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NON-ARCHIMEDEAN NORMAL FAMILIES

by Rita RODRÍGUEZ VÁZQUEZ (*)

Abstract. — We present several results on the compactness of the space of
morphisms between analytic spaces in the sense of Berkovich. We show that under
certain conditions on the source, every sequence of analytic maps having an affinoid
target has a subsequence that converges pointwise to a continuous map. We also
study the class of continuous maps that arise in this way. Locally, they turn to be
analytic after a certain base change. Our results naturally lead to a definition of
normal families. We give some applications to the dynamics of an endomorphism
of the projective space. We introduce two natural notions of Fatou set and gener-
alize to the non-Archimedan setting a theorem of Ueda stating that every Fatou
component is hyperbolically imbedded in the projective space.
Résumé. — Nous présentons plusieurs résultats concernant la compacité de l’es-

pace des morphismes entre espaces analytiques au sens de Berkovich. Nous mon-
trons que sous certaines conditions sur l’espace source, toute suite d’applications
analytiques à valeurs dans un espace affinoïde admet une sous-suite qui converge
ponctuellement vers une application continue. Nous étudions aussi la classe des ap-
plications continues qui apparaissent comme de telles limites. Localement ces appli-
cations deviennent analytiques après changement de base. Nos résultats amènent
naturellement à la notion de familles normales. Nous donnons quelques applica-
tions à la dynamique des endomorphismes de l’espace projectif. Nous introduisons
deux notions naturelles d’ensemble de Fatou et généralisons dans le cadre non-
Archimédien un théorème de Ueda qui stipule que toute composante de Fatou est
hyperboliquement plongée dans l’espace projectif.

1. Introduction

The classical Montel’s theorem asserts that any family of holomorphic
functions on a domain in Cn with values in a ball is relatively compact for
the topology of the local uniform convergence [26]. The proof uses Cauchy’s
estimates to obtain a uniform bound on the derivatives. By Ascoli–Arzelà’s
theorem the family is equicontinuous and the result follows.

Keywords: normal families, Berkovich spaces.
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This result has several applications in complex dynamics. It also plays
an important role in the study of Kobayashi hyperbolic complex analytic
spaces. For instance, it is closely related to Zalcman’s reparametrization
lemma [37], which is a key ingredient in the proof of Brody’s Lemma [6],
characterizing compact Kobayashi hyperbolic complex analytic spaces in
terms of the non-existence of entire curves.

The aim of this paper is to study the compactness properties of the space
of morphisms between analytic spaces defined over a non-Archimedean
complete field, in analogy to the classical Montel’s Theorem. We therefore
fix a non-Archimedean complete valued field k that is nontrivially valued.

An approach to this problem using equicontinuity has already been
treated in the literature. Hsia gave in [17] an equicontinuity criterion for
families of meromorphic functions on a disk. In [21], the Fatou set of a
morphism of the projective space is defined as the equicontinuity locus of
the family of iterates with respect to the chordal metric. However, this ap-
proach is limited by the fact that one cannot apply Ascoli–Arzelà’s theorem
in this context.

We will work on analytic spaces as defined in [2, 3]. The main reason
is that analytic spaces in the sense of Berkovich have good topological
properties: they are locally compact and locally pathwise connected, what
makes them a more adapted framework to arguments of analytic nature.
The analytic spaces we shall be mostly interested in are Berkovich analyti-
fications of projective varieties. Recall that the set of closed points of such
a variety forms a dense subset of its analytification with empty interior if
k is not trivially valued. We shall refer to these points as rigid points. The
previously mentioned equicontinuity results concern only the set of rigid
points.
More recently, Favre, Kiwi and Trucco proved an analogue of Montel’s

theorem on the Berkovich analytic projective line P1,an
k , see [11]. They show

that when k is algebraically closed and has residue characteristic 0, then
every sequence of analytic maps from any open connected subset X of
P1,an
k avoiding three points has a subsequence that is pointwise converging

to a continuous map X → P1,an
k . They made extensive use of Berkovich’s

geometry and their strategy benefits from the tree structure of P1,an
k .

We explore the higher dimensional case, and consequently use deeper
facts from Berkovich theory. Of particular relevance for us is the theorem
by Poineau stating that compact analytic spaces are sequentially compact,
see [27]. This result is nontrivial, since Berkovich spaces are not metrizable
in general. We show:

ANNALES DE L’INSTITUT FOURIER



NON-ARCHIMEDEAN NORMAL FAMILIES 1679

Theorem 1.1. — Let k be a non-Archimedean complete field that
is nontrivially valued. Let X be a reduced, σ-compact, boundaryless
k-analytic space. Let Y be a k-affinoid space.
Then, every sequence of analytic maps fn : X → Y admits a pointwise

converging subsequence whose limit is continuous.

Notice that the source space X is a good analytic space, since it is a
boundaryless space defined over a nontrivially valued field.
The seemingly complicated hypothesis on the source space X are not

such in fact. We refer the reader to Section 2 for a detailed discussion on
the technical assumptions on X. For the moment, let us indicate that two
important classes of k-analytic spaces satisfy these properties: analytifica-
tions of reduced algebraic varieties and connected components of the ana-
lytic interior of any reduced k-affinoid space. The latter will be referred to
as basic tubes. They have been thoroughly studied by Bosch and Poineau,
see [4, 28].
Remark that the boundaryless assumption is crucial, as problems arise

even in the affinoid case. Indeed, as pointed out in [11, Section 4.2], consider
for instance the sequence of analytic maps from the closed unit disk D into
itself fn : z 7→ z2n! . For every n ∈ N, the Gauss point is a fixed point for
fn. One can show that fn is pointwise converging, but its limit map is zero
on the whole open unit disk and hence not continuous.
In view of Theorem 1.1, we say that a family of analytic maps F from

a boundaryless k-analytic space X into a compact space Y is normal at a
point point x ∈ X if there exists a neighbourhood V 3 x such that every
sequence {fn} in F admits a subsequence fnj that is pointwise converging
on V to some continuous map f : V → Y .
We now turn to the problem of describing the limits of pointwise converg-

ing analytic maps. As opposed to the complex setting, one cannot expect
the limit maps from Theorem 1.1 to be analytic. Indeed, when k is al-
gebraically closed and nontrivially valued, any constant map f : X → Y ,
f ≡ y ∈ Y , can be realized as the limit of constant analytic maps. However,
f is analytic if and only if y is rigid.
Inspite of not being analytic in general, the continuous limit maps ob-

tained in Theorem 1.1 are of a very particular kind: they turn analytic after
a suitable base change. In order to specify this phenomenon precisely, we
rely again in a crucial way on the results of Poineau. Let X be a k-analytic
space. For every complete extension K of k, we denote by πK/k : XK → X

the usual base change morphism. Every k-point in X defines a K-point
in XK in a natural manner. When the base field k is algebraically closed,

TOME 71 (2021), FASCICULE 4



1680 Rita RODRÍGUEZ VÁZQUEZ

Poineau [27] shows that this inclusion admits a unique continuous extension
σK/k : X → XK , which by construction defines a section of πK/k.

Theorem 1.2. — Let k be a non-Archimedean algebraically closed com-
plete field that is nontrivially valued andX a reduced, boundaryless strictly
k-analytic space. Let Y be a k-affinoid space. Let fn : X → Y be a sequence
of analytic maps converging pointwise to a continuous map f .

Then, for any point x ∈ X one can find an affinoid neighbourhood Z

of x, a complete extension K/k and a K-analytic map F : ZK → YK such
that

f |Z = πK/k ◦ F ◦ σK/k.

It would be interesting to find aK-analytic map F such that the stronger
condition πK/k ◦ F = f ◦ πK/k holds, but our proof does not show this.

Let us explain the proof of Theorem 1.2 in the case where X is the open
r-dimensional polydisk Dr and Y the closed s-dimensional polydisk Ds.
The key idea is to view the set of all analytic maps from Dr to Ds as the
set of rigid points of an infinite dimensional polydisk Mor(Dr,Ds). This
procedure can be easily illustrated in the polynomial case. Observe that a
polynomial map sending Dr into Ds is given by finitely many coefficients
in the base field k with norm at most 1, and so defines a rigid point in an
appropriate dimensional closed unit polydisk. This procedure can be done
similarly for general analytic maps. In this case, the coefficients define a
rigid point in an infinite dimensional polydisk denoted Mor(Dr,Ds).

Now take a sequence fn : Dr → Ds of analytic maps, associated to a
sequence of rigid points {αn} in Mor(Dr,Ds). It can be showed that the
fact that fn converges pointwise to some continuous map f amounts for αn
to converging to some point α in Mor(Dr,Ds). Observe that α is not rigid
in general, but after a base change by H(α), the complete residue field at
α, the point α can be lifted to a rigid point in Mor(Dr,Ds)H(α). This point
defines a H(α)-analytic map F : DrH(α) → DsH(α) that satisfies the equality
f = πH(α)/k ◦ F ◦ σH(α)/k. Observe that F is not canonical, as it depends
on the choice of the rigid point in Mor(Dr,Ds)H(α) lying over α.

We go beyond Theorem 1.2 and show that to any point α in Mor(Dr,Ds)
one can associate a continuous map from Dr to Ds in a continuous way, in
the sense that for any sequence of points αn in Mor(Dr,Ds) converging to
α ∈ Mor(Dr,Ds), the corresponding sequence of continuous maps converges
everywhere pointwise to the continuous map associated to α. In Section 4
we detail this correspondence.
This result suggests the following definition. We say that a continuous

map f between analytic spaces is weakly analytic if it is locally of the
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form f = πK/k ◦ F ◦ σK/k for some complete extension K of k and some
K-analytic map F . In fact, weakly analytic maps can be characterized as
being locally the pointwise limits of analytic maps. In Section 6 we shall
prove that weakly analytic maps share many properties with analytic maps,
such as an isolated zero principle on curves.
We give applications of Theorem 1.1 to the dynamics of an endomorphism

f of the k-analytic projective space PN,an
k of degree at least 2. Kawaguchi

and Silverman associated a non-Archimedean Green functionGf to f in [20,
21], generalizing the classical complex construction by Hubbard [18] and
Fornaess and Sibony [15]. We attach to f two different notions of Fatou
sets. We define the normal Fatou set Fnorm(f) of f as the normality locus
of the family of the iterates {fn}. Next, we define the harmonic Fatou set
Fharm(f) as the set where the non-Archimedean Green function Gf of f
introduced by Kawaguchi–Silverman is strongly pluriharmonic in the sense
of [7].
In Proposition 7.13 we show that the harmonic Fatou set of f can be

characterized in terms of a sort of equicontinuity property for the iterates
of f . Its proof follows its complex counterpart. It is now a consequence of
Theorem 1.1 that Fharm(f) is contained in Fnorm(f). We conjecture that for
every endomorphism f of the projective space the two Fatou sets coincide.
There are two main results on the geometry of the Fatou set of an en-

domorphism of the complex projective space of degree at least 2, see [30]
for a complete survey. Every Fatou component is a Stein space [15] and is
hyperbolically imbedded in PNC in the sense of Kobayashi [36].

Here we shall focus our attention on the hyperbolicity properties of the
harmonic Fatou components in the non-Archimedean setting. To motivate
our next result, recall that a subspace Ω of a complex analytic space Y is
hyperbolically imbedded if the Kobayashi distance on Ω does not degener-
ate towards its boundary [23, 24]. If Ω is relatively compact in Y , then Ω
is hyperbolically imbedded in Y if and only if the family Hol(D,Ω) of holo-
morphic maps from the open unit disc D to Ω is relatively locally compact
in Hol(D, Y ), see [24, Section II, Theorem 1.2].

In our context, we prove:

Theorem 1.3. — Let f : PN,an → PN,an be an endomorphism of degree
at least 2. Let Ω be a connected component of the harmonic Fatou set
Fharm(f) of f , and let U be any connected open subset of P1,an.
Then, every sequence of analytic maps gn : U → Ω admits a subsequence

gnj that is pointwise converging to a continuous map U → PN,an.

TOME 71 (2021), FASCICULE 4
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Note that in the non-Archimedean setting checking the normality for
every open subset U of P1,an is stronger than just for the open unit disk,
as opposed to the complex case, see [23, Theorem 5.1.5]. For instance,
every sequence of analytic maps fn : D→ A1,an \{0} admits a subsequence
converging to a continuous map, whereas this is not true if one replaces the
source by the punctured open unit disk.
It remains open whether in Theorem 1.3 one can take U to be any basic

tube.
We have the following Picard-type result:

Theorem 1.4. — Let Ω be a connected component of the harmonic
Fatou set Fharm(f) of an endomorphism f : PN,an → PN,an of degree d > 2.
Then every analytic map from A1,an \ {0} to Ω is constant.

This paper is structured as follows. In Section 2 we review some basic
facts about Berkovich spaces and summarize several results on universal
points from [27] that will be needed in the sequel. In Section 3 we prove
a version of Theorem 1.1 for polynomial maps of uniformly bounded de-
gree. In Section 4 we describe the structure of the topological space that
parametrizes the continuous maps that appear as pointwise limits of an-
alytic maps between polydisks. Section 5 comprises the proofs of Theo-
rem 1.1 and Theorem 1.2. The properties of continuous maps that are
limits of analytic maps are studied in Section 6. Finally, in Section 7 we
give applications to dynamics of the previous results and prove Theorem 1.3
and Theorem 1.4.
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gratitude to Jérôme Poineau and Antoine Ducros for answering numerous
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2. General facts on analytic spaces

Throughout this paper, k is a field endowed with a non-Archimedean
complete norm | · |. We will always assume that k is nontrivially valued.
Except in Section 5.2, k will be algebraically closed.
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We write |k×| = {|x| : x ∈ k×} ⊆ R+ for its value group and k◦ = {x ∈
k : |x| 6 1} for its ring of integers. The latter is a local ring with maximal
ideal k◦◦ = {x ∈ k : |x| < 1}. The residue field of k is k̃ = k◦/k◦◦.
The basic reference for this section is Berkovich’s original text [2]. See

also [34] for a more recent survey.

2.1. Analytic spaces

Pick a positive integer N and an N -tuple of positive real numbers r =
(r1, . . . , rN ). Denote by k{r−1T} the set of power series f =

∑
I aIT

I , I =
(i1, . . . , iN ), with coefficients aI ∈ k such that |aI |rI → 0 as |I| := i1 + · · ·+
iN tends to infinity. The norm ‖

∑
I aIT

I‖ = maxI |aI |rI makes k{r−1T}
into a Banach k-algebra. When r = (1, . . . , 1), the previous algebra is called
the Tate algebra and we denote it by Tn.
Let ϕ : B → A be a morphism of Banach k-algebras. The residue norm

on B/Kerϕ is defined by |a| = infϕ(b)=a |b|, and we say that ϕ is admissible
if the residue norm is equivalent to the restriction to the image of ϕ of the
norm on A.
A Banach k-algebra A is called k-affinoid if there exists an admissible

surjective morphism of k-algebras k{r−1T} → A. If ri ∈ |k×| for all i, then
A is said to be strictly affinoid.
For any Banach k-algebra A, we denote by X = M(A) the set of all

multiplicative seminorms on A that are bounded by the norm ‖ · ‖ on A.
Given f ∈ A, its image under a seminorm x ∈M(A) is denoted by |f(x)| ∈
R+. The set M(A) is called the analytic spectrum of A and is endowed
with the weakest topology such that all the functions of the form x 7→ |f(x)|
with f ∈ A are continuous. The resulting topological space X is nonempty
if A is nonzero, compact Hausdorff [2, Theorem 1.2.1]. If moreover A is
k-affinoid, then X naturally carries a sheaf of analytic functions OX such
that OX(X) = A, see [2, Section 2.3]. The locally ringed space (X,OX) is
called a k-affinoid space.
Given a point x in a k-affinoid space X = M(A), the fraction field of

A/Ker(x) naturally inherits from x an absolute value extending the one on
k. Its completion is the complete residue field at x and denoted by H(x).
When H(x) is a finite extension of k (or equivalently when H(x) = k, since
k is supposed to be algebraically closed), we say that x is rigid. The set
X(k) of rigid points of X is dense in X.
A character on A is a bounded homomorphism A → K, where K is

any complete valued extension of k. Two characters χ1 : A → K1 and

TOME 71 (2021), FASCICULE 4
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χ2 : A → K2 are equivalent if there exists a character χ : A → L and
isometric inclusions i1 : L→ K1 and i2 : L→ K2 such that i1 ◦χ = χ1 and
i2 ◦ χ = χ2.
Composing the character A → K with the absolute value on K gives rise

to a multiplicative seminorm on A that is bounded, and thus corresponds
to a point x ∈ M(A). Equivalent characters give rise to the same point.
Conversely, every point x ∈ M(A) induces a character χx : A → H(x)
in a natural way. Any other character A → K giving rise to x can be
decomposed as A → H(x) ↪→ K.
The closed polydisk of dimension N and polyradius r = (r1, . . . , rN ) ∈

(R+
∗ )N is defined to be DN (r) :=M(k{r−1T}). When r = (1, . . . , 1) we just

write DN , and when N = 1 we denote it by D. The Gauss point xg ∈ DN
is the point associated to the norm∣∣∣(∑ aIT

I
)

(xg)
∣∣∣ := max |aI |.

General analytic spaces are ringed spaces (X,OX) obtained by gluing
together affinoid spaces. Difficulties arise in the gluing construction as affi-
noid spaces are compact, and we refer to [2, 3] for a precise definition.
Analytic spaces are locally compact and locally path-connected [2, The-
orem 3.2.1]. Given an analytic space X, we denote by |X| its underlying
topological space.
Recall that a topological space X is Fréchet–Urysohn if every subset

A ⊆ X is sequential, that is for every point x in the closure of A there
exists a sequence of points an ∈ A converging to x.

The following topological result, due to Poineau, will be systematically
used throughout the paper:
Theorem 2.1 ([27]). — Every k-analytic space X is a Fréchet–Urysohn

space. In particular, every compact subset of X is sequentially compact.
In the following, we will always deal with the subcategory of good ana-

lytic spaces, which are locally ringed spaces such that any point admits a
neighbourhood isomorphic to an affinoid space.
For any point x in a k-analytic space X, the stalk OX,x is a local k-

algebra with maximal ideal mx. It inherits an absolute value extending the
one on k, and the completion of OX,x/mx is again called the completed
residue field of x and denoted by H(x). When X is an affinoid space, this
definition coincides with the previous one.
The open polydisk of dimension N and polyradius r = (r1, . . . , rN ) ∈

(R+
∗ )N is the set

DNk (r) =
{
x ∈ DNk (r) : |Ti(x)| < ri, i = 1, . . . , N

}
.

ANNALES DE L’INSTITUT FOURIER



NON-ARCHIMEDEAN NORMAL FAMILIES 1685

It can be naturally endowed with a structure of good analytic space by
writing it as the increasing union of N -dimensional closed polydisks DNk (ρ)
whose radii ρ = (ρ1, . . . , ρN ) ∈ (R+

∗ )N satisfy ρi < ri for all i = 1, . . . , N .

2.2. Analytic maps

A morphism between the analytic spectra of two k-Banach algebras
ϕ] : M(A) →M(B) is by definition one induced by a bounded morphism
of Banach k-algebras ϕ : B → A. The morphism ϕ] is continuous.
Let M(A) and M(B) be k-affinoid spaces. The fibre of ϕ] : M(A) →

M(B) over a point y ∈ M(B) is isomorphic to M(A⊗̂BH(y)), see Sec-
tion 2.6 for the notion of complete tensor product. Indeed, let y ∈ M(B)
and let χy : B → H(y) be the associated character. By definition, a point
x ∈ M(A) is mapped to y if and only if the composition B ϕ→ A →
H(x) factors through H(y), which is equivalent to the character χx fac-
torizing through the B-algebra morphism A⊗̂BH(y) → H(x). Pick x ∈
M(A⊗̂BH(y)) and let A⊗̂BH(y) → H(x) be the associated character.
The latter is equivalent to the data of morphisms H(y)→ H(x) and A →
H(x) such that the composition B ϕ→ A→ H(x) equals B → H(y)→ H(x).
In other words, the image of x inM(A) is mapped to y by ϕ.

A morphismM(A)→M(B) is a closed immersion when ϕ is surjective
and admissible.
A surjective morphism ϕ : TN → A is called distinguished if the quotient

norm | · |ϕ induced by ϕ agrees with the supremum norm on A, see [5,
Section 6.4.3]. We say that A is distinguished if such an epimorphism exists.

It can be shown that over an algebraically closed field k, every re-
duced strictly k-affinoid algebra (i.e. without nontrivial nilpotents) is dis-
tinguished [5, Theorem 6.4.3/1]. The key property of distinguished epimor-
phisms is that the reduction Ã is isomorphic to the quotient T̃N/k̃er(ϕ).
From the definition one obtains the following useful result:

Proposition 2.2. — Let X be a k-affinoid space and let X → DN be a
closed immersion induced by a distinguished morphism of Banach algebras.
Then, every analytic map on X with values in a polydisk DM extends to
an analytic map DN → DM .

Proof. — Let A be the underlying k-affinoid algebra of X. Pick an ana-
lytic map f : X → DM , which by definition is given by elements f1, . . . , fM ∈
A with |fi|sup 6 1. Fix a distinguished epimorphism TN → A. For l =
1, . . . ,M , we may lift fl to an element gl in TN having the same norm. The

TOME 71 (2021), FASCICULE 4
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resulting analytic map g = (g1, . . . , gM ) : DN → DM agrees with f on the
affinoid space X. �

Given any two k-analytic spaces X and Y , we let Mork(X,Y ) be the set
of all analytic maps from X to Y .

2.3. Analytification of algebraic varieties

To every algebraic variety X over k one can associate a k-analytic space
Xan in a functorial way; see [2, Section 3.4] for a detailed construction.

Let us describe the underlying topological space. In the case of an affine
variety X = Spec(A), where A is a finitely generated k-algebra, then the
set Xan consists of all the multiplicative seminorms on A whose restriction
to k coincides with the norm on k. This set is endowed with the weakest
topology such that all the maps of the form x ∈ Xan 7→ |f(x)| with f ∈ A
are continuous.
Observe that any k-point x ∈ X corresponds to a morphism of k-algebras

A→ k and its composition with the norm on k defines a rigid point in Xan.
Since k is algebraically closed, one obtains in this way an identification of
the set of closed points in X with the set of rigid points in Xan.
Let X be a general algebraic variety and fix an affine open cover. The an-

alytification of a general algebraic variety X is obtained by glueing together
the analytification of its affine charts in a natural way. Analytifications of
algebraic varieties are good analytic spaces, and closed points are in natural
bijection with rigid points as in the affine case.

2.4. Boundary and interior

Any k-analytic space X comes with natural notions of boundary and
interior. We shall restrict our attention to good k-analytic spaces.
A point x in an affinoid space X lies in the interior of X if there exists

a closed immersion ϕ : X → DN (r) for some polyradius r and some integer
N such that ϕ(x) lies in the open polydisk DN (r).
If X is a good analytic space, a point x belongs to its interior if it admits

an affinoid neighbourhood U such that x belongs to the interior of U . We
let Int(X) be the open set consisting of all the interior points in X. Its
complement ∂(X) is called the boundary of X. It is a closed subset of X.

The analytification of any algebraic variety is boundaryless.
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In the remaining of this section, we explain how to compute the interior
of a strictly k-affinoid space X =M(A). Recall that the spectral radius of
f ∈ A is defined by

ρ(f) = lim
n→∞

‖fn‖1/n,

where ‖ · ‖ is the Banach norm on A. The supremum seminorm on A is
defined by |f |sup := sup{|f(x)| : x ∈ M(A)} for f ∈ A. The spectral
radius and the supremum seminorm agree [2, Theorem 1.3.1].
When A is reduced, ρ is a norm equivalent to ‖ · ‖. The set A◦ = {f ∈

A : ρ(f) 6 1} is a subring of A and A◦◦ = {f ∈ A : ρ(f) < 1} is an ideal.
The reduction of A is then defined as Ã := A◦/A◦◦, and the reduction of
X is X̃ = Spec(Ã).

Observe that Noether’s normalization Lemma [5, Corollary 6.1.2/2] im-
plies that for any strictly k-affinoid algebra A, the reduction Ã is a finitely
generated k̃-algebra, and thus X̃ is an affine variety over the residue field
k̃. The reduction of the closed polydisk DNk is the affine space AN

k̃
.

The reduction map red: X → X̃ is defined as follows. Every bounded
morphism of Banach k-algebras A → B induces a morphism between their
reductions Ã → B̃. In particular, from the character χx : A → H(x) associ-
ated to a point x ∈ X we obtain a k̃-algebra morphism χ̃x : Ã → H̃(x). We
set red(x) := Ker(χ̃x). This map is anticontinuous for the Zariski topology,
meaning that the inverse image of a closed set is an open set.

Lemma 2.3. — Let X be a strictly k-affinoid space. Then,

Int(X) = {x ∈ X : red(x) is a closed point}.

Proof. — Let ϕ : X → DN be a closed immersion. The following diagram
is commutative by construction:

X

red
��

ϕ
// DN

red
��

X̃
ϕ̃
// AN
k̃

Let A be the underlying k-affinoid algebra of X and pick any x ∈ X. If its
reduction x̃ = red(x) is a closed point then so is ϕ̃(x̃). The inverse image
of ϕ̃(x̃) is isomorphic to an open polydisk. Up to composing ϕ with an
automorphism of DN , we may assume that red−1(ϕ̃(x̃)) is isomorphic to
DN . The commutativity of the diagram implies that ϕ(x) lies in DN .

Pick a point x ∈ Int(X). By [2, Proposition 2.5.2], the image of the
morphism of k̃-algebras χ̃x : Ã → H̃(x) induced by χx is integral over k̃.
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This implies that χ̃x(Ã) ' Ã/Ker(χ̃x) is a field. Thus, x̃ is a closed point
of X̃. �

Proposition 2.4. — LetX=M(A) and Y=M(B) be k-affinoid spaces,
and let f : X → Y be a finite morphism. Then, Int(X) = f−1(Int(Y )).

This result is a consequence from [2, Proposition 2.5.8] and [2, Corol-
lary 2.5.13]. Here we give a proof in the strictly k-affinoid case.

Proof. — We prove the result only in the strictly affinoid case. In order
to adapt this proof to the general one, one needs to use Temkin’s graded
reduction of affinoid algebras ([32, 33]).

The morphism f : X → Y induces the following commutative diagram:

X

red
��

f
// Y

red
��

Spec(Ã)
f̃
// Spec(B̃)

Let x be a point in Int(X). By Lemma 2.3, its image f(x) belongs to Int(Y ).
Let now x ∈ X be such that f(x) = y lies in Int(Y ). By the previ-

ous lemma, we have to show that red(x) is a closed point of X̃. Consider
the ring homomorphism ϕ : B̃ → Ã inducing f̃ . It induces a morphism
ϕ′ : B̃/ ker(χ̃y) → Ã/ ker(χ̃x), as the diagram above is commutative. Ob-
serve that ϕ is integral, since it is finite ([5, Theorem 6.3.5/1]), and thus
ϕ′ is also integral. As y ∈ Int(Y ), by Lemma 2.3 the quotient B̃/ ker(χ̃y)
is a field. This implies that Ã/ ker(χx) is a field and thus that red(x) is a
closed point. �

2.5. Basic tubes

We introduce the following terminology.

Definition 2.5. — A k-analytic space X is called a basic tube if there
exists an equidimensional strictly k-affinoid space X̂ and a closed point x̃
in its reduction such that X is isomorphic to red−1(x̃).

It follows from the definition that basic tubes are boundaryless.

Theorem 2.6. — A basic tube is connected.

The fact that any basic tube over an algebraically closed field is connected
is a deep theorem due to [4], which was generalized to arbitrary base fields
in [28].
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Example 2.7. — Let a1, . . . , am be type II points in P1,an as defined in
Berkovich classification of points in P1,an, see [2, Section 1.4.4]. Then every
connected component of P1,an \ {a1, . . . , am} is a basic tube.

Proposition 2.8. — A k-analytic space X is a basic tube if and only
if it is isomorphic to a connected component of the interior of some equidi-
mensional strictly k-affinoid space.

Remark 2.9. — Every equidimensional boundaryless k-analytic space has
a basis of open neighbourhoods that are basic tubes.

Proof. — Let V be any connected component of the interior of an equidi-
mensional strictly k-affinoid space X̂. By Lemma 2.3, red(V ) is contained
in the set of closed points of the reduction of X̂. For every point x̃ ∈ red(V ),
its fibre red−1(x̃) is an open set whose intersection with V is nonempty.
Hence by connectednes, red(V ) is a singleton.
Let conversely X = red−1(x̃) be a basic tube, where x̃ is a closed point

in the reduction of an equidimensional strictly k-affinoid space X̂. Clearly,
X is contained in some connected component V of Int(X̂). The previous
argument shows that red(V ) = {x̃}. �

Recall that a topological space is σ-compact if it is the union of countably
many compact subspaces. For instance, open Berkovich polydisks or the
analytification of an algebraic variety are σ-compact spaces. Observe that
there exist simple examples of k-analytic spaces which are not σ-compact,
e.g. the closed unit disk of dimension N > 2 with the Gauss point removed
over a base field k with uncountable reduction k̃.

Proposition 2.10. — For every basic tube X there exist a strictly k-
affinoid space X̂ and a distinguished closed immersion into some closed
polydisk X̂ → DN such that X is isomorphic to X̂ ∩ DN . In particular, X
is boundaryless.

Proof. — Let X̂ =M(A) be an equidimensional reduced k-affinoid space
and let x̃ be a closed point in its reduction such that red−1(x̃) is isomorphic
to X. As k is algebraically closed and A is reduced, there exists a distin-
guished closed immersion ϕ : X̂ → DN , see [5, Theorem 6.4.3/1]. Hence, Ã
is isomorphic to k̃[T1, . . . , TN ]/k̃er(ϕ) by [5, Corollary 6.4.3/5].

The induced morphism Spec(Ã) → AN
k̃

is a closed immersion by [5,
Proposition 6.4.3/3], since ϕ is distinguished. We may assume that x̃ is
mapped to 0. We conclude that x is mapped to a point in red−1(0), which
is isomorphic to DN . �
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2.6. Universal points and base changes

Let A and B be two Banach k-algebras and denote by | · |A and | · |B
their respective Banach norms. On the tensor product A⊗k B we have the
seminorm that associates to every f ∈ A⊗k B the quantity

‖f‖ = inf max
i
|ai|A · |bi|B,

where the infimum is taken over all the possible expressions of f of the form
f =

∑
i ai⊗bi with ai ∈ A and bi ∈ B. The separated completion of A⊗kB

is a Banach algebra satisfying a suitable natural universal property. This
algebra is called the complete tensor product of A and B and we denote it
by A⊗̂k B, and the norm induced by ‖ · ‖ is called the tensor norm, see [5,
Section 2.1.7]).
Given a k-affinoid algebra A and a complete extension K of k, the

K-algebra A⊗̂kK is in fact K-affinoid. One defines the scalar exten-
sion of the k-affinoid space X = M(A) by K as the K-affinoid space
XK := M(A⊗̂kK). The natural morphism A → A⊗̂kK induces a base
change morphism πK/k : XK → X which is continuous and surjective. This
construction can be done similarly for general k-analytic spaces.

Recall the following definition from [2, 27]:

Definition 2.11. — Let X be a k-analytic space. A point x in X is uni-
versal if for every complete extension K of k the tensor norm on H(x) ⊗̂kK
is multiplicative.

The key feature of universal points is that they can be canonically lifted
to any scalar extension. To explain this fact we may suppose that X is an
affinoid space with underlying algebra A. Pick any universal point x ∈ X
and fix any complete extension K of k. The k-algebra morphism A → H(x)
corresponding to the point x induces a K-algebra morphism A⊗̂kK →
H(x) ⊗̂kK.
Since x is universal, the tensor norm on H(x) ⊗̂kK is multiplicative, and

so the composition of A⊗̂kK → H(x) ⊗̂kK with the tensor norm defines
a point in XK . The point in XK obtained by these means is denoted by
σK/k(x).
Observe that if x ∈ X is rigid, then so is σK/k(x), and that σK/k is a

section of πK/k on the set of universal points of X.

Theorem 2.12 ([27]). — Let k be an algebraically closed complete field
and X a k-analytic space. Then, every point x ∈ X is universal, and the
map σK/k : X → XK is continuous.
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We conclude this section by recalling the following construction.

Lemma 2.13. — Let X be a k-analytic space and x a point in X. Then
for every complete extension K of H(x), the fibre π−1

K/k(x) contains a rigid
point.

Proof. — Pick a point x ∈ X. We may suppose K = H(x). Since the
statement is local at x, we may replace X by any affinoid domain of X
containing x. Denote by A the underlying k-affinoid algebra. Consider the
character χx : A → H(x). The morphism A⊗̂kH(x)→ H(x) sending f ⊗a
to χx(f) · a is by definition a rigid point in XH(x) lying over x. �

We shall denote by τ(x) ∈ XH(x) the rigid point lying over x ∈ X

obtained in the previous proof. This point τ(x) is not to be confused with
σK/k(x).

3. Polynomial maps of bounded degree

As a first step in proving Theorem 1.1, we deal with the case of sequences
of polynomial maps of bounded degree.

Throughout this section, we fix integers r, s, δ > 0 and assume that the
base field k is algebraically closed.
The result we aim to show is the following:

Proposition 3.1. — Let k be an algebraically closed non-Archimedean
complete field. Let fn : Ar,an → As,an be a sequence of polynomial maps
of uniformly bounded degree satisfying fn(Dr) ⊂ Ds. Then, there exists a
subsequence that is converging pointwise to a continuous map f : Ar,an →
As,an.

3.1. Parametrization of polynomial maps of uniformly bounded
degree

In order to prove this theorem, we reinterpret polynomial maps between
analytic affine spaces as rigid points in a closed polydisk.

Given a multi-index I = (i1, . . . , ir), denote by |I| = maxj ij .
Every polynomial map f : Ar,an → As,an of degree at most δr where

δ ∈ N∗ satisfying f(Dr) ⊆ Ds is of the form

f = (f1, . . . , fs) =

∑
|I|6δ

a1,IT
I , . . . ,

∑
|I|6δ

as,IT
I

 ,
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with |al,I | 6 1. Thus, the point

(3.1) α = α(f) :=
(
(a1,I)|I|6δ, . . . , (as,I)|I|6δ

)
can be realized as rigid point in the (Berkovich) analytic space Ds(δ+1)r .

Additionally, to every non-necessarily rigid point α in Ds(δ+1)r we shall
associate a continuous map

Pα = P r,sα : Ar,an −→ As,an

as follows. We denote by k{(a1,I)|I|6δ, . . . , (as,I)|I|6δ} the Tate algebra un-
derlying Ds(δ+1)r . The product Ds(δ+1)r × Ar,an is thus the analytic spec-
trum of k{(a1,I)|I|6δ, . . . , (as,I)|I|6δ}[T1, . . . , Tr]. Consider first the analytic
map Φ: Ds(δ+1)r × Ar,an → As,an, given by the k-algebra morphism

k[T1, . . . , Ts] −→ k{(a1,I)|I|6δ, . . . , (as,I)|I|6δ}[T1, . . . , Tr]

Tl 7−→
∑
|I|6δ

al,IT
I .

Next, consider the projection π1 : Ds(δ+1)r × Ar,an → Ds(δ+1)r . The fibre
over the point α ∈ Ds(δ+1)r is isomorphic to Ar,an

H(α) (cf. Section 2.2). Recall
from Section 2 that the point α ∈ Ds(δ+1)r is associated to the character
χα : k{(a1,I)|I|6δ, . . . , (as,I)|I|6δ} → H(α). Set K := H(α). The inclusion
ιK : Ar,an

K → Ds(δ+1)r
k × Ar,an

k is given by

k{(a1,I)|I|6δ, . . . , (as,I)|I|6δ}[T1, . . . , Tr] −→ K[T1, . . . , Tr]
Ti 7−→ Ti

al,I 7−→ χα(al,I).

Finally, for every z ∈ Ar,an we set:

(3.2) Pα(z) = Φ ◦ ιK ◦ σK/k(z),

where σK/k : Ar,an
k → Ar,an

K is the canonical lift discussed in Section 2.6.
The map Pα : Ar,an → As,an is clearly continuous. Explicitely, given a poly-
nomial g =

∑
J gJT

J ∈ k[T1, . . . , Ts] and a point z ∈ Ar,an, we have

(3.3) |g(Pα(z))| =

∣∣∣∣∣∣∣
∑
J∈Ns

gJ

s∏
l=1

∑
|I|6δ

χα(al,I)T I
jl
σK/k(z)

∣∣∣∣∣∣∣ .
To emphasize the fact that Ds(δ+1)r parametrizes polynomial maps of de-
gree δ, we shall denote it from now on by Morr,sδ . For r, s and δ ∈ N fixed,
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we have thus constructed a map

Ev: Morr,sδ −→ C
0(Ar,an,As,an)

α 7−→ Ev(α) := Pα.

3.2. Remarks on the map Ev

1. — The assignment

(α, z) 7−→ Ev(α)(z)

does not define a continuous map on |Morr,sδ | × |Ar,an|. This phenomenon
already appears when r = s = δ = 1. Note that the space Mor1,1

1 is
naturally isomorphic to the polydisk D2.
Indeed, suppose by contradiction that there exists a continuous map

ϕ : |D2| × |A1,an| → |A1,an| such that ϕ ((α0, α1), z) = α0 + α1z for any
α0, α1, z ∈ k and |z| 6 1. Pick any sequence of points ζn ∈ k such that
|ζn| = 1 and |ζn − ζm| = 1 for n 6= m. Both the sequences {ζn} and {−ζn}
converge to the Gauss point xg. We compute:

lim
n
ϕ ((ζn, 1), ζn) = lim

n
ϕ ((ζn, 1),−ζn) = ϕ ((xg, 1), xg) = xg.

However, we have that ϕ ((ζn, 1),−ζn) = 0 for all n, contradicting the
continuity of ϕ.

2. — In general, the map

Ev: Morr,sδ −→ C
0(Ar,an,As,an)

α 7−→ Ev(α)

is not injective. This already occurs in the case r = s = 1 for affine maps.
Indeed, let r = s = δ = 1. Denote by p0 and p1 the first and second

projections Mor1,1
1 → Mor1,1

0 . Pick two points α, α′ ∈ Mor1,1
1 such that

p0(α) = p0(α′) = xg ∈ D. As seen in Section 2.2, the fibre p−1
0 (xg) is

naturally homeomorphic to DH(xg), and so the points α and α′ correspond
to points α1, α

′
1 ∈ DH(xg) respectively. Write K = H(xg) for simplicity,

and recall that K is a nontrivial extension of k that contains the field of
rational functions in one variable k(S) as a dense subset. Assume that both
α1 and α′1 are the rigid points in DK given by α1 = Q(S) = q0 +q1S+q2S

2

and α′1 = Q′(S) = q0 + q1S + q′2S
2, with q2 6= q′2 and |q2| = |q′2|.
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We claim that Ev(α) = Ev(α′). It suffices to check that they agree on
the set of rigid points. Indeed, pick any z ∈ A1,an(k). Following Berkovich’s
classification of the points in the disk [2, Section 1.4.4], the point Ev(α)(z)
corresponds to the closed ball in k centered at zq0 and of radius max{|1 +
q1z|, |q2z|}. Since |q2| = |q′2|, we conclude that Ev(α)(z) = Ev(α′)(z).

3.3. Proof of Proposition 3.1

Consider a sequence of polynomial maps fn : Ar,an → As,an of degree at
most δ ∈ N satisfying fn(Dr) ⊂ Ds.
For every n ∈ N, let αn be the rigid point in the polydisk Ds(δ+1)r corre-

sponding to the mapping fn, as constructed above. The polydisk Ds(δ+1)r is
sequentially compact by Theorem 2.1, therefore we may find a subsequence
{αnj}nj converging to some point α ∈ Ds(δ+1)r . Recall that this limit point
defines a continuous map Ev(α) : Ar,an → As,an.
It remains to verify that Ev(α) is the pointwise limit of the subsequence

{fnj}. Observe that this is equivalent to checking that for every z ∈ Ar,an

and every g ∈ k[T1, . . . , Ts], the sequence of real numbers {|g(fnj (z))|}n∈N
converges to |g(Ev(α)(z))|.
If z is a non-rigid point in Ar,an, we make a base change by H(z) and

take a rigid point x ∈ DrH(z) lying over z (see Lemma 2.13). The maps fnj
induce analytic maps Ar,an

H(z) → As,an
H(z) and g defines an analytic function on

As,an
H(z). By definition,

|g(fnj (z))| = |g(fnj (πH(z)/k(x)))| = |g(fnj (x))|,

so that |g(fnj (z))| converges if and only if |g(fnj (x))| converges.
We consider the following composition of continuous maps. Recall from

(3.2) that Ev(α) = Φ ◦ ιH(α) ◦ σH(α)/k. As Φ is k-analytic, it induces a
H(z)-analytic map Ds(δ+1)r

H(z) ×Ar,an
H(z)→As,an

H(z) that we shall also denote by Φ.
Denote by L the complete residue field H(σH(z)/k(α)), which is a com-

plete extension of H(z). Moreover, it is also a complete extension of H(α).
Consider next the inclusion ιL : Ar,an

L → Ds(δ+1)r
H(z) × Ar,an

H(z) given by the
inclusion of the fibre of the first projection over the point σH(z)/k(α). We
obtain the continuous map Φ ◦ ιL ◦ σL/H(z). By construction, we see that

|g(Ev(α)(z))| = |g(Ev(α)(πH(z)/k(x)))| = |g(Φ ◦ ιL ◦ σL/H(z)(x))|.
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We may thus assume that z is rigid. Let g =
∑
J∈Ns gJT

J be a polynomial
of degree d. Denoting fnj = (f (nj)

1 , . . . , f
(nj)
s ), we have:

∣∣g(fnj (z))
∣∣ =

∣∣∣∣∣∣
∑
|J|6d

gJ

s∏
l=1

(
f

(nj)
l (z)

)jl ∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
|J|6d

gJ

s∏
l=1

∑
|I|6δ

a
(nj)
l,I zI

jl
∣∣∣∣∣∣∣ = (∗).

Taking the polynomial in s(δ + 1)r-variables

(3.4) R :=
∑
|J|6d

gJ

s∏
l=1

∑
|I|6δ

Sl,Iz
I

jl

∈ k
[
{Sl,I}16l6s,|I|6δ

]
,

one sees that (∗) = |R(αnj )|, and so |R(αnj )| → |R(α)| as n tends to infinity
since αnj → α. Moreover, it is clear from (3.3) that R(α) = g(Ev(α)(z)),
and so the sequence

∣∣g(fnj (z))
∣∣ converges to |g(Ev(α)(z))|, concluding the

proof. �

4. Parametrization of the space of analytic maps

We interpret analytic maps between an open and a closed polydisk as
rigid points of the spectrum of a suitable Banach k-algebra. Our aim is to
build an infinite dimensional analytic space Mor(Dr,Ds) that parametrizes
in a suitable sense the set of all analytic maps from Dr to Ds. This con-
struction shall be used in the next section to prove Theorem 1.1.
We shall assume throughout this section that k is algebraically closed.

We fix two integers r, s > 0.

4.1. Construction of the Banach k-algebra T r,s∞

Pick some integer δ ∈ N∗. Recall from Section 3 that the set of all poly-
nomial maps P : Ar,an → As,an of degree at most δ such that P (Dr) ⊂ Ds
can be endowed with a natural structure of affinoid space whose k-affinoid
algebra is the Tate algebra k{a1,I , . . . , as,I}|I|6δ = k{al,I}|I|6δ,16l6s. We
denote this space by Morr,sδ . It is isomorphic as a k-analytic space to the
unit polydisk Ds(δ+1)r .
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Observe that for any given δ ∈ N∗ there exists a natural truncation
map prδ : Morr,sδ+1 → Morr,sδ , which is a surjective analytic map dual to the
inclusion of Tate algebras k{al,I}|I|6δ,16l6s ⊂ k{al,I}|I|6δ+1,16l6s. These
inclusions are isometric and we may so consider the inductive limit of this
directed system. It is a normed k-algebra that we denote by T r,s.

In order to describe the elements of T r,s and its norm, we introduce
the set S of all maps M: {1, . . . , s} × Nr → N having finite support and
set |M| =

∑
l,I M(l, I) for every M ∈ S. We define Sδ as the subset of S

consisting of all M ∈ S such that M(l, I) = 0 for all |I| > δ + 1. Given
a =

(
(a1,I)|I|6δ, . . . , (as,I)|I|6δ

)
and M ∈ S, we write

aM =
∏

16l6s,I∈Nr
a

M(l,I)
l,I .

The k-algebra T r,s consists of all power series that are of the form∑
M∈Sδ

gM · aM,

for some δ ∈ N and whose coefficients gM ∈ k are such that |gM| → 0 as
|M| → ∞.
Let us describe the norm on T r,s. Observe that by the definition of

Sδ, every element
∑

M∈Sδ gM · aM ∈ T r,s belongs to the Tate algebra
k{al,I}|I|6δ,16l6s, and we may associate to

∑
M∈Sδ gM · aM the norm on

k{al,I}|I|6δ,16l6s. Since the inclusions

k{al,I}|I|6δ,16l6s ⊂ k{al,I}|I|6δ+1,16l6s

are isometric, this norm is well-defined.

Remark 4.1. — The k-algebra T r,s is not complete. Take for instance
r = s = 1 and consider the sequence fn =

∑n
i=1 gi · ai ∈ T 1,1. This is a

Cauchy sequence as soon as the coefficients gi ∈ k are such that |gi| → 0
when i→∞, but it does not have any limit in T 1,1.

The completion T r,s∞ of T r,s is the Banach k-algebra consisting of all
power series ∑

M∈S
gM · aM

such that |gM| tends to zero with respect to the filter of cofinite subsets,
i.e. such that for all ε > 0 the set of M ∈ S such that |gM| > ε is finite. The
norm on T r,s∞ is the Gauss norm given by maxM |gM|.
Recall that a Banach k-algebra is a function algebra when its sup norm

is equivalent to its given norm, see [5, 3.8.3].
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Lemma 4.2. — The algebra T r,s∞ is a Banach function k-algebra.

Proof. — We shall prove that the sup norm on T r,s∞ is actually equal
to the Gauss norm. To see this, pick a nonzero element f =

∑
M∈S gM ·

aM ∈ T r,s∞ . The set G of indices M such that |gM| > 1
2 |f | is finite, so that∑

M∈G gM · aM is a polynomial in finitely many variables, hence attains its
maximum at a point in the unit polydisk by [5, 5.1.4]. The lemma follows
from [5, Collorary 3.8.2/2]. �

Definition 4.3. — The space Mor(Dr,Ds) is the analytic spectrum of
the Banach algebra T r,s∞ .

In particular, Mor(Dr,Ds) is compact, because it is the analytic spectrum
of the k-Banach algebra T r,s∞ .

For every δ ∈ N, the isometric inclusion k{al,I}|I|6δ,16l6s ⊂ T r,s∞ de-
fines a natural surjective continuous map Pr∞δ : Mor(Dr,Ds)→ Morr,sδ . We
may as well consider the inverse limit of all the spaces Morr,sδ , induced by
the truncation maps prδ : Morr,sδ+1 → Morr,sδ . These maps verify the equal-
ity prδ ◦Pr∞δ+1 = Pr∞δ and induce a continuous map ϕ : Mor(Dr,Ds) →
lim←−δ Morr,sδ .
We shall consider the inclusions iδ : Morr,sδ → Mor(Dr,Ds) given by the

bounded morphism T r,s∞ → k{al,I}|I|6δ,16l6s, sending al,I to itself if |I| 6 δ
and to 0 otherwise. These are closed immersions.

Proposition 4.4. — The map ϕ : Mor(Dr,Ds)→ lim←−δ Morr,sδ is a home-
omorphism.

Proof. — The inverse limit lim←−δ Morr,sδ is compact by Tychonoff.
Let us show that ϕ : Mor(Dr,Ds) → lim←−δ Morr,sδ is bijective. Fix δ > 0.

Let πδ : lim←−δ Morr,sδ → Morδ be the natural map and prδ : Morr,sδ+1 → Morr,sδ
the truncation map. We know that Pr∞δ = πδ ◦ ϕ : Mor(Dr,Ds) → Morr,sδ .
Pick a point y ∈ lim←−δ Morr,sδ and consider πδ(y) ∈ Morr,sδ . Consider the set
Kδ consisting of all the points α ∈ Mor(Dr,Ds) such that Pr∞δ (α) = πδ(y).
The closed immersion iδ : Morr,sδ → Mor(Dr,Ds) constructed above is a
section of Pr∞δ . Thus, the map Pr∞δ is surjective and the subset Kδ is non-
empty. Clearly, we have that Kδ+1 ⊆ Kδ. Every Kδ is compact and so the
intersection ∩δ>0Kδ is nonempty. This shows that ϕ is surjective.
For the injectivity, let α, α′ be two points in Mor(Dr,Ds) having the

same image in lim←−δ Morr,sδ . We have to check that |g(α)| = |g(α′)| for every
g ∈ T r,s∞ . By density, this reduces to the case where g ∈ T r,s. We know
that Pr∞δ (α) = Pr∞δ (α′) ∈ Morr,sδ for all δ. Given g ∈ T r,s observe that it
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lies in k{al,I}|I|6δ,16l6s for some δ > 0. Thus,

|g(α)| = |g(Pr∞δ (α))| = |g(Pr∞δ (α′))| = |g(α′)|,

concluding the proof. �

Recall from Section 2 the definition of the complete residue field H(α)
of a point α ∈ Mor(Dr,Ds). We say that α is rigid when H(α) = k. To
simplify notation, we write αδ = Pr∞δ (α).

Proposition 4.5. — Let α be a point in Mor(Dr,Ds). For every δ ∈ N,
the inclusion of Banach k-algebras k{al,I}16l6s,|I|6δ ⊂ T r,s∞ induces an
extension of valued fields H(α)/H(αδ).
The complete residue field H(α) is isomorphic to the completion of the

inductive limit of valued fields lim−→δ
H(αδ).

Proof. — A point α ∈ Mor(Dr,Ds) corresponds to a seminorm on the
k-algebra T r,s∞ , whose restriction to k{al,I}|I|6δ,16l6s is the seminorm αδ.
The kernel of αδ is the intersection of k{al,I}|I|6δ,16l6s with ker(α). This
induces inclusions

(4.1) k{al,I}|I|6δ,16l6s/ ker(αδ) ⊂ T r,s∞ / ker(α).

It follows that there are inclusions H(αδ) ⊂ H(α), and thus the direct
limit of the H(αδ) is naturally contained in H(α). In order to show that
H(α) is isometrically isomorphic to the completion of lim−→δ

H(αδ), it suffices
to show that lim−→δ

H(αδ) is dense in H(α).
Consider the field K := lim−→δ

Frac
(
k{al,I}|I|6δ,16l6s/ ker(αδ)

)
. It is clear

thatK is contained in lim−→δ
H(αδ). By (4.1) and by the definition of T r,s∞ , we

also know that K is dense in Frac (T r,s∞ / ker(α)). The latter is by definition
dense in H(α), which proves that lim−→δ

H(αδ) is dense in H(α). �

Proposition 4.6. — The set of rigid points in Mor(Dr,Ds) is dense.

Proof. — Pick any point α ∈ Mor(Dr,Ds) and fix an open neighbour-
hood U of α. It is a finite intersection of open sets of the form {β ∈
Mor(Dr,Ds) : ||g(β)| − |g(α)|| < R} for some R 6 1 and some g ∈ T r,s∞ .
Since T r,s is dense in T r,s∞ , we may assume that g ∈ T r,s. Thus, for suffi-
ciently large δ one has that |g(αδ)| = |g(α)|. Fix any positive ε < R. We
may pick a rigid point γ ∈ Morr,sδ such that ||g(γ)|−|g(αδ)|| < ε, since rigid
points are dense in Morr,sδ . By construction, the point γ belongs to U . �
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4.2. Universal property of the space Mor(Dr,Ds)

Let us specify in which sense Mor(Dr,Ds) parametrizes the space of
analytic maps from Drk to Dsk. Recall from Section 2.2 that a morphism be-
tween the spectra of two Banach k-algebras (e.g. from a Banach function
k-algebra) is by definition a continuous map induced by a bounded mor-
phism between the underlying algebras. In the same fashion, an analytic
map from a good k-analytic space W into Mor(Dr,Ds) is given by an affi-
noid covering {Wi} of W and analytic maps Wi → Mor(Dr,Ds), which are
induced by bounded morphisms of Banach k-algebras and are compatible
with the restrictions.

Theorem 4.7. — There exists an analytic map Φ: Mor(Dr,Ds)×Dr →
Ds satisfying the following universal property. Let W be the analytic spec-
trum of a Banach function k-algebra or any reduced k-analytic space. Then,
for any morphism F : W × Dr → Ds there exists a unique morphism
G : W → Mor(Dr,Ds) such that F (x, z) = Φ(G(x), z) for all x ∈ W (k)
and z ∈ Dr(k).

A morphism F : W ×Dr → Ds is by definition a family of analytic maps
Fρ : W × Dr(ρ) → Ds for any ρ < 1 whose restrictions agree on their
common domain of definition.
Notice that this property uniquely characterizes the space Mor(Dr,Ds),

as it is the analytic spectrum of a Banach function algebra.
Proof. — Let us first construct the analytic map Φ: Mor(Dr,Ds)×Dr →

Ds. The assignment

(S1, . . . , Ss) 7−→
(∑
I∈Nr

a1,IT
I , . . . ,

∑
I∈Nr

as,IT
I

)
defines a bounded morphism of Banach k-algebras ψ : k{S1, . . . , Ss} →
T r,s∞ {ρ−1T1, . . . , ρ

−1Tr} for every positive ρ < 1, and thus an analytic map
Φ: Mor(Dr,Ds)× Dr → Ds.

We now prove the universal property. Suppose first thatW is the analytic
spectrum of a Banach function k-algebra A. In particular, we may assume
that A is endowed with the sup norm. Recall that the norm on the complete
tensor product A⊗̂k Tr agrees with the Gauss norm ‖

∑
I bIT

I‖ = supI |bI |.
Let F : W × Dr → Ds be an analytic map, induced by some bounded
homomorphism of Banach k-algebras

(S1, . . . , Ss) 7−→
(∑
I∈Nr

b1,IT
I , . . . ,

∑
I∈Nr

bs,IT
I

)
,
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where bl,I ∈ A are such that supl,I |bl,I(x)| 6 1 for all x ∈W by Lemma 4.2.
Consider the analytic map G : W → Mor(Dr,Ds) given by al,I 7→ bl,I

for all I ∈ Nr and all 1 6 l 6 s. A rigid point x ∈ W together with a
rigid point z ∈ Dr defines a rigid point in the product W × Dr, and by
construction we have F (x, z) = Φ(G(x), z).
Conversely, let H : W → Mor(Dr,Ds) be an analytic map sending al,I to

some cl,I ∈ A and satisfying F (x, z) = Φ(H(x), z) for all x ∈W (k) and all
z ∈ Dr(k). For every fixed x ∈ W (k), consider the analytic map z ∈ Dr 7→
Φ(H(x), z). By hypothesis, it agrees with the map z ∈ Dr 7→ Φ(G(x), z),
and so bl,I(x) = cl,I(x) for every I ∈ Nr and 1 6 l 6 s. As the equalities
hold for every rigid x ∈W , we conclude that H = G.

Let now W be an arbitrary k-analytic space. Let F : W × Dr → Ds be
an analytic map and let {Wi} be an affinoid covering of W such that the
restriction of F to each Wi×Dr(ρ), with ρ < 1, is a morphism of k-affinoid
spaces, i.e. is induced by a bounded morphism between the underlying k-
affinoid algebras. By the previous case, for every affinoid domain Wi of W
there exists a unique analytic map Gi : Wi → Mor(Dr,Ds), induced by a
bounded morphism of Banach algebras, such that F (x, z) = Φ(Gi(x), z)
for all x ∈ Wi(k) and z ∈ Dr(k). By construction, the maps Gi agree on
the intersections Wi ∩Wj and are compatible with the restrictions. �

4.3. Points of Mor(Dr,Ds) as continuous maps Dr → Ds

The following theorem specifies in which sense the points of the space
Mor(Dr,Ds) correspond to continuous maps from Dr to Ds. We generalize
the map Ev from Section 3.1 to analytic maps.

Theorem 4.8. — There exists a map Ev from Mor(Dr,Ds) to the space
of continuous functions C0(Dr,Ds) such that the following holds:

(i) The map Ev(α) is analytic if and only if α ∈ Mor(Dr,Ds) is rigid.
In that case, the map Ev(α) is precisely Φ(α, ·).

(ii) For any fixed z ∈ Dr, the assignment α ∈ Mor(Dr,Ds) 7→ Ev(α)(z)
is a continuous map.

Proof. — The map Ev: Mor(Dr,Ds) → C0(Dr,Ds) is given as follows.
Fix a point α ∈ Mor(Dr,Ds) and consider the first projection

π1 : Mor(Dr,Ds)× Dr −→ Mor(Dr,Ds).

The fibre π−1
1 (α) is canonically isomorphic to DrH(α) (cf. Section 2.2). We

can thus consider the inclusion map ιH(α) : DrH(α) → Mor(Dr,Ds) × Dr,
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given by

T r,Y∞ {ρ−1T1, . . . , ρ
−1Tr} −→ H(α){ρ−1T1, . . . , ρ

−1Tr}
Ti 7−→ Ti(4.2)

a ∈ T r,s∞ 7−→ χα(a)

for ρ < 1, where χα : T r,s∞ → H(α) denotes the character associated to
the point α. Let σH(α)/k : Dr → DrH(α) be the continuous map discussed
in Section 2.6. Let Φ: Mor(Dr,Ds) × Dr → Ds be the analytic map from
Theorem 4.7. We set:

Ev(α) = Φ ◦ ιH(α) ◦ σH(α)/k.

Clearly, Ev(α) is a continuous map from Dr to Ds. Specifically, for any
z ∈ Dr and for any g =

∑
J∈Ns gJS

J in k{S1, . . . , Ss}, we have

(4.3) |g(Ev(α)(z))| =

∣∣∣∣∣∣
∑
J

gJ

s∏
l=1

(∑
I

χα(al,I) · T I
)jl

(σH(α)/k(z))

∣∣∣∣∣∣ .
Pick a rigid point α ∈ Mor(Dr,Ds), i.e. such that H(α) = k. In this

situation, the fibre π−1
1 (α) is homeomorphic to Dr, and so ιH(α) is in fact

an analytic map between k-analytic spaces, and the map σH(α)/k is the
identity on Dr. Then, for every z ∈ Dr the pair (α, z) defines a point in
Mor(Dr,Ds)×Dr, and so ιk(z) = (α, z). Thus, Ev(α) = Φ(α, · ) is analytic.
Suppose conversely that Ev(α) is analytic. It follows from (4.3) that the

map Ev(α) can be decomposed as Ev(α) = πH(α)/k ◦ F ◦ σH(α)/k, where
F : Dr → Ds is the H(α)-analytic map

F (z) =
(∑
I∈Nr

χα(a1,I) · zI , . . . ,
∑
I∈Nr

χα(as,I) · zI
)
.

It suffices to treat the case s = 1. Since Ev(α) is analytic, we may find
coefficients bI ∈ k bounded by 1 such that Ev(α)(z) =

∑
I∈Nr bIz

I for
every z ∈ Dr(k). Notice that the equality πH(α)/k

(∑
I∈Nr χα(aI) · zI

)
=∑

I∈Nr bIz
I ∈ k implies that

∑
I∈Nr χα(aI) · zI ∈ k, as k is algebraically

closed.
Suppose by contradiction that α is not a rigid point and consider the

equation

(4.4)
∑
I∈Nr

bIz
I =

∑
I∈Nr

χα(aI) · zI ,

where we may assume that every χα(aI) is either 0 or does not belong
to k. Since α is not rigid, not all of them are zero. We may consider the
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nonempty set M ⊆ Nr consisting of all the multi-indices I ∈ Nr such that
χα(aI) /∈ k. Let P be the Newton polytope of M , i.e. the convex hull of
the union of all upper-quadrants I + Rr+ with I ∈ M . It is a non-compact
polytope in Rr+ whose extremal points all belong to M .

Pick any extremal point p of P, and take any hyperplane in Rr with
integer coefficients H = {β1x1 + · · ·+βrxr = β0} intersecting the polytope
P exactly at the point p. In other words, we have

(4.5) i1β1 + · · ·+ irβr > β0

for every I ∈ Nr distinct from p intervening in (4.4). Fix any λ ∈ k with
|λ| < 1 and consider the rigid point z = (λβ1 , . . . , λβr ) ∈ Dr. Then,

∑
I∈Nr

bIz
I =

∑
I∈Nr

bI(λβ1 , . . . , λβr )I =
∑
I∈Nr

bIλ
i1β1+···+irβr

= bpλ
β0 +

∑
I∈Nr,I 6=p

bIλ
i1β1+···+irβr = bpλ

β0 +O(λβ0),

where the last equality follows from (4.5). It follows that bpλβ0 +O(λβ0) =
χα(ap)λβ0 + O(λβ0), and hence χα(ap) = bp ∈ k. As the extremal points
of the polytope P lie in M , we conclude that χα(aI) ∈ k for every I ∈ P,
contradicting the fact that α is not rigid.

Let us now prove the continuity statement. Fix a point z ∈ Dr. It suffices
to check that for any net of points {αn} ⊂ Mor(Dr,Ds) converging to some
α ∈ Mor(Dr,Ds), we have Ev(αn)(z)→ Ev(α)(z).
Consider the second projection π2 : Mor(Dr,Ds) × Dr → Dr. The fibre

π−1
2 (z) is isomorphic to Mor(Dr,Ds)H(z). The inclusion map

ιH(z) : Mor(Dr,Ds)H(z) −→ Mor(Dr,Ds)× Dr

is induced by the morphism

T r,s∞ {ρ−1T1, . . . , ρ
−1Tr} −→ T r,s∞ ⊗̂

k
H(z)

Ti 7−→ χz(Ti)
al,I 7−→ al,I

for ρ < 1, where χz : k{ρ−1T1, . . . , ρ
−1Tr} → H(z) denotes the character as-

sociated to the point z. Pick some converging power series g =
∑
I∈Nr gIT

I

ANNALES DE L’INSTITUT FOURIER



NON-ARCHIMEDEAN NORMAL FAMILIES 1703

in T r,s∞ {ρ−1T1, . . . , ρ
−1Tr} and compute:

(4.6)
∣∣g(ιH(z) ◦ σH(z)/k(α))

∣∣ =

∣∣∣∣∣
(∑
I∈Nr

gI · χz(T )I
)(

σH(z)/k(α)
)∣∣∣∣∣

= max
I∈Nr

|gI(α)| ·
∣∣χz(T )I

∣∣
H(z) = max

I∈Nr
|χα(gI)|H(α) ·

∣∣T I(z)∣∣
=

∣∣∣∣∣
(∑
I∈Nr

χα(gI) · T I
)(

σH(α)/k(z)
)∣∣∣∣∣ =

∣∣g(ιH(α) ◦ σH(α)/k(z))
∣∣ .

That is, for all fixed z ∈ Dr and α ∈ Mor(Dr,D), we have

ιH(α) ◦ σH(α)/k(z) = ιH(z) ◦ σH(z)/k(α).

Consider the continuous map Ψ(z) : Mor(Dr,Ds) → Ds, defined as the
composition Ψ(z) = Φ ◦ ιH(z) ◦ σH(z)/k. For every fixed α ∈ Mor(Dr,Ds)
and every fixed z ∈ Dr, we have

Ψ(z)(α) = Ev(α)(z).

If αn is a net of points in Mor(Dr,Ds) converging to α, then the continuity
of Ψ(z) implies that Ψ(z)(αn) converges to Ψ(z)(α) as n goes to infinity,
and so

Ev(α(n))(z) n→∞−→ Ev(α)(z),
concluding the proof. �

4.4. The space Mor(Dr,Ds) is Fréchet–Urysohn.

We prove a technical result that is a key step in the proof of Theorem 1.1.

Theorem 4.9. — The space Mor(Dr,Ds) is Fréchet–Urysohn.

We follow Poineau’s proof of the fact that analytic spaces are Fréchet–
Urysohn [27, Proposition 5.2], which in turn relies on [27, Théorème 4.22].

Recall that a subset Γ of the analytic spectrum of a k-Banach algebra
(A, ‖ · ‖) is a boundary if for every g ∈ A there exists some x ∈ Γ such that
|g(x)| = ‖g‖. A closed boundary is called the Shilov boundary if it is the
smallest closed subset Γ of M(A) satisfying this property. Since we have
excluded the trivially valued case and the norm on T r,s∞ is multiplicative,
there exists a Shilov boundary in Mor(Dr,Ds) by [10, Theorem C].

In the following we deal with subfields l of k that are of countable type
over the prime subfield kp of k, i.e. such that l has a dense kp-vector sub-
space of countable dimension.

TOME 71 (2021), FASCICULE 4



1704 Rita RODRÍGUEZ VÁZQUEZ

For any complete extension K/k, we shall denote by Mor(Dr,Ds)K the
scalar extension of Mor(Dr,Ds) by K, which is defined as the spectrum
of the completed tensor product of T r,s∞ and K over k. In fact, a similar
construction of T r,s∞ as the one detailed in Section 4.1 over K yields a
Banach algebra that is naturally isomorphic to T r,s∞ ⊗̂kK.

The following proposition is an infinite dimensional analogue of [27,
Théorème 4.22].

Proposition 4.10. — For every point α in Mor(Dr,Ds) there exists
a subfield l of k that is of countable type over the prime subfield kp of
k and satisfying the following property. Let l′ be any subfield of k with
l ⊂ l′ ⊂ k and let π∞k/l′ : Mor(Dr,Ds) → Mor(Dr,Ds)l′ be the base change
morphism. Then α is the unique point in the Shilov boundary of the fibre
(π∞k/l′)−1(π∞k/l′(α)).

Proof. — The space Mor(Dr,Ds) is the projective limit of Morr,sδ with the
morphisms Pr∞δ,k : Mor(Dr,Ds) → Morr,sδ for δ ∈ N∗ (cf. Proposition 4.4).
A point α in Mor(Dr,Ds) is thus determined by a sequence (αδ)δ>0, where
each αδ lies in Morr,sδ and satisfies prδ+1(αδ+1) = αδ for the projections
prδ+1 : Morr,sδ+1 → Morr,sδ .

To every αδ we apply [27, Théorème 4.22]. We obtain a field lδ ⊂ k that
is of countable type over the prime subfield kp of k and such that for any
subfield lδ ⊂ l′ ⊂ k the point αδ is the only point in the Shilov boundary of
(πδk/l′)−1(πδk/l′(αδ)), where πδk/l′ : Morr,sδ → Morr,sδ,l′ denotes the base change
morphism.
Let l be the subfield of k generated by all the lδ. By construction, l is of

countable type over kp. We may assume in addition that l is algebraically
closed.
The equality πδk/l′ ◦Pr∞δ,k = Pr∞δ,l′ ◦π∞k/l′ implies that Pr∞δ,k maps the fibre

(π∞k/l′)−1(π∞k/l′(α)) to the fibre (πδk/l′)−1(πδk/l′(αδ)). We show that α belongs
to the Shilov boundary of (π∞k/l′)−1(π∞k/l′(α)). Pick an element g ∈ T r,s∞ . As
T r,s is dense in T r,s∞ , we may assume that g lies in k{al,I}|I|6δ,16l6s for
some δ > 0. Thus, |g(α)| = |g(αδ)|, which is the maximum value of g, since
αδ belongs to the Shilov boundary of (πδk/l′)−1(πδk/l′(αδ)).
Pick a point β ∈ (π∞k/l′)−1(π∞k/l′(α)) different from α, i.e. such that βδ 6=

αδ for some δ > 0. As αδ is the unique point in the Shilov boundary of
(πδk/l′)−1(πδk/l′(αδ)), we may find some g ∈ k{al,I}|I|6δ such that

|g(β)| = |g(βδ)| < |g(αδ)| = |g(α)|,
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showing that α is the unique point in the Shilov boundary of the space
(π∞k/l′)−1(π∞k/l′(α)). �

Proof of Theorem 4.9. — Let A be any subset of Mor(Dr,Ds) and let α
be a point in the closure of A. Let l be the subfield of k associated to α from
Proposition 4.10. Let l ⊂ l′ ⊂ k be any subfield of k that is of countable
type over l. Every polydisk Morr,sδ,l′ is first countable, and as a consequence
so is the countable product of all the Morr,sδ,l′ . The space Mor(Dr,Ds)l′ is
a subspace of the product

∏
δ Morr,sδ,l′ by Proposition 4.4, and thus is first

countable.
Copying Poineau’s proof of [27, Proposition 5.2] and using Proposi-

tion 4.10, we may find a sequence of points αn in A converging to α. �

5. Montel’s theorem

This section is devoted to the proof of Theorem 1.1. We first apply the
results and constructions from the previous sections to prove the case where
the base field k is algebraically closed and next we generalize this argument
to an arbitrary non-Archimedean complete field.

5.1. Proof of Theorem 1.1 in the algebraically closed case

Let k be an algebraically closed complete non-Archimedean field that is
nontrivially valued.

Let X be a reduced, σ-compact k-analytic space without boundary and
Y a k-affinoid space. Pick a sequence of analytic maps fn : X → Y . We
claim that there exists a subsequence that is pointwise converging to a
continuous map.
Any k-affinoid space Y admits a closed immersion into some closed poly-

disk, which in turn can be embedded in some closed unit polydisk. Thus,
we may readily assume that Y = Ds for some integer s.

Assume first that X = Dr. In this case, each analytic map fn corre-
sponds to a rigid point αn in Mor(Dr,Ds) by Theorem 4.7. Since the space
Mor(Dr,Ds) is compact and Fréchet–Urysohn by Theorem 4.9, we may find
a converging subsequence αnj converging to some point α ∈ Mor(Dr,Ds).
The continuous map Ev(α) : Dr → Ds is the limit map of the subsequence
fnj by Theorem 4.8.
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Suppose now that X is a reduced basic tube in the sense of Section 2.5.
Let fn : X → Ds be a sequence of analytic maps. We fix a closed embedding
of X into some open polydisk Dr. Fix 0 < ρ < 1, ρ ∈ |k×|. Since X
is reduced, the affinoid space X(ρ) := X ∩ Dr(ρ) is also reduced. By [5,
Theorem 6.2.4/1], the sup-norm and the residue norm are equivalent on the
affinoid algebra associated to X(ρ), so that we may find τ > 0 such that
any analytic map F : X(ρ) → Ds admits an extension G : Dr(ρ) → Ds(τ).
It follows that for each n we may find an analytic map gn : Dr(ρ)→ Ds(τ)
whose restriction to X is equal to fn. By the previous case, we may extract
a subsequence gnj pointwise converging on Dr(ρ) to a continuous map
gρ : Dr(ρ) → Ds(τ). Choosing ρm = 1 − 1

m , letting m → ∞ and using a
diagonal extraction argument, we infer the existence of a subsequence fnj
which converges pointwise to a continuous map f : X → As. Observe that
fn(X) ⊂ Ds for all n, so that we have f(X) ⊂ Ds as required.

Consider now X as in the theorem. Being σ-compact, X is the union
of countably many compact sets Kn. Since it is a boundaryless analytic
space, each compact set Kn is included in a finite union of open sets.
Each Kn is a finite union of irreducible analytic spaces, which in turn are
each isomorphic to a basic tube. It follows that X is a countable union of
basic tubes Um. By the previous case, on every open set Um there exists a
subsequence converging pointwise, and extracting diagonally we may find
a subsequence {fnj} converging pointwise on the whole X. The limit is
continuous on every Um and hence on X since they are open. �

5.2. Proof of Theorem 1.1 over an arbitrary base field

Let K be a completed nontrivially valued algebraic closure of k, and
XK , YK be the scalar extensions of X and Y respectively, see Section2.6.
Pick a sequence fn : X → Y of analytic maps and consider the analytic

maps Fn : XK → YK induced by the base change. The following diagram
commutes:

XK
Fn //

πK/k

��

YK

πK/k

��

X
fn
// Y

Observe that the analytic space XK is good and σ-compact, since the
preimage π−1

K/k(U) of an affinoid domain U of X is an affinoid domain
in XK . It follows directly from the definition of the interior that XK is
boundaryless ([2, Proposition 3.1.3]). Thus, by the algebraically closed
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case of Theorem 1.1 proved above, we may assume that Fn is pointwise
converging to a continuous map F : XK → YK . Pick a point z ∈ X. As
πK/k is surjective, we may choose a point z′ ∈ π−1

K/k(z). It follows that
fn(z) = fn(πK/k(z′)) = πK/k ◦Fn(z′), which tends to πK/k ◦F (z′) =: f(z)
as n goes to infinity. The limit map f is well-defined. Indeed, if z′, z′′ are
two points in π−1

K/k(z), then

lim
n
πK/k◦Fn(z′) = lim

n
fn(πK/k(z′)) = lim

n
fn(πK/k(z′′)) = lim

n
πK/k◦Fn(z′′).

It remains to check that f is continuous. Let A be any closed (hence
compact) subset of Y . By continuity, the set F−1(π−1

K/k(A)) is closed. Recall
that the map πK/k : XK → X is proper. Since X is locally compact, πK/k
is closed. As a consequence, f−1(A) = πK/k(F−1 ◦ π−1

K/k(A)) is closed. �

5.3. Fields with countable residue field

We observe in this section that part of the assertion of Theorem 1.1
extends to maps between any k-affinoid spaces when the residue field of k is
countable. Specifically, we do not exclude source spaces with boundary and
show that one may always extract an everywhere converging subsequence.
This section will not be used in the rest of the paper, since the limits we
obtain this way are not necessarily continuous.
Recall that the boundary of an affinoid space can be written as a finite

union of affinoid spaces defined over some extension of k, see [9, Lemma 3.1].
Here we shall only use the following observation. Consider the closed N -
dimensional polydisk DN , and denote by pi : DN → D the projection to
the i-th coordinate. Recall that the projections Aan,N → Aan,1 are open.
Recall that the boundary of D consists only of the Gauss point. It follows
from Lemma 2.3 that p−1

i (xg) is contained in the boundary of DN for every
i = 1, . . . , N , thus p−1

1 (xg) ∪ · · · ∪ p−1
N (xg) ⊆ ∂DN .

Let now x be a point in ∂DN and consider the commutative diagram:

DN

red
��

pi
// D

red
��

AN
k̃

p̃i
// A1
k̃

Suppose that pi(x) 6= xg for all i. By Lemma 2.3, the point p̃i(x) is closed
in A1

k̃
corresponding to some maximal ideal 〈Ti − ζi〉 ⊂ k̃[Ti] for every

i = 1, . . . , N . The commutativity of the diagram implies that the maximal
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ideal 〈T1 − ζ1, . . . , TN − ζN 〉 of k̃[T1, . . . , TN ] is contained in the prime
ideal corresponding to red(x). As a consequence, red(x) ∈ AN

k̃
is closed,

contradicting the fact that x belongs to ∂DN .
The boundary of DN is thus equal to the union p−1

1 (xg) ∪ · · · ∪ p−1
N (xg).

Observe that each fibre p−1
i (xg) is isomorphic to DN−1

H(xg).

Proposition 5.1. — Suppose k is a non-Archimedean complete valued
field such that k̃ is countable. Let X and Y be k-affinoid spaces and assume
that X is distinguished. Then, every sequence of analytic maps fn : X → Y

has an everywhere pointwise converging subsequence.

Proof. — Assume first that k is algebraically closed. The space X is
reduced, since it is assumed to be distinguished. We may assume X = Dr,
Y = Ds as in the proof of Theorem 1.1. The set of connected components
of the interior of Dr is in bijection with the set of k̃-points on its reduction
Ar
k̃
and hence is countable.

We now argue inductively on r. When r = 1, then the boundary of D
consists of a single point, namely the Gauss point. We may therefore apply
Theorem 1.1 to each of the (countably many) components of the interior
of D and apply a diagonal extraction argument to conclude.
Assume now that the statement holds for the polydisk of dimension r−1

defined over any complete valued field with countable residue field, and pick
a sequence of analytic maps fn : Dr → Ds. As before, we apply Theorem 1.1
to each of the (countably many) components of the interior of Dr so that
we may suppose that fn converges pointwise on the interior of Dr.

The boundary of Dr is the union of r unit polydisks of dimension r − 1
defined over the field H(xg) by our previous discussion.
However, H(xg) is not algebraically closed. We therefore fix a completed

algebraic closureK ofH(xg). Notice that its residue field K̃ is isomorphic to
the algebraic closure of H̃(xg), hence is countable, too. We may now apply
the induction hypothesis to the restriction of fn to each of the polydisks
Dr−1
K . We argue as in the proof of Theorem 1.1 (cf. Section 5.2) to conclude

that the restriction of fn to Dr−1
H(xg) has an everywhere pointwise converging

subsequence. This concludes the proof in the case where k is algebraically
closed.
If k is not algebraically closed, we fix a completed algebraic closure of k

and apply the same argument as above (cf. Section 5.2). �
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5.4. Analytic properties of pointwise limits of analytic maps

Continuous maps of the form Ev(α) : Dr → Ds are very special, as they
exhibit properties that are distinctive of analytic maps. We shall prove that
they lift to analytic maps after a suitable base change and that the graph
of Ev(α) is well-defined in the analytic product Dr×Ds and not just in the
topological product |Dr| × |Ds|.
Recall from Section 2.6 the definition of the continuous map σK/k : X →

XK .

Theorem 5.2. — Let k be a complete non-Archimedean field that is
algebraically closed.
Let α be a point in Mor(Dr,Ds). Then there exists a closed subset Γα of

Dr × Ds such that the first projection π1 : Γα → Dr is a homeomorphism
and such that for every z ∈ Dr the image of Γα ∩ π−1

1 (z) under the second
projection is the point Ev(α)(z) ∈ Ds.

Moreover, there exist a complete extension K of k and a K-analytic map
Fα : DrK → DsK such that Ev(α) = πK/k ◦ Fα ◦ σK/k.

Proof. — Fix a point α ∈ Mor(Dr,Ds) and denote by H(α) its complete
residue field. We define Γα as the image of a continuous map ψ : Dr →
Dr × Ds, that we construct as follows.
Let ιH(α) : DrH(α) → Mor(Dr,Ds) × Dr be the inclusion map defined

in (4.2). Let Υ: Mor(Dr,Ds)×Dr→Dr×Ds be the analytic map induced by

k{ρ−1T1, . . . , ρ
−1Tr}{S1, . . . , Ss} −→ T r,s∞ {ρ−1T1, . . . , ρ

−1Tr}
Ti 7−→ Ti

Sl 7−→
∑
I

al,IT
I .

Let σH(α)/k : Dr → DrH(α). We set ψ = Υ ◦ ιH(α) ◦ σH(α). Explicitly, ψ is
induced by the analytic map Ψ: Dr → Dr × Ds that maps any z ∈ Dr to
the seminorm sending every g ∈ Ts{ρ−1T1, . . . , ρ

−1Tr}, which is of the form
g =

∑
J∈Ns gJS

J with gJ ∈ k{ρ−1T1, . . . , ρ
−1Tr} are such that |gJ | → 0 as

|J | → 0, to the following real number:

(5.1) |g(Ψ(z))| =

∣∣∣∣∣∑
J

gJ

s∏
l=1

(∑
I

χα(al,I) · T I
)jl(σH(α)/k(z))

∣∣∣∣∣ .
Consider the projections π1 and π2 on Dr×Ds to the first and second factor
respectively. It is an immediate consequence of the previous computation
and (4.3) that

π2(ψ(z)) = Ev(α)(z).
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If no variables Sl appear in the expression of g ∈ Ts{ρ−1T1, . . . , ρ
−1Tr},

then g lies in the algebra k{ρ−1T1, . . . , ρ
−1Tr}. Thus, by (5.1) we see that

|g(Ψ(z))| = |g(z)|, and so
π1(ψ(z)) = z.

It remains to check that the image Γα of ψ is a closed subset of Dr×Ds.
Let zn be a sequence of points in Dr such that ψ(zn) converges to some point
x in Dr × Ds. As π1(ψ(zn)) = zn, we see that zn converges to π1(x) ∈ Dr,
and by continuity of ψ we have that x = ψ(π1(x)) lies in Γα. The set Γα is
so sequentially closed, and hence closed.
Consider now the continuous map Ev(α) : Dr → Ds. Let K be the com-

plete residue field H(α). Consider the H(α)-analytic map

Fα =
(∑
I∈Nr

χα(a1,I) · T I , . . . ,
∑
I∈Nr

χα(as,I) · T I
)
.

A direct computation together with (4.3) shows that Ev(α) = πH(α)/k ◦
Fα ◦ σH(α)/k. �

5.5. Proof of Theorem 1.2

Let Y be any k-affinoid space. We may fix a closed immersion of Y into
some polydisk Ds and assume Y = Ds.
Suppose first that X = Dr. Each analytic map fn is of the form fn =

Ev(αn) for some rigid point αn ∈ Mor(Dr,Ds) by Theorem 4.8. It was
shown in Proposition 4.4 that the space Mor(Dr,Ds) is Fréchet–Urysohn
so that we may assume that αn converges to some point α ∈ Mor(Dr,Ds).
The limit map f is precisely Ev(α) (cf. Theorem 4.8) and we conclude by
Theorem 5.2.
Let now X be any boundaryless, reduced k-analytic space. Pick a point

x ∈ X and an affinoid neigbourhood W of x containing x in its interior.
Fix a distinguished closed immersion of W into some closed unit polydisk
Dr. For every n we may find an analytic map f̂n : Dr → Ds such that
f̂n|W = fn by Proposition 2.2. We now apply the previous case to the
restriction of f̂n to Dr, concluding the proof. �

6. Weakly analytic maps

In this section we look more precisely at the properties of continuous
limits of analytic functions, as obtained in Theorem 1.2.

ANNALES DE L’INSTITUT FOURIER



NON-ARCHIMEDEAN NORMAL FAMILIES 1711

As before, k is any complete nontrivially valued non-Archimedean field
which is algebraically closed.

6.1. Definition and first properties

We begin with a definition.

Definition 6.1. — Let X and Y be any two k-analytic spaces, and let
f : X → Y be a continuous map.
We say that f is weakly analytic if for every point x ∈ X there exist

an affinoid neighbourhood U of x, a complete field extension K/k and an
analytic map F : UK → YK such that f|U = πK/k ◦ F ◦ σK/k.

It will be convenient to denote by WA(X,Y ) the set of all weakly analytic
maps from X to Y .

Clearly, the set Mork(X,Y ) of analytic maps from X to Y is a subset of
WA(X,Y ). It is also a strict subset if Y has dimension at least 1, since any
constant map is weakly analytic, but it is analytic only if the constant is a
rigid point.

Proposition 6.2. — Let X be a reduced basic tube and Y be a k-
affinoid space. Let f : X → Y be a continuous map. The following two
conditions are equivalent.

(i) For any point x ∈ X there exist an affinoid neighbourhood Z of x
and a sequence of analytic maps fn : Z → Y pointwise converging
to f |Z .

(ii) For any point x ∈ X there exist an affinoid neighbourhood Z of x,
a complete extension K of k and an analytic map F : ZK → YK
such that f |Z = πK/k ◦ F ◦ σK/k.

A consequence of the previous result is the following. For any boundary-
less equidimensional analytic space X a continuous map f : X → Y which
is the pointwise limit of a sequence of analytic functions is weakly analytic,
since any such X admits a basis of neighborhoods which are basic tubes.

Proof. — The implication (i)⇒ (ii) follows by applying Theorem 1.2 to
the restriction of the sequence fn : Z → Y to the connected component of
the interior of Z containing the point x.

Suppose that (ii) is satisfied. Choosing a closed immersion Y → Ds, we
may assume Y = Ds. Pick a point x ∈ X and a strictly k-affinoid neigh-
bourhood W of x such that there exists a complete extension K/k and a
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K-analytic map F : WK → DsK such that f |W = πK/k ◦ F ◦ σK/k. Since X
is reduced and k is algebraically closed, we may assume that W is distin-
guished [5, Theorem 6.4.3/1]. By Proposition 2.2, we may find an analytic
map F̂ : DrK → DsK that agrees with F on WK ∩ DrK . Let us now approxi-
mate πK/k ◦ F̂ ◦ σK/k by a sequence of k-analytic maps. By Theorem 4.8,
there exists a rigid point β ∈ Mor(Dr,Ds)K such that F̂ = Φ(β, · ). The
point α = π∞K/k(β) in Mor(Dr,Ds) is not rigid in general, but we may
find points αn ∈ Mor(Dr,Ds)(k) converging to α by Proposition 4.6, since
k is assumed to be nontrivially valued. The analytic maps Ev(αn) con-
verge pointwise to Ev(α) : Drk → Dsk by Theorem 4.8, and by construction
we have Ev(α) = πK/k ◦ F̂ ◦ σK/k, see Theorem 5.2. We may now pick
an affinoid neighbourhood Z ⊂ W of x that is contained in Dr and set
fn := Ev(αn)|Z . �

6.2. Rigidity of weakly analytic maps

We prove here the following statement:

Proposition 6.3. — Suppose f : X → Y is a weakly analytic map,
where Y is a reduced curve. If x is a smooth rigid point that is mapped to
a non-rigid point by f , then f is locally constant near x.

Proof. — Let x ∈ X be a smooth rigid point such that y = f(x) is
not rigid. Since this is a local statement, we may replace X and Y by
affinoid neighbourhoods of x and y respectively. The curve Y is reduced
and y is not rigid, hence Y is smooth at y. We may thus replace Y by an
affinoid neighbourhood of y that embeds into a strictly affinoid curve. Since
x is a smooth rigid point, it admits a basis of neighborhoods analytically
isomorphic to the closed polydisk (see [3, Theorems 3.4.1, 3.5.1]) so we may
assume that X = Dr and that f takes values in the affinoid curve Y . Thus,
f is bounded and we may assume that x = 0.
After maybe further reducing X, there exists an extension K of k and

a K-analytic map F : XK → YK such that f = πK/k ◦ F ◦ σK/k. Observe
that F (x) is a rigid point of YK .
Suppose first that Y = D. The fact that y is not rigid means that y has

positive diameter, i.e.

inf
a∈k◦
|(T − a)(y)| = r > 0.

By continuity, we can find a polyradius ε > 0 such that every rigid point z
in DrK(0; ε) satisfies |F (z) − F (0)|K < r, where | · |K denotes the absolute
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value on K. Pick a point a ∈ k◦. For every rigid point z ∈ DrK(0; ε), we get

|(T − a)(y)| = max {|F (z)− F (0)|K , |(T − a)(y)|}
= max

{
|F (z)− F (0)|K , |(T − a)(πK/k ◦ F (0))|

}
= max {|F (z)− F (0)|K , |F (0)− a|K}
= |F (z)− a|K
= |(T − a)(πK/k ◦ F (z))|.

Thus, F maps the polydisk DrK(0; ε) into the fibre π−1
K/k(y). As

σK/k(Drk(0; ε)) ⊆ DrK(0; ε),

we conclude that f is locally constant near 0.
For Y any strictly affinoid space of dimension 1 there exists a finite mor-

phism ϕ : Y → D by Noether’s Lemma. By what precedes, the composition
ϕ ◦ f is locally constant near 0, and by finiteness so is f . �

Example 6.4. — The previous result does not hold if Y has dimension
greater than 2. Consider for instance the weakly analytic map f : D→ D2

given by f = πK/k ◦ F ◦ σK/k, where K = H(xg) and F (z) = (xg, z). No
rigid point in D has rigid image under f , but f is not locally constant at
these points.

6.3. Weakly analytic maps from curves

Proposition 6.5. — Let f : X → Y be a weakly analytic map, where
X is a curve. If there exists a converging sequence of rigid points of X
whose images under f are rigid points, then f is analytic.

Remark 6.6. — Let X be a k-affinoid space. Let f : X → Ds be a con-
tinuous map such that there exists a complete extension K/k such that
f = πK/k ◦F ◦ σK/k for some K-analytic map F . We may assume that the
extension K/k is of countable type [5, Section 2.7].
Indeed, let A be the underlying k-affinoid algebra of X and fix an epi-

morphism k{r−1T} → A such that A is isomorphic as a Banach algebra to
k{r−1T}/I for some closed ideal I ⊂ k{r−1T}. Extending scalars, we see
that AK is isomorphic as a K-affinoid algebra to the quotient of K{r−1T}
by the ideal generated by I. The map F is then determined by elements
F1, . . . , Fs ∈ AK with |Fl|sup 6 1, and hence the expression of F contains
at most countably many elements of K.
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Proof. — Pick any sequence xn ∈ X(k) such that f(xn) are also rigid,
and assume that limn xn = x. Here x may be non-rigid. We may replace X
by some affinoid neighbourhood of x and assume that f = πK/k ◦F ◦ σK/k
for some complete extension K/k and some K-analytic map F . Observe
that f(xn) = F (xn) ∈ Y (k). We may as well replace Y by an affinoid
neighbourhood of f(x) and embed it in some polydisk Ds.

LetA be the underlying k-affinoid algebra ofX. The map F is then deter-
mined by elements F1, . . . , Fs in theK-affinoid algebraAK with |Fl|sup 6 1.
Pick any real number α > 1. By [5, Proposition 2.7.2/3] there is an α-
cartesian Schauder basis {ej}j∈N of K, and we may choose e0 = 1 by [5,
Proposition 2.6.2./3].
Fix an epimorphism TM → AK and lift every Fl to an element Gl in TM .

Then for every l = 1, . . . , s we can develop Gl =
∑
I a

l
IT

I with alI ∈ K

and such that |alI |K → 0 as |I| goes to infinity. Using the Schauder basis
we may find elements alI,j ∈ k such that alI =

∑
j a

l
I,jej and satisfying

|alI,j |k 6 max
j
|alI,j |k 6 α|alI |K .

Since α|alI |K → 0 as |I| goes to infinity, the series Ajl =
∑
I a

l
I,jT

I de-
fines an element in TM . Thus, we obtain a converging power series Gl =∑
j

(∑
I a

l
I,jT

I
)
ej . Recall that Fl(xn) ∈ k for all n, and so Gl(xn) ∈ k.

We infer that for j > 1 and for all n, Ajl (xn) = 0. Each of these Ajl defines
in turn an analytic map on X that vanishes at every xn, and hence is con-
stant equal to zero on X by the principle of isolated zeros. It follows that
Fl|X = A0

l for every 1 6 i 6 s, thus they are defined over k. �

We observe that the previous result does not hold in higher dimension.

Example 6.7. — Let ζn ∈ k, |ζn| = 1, |ζn − ζm| = 1 for n 6= m. Let f be
the weakly analytic map obtained as the limit of the sequence fn : D2 → D1,
given on the rigid points by fn(z1, z2) = ζnz1 + z2. The map f is not
analytic, since the rigid point (λ, 0) ∈ D2, 0 < |λ| < 1, is mapped to
the point in D corresponding to the closed ball B(0; |λ|). However, the set
{0} × D1(k) is mapped to the set of rigid points.

A consequence of the previous result is the following statement that can
be viewed as the principle of isolated zeroes for weakly analytic maps.

Proposition 6.8. — Let f : X → Y be a non constant weakly analytic
map where X is a curve without boundary. Then the fibre of any rigid
point in Y contains no accumulation point.

Proof. — Let y ∈ Y (k) and suppose there exist points xn ∈ X converging
to a point x and such that f(xn) = y for all n. In this situation, we
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may assume Y = Ds, y = (0, . . . , 0) and replace X with some affinoid
neighbourhood of x such that f lifts to a K-analytic map F over some
complete extension K/k. This map F is given by some elements F1, . . . , Fs
in the underlying K-affinoid algebra of XK of norm at most 1.
The point y is rigid and so it has only one preimage under πK/k. Thus,

(0, . . . , 0) = f(xn) = F ◦ σK/k(xn) ∈ DsK
for all n. Since X is a curve and F is non-constant (otherwise f would
be so), F−1(0) is included in the set of rigid points of X. It follows that
every σK/k(xn) is rigid. Each component Fl of F defines an analytic map
between the curves XK and DK and admits a sequence of zeros with an
accumulation point σK/k(x). It follows that every Fl is identically zero,
hence so is f . �

6.4. A conjecture on weakly analytic maps

On basic tubes, we conjecture that weakly analytic maps can be globally
lifted to analytic maps.

Conjecture 6.9. — Let Y be a k-affinoid space and X a basic tube.
Let f : X → Y be a weakly analytic map. Then, there exist a complete
extension K/k and F : XK → YK analytic such f = πK/k ◦ F ◦ σK/k.

Notice that a weakly analytic map can be locally lifted to an analytic
map over some complete extension of k. Conjecture 6.9 means that this
can be done globally.

Remark 6.10. — In the case when X and Y are polydisks, Conjecture 6.9
amounts to saying that the map Ev is surjective onto the set WA(X,Y ).

The map Ev becomes closed by Theorem 4.8 for the topology of the
pointwise convergence, and so WA(X,Y ) becomes Fréchet–Urysohn for this
topology.
Observe that if Conjecture 6.9 holds, then using Theorem 4.9 we have:

Theorem 6.11. — Suppose that Conjecture 6.9 holds.
Let X be a boundaryless σ-compact k-analytic space and Y a k-affinoid

space. Then, every sequence of weakly analytic maps fn : X → Y

admits a subsequence that is pointwise converging to a weakly analytic map
f : X → Y .

As a consequence, we have:
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Corollary 6.12. — Suppose that Conjecture 6.9 holds. Let X be a
boundaryless σ-compact k-analytic space and Y a k-affinoid space. Let
{fn} ⊂ WA(X,Y ) be a sequence converging to some continuous map f .
Then, f is weakly analytic.

7. Applications to dynamics

In this section, we attach two different notions of Fatou sets to an en-
domorphism f of the projective space PN,an of degree at least 2 and study
their geometry, which exhibit similar properties to the complex case.
We will assume that the base field k is a complete non-Archimedean field

that is algebraically closed and nontrivially valued.

7.1. Strongly pluriharmonic functions

We recall the definition from [7]:

Definition 7.1. — Let X be any boundaryless k-analytic space. A con-
tinuous function u : X → R is strongly pluriharmonic if for every x ∈ X
there exist an open neighbourhood U of x, a sequence of invertible analytic
functions hn on U and real numbers bn such that

u = lim
n→+∞

bn · log |hn|

locally uniformly on U .

Harmonic functions have been widely studied in dimension 1. Baker–
Rumely [1] and Favre–Rivera Letelier [14], and Thuillier [35] have defined
non-Archimedean analogues of the Laplacian operator, on P1,an and on
general analytic curves respectively.
If X is an analytic curve, strongly harmonic functions are harmonic in

the sense of Thuillier. It is not known yet whether the converse holds, see [7,
Remark 2.4.6]. However, if X is a connected open subset of P1,an, then all
definitions agree by [1, Corollary 7.32].
Observe that over C, pluriharmonic functions are in fact locally the log-

arithm of the norm of an invertible function, whereas this is not true in
the non-Archimedean setting. Counterexamples appear already for curves,
see [7, Section 2.3].

Remark 7.2. — Let X be any boundaryless k-analytic space. The set of
all strongly pluriharmonic functions on X forms a R-vector space.
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7.2. Harmonic functions on open subsets of P1,an

Recall from [2, Section 4.2] that the analytic projective line P1,an is the
one-point compactification of A1,an, which consists of all the multiplicative
seminorms on k[T ] whose restriction to k coincides with the norm on k. The
analytic affine line A1,an is endowed with the weakest topology such that
all the maps of the form x ∈ A1,an 7→ |f(x)| with f ∈ k[T ] are continuous.
The points in A1,an can be explicitly described as follows [2, Section 1.4.4].

Pick a ∈ k and r ∈ R+ and denote by B(a; r) the closed ball in k centered
at a and of radius r. To B(a; r) we can associate a point ηa,r ∈ A1,an by
setting |P (ηa,r)| := sup|y−a|6r |P (y)| for every polynomial P ∈ k[T ]. Points
of the form ηa,0 are called type I points, and these are precisely the rigid
points of A1,an. Consider the point ηa,r with r > 0. If r ∈ |k×| we say that
ηa,r is of type II and if r /∈ |k×| of type III. A decreasing sequence of closed
balls B(ai; ri) in k with empty intersection defines a sequence of points
ηai,ri ∈ A1,an. The latter sequence converges in A1,an and its limit point is
called a type IV point. Any point in A1,an is of one of these four types.

It is a fundamental fact that the Berkovich projective line carries a tree
structure. Roughly speaking, it is obtained by patching together one-dimen-
sional line segments in such a way that it contains no loop. We refer to [19,
Section 2] for a precise definition. Suffice it to say that for any two points
x, y ∈ P1,an there exists a closed subset [x, y] ⊂ P1,an containing x and y

that can be endowed with a partial order making it isomorphic to the real
closed unit interval [0, 1] or to {0}. These ordered sets are required to satisfy
a suitable set of axioms. For instance, for any triple x, y, z there exists a
unique point w such that [z, x] ∩ [y, x] = [w, x] and [z, y] ∩ [x, y] = [w, y].
Any subset of the form [x, y] is called a segment.
As a consequence, P1,an is uniquely path-connected, meaning that given

any two distinct points x, y ∈ P1,an the image of every injective continuous
map γ from the real unit interval [0, 1] into P1,an with γ(0) = x and γ(1) = y

is isomorphic to the segment [x, y].
A nonempty closed subset Γ ⊆ P1,an is called a subtree if it is connected.

An endpoint of Γ is a point x ∈ Γ such that Γ\{x} either remains connected
or is empty. For every subtree Γ of P1,an there is a canonical retraction
rΓ : P1,an → Γ, which sends a point x ∈ P1,an to the unique point in Γ such
that the intersection of the segment [x, rΓ(x)] with Γ consists only of the
point rΓ(x).

A strict finite subtree Γ of P1,an is the convex hull of finitely many type
II points x1, . . . , xn. As a set, it is the union of all the paths [xi, xj ], i, j =
1, . . . , n.
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Recall that a disk in P1,an is by definition either a disk in A1,an or the
complement of a disk in A1,an. Basic tubes in P1,an are strict simple domains
in the terminology of [1]. They are either P1,an or strict open disks in P1,an

with a finite number of strict closed disks of P1,an removed. In particular,
basic tubes different from P1,an and strict open disks can be obtained as
an inverse image r−1

Γ (Γ0), where Γ is a strict finite subtree of P1,an and Γ0

the open subset of Γ consisting of Γ with its endpoints removed.
Similarly, every connected affinoid domain of P1,an is either a closed

disk or a closed disk in P1,an with a finite number of open disks of P1,an

removed. In particular, an affinoid subset of the form D(a; r)\
⋃n
i=1 D(ai; ri)

is homeomorphic to the Laurent domain of underlying k-affinoid algebra

k{r−1(T − a), r1S1, . . . , rnSn}/(S1(T − a1)− 1, . . . , Sn(T − an)− 1).

Given a subset W ⊂ P1,an, denote by W its closure and by ∂topW its
topological boundary. If W is a basic tube strictly contained in P1,an, then
∂topW consists of a finite set of type II points.

Proposition 7.3. — Let U be a proper connected open subset of P1,an.
Then there exist an increasing sequenceWm of basic tubes of P1,an exhaust-
ing U and a sequence of strictly affinoid subspaces Xm of P1,an satisfying

Wm ⊂ Xm ⊂Wm+1 ⊂ U

for every m ∈ N∗.

The proof makes extensive use of the tree structure of P1,an. Recall
from [1, Appendix B] that the tangent space at a point x ∈ P1,an is defined
as the set TxP1,an of paths leaving from x modulo the relation having a
common initial segment. The space TxP1,an is in bijection with the con-
nected components of P1,an \{x}. Given any tangent direction ~v ∈ TxP1,an,
we denote by U(~v) the corresponding connected component of P1,an \ {x}.

Proof. — By [1, Corollary 7.11] there exists a sequence of basic tubes
Wm exhausting U and such that Wm ⊂Wm+1 ⊂ U for every m ∈ N∗.

Fix a positive integer m > 0. As we have assumed that U is strictly
contained in P1,an, the topological boundary of Wm is a non-empty finite
set of type II points of P1,an. The convex hull Γm of ∂topWm is thus a
subgraph of P1,an with finitely many endpoints.
IfWm is an open disk, we set Xm to be the closed disk of same centre and

same radius as Wm. Otherwise, consider the following strict finite subtree
Γ of P1,an. Let Γ0

m be the open subset of Γm consisting of Γm with its
endpoints removed. Pick a point x in Γm \ Γ0

m. There are at most finitely
many tangent directions at x containing points of the complement in U and
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not contained in Γm. For every such tangent direction, attach a segment to
Γm in that direction and in such a way that it is contained in Wm+1 and
such that its endpoint is a type II point. If no such tangent direction exists,
lengthen that edge ending at x such that the new endpoint is again of type
II and belongs toWm+1. Denote by Γ the strict finite subtree obtained this
way. Observe that all the boundary points of Γm are contained in Γ0.
Let rΓ : P1,an → Γ be the natural retraction map. The basic tube Wm is

precisely r−1
Γ (Γ0

m). Setting Xm = r−1
Γ (Γm), clearly one has Wm ⊂ Xm ⊂

Wm+1. Let xi1 , . . . , xim be the endpoints of Γm, where xij = ηaij ,rij are of
type II. The set Xm is homeomorphic to P1,an minus the strict open disks
D(aij ; rij ), j = 1, . . . ,m, and is thus strictly affinoid. �

The following proposition will be essential for the proof of Theorem 1.3.

Proposition 7.4. — Let U be a basic tube in P1,an. There exists a
positive constant C depending only on U such that for every harmonic
function g : U → R there exists an analytic function h : U → A1,an \ {0}
such that

sup
U

∣∣g − log |h|
∣∣ 6 C.

Proof. — If U is either P1,an or D, the assertion is trivial, because every
harmonic function on D or on P1,an is constant by [1, Proposition 7.12].
We may thus assume that U is of the form D\∪mi=1D(ai, ri) with ri ∈ |k×|,
0 < ri < 1 and |ai| < 1 for i = 1, . . . ,m. The topological boundary of U
consists of m+ 1 type II points.
By the Poisson formula [1, Proposition 7.23], we may find real numbers

c0, . . . , cm with
∑m
i=1 ci = 0 such that for all z ∈ U

g(z) = c0 +
m∑
i=1

ci · log |(T − ai)(z)|.

Pick non-zero integers n1, . . . , nm such that |ci − ni| < 1 and b ∈ k such
that | log |b| − c0| < 1. Consider the map h : U → A1,an \ {0},

h(z) = b

m∏
i=1

(T − ai)ni(z).

Since ai /∈ U , the function log |h| is harmonic on U and we have

sup
U
|g − log |h|| 6 |c0 − log |b||+

m∑
i=1
|ci − ni| · sup

U
log |(T − ai)(z)|.

The functions log |(T − ai)(z)| are bounded on U and it follows that the
right-hand side of the inequality is bounded. �
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7.3. Green functions after Kawaguchi–Silverman

Consider an endomorphism of the N -dimensional projective analytic
space f : PN,an → PN,an of degree d > 2. Denote by fn its n-th iterate.
Fixing homogeneous coordinates, such a map can be written as f = [F0 :
· · · : FN ], with Fi homogeneous polynomials of degree d without nontrivial
common zeros.
Denote by ρ : AN+1,an \ {0} → PN,an the natural projection map. An

endomorphism f of PN,an can be lifted to a map F : AN+1,an → AN+1,an

such that ρ◦F = f ◦ρ. One can take for instance F = (F0, . . . , FN ). In the
sequel, we will always choose lifts of f such that all the coefficients of the
Fi’s lie in k◦ and at least one of them has norm 1.
Given T0, . . . , TN affine coordinates of AN+1,an and a point z ∈ AN+1,an,

we define its norm as |z| = max06i6N |Ti(z)|. Analogously, we set |F (z)| =
max06i6N |Fi(z)|. With these norms in hand, we may now define the Green
function associated to f following Kawaguchi and Silverman [20, 21], see [30]
for the complex case.

Proposition 7.5. — The sequence of functions

Gn(z) = 1
dn

log |Fn(z)|

converges uniformly on AN+1,an.

One defines the dynamical Green function associated to f as Gf (z) =
limn→∞Gn.
Proof. — Let us show that the limit limnGn exists. The upper bound

|F (z)| 6 |z|d is clear. Since the polynomials Fi have no common zeros other
than the origin, by the homogeneous Nullstellensatz we may find a positive
integer s such that the homogeneous polynomial T si ∈ k[T0, . . . , TN ] belongs
to the ideal generated by F0, . . . , FN for every i = 0, . . . , N . That is, for
every i there are homogeneous polynomials λij ∈ k[T0, . . . , TN ] such that
T si =

∑N
j=0 λ

i
jFj . For any z ∈ AN+1,an, we have:

|z|s = max
06i6N

|zi|s 6 max
06i,j6N

|λij(z)Fj(z)| 6 max
06j6N

C|z|s−d · max
06j6N

|Fj(z)|

for some positive constant C depending only on the polynomials λij . Hence,
for all z we have that

(7.1) 1
C
· |z|d 6 |F (z)| 6 |z|d,

and so
1
C
· |Fn(z)|d 6 |Fn+1(z)| 6 |Fn(z)|d.
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Set C1 = |log 1
C |. Taking logarithms, one obtains

(7.2) |Gn+1(z)−Gn(z)| 6 C1

dn

for every z. By the ultrametric inequality, |Gn+j(z)−Gn(z)| 6 C1
dn for all

j > 0 and for all n, and so the limit Gf = limn→∞Gn exists. �

Remark 7.6. — Letting j go to infinity in (7.2), one obtains the inequality

(7.3) |Gf −Gn| 6
C1

dn
.

Theorem 7.7 ([20]).
(i) The function Gf is continuous.
(ii) For every λ ∈ k∗ and for every z ∈ AN+1,an, we have

Gf (λ · z) = Gf (z) + log |λ|.

(iii) There exists a positive constant C such that

sup
z∈AN+1,an

|Gf (z)− log |z|| 6 C.

7.4. Fatou and Julia sets

Let us first discuss the one-dimensional situation, both in the complex
and in the non-Archimedean setting.

Recall that there are several characterizations of the Fatou and Julia sets
of an endomorphism f of P1

C. The Fatou set F (f) can be defined as the
normality locus of the family of the iterates of f , and the Julia set J(f)
as its complement. Equivalently, one can set J(f) to be the support of
the unique measure of maximal entropy, also referred to as the equilibrium
measure, see [30], or as the closure of the repelling periodic points.
Some of these equivalences have a non-Archimedean counterpart. There

is a well-defined notion of the canonical measure of an endomorphism f

of P1,an (see [12, 13] and [1, Section 10.1]), and so one sets J(f) to be its
support and F (f) its complement. Using a similar definition of normality
as ours, it can be shown that the Fatou set agrees with the normality locus
of the family of the iterates of f [11, Theorem 5.4].

One may as well consider the Fatou and Julia sets in restriction to the
set of rigid points of P1,an, see [31] for a survey on the topic. However,
notice that if f is a map with good reduction, i.e. if the reduction f̃ of f
is a selfmap of P1

k̃
of the same degree as f , then its Julia set contains no

rigid points [31, Theorem 2.17].
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We mention the following two characterizations of the intersections of
J(f) and F (f) with P1,an(k). It was shown in [11, Theorem C] that the
intersection of the Fatou set F (f) with the set of rigid points in P1,an

agrees with the set of rigid points where the sequence of the iterates fn is
equicontinuous with respect to the chordal metric on P1,an(k).
The Fatou set of a non-invertible complex endomorphism f of PNC for

N > 2 is defined as the normality locus of the family of the iterates. Its com-
plement is the support of the Green current, which is the unique positive
closed (1, 1)-current that is forward invariant by f , see [30, Théorème 1.6.5]
for a proof. There are several possible definitions for the Julia set of f ,
see [30, Définition 3.31]. We define the Julia set of f as the complement of
the Fatou set.
We now explore the non-Archimedean higher dimensional case. Recall

that a family F of analytic selfmaps of PN,an is normal at a point x ∈ PN,an

if there exists a neighbourhood V 3 x such that every sequence {fn} in
F admits a subsequence fnj that is pointwise converging on V to some
continuous map f : V → PN,an. We consider two different Fatou sets of f :

Definition 7.8. — The normal Fatou set Fnorm(f) of an endomor-
phism f : PN,an → PN,an of degree at least 2 is the set of all points z ∈ PN,an

where the family {fn} is normal.
The normal Julia set Jnorm(f) is the complement of Fnorm(f).

Definition 7.9. — Let ρ : AN+1,an → PN,an be the usual map. We
define the harmonic Fatou set Fharm(f) of f as the set of points z ∈ PN,an

having a neighbourhood U such that the Green function Gf is strongly
pluriharmonic on ρ−1(U).

The harmonic Julia set Jharm(f) is the complement of Fharm(f).

It follows directly from the definitions that both Fatou sets Fnorm(f) and
Fharm(f) are open and totally invariant.
The set Jharm(f) is always nonempty. Indeed, Chambert-Loir has con-

structed a natural invariant probability measure µf on PN,an and shown
that its support is contained in the complement of the locus where Gf
is strongly pluriharmonic, see [7, Proposition 2.4.4]. In other words, the
support of µf is included in the harmonic Julia set of f .

We do not know whether the Fatou set is always non-empty.

Example 7.10. — Let z ∈ PN,an be any rigid fixed point for f such that
the eigenvalues of its differential Df(z) are all of norm at most 1. Then,
we may find an arbitrarily small open neighbourhood U of z which is f -
invariant, i.e. such that f(U) ⊆ U . After maybe reducing U , we may assume
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that U ⊂ {z0 = 1, |zi| < 2, i = 1, . . . , N}. We thus have:

Gn = 1
dn

log |(Fn0 , . . . , FnN )|

= 1
dn

log |Fn0 |+
1
dn

log max
16i6N

∣∣∣∣FniFn0
∣∣∣∣ .

The second term converges uniformly to 0. On the open set ρ−1(U), the
function Gf is thus the uniform limit of the sequence 1

dn log |Fn0 |, hence
strongly pluriharmonic. Hence z belongs to the harmonic Fatou set.

In dimension 1, it follows from the Woods Hole formula that any rational
map admits at least one indifferent fixed point p, i.e. such that |f ′(p)| = 1.
We observe that the same result holds for any polynomial map f : A2,an →
A2,an that extends to an endomorphism of P2,an so that Fharm(f) 6= ∅ in
this case.

Remark 7.11. — In [21], the authors define the Fatou set of an endo-
mophism of the N -th projective space PNk as the equicontinuity locus of
the family of iterates, which they prove to be the same as the locus where
it is locally uniformly Lipschitz. However, the definition of the Fatou set
in terms of equicontinuity presents some difficulties already in dimension
one. Indeed, let k be a field of characteristic p > 0 and consider the poly-
nomial f(z) = pz2 + cz, with |c| = 1. Then, the family of the iterates fn
is normal at the Gauss point, but it is not equicontinuous at xg, see [1,
Example 10.53].

7.5. Comparison between Fnorm and Fharm

We expect our two notions of Fatou sets to coincide.

Conjecture 7.12. — For every non-invertible endomorphism f of the
projective space, we have that Fnorm(f) = Fharm(f).

In dimension 1, the equality follows from [11, Theorem 5.4], and we
are able to prove one inclusion in general. Our argument relies on the
following result which gives a characterization of Fharm(f) in terms of a
sort of equicontinuity property for the iterates of f . Its proof follows its
complex counterpart.

Proposition 7.13. — Let f : PN,an → PN,an be an endomorphism of
degree d > 2 and U an open subset of PN,an.

TOME 71 (2021), FASCICULE 4



1724 Rita RODRÍGUEZ VÁZQUEZ

The Green function Gf is strongly pluriharmonic on the open set
ρ−1(U) ⊂ AN+1,an \ {0} if and only if there exists a positive constant
C1 such that for every n ∈ N there exists a lift Fn of fn on U and such
that e−C1 6 |Fn| 6 eC1 on ρ−1(U) for all n ∈ N.

This result together with Theorem 1.1 implies the following:

Corollary 7.14. — The harmonic Fatou set Fharm(f) is contained in
Fnormal(f).

Proof of Proposition 7.13. — Pick any lift F = (F0, . . . , FN ) of f ,
where Fi ∈ k[T0, . . . , TN ] are homogeneous polynomials of degree d with-
out nontrivial common zeros. We may assume that supD |F (z)| = 1. Recall
from (7.3) that there exists a positive constant C1 such that |Gf −Gn| 6
C1
dn for all n ∈ N.
Let U ⊆ PN,an be a an open subset on which Gf is strongly plurihar-

monic. Let hn ∈ O×AN+1(U) and let bn be non-zero real numbers such that
Gf is the uniform limit of the sequence bn · log |hn|. After maybe extracting
a subsequence and renumbering it, we may assume that

|Gf − bn · log |hn|| 6
C1

dn
∀ n� 0

on U. Thus, we have∣∣∣∣ 1
dn

log |Fn| − bn · log |hn|
∣∣∣∣ =

∣∣∣∣ 1
dn

log
(
|Fn|
|hn|bn·dn

)∣∣∣∣
6 max {|Gf − bn · log |hn|| , |Gf −Gn|}

6
C1

dn
.

So we see that for n� 0

(7.4) e−C1 6
|Fn|
|hn|bn·dn

6 eC1 .

Since the functions hn have no zeros on U , each Fn := Fn

hbn·d
n

n

is a lift of fn.
Assume conversely that on U , for every n ∈ N there exists a lift Fn of

fn such that e−C1 6 |Fn| 6 eC1 for some positive constant C1. Then, for
every n ∈ N we may choose a non-vanishing function hn on U such that
Fn = hn · Fn. It follows that

Gn = 1
dn

log |Fn| = 1
dn

log |hn|+
1
dn

log |Fn| .

The second term converges uniformly to 0. On the open set ρ−1(U), the
function Gf is thus the uniform limit of the sequence 1

dn log |hn|, hence
strongly pluriharmonic. �
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7.6. Hyperbolicity of the Fatou components

Recall that Mork(X,Y ) denotes the set of analytic maps from X to Y .

Definition 7.15. — Let Ω be a relatively compact subset of an analytic
space Y and U a basic tube.

The family Mork(U,Ω) is said to be normal if for every sequence of
analytic maps {fn} ⊂ Mork(U,Ω) there exists a subsequence fnj that is
pointwise converging to a continuous map f : U → Y .

Remark 7.16. — In the complex setting, the previous definition corre-
sponds to the family Hol(U,Ω) being relatively compact in Hol(U, Y ). The
complex definition of normality for a non-compact target is slightly differ-
ent, since it allows for a sequence to be compactly divergent [23, Section I.3].

Let f : PN,an → PN,an be an endomorphism of degree at least 2. Theo-
rem 1.3 thus states that for every connected component Ω of the harmonic
Fatou set Fharm(f) and for every connected open subset U of P1,an, the
family Mork(U,Ω) is normal.

Proof of Theorem 1.3. — Let Ω be a connected component of Fharm(f)
of an endomorphism f : PN,an → PN,an of degree at least 2. Let U be
any connected open subset of P1,an. Our aim is to show that the family
Mork(U,Ω) is normal.
The projective space PN,an can be covered by N + 1 charts V0, . . . , VN

analytically isomorphic to DN . For every i = 0, . . . , N , let si : {z ∈ PN,an :
zi 6= 0} → AN+1,an be the analytic local section of ρ sending the point
z = [z0 : · · · : zN ] to ( z0

zi
, . . . , zi−1

zi
, 1, zi+1

zi
, . . . , zNzi ). Let g : U → Ω be an

analytic map. We claim that for any compact subset K ⊂ U the map g|K
admits a lift to ρ−1(Ω).
Suppose first that U is not the whole P1,an. By Proposition 7.3, there

exists a sequence of basic tubesWm exhausting U and a sequence of affinoid
subspaces Xm satisfying

Wm ⊂ Xm ⊂ U.

Pick any compact subset K ⊂ U . For m sufficiently large, K is contained
in some Xm. Fix m ∈ N∗. Cover Xm by sets U (m)

i = g−1(Vi) ∩ Xm with
0 6 i 6 N . On every U

(m)
ij = g−1(Vi) ∩ g−1(Vj) ∩ Xm, we know that

ρ◦si◦g = ρ◦sj◦g, and thus si◦g = ϕ
(m)
ij ·(sj◦g) for some ϕ(m)

ij ∈ O×(U (m)
ij ).

Since Xm is an affinoid subspace of P1,an we have that H1(Xm,O×) = 0
by [29]. We may thus find ϕi ∈ O×(U (m)

i ) and ϕj ∈ O×(U (m)
j ) such that
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ϕ
(m)
ij = ϕ

(m)
i

ϕ
(m)
j

. On Xm, consider the following local lifts of g:

ĝi
m : U (m)

i −→ ρ−1(Ω), ĝi
m = si ◦ g

ϕ
(m)
i

.

It follows that ĝim = ĝj
m on U

(m)
ij , and hence we have a lift ĝm : Xm →

ρ−1(Ω) of g as required.
By definition of the harmonic Fatou set, the Green function Gf of f is

strongly pluriharmonic on ρ−1(Ω), and thus Gf ◦ ĝm is harmonic on Xm.
Let gn : U → Ω be a sequence of analytic maps. For every Xm consider

the lifts ĝnm : Xm → ρ−1(Ω) of the restriction of gn to Xm constructed
above.
Fix a sufficiently large real number C > 0 and consider the set M = {z ∈

AN+1,an \ {0} : 1
C 6 |Gf (z)| 6 C}. By Theorem 7.7, the set M is compact.

By Proposition 7.4, for every n and every m there exists an analytic map
hmn : Wm → A1,an \ {0} such that

sup
Wm

∣∣Gf ◦ ĝnm − log |hmn |
∣∣ 6 C.

We set g̃nm = ĝn
m

hmn
. Each g̃nm : Wm → ρ−1(Ω) is a lift of gn and its image

lies in the compact M. By Theorem 1.1, there exists a subsequence of
g̃n
m converging pointwise to a continuous map. By a diagonal extraction

argument, we conclude that the family Mork(U,Ω) is normal.
The case U = P1,an follows by writing P1,an as a finite union open disks.

�

7.7. Curves in Fatou sets

The aim of this section is to prove Theorem 1.4, i.e. to show that har-
monic Fatou components contain no nontrivial image of A1,an \ {0}.

We briefly observe the following fact that follows almost directly from
the work of Chambert-Loir.

Proposition 7.17. — Suppose that C is an algebraic curve in PN,an,
and let f : PN,an → PN,an be any endomorphism of degree at least 2. Then
the harmonic Fatou set of f cannot contain a Zariski open subset of C.

In particular, a Fatou component contains no complete algebraic curve.
This supports the conjectural fact that any Fatou component should be
Stein (in the sense of [22]). Over the complex numbers, this result is proved
in [15, 25, 36], but the proof relies on pluripotential techniques which are
not available at the moment over a non-Archimedean field.
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Proof of Proposition 7.17. — Since the result is not central to our stud-
ies, we shall only give a sketch of proof, which relies on special metrizations
of line bundles. We refer to [7, Section 2] for a detailed exposition of these
notions. Choose a homogeneous lift F = (F0, . . . , FN ) of f to AN+1,an

k \{0},
and consider the associated Green function Gf = limn

1
dn log |Fn|. The

function Gf induces a continuous and semi-positive metrization | · |F in
the sense of Zhang on the tautological line-bundle O(1) on PN,an, see [7,
Section 2.1].
Pick any algebraic curve C in PN,an. The restriction of the metrized

line bundle (O(1), | · |F ) to C is again continuous and semi-positive. We
may thus consider its curvature, see [35, Proposition 4.2.3]. It is a positive
measure µC on the Berkovich analytification of C of mass degC(O(1)) which
does not charge any rigid point, see [35, Section 4.2.1]. The support of µC
is contained in Jharm(f), which implies the result. �

We shall use the following proposition:

Proposition 7.18. — Let Ω be an open subset of PN,an.
If the family of analytic maps Mork(A1,an \ {0},Ω) is normal, then every

analytic map A1,an \ {0} → Ω is constant.

As a direct application, we obtain:
Proof of Theorem 1.4. — It follows from Theorem 1.3 and Proposi-

tion 7.18. �

As a first step in proving Proposition 7.18, we deal with a simpler par-
ticular case, that of entire curves.

Proof of the particular case of entire curves. — Let Ω be any open subset
of PN,an and assume that the family Mork(A1,an,Ω) is normal. Suppose
that there exists a non-constant analytic map g : A1,an → Ω. Consider the
sequence of analytic maps from A1,an into Ω given by fn(z) = g(zn). By
normality there is a subsequence {fnj} that is pointwise converging to a
continuous map f : A1,an → PN,an.
The Gauss point xg is fixed by all the maps z 7→ zn, and so f(xg) = g(xg).

For every integer m > 0 let zm = η0,1− 1
m
∈ A1,an. Since every zm lies in

the open unit disk D, we have

f(zm) = lim
nj→∞

fnj (zm) = lim
nj→∞

g ((zm)nj ) = g(0)

for all m. The continuity of f implies that the sequence (f(zm))m tend to
f(xg) as m goes to infinity. It follows that g(xg) = g(0) is a rigid point of
Ω. As the source A1,an is one-dimensional, g must be constant. �
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In order to prove Proposition 7.18, we need to recall some basic topologi-
cal facts. Recall from Section 7.2 that given a point x ∈ P1,an, we denote by
U(~v) the connected component of P1,an \ {x} corresponding to the tangent
direction ~v ∈ TxP1,an.
Let V be an open subset of P1,an and g : V → P1,an a non-constant

analytic map. For every point x ∈ V , the map g induces a tangent map
dg(x) between TxV and Tg(x)P1,an. Let ~v be a tangent direction at x that
is mapped to ~v′ ∈ Tg(x)P1,an by dg(x). Then either g(U(~v)) = U(~v′) or
g(U(~v)) = P1,an. This follows from the fact that the map g is open [1,
Corollary 9.10].
Of special interest for us is the case where x is a type II point. As-

sume for simplicity that both x and g(x) are the Gauss point. The space
TxgP1,an is isomorphic to P1

k̃
, and the tangent map dg(x) : P1

k̃
→ P1

k̃
and

can be described as follows. In homogeneous coordinates g can be written
as g = [G0 : G1] with G0, G1 ∈ O(A1,an) without common zeros by [16,
Theorem 2.7.6], where all the coefficients of G0 and G1 are of norm less or
equal than one and at least one has norm one. Thus, we may consider the
reduction map of g, which is a non-constant rational map from P1

k̃
to itself,

and hence surjective. One can show that dg(x) is given by the reduction of
g [1, Corollary 9.25].

Proof of Proposition 7.18. — Suppose that Mork(A1,an \ {0},Ω) is nor-
mal. We first deal with the case where Ω is contained in P1,an. Let g : A1,an\
{0} → P1,an be a non-constant analytic map. We may assume that it is of
the form g = [G0 : G1] with Gi : A1,an \ {0} → A1,an analytic without
common zeros by [16, Theorem 2.7.6]. Our goal is to construct a sequence
of analytic maps from A1,an \{0} to itself such that the composition with g
gives a sequence gn : A1,an\{0} → Ω that admits no converging subsequence
with continuous limit.
Suppose first that there exists a type II point in P1,an having infinitely

many preimages in the segment T = {η0,r ∈ A1,an : 0 < r <∞}. Compos-
ing with an automorphism of P1,an, we may assume that this point is the
Gauss point. Let thus {η0,rn} be a sequence of preimages of xg.
Denote by Vn the compact set containing η0,rn consisting of A1,an \ {0}

minus the open sets U(~v0) and U(~v∞), where ~v0 and ~v∞ are the tangent
directions at η0,rn pointing at 0 and at infinity respectively. As dg(η0,rn)
is surjective, we deduce that g(Vn) avoids at most two tangent directions
at xg. After maybe extracting a subsequence, we may find a connected
component B of P1,an \ {xg} that is contained in g(Vn) for all n� 0. As a
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consequence, we may pick a rigid point a0 in B and rigid points xn ∈ Vn
such that g(xn) = a0 for every n ∈ N.
Consider the sequence in Mork(A1,an \ {0},P1,an) defined by gn(z) =

g(xn!z
n!). By normality, we may assume that gn converges to a continuous

map g∞. The Gauss point xg is fixed by g∞, as gn(xg) = xg for all n ∈ N.
For every fixed n ∈ N and every m 6 n, the map gn sends the set of all the
m-th roots of unity Rm to a0, and so g∞ maps every Rm to a0. For every
m ∈ N pick a point ζm ∈ Rm such that ζm → xg as m tends to infinity. We
have

g∞(xg) = lim
m→∞

g∞(ζm) = a0,

contradicting the continuity.
Suppose next that every type II point in P1,an has at most finitely many

preimages in the segment T . Pick a sequence of type II points {η0,rn} with
rn → +∞ as n goes to infinity. By compactness, we may assume that the
points g(η0,rn) converge to some point y∞ ∈ P1,an. We claim that the points
g(η0,r) converge to a point y∞ as r tends to infinity. To see this, fix a basic
tube V containing y∞. Recall that ∂topV is a finite set of type II points. By
assumption, g(η0,r) does not belong to ∂topV for sufficiently large r. For
n � 0 we have that g(η0,rn) lies in V . Thus, g(η0,r) must belong to V for
r � 0.
Pick any r ∈ R+ and consider the tangent direction ~v at η0,r pointing

towards infinity. We may assume that g(U(~v)) avoids at most one rigid
point in P1,an, as otherwise Picard’s Big theorem [8] asserts that g admits
an analytic extension at infinity and we conclude by the case of entire
curves. After maybe varying the rn, we may find a rigid point a0 ∈ P1,an

and rigid points xn with |xn| = rn such that g(xn) = a0 for all n.
Consider the sequence gn(z) = g(xn!z

n!) and assume that it admits a
continuous limit g∞. Our previous argument shows that g∞ maps every
set Rm to a0. The points gn(xg) converge to y∞ by our claim, and hence
g∞ is not continuous.
Assume now that Ω is an open subset of PN,an. Let g : A1,an \ {0} → Ω

be a non-constant analytic map. This map can be written in homogeneous
coordinates as g = [G0 : · · · : GN ], with Gi ∈ O×(A1,an \ {0}). As g is
not constant we may assume that G0 is non-constant and that G1 is not
a scalar multiple of G0. We may assume by [16, Theorem 2.7.6] that G0
and G1 have no common zeros. As a consequence, the map defined on the
image of g by

π : [G0(z) : · · · : GN (z)] 7−→ [G0(z) : G1(z)]
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is well-defined and analytic. By construction π ◦g is non-constant and ana-
lytic. By the previous case we may find xn ∈ k× such that no subsequence
of {π ◦ g(xn!z

n!)} has a continuous limit, and thus neither {g(xn!z
n!)}. �
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