions on U
strongly separate the points of U.

b) There exists a p € Sy such that p(x)> f p dp^ for every
regular B-set V with V C U and every x E V.
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c) For every compact K C u and every neighborhood Y of K
in U r/ze sublattice of Qy consisting of elements ^hose support is
contained in Y is dense in G(K).

d) The space Cly strongly separates the points of U.
e) There exists a strictly positive element of $y.
//* in a) the continuous nonnegative superharmonic functions

are replaced by V^j (or U is relatively compact and the continuous
nonnegative superharmonic functions are replaced by *{j), and in b)
through e ) Vy and Oy are replaced by V^j and Ct^ (or by 9^ and d^j
respectively), then the equivalence still holds, and all the resulting
(equivalent) statements are valid whenever U is a B-set (or a regular
B-set, respectively).

Proof. - a) ——> b). If V is a regular B-set, V C U, then for
any two continuous nonnegative superharmonic functions / and g
on U and any x G V we have ______ _______

f^^=f^rvgdp^<J^ffdp^[fgdp^ <
< (v7V?) oo

by the Schwarz inequality, with strict inequality holding unless /
and g are proportional on the carrier of p^. This tells us immediately
that y/Jg is superharmonic ; moreover, since the carrier of p^ is
nonempty (V being a B-set) and since the nonnegative continuous
superharmonic functions on U strongly separate points of U, we
can always find / and g for which one of the inequalities above is
strict. Taking such / and g, we shall have j ^/Jg dp^ <\/fg(y)
for y = x and therefore for all y in a neighborhood of x. By taking
a countable family of such neighborhoods (each corresponding to
some y/f^gyn^ w = 1, 2,. ..) whose union is V, then finding a sequence

00

of strictly positive multipliers {c^,}^=i such that s = ^ ^m^/^nSm
w = = l

converges uniformly on compacta in U, we can construct a continuous
nonnegative superharmonic function s on U such that j s dp^ <s(x)
for all x E V. Letting V run through a countable basis {V,,}^ for
the topology of U formed of regular B-sets, finding such an ^ for
each ¥„, and finding strictly positive multipliers ^ such that
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u = ^ j3^ converges uniformly on compacta in U, we shall have
n=\

constructed a continuous nonnegative superharmonic function such
that j u dp^ < u(x) for each ¥„ and each x E ¥„. By finding \
with x € V^C V, it is easy to see that j u dp^ < u(x) for any regular
B-set V with V C u. If u = p + h is the canonical decomposition of
u into a potential on U and a harmonic function on U, it is obvious
that j p dp^ <p(x) for each regular B-set V and x G V.

b) > c). If x and y are distinct points of K, let V and
Z be regular regions that are B-sets, neighborhoods of x and y respec-
tively, with V 0 Z = 0 and V U Z C Y. Clearly p - py and p - p^
are supported by V and Z respectively, and (p - py) (x)> °»
(P ~ Pz) (y) > 0 by choice of p. The statement c) then follows
by the lattice form of the Stone-Weierstrass theorem, applied to K.

Verifying that c) > d) > e) is trivial : the first
implication is immediate, and if Oy strongly separates the points
of U then ¥y does also, and one may thus find a sequence {p^vn=\
in ^u such that some Pn(x) > 0 at every point x in U. If{%i}^=i

00

are strictly positive multipliers such that ^ \Pn converges uniformly
w = i

on compacta, then the sum is the desired strictly positive potential.
The proof that e) ====> a) is exactly the same as the "(P^) =====$>(P^)"
part of [1, Satz 2.5.3, p. 63].

To prove the last assertion of the proposition, we need only
observe that the proofs we just gave are valid in the situations mentio-
ned in that assertion, provided that we take the sequences o ,̂ ̂  and
%, of multipliers in such a way that the respective series converge
uniformly on U (or uniformly on U respectively) rather than merely
uniformly on compacta in U. If U is a regular B-set, take Z D U an
open set on which a) above is satisfied, and construct a potential
q E »z for which b) above is satisfied ; p == q - H(q\bV , U) e V^
then clearly satisfies b) for the set U, Q.E.D.

1.4. Specific restriction ; the Herve extension theorem. — This
will be a short section, since we shall content ourselves with
observing that the whole theory of specific restriction of poten-
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tials is valid in the present axiomatic framework ; all the minimum
principles, etc., that Meyer's exposition of specific restriction in
[9, pp. 357-363] requires have been verified above. (One must take
the trivial precaution of restricting the "arbitrary" regular open
sets in Meyer's proofs—usually denoted by the letter U —to be regular
B-sets.) For p E ¥y and E a Borel set in U we shall denote by Xgp
the specific restriction of p to E ; this is slightly at variance with
[11, § 2] where we took E to be a Borel set in W and let Xg denote
the operation of specific restriction to E 0 U, but the relation between
these usages is natural enough. Meyer shows that for fixed p € $y
and x E U the set function E ———> (Xgp) (x) is a (countably addi-
tive) measure, and that for / a nonnegative bounded Borel function,
the function x ——> j f d [\. p} (x) is an element of ¥y ; we shall
denote that potential by Ayp, thus extending the notation of
[11] (where / was required to be a simple Borel function). Since
— 11/H^ p < Ayp < 11/H^ p, this is an extension by continuity ;
moreover, if p e V^j or ^, it is clear that Ayp G $^ or »^j for
/>0. We have A ^ ( A p ) = A . _ p for simple Borel functions by
[II] , and by taking limits we have it for all bounded Borel functions
on U ; that A ^ p = p and A^ p = A^.p + A p is obvious. Meyer
does not prove that Xg p depends in a positively homogeneous and
additive way on p, but the positive homogeneity is obvious and the
proof of the additivity of X^ for open E given in [7, Prop. 15.2,
p. 466] does not depend on anything other than the fact that for
any p G ^y, Xgp is specifically smaller than any (E H U)-majorant
of p. Extending specific restriction and the operations A .̂ to Qy in
the unique linear way, we make Cty into a module over the al-
gebra »u of bounded Borel functions on U, with the continuity relation
— 11/1^ p < A^p < 11/II^P tor p G 5?y and the positivity relation
0 < /, p G ^Sy > Ayp E $y valid. It is easy to verify that if
0 </G »u and p G »^ or ^, then A^p G ̂  or ̂  ; in conse-
quence, Ct^ and O^j are sub-S^j-modules of Cty.

Mme Herve's proof of the extension theorem [7, Thm. 13.2,
pp. 458-459] is valid in the present setting ; indeed, if the given
superharmonic function v of [7, Lemme 13.1, p. 457] is continuous,
one does not need to assume that it is nonnegative or that there is
a positive harmonic function defined in a neighborhood of its support.
Thus we have



328 BERTRAM WALSH

THEOREM 1.4.1 [Herve], - Let U be an open set in W in
which the equivalent conditions of 1.3.4 above hold. Then, given
a continuous superharmonic function v on an open set V C u,
with v supported by the compact set K C V, there is a unique
p € ^y for which p — v is harmonic in V. // the conditions of
1.3.4 above hold with ^y replaced by ¥ ^ j or ^^j (in particular,
if U is a B-set), then p € »^ or $^j. (Of course p is required to have
support contained in V.)

1.5. The sheaf (%. - We now make the definitions of [11, § 2], and
verify that the considerations made in [11] are valid in the present
axiomatic setting.

DEFINITION 1.5.1. - <% is the presheaf over W of vector spaces
of scalar-valued functions on open subsets of W determined by the
following condition : if U is an open subset of W, / E (%y if and
only if every x E U has a neighborhood V C u such that /|V is a
linear combination of nonnegative continuous subharmonic functions
with domain V.

Again, there is no change in the definition if "subharmonic"
is replaced by "superharmonic" in the definition above, since every
point of W has a neighborhood in which some strictly positive
harmonic function is defined. That <% is a complete presheaf is
again obvious. Because a uniform limit of continuous super- or
subharmonic functions is a function of the same kind, the proof
of [11, Prop. (2.2)] is valid with the present axioms. We recall
the proposition :

PROPOSITION 1.5.2. — // Z is an open subset of W such that
1 G 3SIZ, then (%|Z is a sheaf of algebras (under pointwise multi-
plication) over its scalar field. Moreover, <%|Z is inverse-closed in
the sense that an element of ffi^j (U C= Z) that has no zeros in V has
an inverse (necessarily the pointwise inverse) in (R. y.

For the next proposition of [11, §2] one needs a slightly
different proof. See [11, § 5 (B)].

PROPOSITION 1.5.3. - If Z is an open subset of W for which
1 GS^IZ, then for every XQ € Z and neighborhood U of XQ there
exists an /e <%^ for which 0 </< 1, f(x^) = 1 and f = 0 outside
a closed subset of U.
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Proof. — With no loss of generality, we can assume that U
is a B-set contained in Z. Let Y be a neighborhood ofx^ with compact
closure contained in U, and apply c) of 1.3.4 above with K = {x^}
to produce an element g G Oy with support contained in Y and a
value larger than 1 at XQ. Since the nonnegative subharmonic functions
on any open set in W are closed under the formation of suprema,
<%u is a lattice under the pointwise operations, and so the function
defined by / = 0 on W\U and / = (g A 1) v 0 on U belongs to <%w
and satisfies the specifications of the proposition, Q.E.D.

It now follows, just as in [11, § 2], that F(Z,<%) contains
partitions of unity subordinate to any locally finite covering of Z,
and consequently that <%|Z is fine, whenever 1 E961Z. Since 961Z
is multiplicatively equivalent to a presheaf containing 1 and satisfying
axioms I-IV above whenever there is a strictly positive section of 96
defined on Z, axiom II implies that fft is locally fine. Thus we have,
as in [II] ,

PROPOSITION 1.5.4. - The sheaf ffi is fine.

1.6. The sheaf &. — This sheaf can also be constructed under
the present axioms ; all we need to use about potentials and specific
restriction has been verified in 1.3 and 1.4 above. We did not make
use of the hypothesis that domains of potentials are connected in
1.3 and 1.4, so the presheaf Q defined below can be thought of as
being "indexed'^ by all the open subsets of W, instead of merely by
the regions in W as in [II] , although the difference is inessential.

DEFINITION 1.6.1. - For open sets U and V with V C U in W,
ryu '- °u ———^ ^v denotes the unique linear extension of the
mapping ryu '' ^u ——> *v that assigns to p G »y the function
p|V — h € ^y, where h is the greatest harmonic minorant in V
of the superharmonic function p |V. The transitivity relation
Tyu = 'YV ° 'vu f09" Y C V C U is easily verified ; let Q denote
the presheaf formed by the Oy and the ryu» ̂  ̂  ^ denote the
associated sheaf

The "Laplacian" A : <R———> & of [11, Thm.(2.11)] is
defined in the present context just as it is there, and it is again
routine to verify that the sequence
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0 ———> 9€ ———><3Z A > &———> 0

is exact.

DEFINITION 1.6.2. - Let g be a section of (Ron the open set U.
At each x E U, (Ag) (x) G S>^ is the element determined as follows :
if V is a neighborhood ofx on which g |V = p^ - p^ + A, p^ G »y (f = 1, 2)
awd A eaCy, ^CT (A^) (x) f5 //^ canonical image in &^ of

Pi - Pi e °v •

For the purposes of the present paper we shall need a more
delicate module structure on & than we had in [11]. As we saw
in 1.4 above, each Cy is a module over the algebra »y of bounded
Borel functions on U. The relation Xenv'vu = 'VU^E proved in [11,
Prop. (2.9)] is valid in the present setting ; applied to simple Borel
functions on U it says that A^yTvu = 'vu A/^ and since for fixed
P E *u both A^jv/vuP and 'vuA^p depend continuously on /
(with the uniform norm topology for »y and u.c.c. for Oy), this
equality holds for all bounded Borel functions / Thus Q is a presheaf
of modules over the presheaf of algebras of bounded Borel functions
on open subsets of W (the latter presheaf having ordinary restriction
of functions as its restriction map). [4, Lect. 7, p. 35 ff.] then
guarantees that the associated sheaf & is a sheaf of modules over
the associated sheaf (B of algebras given by the presheaf of »y.
It is an easy exercise to verify that the latter sheaf can be naturally
identified with the complete presheaf of locally bounded Borel
functions on open subsets of W, and so we can regard & as a sheaf
of modules over that (complete pre-) sheaf of algebras. We shall con-
tinue to denote the action of/G(B on M € & by A..M, and we have
verified

PROPOSITION 1.6.3. - The action (/, M) ——> A.M makes &
a sheaf of modules over the sheaf of algebras (B of germs of locally
bounded Borel functions.

We shall also need an order relation on S>. We have a natural
"positive" cone »y in each space Oy already, and the maps ryu
are positive with respect to these cones, so there is an inductive limit
cone 9^ in each stalk &y.
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DEFINITION 1.6.4. - The natural order < on &y (for each
x € W) is the order whose cone of nonnegative elements is the induc-
tive limit of the cones ^^j(x G U) under the restriction maps /yu
of Q. In an open subset V of W, a section M € r(U , &) is defined
to be nonnegative if and only if its value at each x E U belongs to %^,
and the natural order < on F(V ,&) is the order defined by the
cone of nonnegative sections.

PROPOSITION 1.6.5. — Each %^ is a proper cone, and therefore
the order relation on r(U ,S>) is proper. A section of(R. on U is a
superharmonic function if and only if its Laplacian is nonnegative
in U. If 0< / e r (U , t fB) and 0 < M e r ( U , a ) , then A^M>0.
The nonnegative cone in r(U , &) generates r(U, &).

Proof. — Suppose we have an element of &y that simulta-
neously belongs to %^ and — % ^ . By definition, this means that
there exist neighborhoods U and V of x and potentials pi and p^
on them, such that for some Y C U H V, /yuPi = ~~ ^YV^* Since
both A y u P i an(! 'YvP2 are potentials on Y, both are therefore
zero, and it follows that our element of &^ is zero.

For the next assertion, suppose g E (R^j and Ag > 0 at x E U.
This means that if V C U is a neighborhood ofx in which g = g^ - g^
with each g^ nonnegative, continuous and superharmonic (i = 1,2),
and h{ is the greatest harmonic minorant in V of gf (i = 1,2), then
the element of & ̂  that is the natural image of

( î -^)-(^ -h^)e Oy

is also the natural image of some p € $^, where Z C U. Thus for
some open Y C V 0 Z, AyvK^i - ̂ i) - (^2 - h!^ = ^YZP^^ since

the left side differs from g by a harmonic function in Y while the
right side is superharmonic in Y, g is superharmonic in Y. If A^ > 0
throughout U, then g is superharmonic in a neighborhood of each
point of U and thus superharmonic in U, by the considerations
of 1.2 above (particularly 1.2.7).

The next assertion follows easily from the fact that if 0 < / € »y
and p E ^y, then A.pG »^. To prove the last assertion, let M E F(U, S>)
be given. Then for each x € U there is a neighborhood V^ of x and
potentials p^^ and p^ in »y such that for each y E V^,M(jO is
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the canonical image o f p i x ~ P 2 x ' ^ ^x ls a neighborhood ofjc
which is relatively compact in V^, then \ Pi jc e * v defines a non-
negative section of S) in V^, supported by Z^, which majorizes M
in Z^. Extend that section to all of U by setting it equal to zero
outside V^, and let N^ denote the extension. If {Z^.},.^ are chosen
to be a locally finite cover of U, then the locally finite sum

^ N, .er (U,a)
i e l l

is clearly nonnegative and majorizes M at each point of U, Q.E.D.

1.7. Kernels generated by potentials. — In addition to the rudiments
of the specific restriction theory discussed in 1.4 above, we shall
also need some of the material of [9, § 3] dealing with resolvents.
Let U be an open subset of W, p €E $^, and let K denote the "kernel^
K : / ———> Ayp. K defines a linear, norm-continuous mapping
of »u into <°^(U) ; i f p€^ , a s i t will be in most applications below,
K defines a linear, norm-continuous mapping of ®u into (3 (̂11).
K has the following properties :

LEMMA 1.7.1 (Weak maximum principle). — Let g be abounded
continuous function on U and s be a nonnegative superharmonic
function on U. If s majorizes Kg on the set S = {x ^=.V:g(x)> 0},
then s majorizes Kg on U.

Proof. — Since Kg^ is harmonic in U\S and Kg~ is super-
harmonic, s — Kg = (s + Kg~) — Kg^ is superharmonic in U\S. Cle-
arly the negative of the potential K\g\ minorizes s — Kg everywhere,
and s — Kg is nonnegative at 3S = 3(U\S), so s majorizes Kg on
U\S by 1.3.2 above, Q.E.D.

LEMMA 1.7.2. — Suppose the operator (I + tK)~~1 exists (as an
element ofK (<°^(U))) for some t > 0. Then

a) (I + tK^^K is a nonnegative operator from 8y into the
bounded continuous functions on U ;

b) If s is a bounded continuous nonnegative superharmonic
function on U, then (I + tK)~1 s > 0.
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Proof. — We may exclude t = 0 as trivial. Proving a) is equivalent
to checking that the equivalent inequalities

[a^tK)~lKf](x)>0

where 0 < / E ̂

or (K/) (x) > (K[(I 4- tK)~1 tKf]) (x)

hold for all x E U. By 1.7.1 above, the second of these inequalities
holds on all of U if it holds on the set of points x where

[ ( l + tK ) - 1 tKf](x)>o,

which is precisely where the first inequality holds. To prove b),
observe that on the open set

S ={;c G U : [s - (I + tK)~1 tKs] (Jc)<0}

the function (I + tK)~1 tKs = tK[s- (l^-tK)~~1 tKs] is subharmonic,
and so s - (I + tK)~1 tKs is superharmonic on S. At 3S,

s - (I + tK)~1 tKs

takes the value zero. Moreover, it is minorized by the negative of

(I + tK)~1 tKs = K[(I + tK)~1 ts]

< K [ | ( I + ^ K ) - 1 ts\]

and the right side of this inequality is a potential. By 1.3.2,

(I + tK)~1 s = s - (I + tK)~1 tKs > 0

in S, so S = 0 and b) is proved.

COROLLARY 1.7.3. — // there exists a continuous superharmonic
u on U which is bounded and bounded away from zero, then there
is a norm on ®^(U), equivalent to the usual uniform norm, for
which ||(I + tK)~1 tK\\ < 1 for all t > 0 for which (I+ tK)~1 is
defined.

Indeed, ||/|| = inf {a > 0 : I/I < au} is such a norm.

LEMMA 1.7.4. — // there exists a superharmonic function on U
which is bounded and bounded away from zero, then (I + tK)~1

exists for all t > 0.
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Proof. — The set of t for which it exists is the open set
R+ H p(- K)~1 in R\ and to prove that that set is all of R^ it
will suffice to show that it contains all its limit points. For

t^<t, <t^ t, , ^ E p ( - K ) - ^

we have the elementary relation

( I + ^ K r ' K - d + ^ K r ' K ^ -^(I+W1!^1 + ^ i K ) ~ 1 K

and so for an appropriate norm (that of 1.7.3 above)

||(I + ^K)~1 K - (I -h t, K)-1 K|| < (t, - ^)-1—^ = -L - -L
t^ t! t^ t\

as t^ t^———> IQ. The limit operator U = lim (I + nC^K sa-
^o

tisfies the relations (I + ^K) (I - ^U) == I = (I - ̂ U) (I + ^K),
so t^p(-K)~\Q.E.D.

1.8. Subellipticity. - To sharpen same of the results below in the
presence of the Brelot axioms, it will be useful to have the following
material :

DEFINITION 1.8.1. - A pair (W,3C) satisfying axioms I through
IV above will be called subelliptic if every point has a neighborhood
basis consisting of open regular regions V for "which, for every
x G V, the carrier of p\ is all of 3V.

PROPOSITION 1.8.2. - // U C W is an open set and (W, 3€) is
subelliptic, then a nonnegative superharmonic function u on U is
strictly positive throughout any component of U containing a point XQ
for which U(XQ)>O.

Proof. — Let x^ be a boundary point in U of the component
of VQ = {x G U : u(x) > 0} containing jCg. Let V be a regular
neighborhood of x^ with V C u, having the properties given in
1.8.1 above. Then 3V intersects U^, and so u(x)> f u dp\ > 0
for all x G V, so x^ is interior to U^ contrary to its choice, Q.E.D.
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COROLLARY 1.8.3. - // (W , 96) is subelliptic, V is a regular region
in W, and x G V, ^Aew ̂  carrier of p^ is all of 3V.

proof. - If 0 </€ 6(3V) and /^ 0, then x ———> f f dp^
is a nonnegative harmonic function in V, and since its boundary
values are given by / it is not identically zero in V. Thus it is posi-
tive throughout V, and so for each x E V the measure p^ cannot
be carried by a smaller set than 3V.

The defining property of 1.8.1 is thus "inherited" by all regular
regions in W.

2. Lifting sections of & ; topologizing spaces r(U , &).

2.1. Lifting sections of &. — This is essentially a sharpening and loca-
lization of the Herve extension theorem. The fundamental result
is 2.1.1, and its fundamental cohomological consequence is 2.1.2,
which is [11, Thm. (4.1)] in its most general form for compact W.

PROPOSITION 2.1.1. - Let U be an open set in W satisfying
the equivalent conditions of 13.4 above. IfM is a section of&onV
-with compact support, then there exists a unique q E Cy mth A 4 = M.
If V satisfies the conditions of 1.3.4 with »y replaced by V^j or ̂
respectively, then q belongs to 0^ or O^j respectively.

proof. - By 1.6.5 above, it will suffice to prove this under the
additional assumption that M > 0. For each x G Supp M we can find
a region V^ C U and a potential py G ¥y for which MQQ is the
canonical image of p^ at every point y ^ V^. Let Y^ be an open
neighborhood of x with Y^ compact in V^ for each x G U, and
pick x^ , . . . ,^ for which the Y, = Y^(l < i < n) cover Supp M.

/ - I n n
Set Z, = Y,\ U Y,(l </ < n), and set Z = U Z. = U Y,. Clearly

/ = i / = i i - i
n

X^M = M, so M = V Xz.M, and to prove the existence of q it
Y = i /

will suffice to find q^ e ¥^ with A^. = \ M. Thus it will suffice
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to find q. with q- — X^p. harmonic in V^., where p , = p^. (1 < / < n),
since X^M is the canonical image of X^p. in V^ = V and is zero
in the complement of Z - , 1 < / < n. But X^ P/ ls a potential of
compact support in V., and so by the Herve extension theorem
1.4.1 above, there is a potential q. € ¥ y with the desired property.
That proves existence ; uniqueness follows from the fact that a
difference of two q ' s satisfying the specifications of the proposition
would be harmonic in U but majorized in absolute value by a po-
tential on U. The form of the Herve extension theorem given in 1.4.1
also assures us that the functions q. constructed above belong to
#^ or $^j under the corresponding hypotheses.

THEOREM 2.1.2. — // W is compact and V^ contains a strictly
positive element, then F(W ,36) = 0 and H^W , 96) = 0 ; moreover,
A : £l^ ——> F(W , &) is onto, so F(W ,<3^) = 0^-

Proof. — We prove the second assertion first : taking U = W
in 2.1.1 shows us that A sends 0^ onto F(W , &), soafortiori A sends
F(W , <%) onto F(W , &). The minimum principle implies F(W ,96) = 0
and the cohomology exact sequence

o —>r(w,96)—> r(w,<3Z) A > F ( W , a)—6—>
H^W,^) ——> 0

shows that A is 1-1 and onto from F(W , <%) to F(W , &). It follows
that C^ must be all of F(W , <%), Q.E.D.

2.2. Topologies for the spaces F(U ,&). — Our program is to topo-
logize the spaces O^j and then use 2.1.1 to induce topologies on
the spaces F(U , &).

DEFINITION 2.2.1. — The seminorm I I I - III on O^j is defined by
\\\q\\\=mf{\\p+\^ + Hp-11^: p\ p - e»^ ^^-p-}.

PPROPOSITION 2.2.2. - 11^11^ < 111^111, so III • III is a norm ; under
this norm, O^j is a Banach space. The specific restriction operators
are continuous in this norm ; more generally, if /€ »y then
III A/ q I I I < 4 . ||/1|̂  . I I I ^ I H . // {E,}^ ^ a sequence of disjoint Borel
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00

subsets of U and q E 0^, rt^i rt^ series ^ X^.^ converges to Xg qr,
1=1 '

00

where E = U E., in the III • |||-ropotog .̂ // V C U ^ a regular B-set,
i =1

^ew /vu : °^j ——>0»^ ^ continuous in the norm topologies.

Proof. — The first assertion is obvious. To prove the second,
it suffices to show that if {^n}^=i is a sequence in O^j with

S 1 1 1 ^ 1 1 1 <°°.
/ i= l

k
then q = lim ^ <?„ exists in the III • Ill-topology. For each q^

fc->°° « = i
choose p\ and ?„ in ^ with ||p;||̂  + \\P~n\\^ < 2 • IH^Jl.Then

00 «»

p^ = ^ p^ and p~ = ^ ?„ are well-defined elements of $^j.
n = i w = i

Set q = p+ — p~. Since

Ik-t p;|||<|| 2: p;|[ < 2 1 : ni^iii
I I I M = l I I I 11^>A; II 0 0 W > f c

and similarly for p~, we have

1 1 ^ - t ^|||<4 S III^IH
I I I w = l I I I n >k

and that approaches zero as k ——> oo.
The fact that IIA^pll^ < 11/IL • "Piloo if 0</e »u and pG $^

leads immediately to the norm inequality for A^q in general. For
00

p G^ we have Xgp = S ^E.P pointwise on U, and since every-
1=1 '

thing in sight is zero on 8U the Dini theorem assures us that the
convergence is uniform on U. Thus

XEP-S^ .P <|2: XE,P ,———>0 as k
k

< = 1 ' I I I ||'>fc

Finally, if V is a regular B-set then r^q = q |V - H(q\9V , V),so
ryu takes its values in O^y, and since it is pointwise decreasing when
applied to potentials, it is certainly continuous in the II I • Ill-topologies,
Q.E.D.
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COROLLARY 2.2.3. - The cone V^ is normal in 0 ^j in the
sense of [70, p. 275].

Indeed, I I I pi l l = \\p\\^ if p € *^j, and || • ||̂  is clearly monotone
on^, so [10, Thm. 3.1 (e), p. 215] applies.

Remark. — The same sort of definition can be used to topo-
logize Q u as a Banach space. That space does not appear to be as
useful as Ct^j, however, because it is not clear that series of the

00

form ^ XE q are norm-convergent.
( = i (

DEFINITION 2.2.4. - Let V be an open set in W satisfying the
equivalent conditions of 1.3.4 above for ^. For any Borel set E
that is relatively compact in V, the lifting operator

S(E,V)^(V,&)—>c^
is the linear transformation that assigns to each M G F(V ,&) the
unique q € 0^ for which Aq = XgM. If U is an open set in W,V is
an open set in V satisfying the equivalent conditions of 1.3.4 above
for ^ ^r, and A is a relatively compact Borel subset o/V, the seminorm
II • I I (A,V) on F(U , S) is defined by l|M||^v) = II IS(A.V)[MIV]II I -

PROPOSITION 2.2.5. - Let U be an open set in W, and let
{(A^,V,)},ei be a family of sets with the following properties :

a) Each V^ is an open subset of U for which the equivalent
conditions of 1.3.4 above hold for ^, ;

b) Each A, is a Borel subset of V^Q' G I), and A, is a compact
subset of V, ;

c) {A,}^i is a disjoint covering of U, and there exists a locally
finite family of open Z, 3 A{ (i E I).

Then {\\' ll(A.,v.)^'ei ^enerates a separated, complete metrizable
locally convex topology on r(U , S). // U is compact, that topology
is normable.

Proof. - If 0 =^ M € F(U , a), then since M = ̂  X^ M some
ici l

XA.M must be nonzero; thus S^v^ is nonzero, and so ||M \\^ y^ ̂  0.
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Since {Z,.},gi is locally finite and U is a locally compact space with
a countable basis, I is finite or countably infinite. Consequently,
the topology generated by the {|| • ||̂  ,v.)^ei ls metrizable. Suppose
^n^=i ls a Cauchy sequence in that topology ; then for each
i G I the sequence {S^ ,v)^w^=i ls a Cauchy sequence ind^ and
therefore converges to some limit ^€°^ . For each ; € I the

canonical image of X^ [S(A.,V.)^J m ̂ ^i » ^) ls ^A \v^w == ^ij^n
(where 8,y = 1 if i == / and = 0 otherwise), so X^ [S^ ^v)^n l ls

harmonic in V, if i =^/ and therefore XA.IS(A ,v.)^U = ^»7 * ^(A. , v,) ^n-
In the limit, it must also be true that X^ Qi == ^/^- As a ^irst ^"se-
quence of that fact, we see that the support of Aqr,., which is a section
of & in V,., is contained in A^ ; we may extend A^ to U by setting
it equal to zero outside A,., call the extension N^, and define
M = S N, G F(U , 3>) as a locally finite sum.

»el

We claim that the M^ converge to M. Fix an index k. It is
clear that X^ N, = 6,,. N,, and thus X^ M = Y X . N / = N^. But

i ' k iei k

then S(A ,v )M = ^k which is lim S^ y )Mn by definition, and so

|| M - M^ |I(A v ) ——^ 0- For the final assertion, we observe that if
U is compact then I must be finite, Q.E.D.

THEOREM 2.2.6. - // U is an open set in W, the topology on
F(U , S>) generated by all the seminorms \\ • II(A.V) °f 2'14 above

is complete, metrizable, and normable if U is compact.

Proof. — We have just given a construction for a complete
metrizable topology in which certain of the seminorms || II(A.V) are

continuous. It is a straightforward consequence of the "restriction"
assertions of 2.2.2 above that if {(B^,X?}^j and {(A/,V^)}^i are
families satisfying the hypotheses of 2.2.5 above, such that each X^
is a regular B-set and for each 7 E J there exists i G I with By C A/
and Xy C v,, then the topology generated by the {|| • ll(B,.x.)^ej is

coarser than the topology generated by the {|| • ll(A.,v/)^er ^ut two

comparable complete metrizable topologies are equal by the closed
graph theorem [10, Cor. 2, p. 78], so the topology is unchanged by
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refinement of this type. It is straightforward to verify that any
two families satisfying the conditions on {(A/ ,V,)^i of 2.2.5 have
a common refinement {(B^ ,X^j satisfying the conditions imposed
above, and therefore any two such families {(A/, V^)}^, generate the
same topology. Since any (A, V) can be made an element of
such a family, that topology is precisely the topology generated by
all the || II(A.V)» and we have already seen that it is normable if Uis
compact, Q.E.D.

We shall simply refer to this topology as "the topology of
r(U,&)" in the remainder of the paper.

PROPOSITION 2.2.7. - // V is an open subset of U, the restriction
map from F(U ,&) to F(V ,&) is continuous. If F(U , (K) is given
the topology of uniform convergence on compacta. the map

(/, M) ———> A^M from F(U ,tf3) x F(U ,&)

into F(U,a) is continuous. If E = D E/ is a disjoint union of
/=!

Borel sets, then \^u = ̂  Xg M for any M E F(U ,&), with conver-
i»l '

gence of the series in the topology of F(U , &).

Proof. — The first statement is obvious from the way the
topologies are defined. For the second statement, one must verify
that (/,M) ——> S^v)^/^! is continuous for each pair (A,V)
satisfying the specifications of 2.2.4 above. But clearly

S^V)[A^]=A^[S^M]

(by uniqueness of lifting), and 2.2.2 states that the right side depends
continuously on (/. XA > S^v)^ E ®v x cl^ which in turn depends
continuously on (/, M). The proof of the countable additivity as-
sertion is similar.

COROLLARY 2.2.8. - For any compact set K C U, the mapping
f——>A^[M] of 6(U) into F(U ,&) is weakly compact. In
particular, if W = U and W is compact, the mapping f ———> A^.M
of 6(W) into F(W ,a) is weakly compact.
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Proof. - The set function given by sending Borel sets E C K
to XgM is a countably additive Borel vector measure on K with values
in r(U,a), and clearly A^.^[M] is the integral o f / . XK ̂ h

rbspect to this measure. By the Bartle-Dunford-Schwartz-Grothendieck
theorem [5, p. 493], which is just as valid for Frechet spaces as it
is for Banach spaces (as one may prove, e.g., by embedding a given
Frechet space in a countable product of Banach spaces), integration
of elements of G(K) with respect to this measure defines a weakly
compact operator from 6(K) to F(U ,&), and of course restricting
elements of G (U) to K is a continuous linear operation.

3. Perturbation of harmonic structures.

3.1. Definition of perturbed sheaves. — Giving a formal definition for
the objects of study of this section is easy. Since <% is a subsheaf of
ti3, the following makes perfectly good sense.

DEFINITION 3.1.1. - Given a fixed Mer(W.a) , let 0^ :
(R. ——> & be defined by

0M ' ' 8 ——> ^8 + A^M .

This is a homomorphism of sheaves ; let §(M) denote the subsheaf
Ker 0M of (%.

Since g ——> ^g and g ———> A^M are linear, this mapping
is a homomorphism of sheaves of vector spaces, and its kernel is
thus a sheaf of vector spaces. §(M) can thus be identified with a
complete presheaf of vector spaces of continuous functions, such
that eafch j|(M\j is a subspace of<%y for open U C w.

The mapping 0^ can be looked at the presheaf level ; indeed,
that is where we shall have to work with it in order to investigate
g(M). The following proposition, which is nothing more than a
restatement of 3.1.1 above in terms of the definitions of some of
the objects involved, shows us what 6^ looks like at the presheaf
level.

PROPOSITION 3.1.2. - Given a global section M G F(W , &), let
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U be an open set such thatM|U is the canonical image in S>\\J of
Pi ~Pr ^here each p^ € V^(i = 1,2), and let g €<%u be an element
that can be written as g = s^ - s^ where each s^ is nonnegative,^-
superhannonic and bounded (i = 1,2). Suppose h^ (i = 1,2) is the greatest
Se-harmonic minorant of 5, ; then O^g is the canonical image of
(s! - h!) - (s^ ~ ^2) + \Pi ~ \Pi throughout U. In particular,
g € g(M)y if and only if ^ - ̂  + A^pi - A^ == g + A^(p^ - p^)
is 96-harmonic throughout U.

3.2. Regular sets for g(M). - We now need a number of proposi-
tions of a rather technical functional-analytic nature. A fixed notation
throughout these propositions will be a considerable convenience,
so we shall set one up. Suppose M and N are two given global sections
of a, with M > N. Let X be an open set in W in which both M|X
and N|X are the canonical images of elements of C^ ^d M — N
is the canonical image of an element of ^x ^ m other words, sup-
pose we can find potentials p ^ , p^ and p^ in ^x suc!1 ^at M|Xis
the canonical image o f p ^ - p^ in &|X, N|X is the canonical
image ofp^ - p^ in S>\X, and p^ - p^ is a potential. Let M^ € F(X , &)
be the section whose value at each point of X is the canonical image
of p,, 1 < ( < 3 ; then M|X = M^ - M^, N|X = M^ - M3, and for
any real numbers t^ t^ the section ^M^ - t^M^ is an element of
r(U , &) whose value is the canonical image of t^p^ — t^p^.

With M, N, X, the p, and the M, as above, for each regular
open B-set U C x we will denote by K^ the "kernel" ;

K^:/ -> A^(p, - H(pjaU,U)) = ryxlA^p,]. i = 1,2,3.

As we observed in 1.7 above, these are continuous nonnegative
linear operators on »y that take their values in ©o(U). Moreover,
since the p^s are continuous potentials, the functions P{ — H(pj3U , U)
can be made uniformly arbitrarily small on U by taking U small
enough, and therefore the operator norms ||K^|| (relative to the
supremum norm on »y) can be made arbitrarily small by taking U
small enough. We will let K^ = K^ - K^ and lY = K^ - K^.
Finally, we shall drop the superscript "U" on the K0, K^ and L0

except in cases where ambiguity is possible.
Before we state the first lemma of this section, we observe

that (I + K^)"1 exists for any choice of U, by 1.7.4 above ; the
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assumption that U is a B-set insures that there does exist a nonnega-
tive harmonic function on U that is bounded and bounded away
from zero. If U is so small that 1110^11 < 1, then the estimate

||(I + K^)-1 - I I I < I IKYl l • (1 - IIKYll)- 1

is valid, and so ||(I + K^)"11| can be made as close to 1 as one pleases
by taking U sufficiently small.

LEMMA 3.2.1. - Suppose U C X is a regular B-set so chosen
that I IK^I I < 11(1 + K^)"11|~1. Then (I + K0)"1 exists, and moreover,
if u is a nonnegative continuous bounded 9€-superharmonic function
on U, then ( I + K ^ - ' M ^ O . // ||K^|| < ||(I + K^)-1 \\~1 also,
then (I + I^)"1 u > (I + K11)"1 u whenever u is a nonnegative
continuous bounded HC-superharmonic function on V. Finally, if U
is sufficiently small that 1^1 • IIK^II < 11(1 + fiKy)"1!!"1 for (t,,t^)
in an open neighborhood of [0,1] x [0,1] C R2, then for any non"
negative continuous bounded SC'superharmonic function u on U,
(I + ^K^ - t^V^)~1 u is nonnegative and analytic in ( t ^ , t ̂ .decre-
asing in t^ and increasing in t^.

Proof. — The expansion

(I + Ki - K^)"1 u = (I + Ki)-1 (I - K,(I + K^)-1)-1 u

- d + K ^ ) - 1 f [K.d+Ki)-1]" u
n=Qn=0

is valid under the hypotheses on K^. By b) of 1.7.2 above,

(I + Ki)~1 u>0

for any nonnegative continuous bounded ^e-superharmonic function
u on U ; moreover, K^KI + Ki)"1 u], being the value of K^ on a
nonnegative function, is a nonnegative superharmonic function. The-
refore all the iterates [K^I + Ki)"1]" u are nonnegative super-
harmonic functions, and the sum of the (uniformly convergent) series
is also such a function. Thus (I + K)~1 u = (I + Ki - K^)"1 u is
the result of applying (I + K^)"1 to a nonnegative bounded continuous
ge-superharmonic function, and it is therefore nonnegative. The same
considerations are valid with K^ replaced by K.3, and also apply to
all the operators (I + t^ - t^)~1.
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Now suppose S and T are linear operators on <2^(U) for which
(I + S)""1 u and (I + T)~1 u are nonnegative whenever u is a non-
negative bounded continuous Se-superharmonic function on U. Then
the second resolvent equation

(I + S)~1 - (I + T)~1 == (I + T)~1 (T - S) (I + S)~1

tells us that if T — S sends nonnegative functions to nonnegative
Se-superharmonic functions, then (I + S)~1 u > (I + T)~1 u for any
nonnegative Se-superharmonic function u. Setting S = lY and T = K11,
we have T — S = K^ — K^, which is the kernel associated with the
potential ^uxtPa ~ Pi^ » tllus ^ + L17)"1 u > (I 4- K11)"1 u for any
nonnegative continuous bounded superharmonic u. Similarly, we see
that (I + t^K^ — t^K^)~ u is decreasing in t^ and increasing in t^
for (^ , t^) in our neighborhood of [0,1] X [0,1]. The analyticity of
the 6^(U)-valued function (I + t^K^ — t^K^)~1 u is obvious, and
that concludes the proof.

It may be worth pointing out here that the fact that the smallness
hypothesis on U is vacuously satisfied whenever K^ = 0 (so that U
can be chosen to be any regular B-set in X) is crucial at certain points
below.

PROPOSITION 3.2.2. — // U C X is a regular B-set sufficiently
small that the hypotheses of 3.2.1 above hold, then for each f G fi (3U)
there exists a unique G(/, U ;M) € g(M)y possessing a continuous
extension to U that takes the boundary values / The linear transfor-
mation f———> G( / ,U;M) of ©(3U) into Q (U) is compact, non-
negative, and differs from H ( - ' U ) by a compact operator from
e(3U) to eo(U).

Proof — Fix /G ©(3U) and suppose there does exist a function
g G <%y satisfying the specifications given for G(/, U ; M). As we
observed in 3.1.2 above, the requirement that ^g + A M = 0 means
that g + Kg is harmonic in a neighborhood of each point of U,
and thus harmonic in U ; since g + Kg takes the same boundary
values as g, we must have g 4- Kg = H(/, U). Interpreting that as
an equation in 6 (̂11) gives (I + K)g = H(/\ U), or

^ ( I + K r ' I K A U ) ,

which makes sense since the hypotheses of 3.2.1 are satisfied.
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Thus g is uniquely determined by /, and moreover if / > 0 then
H(/, U) is a nonnegative (super-) harmonic function on U,
whence g = (I + K)-1 [H(/, U)] > 0 by 3.2.1. On the other
hand, setting G(/, U ; M) = (I + K)~1 [H(/, U)] gives for each
/E (°(3U) an element of <%y that takes the boundary values / ; the
fact that G(/. U ;M) 4- KG(/,U;M) = H(/. U) says at the sheaf
level that AG(/, U ;M) + A^u^ = °» and so G(/, U ;M) does
belong to §(M\j.

To prove the compactness assertions, we observe that the
relation

H(/. U) - G(/, U ; M) = (I + K)-1 K[H(/, U)]

shows that it suffices to prove that / ——> K[H(/,U)] is a com-
pact mapping from 3(3U) to QQ (U) in order to establish them.
As A runs through the upward-directed family of compact subsets of
U,K,(1 -XA) ——>0 uniformly on V(i = 1,2). Therefore for
w G » u ,

IIKw - K[XA - w i l l < [IIKid - XA)II + IIK^d - XA)II ] • l lw l l .

This relation shows that the mappings / ——> K[XA-H(/ , U)]
converge to / ——> K[H(/, U)] in the norm of^(e(8U), GoCU)),
and since / ——> H(/, U)|A is compact for each compact A,
we are finished.

COROLLARY 3.2.3. - If V is so small that the hypotheses of
3.2.1 regarding (I + ^Ki - ̂ K^)"1 are satisfied, then for each
0 < / e e (9V) the zero-sets of the functions H(/, \J)and G(/; U ; M)
are the same. In particular, for each XQ € U the carrier of the repre-
senting measure for H( - , U) (x^) is the same as the carrier of the
representing measure for G(- , U ; M) (x^).

Proof. - For any 0</ee(9U) we know that (I + ^Ki)~1

applied to H(/, U) decreases with increasing ^, and thus

H( / .U)>(I + ^ l K l ) ~ l H ( A U ) for t^ G[0,l + e) .

So the zero-set of G(/ ,U ;Mi) = (I + Ki)"1^/,!;) is larger than
that of H(/, U). On the other hand, if for ^ = 1 we have

[(l^t,K,)~lH(f,V)](x^=0
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at some point XQ G U, then since the left-hand side is a decreasing
analytic function of ^ that is always nonnegative, we must have
[(I +1^)~1 H(/, U)] (JCo)=0 identically in ^, and so H(/, U) (x^) = 0.
Thus H(/, U) and (I + K^r1^/, U) have the same zero-sets. We
are now finished if K^ = 0 ; if not, the fact that

(I + K)~1 H(/, U) > (I 4- Ki)~1 H(/, U)

shows that (I + K)~1 H(/, U) has a smaller zero-set than H(/,U).
The same argument applied to the function (I - t^K^)~1 H(/, U)
shows first that (I - K^)"1 H(/, U) has the same zero set as H(/, U)
and then that (I + K)~1 H(/, U) has a larger zero-set than H(/,U).

Similarly, 3.2.1 gives

COROLLARY 3.2.4. - For any 0 </Ee(3U), M > N implies

G ( / , U ; M ) < G ( / , U ; N ) .

In particular, G(/, U ;Mi) < G(/, U ;M) < G(/. U ; - M^).

Indeed, G(/, U ;M) = (I + K)~1 H(/, U)

< (I + D-1 H(/, U) = G(/, U ; N) .

THEOREM 3.2.5. - §(M) satisfies axioms I through IV of 1.1
above. Moreover, if M > 0, the set "U^" of axiom II can be chosen
to be a fixed He-regular B-set, and the basis "U(;c)" the family of
He-regular regions U with x € U C U^, independently of M.

Proof. — Axiom I holds by definition of§(M). To see that axiom
II holds, fix x € W, let X be a B-set containing x and contained as
a relatively compact subset in an open Z on which the continuous
nonnegative superharmonic functions strongly separate points. By
2.1.1 above, there is a unique S(X,Z)M Eoz whose canonical image
at each point of Z is \xM, and thus whose canonical image at each
point of X is M ; clearly S^x Z)M G ̂  if M > 0, by 1.6.5 above.
We can now write ^xz^x.z)^ == Pi - P2> where pi and p^ belong
to $x ^d Pi = ^ ^ ̂  ̂  ^' ^d we are then in the setting established
at the beginning of this section 3.2. Now 3.2.2 above supplies us
with a basis for the topology of X consisting of sets regular for
§(M), and a fortiori with a neighborhood basis for x consisting of
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^(M)-regular regions ; all 96-regular regions contained in X are admis-
sible if M > 0. Moreover, if we pick U^ as in 3.2.1, an S€ -regular
B-set that is regular for ^(M) (so in particular if M > 0 any such set
will do), then there is a positive section of 96 defined in a neighborhood
of U^ and consequently H(l , U^) (y) > 0 at each y G U^. By 3.2.3
above, G(l , U^ ;M) (y) > 0 at each y E U^ also, and that gives
all of axiom II. Axiom III follows immediately from the compactness
of the operators G(. , U ; M), proved in 3.2.2. To prove that axiom IV
holds for g(M), consider first the case in which M > 0. Then the
relation G(/, U ;M) < H(/;U) of 3.2.4 above shows that the non-
negative ffe-superharmonic functions on U^, which are known strongly
to separate its points, are also ^(M)-superharmonic. In the general
situation, let M^ and M^ be the elements of F(X ,&) given by the
canonical images of p^ and p^ respectively, where X, p^ and p^
are as they were at the beginning of the proof and U^ C X. We
know that the nonnegative ^(M^-superharmonic functions strongly
separate points of U^ and that there is a strictly positive section
of j|(Mi) on U^. By 3.2.4, a nonnegative §(M ̂ -harmonic function
is ^(M)-subharmonic ; therefore a nonnegative ^(M^)-subharmonic
function is ^ (M)-subharmonic, and thus the nonnegative §(M)-
subharmonic functions on U^ strongly separate points of U^. Since
there exists a strictly positive section of ^(M) on U^, the nonnegative
^(M)-superharmonic functions strongly separate points of U^, Q.E.D.

Since ^(M) satisfies the axioms, the minimum principle is valid
for ^(M), and so it is meaningful to talk about super- and subharmonic
functions using only bases of regular sets. The argument we just gave
to show that there was a relation between j|(M^- and ^(M)-super-
and subharmonic functions then establishes the following corollary,
whose details of proof we omit.

COROLLARY 3.2.6. - // M > N, then every nonnegative § (M)-
subharmonic function is ^(N)-subharmomc and every nonnegative
{| (V)-superharmonic function is § (U)-superharmonic. The presheaf
of local differences of superharmonic functions ("(%") associated
with ^(M) is identical with the presheaf (R of local differences
of SC-superharmonic functions.
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3.3. Further properties of 6^ ; existence of ^(M)-potentials.

PROPOSITION 3.3.1. - 6^ is an epimorphism of sheaves. A func-
tion g €<%x (X an open subset o/W) is §(M)-superharmonic whenever
O^g is a nonnegative element of F(X ,&), and ifM > 0 this condition
is also necessary.

Proof. - To prove that 0^ is an epimorphism it will suffice
to show that given X, etc., as at the beginning of 3.2 above, and
a potential p E $^, for any U satisfying the hypotheses of 3.2.1
above we can find g E <%y with g + Kg = p on U. But then we
need only take

g = (I + KF'p = p - K(I + K)~1 p == p - Ki(I + KF'p

+ K 2 ( I + K ) - 1 ,

for (I + K)~1 sends nonnegative superharmonic functions to nonne-
gative functions and the K .̂ send nonnegative functions to nonnega-
tive superharmonic functions.

For the second assertion, suppose 0^g is a nonnegative section
of a. Then for all sufficiently small U satisfying the hypotheses
of 3.2.1 above, the function g + Kg - H(g\ 3U , U) is a potential on U.
By 3.2.1,

0 < (I + K)-1 [g 4- Kg - H(g\9V , U)]

= g - (I + K)-1 [H(g\9V , U)] = g - G(g\W , U ; M) ,

and since the Vs satisfying those hypotheses form a basis for the to-
pology of X, g is §(M)-superharmonic. Conversely, suppose M > 0
and g is ^(M)-superharmonic, so that we know that

0<g- G(g\9V , U ; M) = g - (I + K)-1 [H(^|3U , U)]

for all U satisfying the hypotheses of 3.2.1. Since M > 0, K = K, is a
nonnegative operator, and a fortiori so is I + K. Hence

0 < ( I + K ) ^ - H ( ^ | a U , U ) ,

and since Kg has boundary values zero,

0 < (g + Kg) - H([g + Kg]\9V , U) .
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For any regular V C U we have K^g = V^g - HCK^IBV.V), and
thus we also see that

0 < (g + K^) - H([g + K^IIBV , V) = (g + K^)

-H^+K^nav.v) ,
showing that g + K^ is 96-superharmonic in U and thus that
A^+A^M>0,Q.E.D.

COROLLARY 3.3.2.

0 ———> §(M) ———>(R. OM > & ———> 0

is a fine resolution of §(M). One thus has the cohomology exact
sequence

o —> F(W , §(M)) —> F(W ,<%) —^ r(w, a) -L^
H^W.gCM))———>0 .

Proof. — That <% ——^ & ——> 0 is exact is precisely the
fact that 0^ is an epimorphism of sheaves, and the cohomology exact
sequence follows from a universal property of fine resolutions [6, 2.
Lemma, p. 177].

COROLLARY 3.3.3. - For any 0 <g e F(W ,(%) there exists an
Mo € F(W, &) for which g is ^W^superharmonic, and UQ may
be taken greater than any preassigned section of&. In particular,
MQ can be found for which g is §(MQ}-superharmonic but not §(Mo)-
harmonic on any open set.

Proof. — By the proposition it will suffice to find MQ > 0 for
which Ag + AMQ > 0, and that is equivalent to A Mp > — A^,
or to MQ > — A^ (A^). Since we can write Ag = Mi — M^ with the
M, > 0 O* = 1,2) and find M3 that is strictly positive, it will suffice
to take Mo > M3 + A^(Mi + M^).

THEOREM 3.3.4. - // W is compact, then for all sufficiently
large M > 0 there is a positive continuous ^(MYpotential on W.

Proof. — For each M > 0, let A^ denote the intersection of
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the zero-sets of the continuous §(M)-potentials. By the construction
used in 1.3.4 above (take a sequence {p^}^=i of continuous §(M>-
potentials that is uniformly dense in the cone of all such potentials,

and choose multipliers o^ > 0 for which V o^py, converges uni-
w = i

formly on W) it is easy to see that A^ is itself a zero-set. If M > N,
then every nonnegative jg|(N)-superharmonic function is ^(M)-super-
harmonic, and every nonnegative §(M)-harmonic function ^(N)-
subharmonic ; thus every <|(N)-potential is a ^(M)-potential, and
so AM c AN . Thus the correspondence M ——> A^ from the cone
of nonnegative global sections of& to closed subsets ofW is decreasing,
and to prove the assertion of the theorem it will thus suffice to
show that H {AM : 0 < M E r(W ,a)} = 0, by the finite intersection
property.

Suppose otherwise, and call the intersection A. If x^ and x^
are distinct points of A, an easy application of 1.5.3 above shows
that we can find positive functions g^ and g^ in r(W,<%) that
strongly separate them ; for suitably chosen M^ we can be sure that
§(Mo) admits a positive superharmonic ^o, and for suitably chosen
M^ > Mo,^ andg^ 1̂1 ̂ so be ^(M^)-super armonic. Letg^ = ^i + Pi
and g^ = h^ + p^ be the decompositions of g^ and g^ into their
§(M ̂ -harmonic and {|(Mi)-potential parts, respectively. Since both
Pi and ?2 vanish on A, it must be the case that h^ and h^ strongly
separate x^ and x^. Both h^ and h^ are ^(Mo)-subharmonic by
3.2.6, and since ^(M^) possesses a positive superharmonic function,
they have ^(Mo)-superharmonic majorants. Hence they have least
^(Mo)-harmonic majorants f^ and f^ respectively. The functions
/i — /^ and /2 — h^ are §(M^ ̂ potentials on W ; hence they vanish
on A, and since hf = /,. — (f, — H{) (i = 1,2), the functions /\ , /^
strongly separate x^ and x^. This shows that the ^(Mo)-hannonic
functions on W strongly separate points of A, since the matter is
trivial if A has only one point.

We claim that the restriction of F(W , §(Mo)) to A is a sublattice
of(3(A). To see this, observe that since (KMg) possesses a positive su-
perharmonic function g^ whose potential part must vanish on A, there
exists an 0 < h^ G F(W , §(Mo)) that does not vanish on A. Thus
to prove our claim it suffices to show that if /, g € F(W , §(Mg))
are nonnegative, then /A S is the restriction to A of an element of
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F(W, ^(Mo)). But /A^ = h + p for uniquely determined

A^r(W,§(Mo))

and {|(Mo)-potential p ; since p vanishes on A, A | A = (/A^)|A.
Since HW , g(Mo))|A is a strongly separating sublattice of

6 (A) and r(W,j|(Mo)) is finite-dimensional (an easy consequence
of axiom III), the Stone-Weierstrass theorem shows that 6(A) is
finite-dimensional ; A must thus be finite. We can thus take a point
XQ G A and find an 96-regular B-set U that contains XQ but has no
other points of A in a neighborhood of its closure. Since

A n u = n { A ^ H U : Mo < M e r ( W , &)}== {jc^},
for sufficiently large M > MQ one must have A^ H U C U. Take
such an M, and let p be a § (M)-potential on W whose zero-set is
AM ; then p\V is zero only at interior points of U. However, U is
a regular set for §(M) on which the nonnegative ^(M)-superharmonic
functions separate points and a strictly positive ^(M)-harmonic
function exists, by 3.2.5 above ; so we have a contradiction to the
minimum principle for §(M), Q.E.D.

Remark. — The situation is somewhat simpler in the subelliptic
case. Indeed, if §(Mg) admits a positive superharmonic nonharmonic
function g^ then its potential part p^ is a nonzero superharmonic
function on W and therefore is strictly positive on W, by 1.8.2.
In particular, the compactness of W, which is used so strongly in the
proof above, is not needed.

4. The index-zero theorem and related results.

The assumption that the base space W is compact is hereby
made, once and for all, for this entire section.

4.1. The index-zero theorem.

LEMMA 4.1.1. - The space F(W, <%) has a unique Frechet-space
topology finer than the topology of pointwise convergence (and
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thus finer than the uniform norm topology). If M is a nonnegative
section of r (W,&) so large that §(M) admits strictly positive
potentials, and if Q.^(M) denotes the space of differences of §(M)-
potentials on W, topologized as in 2.2.2 above, then the Frechet-
space topology of F(W,(%) is that it receives under identification
with Q^(U), so ^(w »<%) is a Banach space.

Proof. — The assertions of the first sentence above are imme-
diate consequences of the closed-graph theorem : the identity
mapping between any two topologies satisfying the description of
the lemma is necessarily closed and thus bicontinuous, and the
mapping from such a topology to the uniform-norm topology is
necessarily closed. It remains to prove the existence of such a topology.
By 2.1.2 above (applied to {|(M)), &^(M) = F(W ,C%), and the
III • Ill-topology on c^y(M) is a Banach-space topology which is finer
than the uniform-norm topology by 2.2.2 above, Q.E.D.

LEMMA 4.1.2. — Let M be a nonnegative section of & on W,
so large that §(M) admits strictly positive potentials. If F(W,<%)
is given its Banach-space topology and F(W, &) given its usual topo-
logy, then the mapping 0^ : F(W , (R) ——> F(W , &) is atopolo-
gical isomorphism.

Proof. - By 2.1.2 above, again applied to j|(M), F(W , ^(M)) = 0
and H^W , §(M)) = 0. By the cohomology exact sequence of 3.3.2
above, 0^ : F(W , C%) ——> F(W , &) is 1-1 and onto. It is a conse-
quence of the closed graph theorem that the following condition
is sufficient for the bicontinuity asserted by the lemma : ifO^^i
is a sequence in F(W ,<%) converging to r € F(W ,<%) in the Banach-
space topology of r(W,ffy, <N^}^^ is the sequence in F(W, &)
defined by N^ = Q^, and N^ ———> 0 in the topology of F(W , &\
then r = 0. To see that this condition holds, fix x € W, let U be
a regular B-region containing x, let V be an open neighborhood of x
with compact closure contained in U, and for each regular X with
x e X and X C V, let Kx be the kernel on X defined by ^xvrSo^u)^-
It is easy to check that the Laplacian of

r, - H(^ |3X , X) + K\ - rxv[S(v,u)NJ

is zero throughout X, and that it continuously takes the boundary
values zero ; thus it is identically zero in X, i.e.
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r, - H(rJ3X . X) + K\ = rxvlS(v.u)NJ

throughout X. The left side depends continuously on r^ in the
uniform norm on ©o(X), and by 2.2.7 the right side converges to
zero in a topology stronger than uniform convergence on X, as
n ———^ °° and N^ ———> 0. Thus in the limit we have

r-H(r\9X,X)+Kxr= 0

and since X was an arbitrary regular neighborhood of x, the value
of O^r at x is zero. Since x was arbitrary, r is a ^(M)-harmonic func-
tion on W ; but F(W, §(M)) = 0, so r = 0, Q.E.D.

LEMMA 4.1.3. - Let E be a Banach space, and let S E J?(E)
be factorable through a space 6 (X), where X is a compact Hausdorff
space. If S = TU, where U GJ?(E ,<°(X)) is weakly compact and
T e ^ ( ( ° ( X ) , E ) is continuous, then S2 is compact, and I - S is
a Fredholm operator of index zero (ie., the dimension of its null
space and the codimension of its range are finite and equal).

Proof. - Write S2 = T(UT)U. Since U sends the unit ball
of E to a relatively weakly compact set in (3(X) and UT sends weakly
compact sets in (3(X) to strongly compact sets [5, Thm. 4, p. 494],
S2 is compact. The assertion that I - S is Fredholm of index zero is
a paraphrase of [5, Thm. 6, p. 579] ; in the context of [5] it follows
from that theorem and the Fredholm alternative [5, p. 609]. Another
way of looking at this assertion is the following : since

(I - r S ) ( I + r S ) = I -t2S2 ,

I - tS is invertible modulo compact operators on E for every t.
Thus I - tS is Fredholm for every r, and moreover belongs to the
same component of the Fredholm operators as I. Since I has index
zero, I - S has index zero, i.e. the null space and the cokernel of
I — S have the same dimension.

THEOREM 4.1.4 (index-zero theorem). - For any M E F(W , & ),
the dimensions of the vector spaces F(W , §(M)) = H°(W, §(M)) and
H1 (W , §(M)) are finite and equal.

Proof. - Take M^ G F(W ,&) with M^ > M and so large that



354 BERTRAM WALSH

§(MQ) admits strictly positive potentials. Define the linear trans-
formation V : F(W, <R) ——> F(W , &) by setting W = AJMo - M].
Since V can be factored into the composition of the "identity"
mapping of F(W ,<%) into 6(W) and the mapping r ——> AJM^ - M]
of <2(W) into r(W,a), and the latter mapping is weakly compact
by 2.2.8 above, V can be factored through a weakly compact linear
transformation defined on the space 6(W), a space of continuous
functions on a compact Hausdorff space. If we use 0^ (a topological
isomorphism by 4.1.2 above) to identify r(W,<%) and F(W,a) ,
then 0^ is identified with 9^[e^ - V] = I - O^V, The mapping
O^V satisfies the hypotheses for "S" of 4.1.3 above, so 0^ is iden-
tified with a Fredholm operator of index zero : its null space is
precisely F(W, ^(M)), and its range is a subspace of r(W,<%)
of finite codimension, equal to the dimension of F(W , ̂ (M)). Ap-
plying 0^ again maps r(W,(%) onto r(W,S) and the range of

^M^M onto ^M^^^)!'so

dim H^W , §(M)) == dim [F(W , &)16^[rW ,<%)]] =

= dim H°(W , g(M)) = dim F(W ,^(M)) ,

as desired (the first equality follows from the cohomology exact
sequence of 3.3.2 above), Q.E.D.

In this essentially perturbation-theoretic setting, it may be appro-
priate to state the following corollary.

COROLLARY 4.1.5. - In the setting of 4,1.4 above, for any
N G F(W , 3>) the dimensions of the spaces F(W , §(M + rN)) and/or
H (W , (|(M + rN)) are constant on R (as functions of t ) except
at a discrete set of points.

Proof. - Observe that the section M G F(W , &) of the theorem
is arbitrary, so that for all real t, the operator:

^rN: F(W , (%) ——> F(W ,a)
is a Fredholm operator of index zero. One can admit complex t
(at least for small imaginary parts, which is all we need) simply by
complexifying all the Banach spaces involved. By [8, Thm. 5.31,
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p. 241] the dimensions of the null space F(W ,g(M + rN)) and the
cokernel F(W , &)/6^^[rW ,(%)] ^ H^W , g(M + ^N)) of 0^m
are constant in a punctured neighborhood in the complex plane
of each t, and therefore are constant on R except at a discrete set
of points, Q.E.D.

COROLLARY 4.1.6. - Let N > 0 be such that §(M 4- rN) admits
a strictly positive potential for some t. Then F(W , §(M 4- ^N)) = 0
except for a discrete set of values of t, and for all sufficiently large t.

Proof. - I f ^ C M + ^ i N ) admits a strictly positive potential,
then that potential is also a potential for §(M 4- ^N) with t > t^,
and so F(W , §(M + rN)) = 0 for t > t^ by the minimum principle.
The assertion then follows from 4.1.5 above.

4.2. Flux and duality. - All of the results of [11, § 4] and [12,
§ 3, Prop. 3.8 ff. and § 4] concerning the determination of H^OV,^)
can be deduced from the results above. Let us recall the definition
of the inductive topology of H^W ,9€) [12, Def. 2.4] :

DEFINITION 4.2.1. — For each Cousin pair (A, U) in W, let
/(A u) : ^U\A——> H^W.ffC) be the natural linear mapping of
96u\A' identified with Z^N^WXA.U}), 96), into H^W.^C). The
inductive topology on H1^,?^) is the inductive (locally convex)
topology [10, p. 54} generated by the Frechet spaces S^VA an(^
the linear mappings /(A.U) as (A »u) ranges over all Cousin pairs
in W for which U is a B-set.

The proof of [12, Prop. 3.8] is valid in the present setting ;
it gives us a proof of the following proposition :

PROPOSITION 4.2.2 : The conditions
a) H^W,^) is a Hausdorff LTS in the inductive topology ;
b) H^W , 96) is finite-dimensional ;
c) There is a cover u o/W for which the natural map

^(N(10,96) ——> H^W.Se)

is surjective
hold in the present setting
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Indeed, the proof that b) > c) > a) given in [12,
Prop. 3.8] is just as valid with the present assumptions as it was
there, and we know that b) holds by 4.1.4 above. Moreover, since the
Hausdorff topology on a finite-dimensional vector space is unique,
we have the following corollary.

COROLLARY 4.2.3. - The inductive topology on H^W.SC) is
identical with the quotient topology of F(W ,a)/A[r(W, <%)]. In
particular, if F is an element of the dual space o/H (W ,96), the linear
functional / (A ,U)°^ ^flr lt induces on 96u\^, ^here (A , U) is a
Cousin pair in W for which U is a B-set, is continuous in the topology
of uniform convergence on compacta.

The "dimensionality" results of [11, § 4] can be derived
immediately. The special role of the function 1 disappears.

PROPOSITION 4.2.4. — Suppose (W , 96) is subelliptic and that
there exists a nonzero nonnegative HC-superharmonic continuous
function defined on all of W. If this function is not harmonic,
then F(W , 96) = 0 and H1 (W , 96) = 0 ; if it is harmonic,

dim F(W , 96) = dim H1 (W ,96) = 1 .

Proof. — If h and p are the harmonic and potential parts of
the nonzero nonnegative continuous superharmonic function given
in the hypotheses, then exactly one of h and p is nonzero : if p ^= 0
then it is strictly positive on W, by 1.8.2 above, so a suitable multiple
of p majorizes h and h = 0. If p > 0, the fact that r(W ,96) == 0
and H^W,^)^ is Theorem 2.1.2 above. If h + 0, then h is
strictly positive on W by 1.8.2 above, and an easy application of 1.8.2
also shows that h generates F(W ,96) ; thus dim r(W,96)=l
and so dim ^(W ,96) = 1 by 4.1.4 above, Q.E.D.

The flux functionals of [11, § 3] are probably of less interest
in this context than they are in the context of normal structures, so
we will only give a brief description of their construction and the
verification of their properties in the present setting. First we observe
that whenever 96 is subelliptic and 96^ has a positive generator,
the dual space of H1 (W , 96) also has a positive generator in a suitable
sense. Indeed, let F be a generator of the dual space of H1 (W, 96) ;
since H^W ,96) ^ F(W , a)/A[r(W , <%)] and the codimension of
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A[r(W,C%)] is 1, F can be thought of as a linear functional on
r(W , S>) whose null space is precisely A[F(W ,<%)]. Without loss of
generality one can take F in such a way that F(M) > 0 for some
0 < M € F(W , S>) ; but we claim that then F is a strictly positive
functional on F(W , &). Indeed, if 0 < N G F(W, &) but F(N)<0,
then for suitable j3 > 0 one will have FQ3M + N) = 0. Since the null
space of F is A[F(W,(%)], one can find ^Er (W, (%) for which
A^ == (3M 4- N. But 96 ̂  has a strictly positive generator, and by
adding a suitable multiple of it to g (which does not disturb &g)
we could cause g to be nonnegative and possess a zero. But g is
superharmonic, because Ag = |3M + N > 0 ; thus g = 0 by 1.8.2,
and so j3M + N = 0. This says that N = — /5M < 0, so N = 0, and
that proves that F is strictly positive.

If we now define a flux functional by setting ^f^ ^ [s] = F [/^ ^s]
for each Cousin pair (A , U) and each s G ^CyVA' one can ^ri^V
the properties of [11, Thm. (3.8)]. Indeed, (1) and (2) of that theorem
hold automatically, so it suffices to check (3) (reference to a normal
structure in the theorem is vacuous in the present context). To do this
it suffices to show that if (A , U) is a Cousin pair and s a super-
harmonic function on U with support contained in A which is
continuous on U, then ^^uJ5|U\A]>0, with equality if and
only if s is harmonic in U. By the definition o f / ^ m li ls ̂ ^ to

see that /(A.^M11^! is the coset of A[r(W,CR)] in F(W , &)
to which the section that is Af in U and zero outside A belongs ;
therefore, ̂ (A.U) I51 ̂ ^ = Fl/cA.u)^!11^]] = F[A.y]>0, with equa-
lity iff As = 0, by the strict positivity of F "and that is what one
wants. Similarly one can check [11, Cor. 3.10] : (1) is the continuity
of //A u) ° F proved in 4.2.3 above (reference to ^?A u) ls vacuous
in the present context), (2) is irrelevant in the absence of a normal
structure, and (3) is trivial since F is already defined on H1 (W , H€) and
therefore induces a well-defined element of the dual of H1 (N(U), 3€)
for every cover tt of W. To conclude the treatment of flux functionals,
we observe that if the present flux functional is used to make the
definition [11, Def. (4.2)] of the total charge distribution of an
element of F(W , &), then it is easy to see that for any M E F(W, &)
and Borel set E C W, (rM) (E) = FIXgM]. The countable additivity
of TM then follows directly from the countable additivity of

E ———> X g M E n W . a )
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proved in 2.2.7 above. Since ft d(rU) = F[X^M] = F[M] and the
null space of F is A [F(W ,<%)], a necessary and sufficient condition
for M to belong to A[F(W ,(%)] is that ft d(rM) = 0, just as in
[11, Thm. (4.3)].

Finally, we consider the relation between the results of the
present paper and the theory of adjoint sheaves of [7]. Suppose,
therefore, that (W ,96) satisfies the Brelot axioms [3] and the hypo-
theses of the adjoint-sheaf theory [7] locally ; then a global adjoint
sheaf 3€* for 9€ is available, as in [12], and the results of the last-
named paper can be employed. As 4.2.2 above observes, the equivalent
conditions of [12, Prop. 3.8] hold as a consequence of 4.1.4 above.
By [12, Prop. 2.5], since H^W.SC) is Hausdorff in the inductive
topology, it and r(W,ge*) are identifiable with each other's dual
spaces. In particular, these spaces have the same dimension, and so
we have the correct axiomatic version of the classical index-zero
theorem :

THEOREM 4.2.5. - // (W,9e) satisfies locally the assumptions
of the Herve adfoint'sheaf theory and 3€* is the global adjoint sheaf
of S€ (as in [12, § 1]), then dim r (W,9e)=dim I^W,^*).

Indeed, r(W,g€*) and H^W.SC) are each other's duals, and
dim H\W ,96) = dim F(W ,96) by 4.1.4 above.
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