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ANTIFLIPS, MUTATIONS, AND UNBOUNDED
SYMPLECTIC EMBEDDINGS OF RATIONAL

HOMOLOGY BALLS

by Jonathan D. EVANS & Giancarlo URZÚA (*)

Abstract. — The Milnor fibre of a Q-Gorenstein smoothing of a Wahl singular-
ity is a rational homology ball Bp,q . For a canonically polarised surface of general
type X, it is known that there are bounds on the number p for which Bp,q admits
a symplectic embedding into X. In this paper, we give a recipe to construct un-
bounded sequences of symplectically embedded Bp,q into surfaces of general type
equipped with non-canonical symplectic forms. Ultimately, these symplectic em-
beddings come from Mori’s theory of flips, but we give an interpretation in terms
of almost toric structures and mutations of polygons. The key point is that a flip of
surfaces, as studied by Hacking, Tevelev and Urzúa, can be formulated as a combi-
nation of mutations of an almost toric structure and deformation of the symplectic
form.
Résumé. — La fibre de Milnor d’un lissage Q-Gorenstein d’une singularité de

Wahl est une boule d’homologie rationelle Bp,q . Si X est une surface de type gé-
néral polarisée canoniquement, l’ensemble des entiers p pour lesquels il existe un
plongement symplectique de Bp,q dans X est borné. Dans cet article, nous mon-
trons comment construire une suite non-bornée de boules d’homologie rationnelles
plongées symplectiquement dans des surfaces de type général munies de formes
symplectiques non-canoniques. Ces plongements proviennent de la théorie de Mori
sur les flips, mais nous les interprétons en termes de structures presque toriques et
de mutations de polygones. Un flip de surfaces tel que ceux étudiés par Hacking,
Tevelev et Urzúa peut être décomposé en une succession de mutations de structure
presque torique et de déformations de la forme symplectique.

1. Introduction

1.1. Setting and results

Wahl singularities are the cyclic quotient surface singularities admitting a
Q-Gorenstein smoothing whose Milnor fibre is a rational homology ball [12,

Keywords: Singularities, MMP, symplectic geometry, almost toric manifolds.
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25]. The rational homology balls Bp,q arising this way are Stein manifolds
whose Lagrangian skeleton is a certain cell complex called a Lagrangian
pinwheel Lp,q, with one 1-cell and one 2-cell [2, 7, 10]. If X is an algebraic
surface, one can hope to understand which Wahl singularities can appear
in degenerations of X by studying the symplectic embeddings of rational
homology balls Bp,q (or, equivalently, Lagrangian embeddings of pinwheels
Lp,q) in X.

In [3], it was proved that for a symplectic 4-manifold (X,ω), with b+ > 1
and [ω] = KX (which one can think of as a surface of general type with
positive geometric genus), there is a bound on the integers p for which
there is a symplectic embedding of the rational homology ball Bp,q into X
(equivalently, by [7, Lemmas 3.3 and 3.4]), a Lagrangian pinwheel of type
Lp,q). Namely, if ` denotes the length of the continued fraction expansion
of p2

pq−1 , we have
` 6 4K2 + 7.

This implies a bound on p. (Compare with the similar proof of the better
bound ` 6 4K2 + 1 in the context of algebraic geometry in [19].)
In the current paper, we will show that the hypothesis [ω] = KX in this

result is necessary. We do this by exhibiting symplectic 4-manifolds which
admit sequences of embedded Lagrangian pinwheels {Lpi,qi

}∞i=1 where
pi →∞.
The sequences (pi, qi) in question all satisfy a certain recursion rela-

tion which arises in Mori’s theory of flips; we call them Mori sequences.
A Mori sequence is determined by its first two terms; we therefore write
M(p1, q1; p2, q2) to specify a Mori sequence. See Section 3.4 for the defini-
tion.
Our construction applies very widely and yields unbounded Lagrangian

pinwheels in any surface of general type which arises as a smoothing of
a suitable KSBA-stable surface. The only requirement is that the KSBA-
stable surface has at worst Wahl singularities and contains a suitable ra-
tional curve passing through at most two of these singularities (see The-
orem 5.4 for a precise statement). We illustrate the applicability of the
construction with two examples, one with b+ > 1 and one with b+ = 1:

Theorem 1.1. — In each of the cases listed below, X carries a symplec-
tic form ω for which there is a sequence of Lagrangian pinwheels Lpi,qi

⊂
(X,ω), for the given Mori sequence {(pi, qi)}∞i=1:

• X is a quintic surface (b+ = 9), with Mori sequence

M(1, 0; 5, 3) = {(1, 1), (5, 3), (14, 9), (37, 24), (97, 63), (254, 165), . . .}.

ANNALES DE L’INSTITUT FOURIER
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• X is a simply-connected Godeaux surface(1) (b+ = 1), with Mori
sequence

M(5, 2; 39, 17) = {(5, 2), (39, 17), (268, 49), (1837, 326), (12591, 2233), . . .}.

Remark 1.2. — In fact, with essentially no extra work, we can also find
a symplectic form on the quintic containing the Mori sequence

M(2, 1; 7, 5) = {(2, 1), (7, 5), (19, 14), (50, 37), (131, 97), (343, 254), . . .}

of Lagrangian pinwheels, and a symplectic form on the same Godeaux
surface with the Mori sequence

M(4, 1; 33, 10) = {(4, 1), (33, 10), (227, 69), (1556, 473), (10665, 3242), . . .}

of Lagrangian pinwheels. In the proof of Theorem 1.1, we will focus for
convenience on right mutations and right initial antiflips, but running the
same arguments with left mutations and left initial antiflips gives these
other sequences.

Remark 1.3. — Our construction is a generalisation of the constructions
by Khodorovskiy [8], Park–Park–Shin [16], Owens [15] and Park–Shin [17];
we additionally keep track of the symplectic form.

Remark 1.4. — It follows from the proof that the symplectic forms ω
are deformation equivalent to the forms representing the canonical class K
coming from the canonical embedding, however our forms have [ω] 6= K.
Since forms in the class K admit only bounded Lagrangian pinwheels, it
is an interesting question to determine how far one needs to deform ω

away from the class K before one sees Mori sequences of pinwheels. We
will discuss this in Section 4.3, where we observe that our construction
produces unbounded pinwheels when the symplectic form crosses an affine
distance δ from the canonical class, where δ > 2 is an integer which shows
up in the recursion formula for the Mori sequence. It is not clear if this gap
is an artefact of our construction, and that there are unbounded pinwheels
closer to the canonical class, or if boundedness for pinwheels really persists
in some neighbourhood of the canonical class.

1.2. Idea of proof

The idea of the proof is to deform the symplectic form along a compact
codimension zero submanifold U ⊂ X. The submanifold U has the rational
(1)A Godeaux surface is a minimal surface of general type with K2 = 1; the simply-
connected ones are homeomorphic to CP2#8CP2.

TOME 71 (2021), FASCICULE 5
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homology of CP1 and ∂U is a lens space. We will exhibit a 1-parameter
family of symplectic forms ωt on U such that (U, ω0) is negatively monotone
and (U, ω1) is positively monotone. The symplectic manifolds (U, ωt) are
all symplectomorphic in a neighbourhood of ∂U , so the deformation ωt
extends to a deformation of symplectic structures on X which is constant
outside U . We call this deformation an initial antiflip of the symplectic
form.
We will then show that (U, ω1) contains Mori sequences of Lagrangian

pinwheels. We prove this by giving an almost toric structure on (U, ω1) in
which the pinwheels Lp1,q1 and Lp2,q2 are visible surfaces, then performing
an infinite sequence of mutations(2) to get different almost toric structures
on U in which the pinwheels Lpi,qi and Lpi+1,qi+1 are visible. We need to
be careful with our deformation of symplectic forms to ensure that there is
“enough room” in U for an infinite sequence of mutations to be performed.

This initial antiflip is related to the k2A 3-fold flip discovered by Mori [13]
and further studied in [6]. Roughly speaking, the total space X of a Q-
Gorenstein smoothing X → C of a singular algebraic surface X0 can some-
times be flipped to give a new Q-Gorenstein smoothing X+ → C of a
different singular surface X+

0 without affecting any of the smooth fibres:
Xz ∼= X+

z for z 6= 0. Since Xz and X+
z arise from smoothing different sin-

gularities, they contain the Milnor fibres of those singularities. The same
singular surface X+

0 can arise when performing the flip of many different Q-
Gorenstein smoothings X of different singular surfaces X0 (indeed, a whole
Mori sequence of them).
This whole paper can be read as a symplectic topologist’s guide to [6],

presenting those parts of that paper which can be cast purely in terms of
symplectic topology.

1.3. Outline

In Section 2, we define rational homology projective lines (QHPs) and
construct toric orbifold QHPs, VΠ, from polygons Π which we call truncated
wedges. We then construct smooth QHPs, UΠ, as symplectic smoothings
of these toric QHPs. These manifolds are equipped with an almost toric
fibration with visible Lagrangian pinwheels.

(2) In the language of [22], a mutation is a branch move which switches one of the
branch cuts in the almost toric structure for one pointing in the opposite direction. The
terminology mutation comes from the paper of Galkin and Usnich [5]; the definition
there is given for the fan (rather than polytope) side of toric geometry.

ANNALES DE L’INSTITUT FOURIER
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In Section 3, we study when the almost toric fibrations on UΠ can be
mutated to give new almost toric fibrations. This allows us to construct
infinite sequences of visible Lagrangian pinwheels corresponding to Mori
sequences. In Section 3.4, we define Mori sequences and summarise their
asymptotic behaviour. In Section 3.5 also discuss when infinitely many
mutations can be performed in a bounded region of a truncated wedge.
In Section 4, we study those truncated wedges which cannot be mutated

and introduce a new operation which involves a deformation of the sym-
plectic form followed by a mutation. This leads us to the initial antiflip of a
symplectic form and its inverse, the flip. The initial antiflip is a deformation
of the symplectic form, and, in Section 4.3, we discuss how the cohomology
class of ω varies along this deformation. In Section 4.4, we explain the link
to Mori theory; in Section 4.5, we give the interpretation of k1A flips in
our setting; and, in Section 4.6, we give a summary of how to view the flip
and antiflips topologically.
Finally, in Section 5, we give an algebro-geometric recipe for constructing

examples to which the theory applies and we explain the examples stated
in Theorem 1.1.

1.4. Notation

We will write [b1, . . . , br] to mean both:
• a chain of spheres C1, . . . , Cr which intersect according to the graph
• • · · · • •
C1 C2 Cr−1 Cr

with self-intersections C2
i = −bi.

• the continued fraction

[b1, . . . , br] = b1 −
1

b2 − 1
···− 1

br

.

If we write [b1,1, . . . , b1,r1 ]− c− [b2,1, . . . , b2,r2 ] we mean the chain

[b1,1, . . . , b1,r1 , c, b2,1, . . . , b2,r2 ],

but where we group together certain spheres which we wish to collapse
down to a singular point (or which have just arisen from resolving a singular
point).

1.5. Acknowledgements

The authors would like to thank: Ivan Smith and Paul Hacking for helpful
correspondence and conversations; Nick Lindsay for helping us pinpoint a
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reference for the symplectic suborbifold neighbourhood theorem; Daniele
Sepe for pointing us towards [20]; Anne-Sophie Kaloghiros for linguistic
advice; and an anonymous referee for their helpful comments.

2. Rational homology projective lines

Definition 2.1. — A rational homology projective line (QHP) will
mean a 4-dimensional manifold or orbifoldX withH∗(X;Q) ∼= H∗(CP1;Q).

We will give a recipe for constructing symplectic QHPs as smoothings of
symplectic orbifold QHPs.

2.1. Toric QHP-orbifolds: VΠ

2.1.1. Truncated wedges

Given coprime integers ∆,Ω with 0 6 Ω < ∆, let π(∆,Ω) denote the
wedge

π(∆,Ω) := {(x, y) ∈ R2 : x > 0, ∆y > Ωx}.

π(∆,Ω)

(∆,Ω)

This is the moment polygon for a Hamiltonian torus action on the cyclic
quotient singularity(3) 1

∆ (1,Ω).
Let m,n be coprime integers with n > 0 and let h > 0 be a real number.

Consider the half-space Hm,n;h = {(x, y) ∈ R2 : mx + ny > h} and the

(3)The cyclic quotient singularity 1
∆ (1,Ω) is the quotient of C2 by the action of the

group of ∆th roots of unity given by µ · (x, y) = (µx, µΩy).

ANNALES DE L’INSTITUT FOURIER
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truncation Π = Hm,n;h ∩ π(∆,Ω).

Π

Hm,n;h

This truncated wedge is the moment image of a partial resolution VΠ of
the cyclic quotient singularity. The vertices x1 and x2 of Π are the images
under the moment map of cyclic quotient singularities (abusively, also called
x1, x2) in VΠ; if xi has type 1

Pi
(1, Qi) then:

• P1 = n, Q1 = −m mod P1,
• P2 = m∆ + nΩ, Q2 = k∆ + `Ω mod P2, where kn− `m = 1.

We will also abusively say that the vertices xi have type 1
Pi

(1, Qi).

Definition 2.2. — We will say that a vertex of a polygon is a Wahl
vertex if it has type 1

p2 (1, pq − 1) for some coprime integers 0 6 q 6 p 6= 0
(Wahl singularities are precisely the cyclic quotient surface singularities of
this type, see [12, Remark 5.10]). Below, xi will be a Wahl vertex of type
1
p2

i
(1, piqi − 1).

Remark 2.3. — Note that we allow (p, q) = (1, 1) and (p, q) = (1, 0),
both of which represent a smooth point in VΠ. In order for our formulae
below to work out, we must only ever use (1, 0) for a smooth point x1 and
(1, 1) for a smooth point x2. If you accidentally plug in p1 = q1 = 1 or
p2 = 1, q2 = 0, then you will get the wrong answers.

2.1.2. Shear invariant

Let Π be a truncated wedge. Let EΠ denote the edge between x1 and
x2 and let CΠ ⊂ VΠ denote the corresponding component of the toric
boundary; CΠ is a rational curve which generates H2(VΠ;Q).

Definition 2.4. — The shear invariant of Π is defined to be the integer
c such that C̃2

Π = −c, where C̃Π is the proper transform of CΠ in the
minimal resolution Ṽ Π → VΠ.

TOME 71 (2021), FASCICULE 5
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The reason for the name is visible in the standard moment polygon for
the total space of the line bundle O(−c) → CP1, which is a truncated
wedge with shear invariant c, with the zero-section (self-intersection −c)
living over the compact edge:

(1, c)

2.1.3. Constructing polygons

Definition 2.5. — Given a real number a > 0 and integers p1, q1,

p2, q2, c such that 0 6 q1 < p1, 0 < q2 6 p2 and gcd(pi, qi) = 1 for i = 1, 2,
define the polygon

Π(p1, q1, p2, q2, c, a) :=

(x, y) ∈ R2

∣∣∣∣∣∣∣
y > 0,
p2

1x > y(p1(p1 − q1)− 1)
p2

2(x− a) 6 y(cp2
2 − p2q2 + 1)

.
Remark 2.6. — As mentioned in Remark 2.3, this definition does not

allow (p1, q1) = (1, 1) and (p2, q2) = (1, 0); rather, you should use (p1, q1) =
(1, 0) and (p2, q2) = (1, 1)).

The polygon Π := Π(p1, q1, p2, q2, c, a) has:

• one horizontal compact edge EΠ of affine length a,
• two noncompact edges: +R1, emanating from the origin and point-
ing in the direction (

p1(p1 − q1)− 1
p2

1

)
+R2, emanating from the point (a, 0) and pointing in the direction(

cp2
2 − p2q2 + 1

p2
2

)
.

• Wahl vertices xi of type 1
p2

i
(1, piqi − 1),

• shear invariant c.

ANNALES DE L’INSTITUT FOURIER
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We illustrate the polygon Π below.

(p1(p1 − q1)− 1, p2
1)

(cp2
2 − p2q2 + 1, p2

2)

R1
R2

EΠ

a

This relates to our earlier description of polygons as truncations of π(∆,Ω)
in the following way:

Lemma 2.7. — Given a polygon Π := Π(p1, q1, p2, q2, c, a), define

σ(Π) := (c− 1)p1p2 + p2q1 − p1q2,

∆(Π) = p2
1 + p2

2 + σ(Π)p1p2,

Ω(Π) = p1q1 + p2q2 − 1 + σ(Π)p2q1 − (c− 1)p2
2 mod ∆(Π).

If ∆(Π) > 0 then Π is Z-affine isomorphic to a truncation of π(∆(Π),Ω(Π)).

Proof. — We may apply the matrix(
p2

1 1− p2
1 + p1q1

p1q1 − 1 1− p1q1 + q2
1

)
to Π to move the edge R1 so that it points in the direction (0, 1); this moves
R2 into the direction(

∆
Ω′

)
=
(

p2
1 + p2

2 + σp1p2

p1q1 + p2q2 − 1 + σp2q1 − (c− 1)p2
2

)
where σ = (c− 1)p1p2 + p2q1 − p1q2.
If Ω′ = k∆+Ω, where 0 6 Ω < ∆, then shearing using the matrix

( 1 0
−k 1

)
allows us to see Π as a truncation of the wedge π(∆,Ω). �

Remark 2.8. — The number σ(Π) from Lemma 2.7 has geometric mean-
ing: it is equal to p1p2KVΠ · CΠ. This means that VΠ is K-positive or
K-negative if σ(Π) is positive or negative respectively. We will say that our
polygon Π is K-positive or K-negative according to the sign of σ(Π).

TOME 71 (2021), FASCICULE 5
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π̃(P,Q)

• •
•

−3
−2

Figure 2.1. The moment polygon π̃(5, 2) for the minimal resolution
of 1

5 (1, 2) superimposed on the moment polygon π(5, 2) for the sin-
gularity. We have labelled the self-intersections of the curves in the
exceptional locus. The continued fraction expansion of 5

2 is 3− 1
2 , and

we see a −3-sphere and a −2-sphere as we move around the boundary
of π̃(5, 2) anticlockwise.

Remark 2.9. — The condition ∆(Π) > 0 is equivalent to requiring that
the rays R1 and R2 do not intersect, which is necessary for Π to be Z-affine
equivalent to a truncated wedge.

Instead of specifying p1, q1, p2, q2, c, we can equivalently specify the chain
[b1,1, . . . , b1,r1 ]− c− [b2,1, . . . , b2,r2 ] where:

C̃2
Π = −c,

p2
i

piqi − 1 = [bi,1, . . . , bi,ri
]

Remark 2.10. — This chain of spheres [b1,1, . . . , b1,r1 ]−c−[b2,1, . . . , b2,r2 ]
arises in the minimal resolution of Ṽ Π → VΠ as the preimage of CΠ. Note
that Ṽ Π is also toric; its moment polygon Π̃ is obtained from Π by a
sequence of truncations at non-Delzant vertices (see Figure 2.1). With
our conventions, in the minimal resolution of a vertex of type 1

P (1, Q),
the exceptional spheres with self-intersections −b1, . . . ,−br with P/Q =
[b1, . . . , br] are encountered in that order as one moves anticlockwise around
the boundary of Π̃. Reversing the order corresponds to replacing Q by its
multiplicative inverse modulo P (if P = p2,Q = pq−1, this means replacing
q by p− q).

In terms of this chain there is a simple way to compute ∆ and Ω:

∆
Ω = [b1,1, . . . , b1,r1 , c, b2,1, . . . , b2,r2 ].

ANNALES DE L’INSTITUT FOURIER
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×z(p, q)

(p2, pq − 1)

Figure 2.2. The wedge π(p2, pq − 1) together with the branch cut for
performing a nodal trade.

2.2. Smooth, almost toric QHPs: UΠ

Since x1 and x2 are Wahl singularities, we may symplectically smooth
these points, replacing them with symplectic rational homology balls Bpi,qi

,
see [21]. This operation gives a smooth symplectic QHP which we denote
by UΠ.

2.2.1. Almost toric structure

The operation of passing from VΠ to UΠ can be visualised by means of
an almost toric structure on Π: we perform nodal trades at the two vertices
of Π, introducing a branch cut at each vertex.

Remark 2.11. — We briefly recall Symington’s nodal trades [22]. We can
modify the affine structure on π(p2, pq−1) by cutting from the origin along a
branch cut in the (p, q)-direction to an interior terminus z, and regluing the
two sides using the affine monodromy matrix

(
1+pq −p2

q2 1−pq

)
. More precisely,

we choose a coorientation (q,−p) of the branch cut and apply the affine
monodromy to tangent vectors as we cross the branch cut in the direction
of the coorientation (and its inverse if we cross in the opposite direction).
This modification is called a nodal trade. The toric fibration on the Wahl
singularity 1

p2 (1, pq − 1) deforms to give an almost toric fibration on Bp,q.
This almost toric fibration is a map from Bp,q to this modified affine surface
whose general fibres are Lagrangian tori; moreover, the affine structure on
the base agrees with the natural one given by local action-angle coordinates
on a Lagrangian fibration. Over the singular point z, there is a focus-focus
singular fibre (nodal torus); living over points in the boundary there are
circles.

To extend this construction to Π, we perform nodal trades at both ver-
tices, introducing two branch cuts, B1 and B2, joining the vertices to in-
terior points z1, z2. To determine in which direction the branch cut Bi is

TOME 71 (2021), FASCICULE 5
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to be taken, one must use a Z-affine transformation to take a neighbour-
hood of the vertex in the model π(p2

i , piqi − 1) to a neighbourhood of the
vertex xi ∈ Π; the branch cut should be taken along the image of (p, q)
under this transformation. In our model for Π(p1, q1, p2, q2, c, a) from Def-
inition 2.5, the branch cuts B1 and B2 for the nodal trades of are made in
the directions:

• (p1 − q1, p1) at vertex x1;
• (cp2 − q2, p2) at vertex x2.

(p1(p1 − q1)− 1, p2
1)

(cp2
2 − p2q2 + 1, p2

2)

B1

B2R1

R2

EΠ

(p1 − q1, p1)

(cp2 − q2, p2)

The manifold UΠ admits an almost toric fibration to this new singular
Z-affine surface:

• over the points of the interior of Π \ {z1, z2}, we have a Lagrangian
torus fibre;

• over z1, z2 there are a singular Lagrangian fibres (pinched tori);
• over each point of the boundary of Π we have a circle; the preimage

of the whole boundary is a symplectic cylinder;
• over the branch cut Bi there lives(4) a Lagrangian disc Li which

becomes immersed pi-to-1 along its boundary; this is called a La-
grangian pinwheel. A neighbourhood of this pinwheel is the sym-
plectic rational homology ball Bpi,qi

.

Remark 2.12. — In general, an almost toric structure can be specified
by drawing an almost toric base diagram, which is a decorated polygon
with focus-focus singularities and branch cuts indicated. The symplectic

(4)Surfaces like this which project to lines in the base of an almost toric fibration are
called visible surfaces in [22].

ANNALES DE L’INSTITUT FOURIER
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4-manifold on which the almost toric structure lives is determined(5) by an
almost toric base diagram [22].

2.2.2. The homology of UΠ

It is easy to see that UΠ is a QHP: since H∗(Bpi,qi
;Q) ∼= H∗(B4;Q), the

rational homology of UΠ is isomorphic to that of the orbifold VΠ, which
is isomorphic to H∗(CP1;Q). A generator for H2(UΠ;Q) can be described
explicitly as follows. The preimage of the edge EΠ is a symplectic cylinder
C with area equal to the affine length a of EΠ. Consider the singular chain
GΠ := p1p2C − p2L1 − p1L2 (where Li are the Lagrangian discs living
over the branch cuts). This is a cycle because ∂L1 = p1∂C and ∂L2 =
p2∂C. The evaluation of [ω] on its homology class can be computed by
integrating ω over p2L1, p1L2, p1p2C separately, which yields p1p2a (as the
Li are Lagrangian). Therefore GΠ generates H2(UΠ;Q).

3. Mutations

3.1. Mutation of polygons

Definition 3.1. — Suppose we equip a polygon Π with the data of an
almost toric base diagram. Given a branch cut Bz emanating from a focus-
focus singularity z, let B′z be the ray emanating from z in the opposite
direction to Bz. We assume that B′z is also disjoint from the other branch
cuts. The line Bz ∪ B′z cuts Π into two pieces Πupper and Πlower (where
the coorientation points into Πupper). The mutation of Π along Bz is the
polygon Πupper ∪ AΠlower (or, Z-affine equivalently, A−1Πupper ∪ Πlower),
where A is the affine monodromy across the branch cut Bz. The mutated
almost toric base data is unchanged on Πupper and transformed by A on
Πlower.

Example 3.2. — In Figure 3.1 we see a mutation of almost toric struc-
tures on CP2. The structure before mutation is obtained from the stan-
dard toric structure by performing nodal trades at each corner. The affine

(5)To reconstruct the symplectic manifold together with its almost toric structure, one
must make extra choices at the singularities to determine the asymptotic behaviour
of the period lattice as one approaches the singularity. This was first worked out by
Vũ Ngoc [24]; with this extra data, the almost toric fibration is determined up to fi-
bred symplectomorphism [20, Theorem 4.60]. Without this data, the total space is still
determined up to symplectomorphism.
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monodromy for the branch cut Bz is A =
( 0 1
−1 2

)
, which is the unique

A ∈ SL(2,Z) which satisfies both A(1, 1) = (1, 1) (so it has Bz as an
eigendirection) and A(1, 0) = (0,−1) (which means that, after mutation,
the origin is an interior point of a straight edge).

×z
Bz

Πupper

Πlower

×

×

B′z

(a) Before mutation.

×z
Bz

Πupper

AΠlower

×

×

B′z

(b) After mutation.

Figure 3.1. An example of mutation between two almost toric base
diagrams of CP2 (coming from the Q-Gorenstein degeneration of CP2

to P(1, 1, 4)). The line Bz is dashed in (a) and dotted in (b); the line
B′z is dotted in (a) and dashed in (b). Dashed lines are branch cuts;
dotted lines indicate linear continuations of branch cuts and are not
part of the almost toric data.

Though the polygons before and after mutation look very different, this
operation does not actually change the associated symplectic manifold, as
we will now prove:
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Lemma 3.3. — Let X1, X2 be almost toric symplectic 4-manifolds with
contractible almost toric base diagrams B1 and B2. Suppose that B1 and
B2 are related by a mutation. Then X1 and X2 are symplectomorphic.

Proof. — Let f : X → A be an almost toric fibration with focus-focus
fibres over the set Aff ⊂ A. Let Ã be the universal cover of A \ Aff .
Action-angle coordinates allow us to define an integral affine structure on
Ã which descends to an integral affine structure on A \ Aff . It is this
integral affine structure which determines X up to symplectomorphism
(this follows by [14, Theorem 1.5] when the bases are contractible because
then the Lagrangian Chern class automatically vanishes).
An almost toric base diagram B can be constructed from A as follows. By

choosing branch cuts, pick a fundamental domain B ⊂ Ã for the action of
the deck group. Let I : Ã→ R2 be the developing map for the integral affine
structure. The developing map does not descend to A, but its restriction
to B can be considered as a “branch” of the developing map on A. The
branch cuts form part of the boundary of I(B) ⊂ R2; the branch cuts are
identified by the action of specified (integral affine) deck transformations of
Ã, so to reconstruct A all we need is the immersed polygon I(B) together
with a collection of integral affine transformations (“affine monodromies”)
which identify pairs of boundary components of I(B). This is precisely the
data of an almost toric base diagram.
We often (but not always) pick these branch cuts to point along the

eigenvectors of the deck transformations which pair them; if we do this then
any two branch cuts which are identified have the property that their images
under the developing map coincide, so that I(B) is actually homeomorphic
to A. However, the branch cut data is still important for reconstructing the
integral affine structure on A: when you cross a branch cut, vectors normal
to the cut will still be affected by the affine monodromy. If branch cuts
are chosen along eigenlines of the monodromy then we say the diagram is
eigensliced.

Mutation is the operation on eigensliced almost toric base diagrams
which corresponds to changing branch cuts by 180 degrees. This produces
another eigensliced almost toric base diagram. Mutation changes the branch
cuts, and thereby affects the almost toric base diagram, but does not affect
the underlying integral affine manifold A. In particular, it does not affect
the symplectomorphism type of X, which depends only on the integral
affine structure of A. �

Remark 3.4. — There is another closely related operation on almost toric
base diagrams which often accompanies a mutation, namely a nodal slide.
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This is when a focus-focus point moves in the direction of the eigenvector
of its affine monodromy. This also leaves the symplectomorphism type of
X unaffected [22, Proposition 6.2], but it does change the Lagrangian torus
fibration (whereas a mutation only changes the picture we draw to represent
the torus fibration).

3.2. Mutability

Mutation of polygons always makes sense, but it is possible that the
mutation of a truncated wedge is no longer a truncated wedge. We therefore
make the following definitions:

Definition 3.5. — Given the polygon Π = Π(p1, q1, p2, q2, c, a) and
the almost toric structure with branch cuts B1 and B2, let Bi denote the
semi-infinite ray through xi extending Bi. We say that Π is:

• right-mutable if B1 intersects the edge R2,
• right-borderline if B1 is parallel to R2,
• right-immutable otherwise.

Left-mutability is defined similarly. The right mutation

R(Π) is the mutation of Π along B1. For notational convenience, we will
focus entirely on right rather than left mutation in what follows; indeed,
one can reflect one’s polygon in a vertical line and always work with right
mutation.
For our model polygon Π(p1, q1, p2, q2, c, a), the affine monodromy of B1

(with its coorientation pointing to the left) is

A =
(

1 + p1q1 − p2
1 (p1 − q1)2

−p2
1 1− p1q1 + p2

1

)
,

and the affine monodromy of B2 (with its coorientation pointing to the
right) is (

cp2
2 − p2q2 + 1 −(cp2 − q2)2

p2
2 1 + p2q2 − cp2

2

)
.

Note that, for a right mutation,AEΠ points in the (negative)R1-direction
so R1 ∪AEΠ is now a single edge of R(Π). Indeed, A is determined by this
condition and the condition that it has B1 as an eigenray.

Lemma 3.6. — A polygon Π = Π(p1, q1, p2, q2, c, a) is right-mutable if
and only if c 6 1 and δp2 − p1 > 0, where δ = −σ(∆). As a consequence,
mutability implies σ(Π) < 0. For left-mutability, we use the inequality
δp1 − p2 > 0 instead.
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×

B1

×

R2

(a) Right-mutable.

×

B1

× R2

(b) Right-borderline.

×

B1

× R2

(c) Right-immutable.

Figure 3.2. Mutability of truncated wedges.

Proof. — Note that if c 6 0 then the invariant ∆(Π) from Lemma 2.7 is
negative, so we do not consider this case.
If c > 2 then the slope p2

2
cp2

2−p2q2+1 of R2 is less than or equal to 1. The
slope p1

p1−q1 (or 1 if p1 = q1 = 1) of B1 is greater than or equal to 1, so
these lines never intersect and the polygon is not right-mutable.
If c = 1 then we have right-mutability if and only if the slope of B1 is

strictly less than the slope of R2:
p2

2
p2

2 − p2q2 + 1 >
p1

p1 − q1
.

This gives
p2(p1q2 − p2q1)− p1 > 0,
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which is again equivalent to δp2 − p1 > 0. In particular, we see that this
can only hold if σ(Π) is negative.

The criterion for left-mutability is proved similarly. �

Remark 3.7. — Mutability also makes sense when ∆(Π) < 0, and we
always get mutability in both directions. However, these polygons are not
truncated wedges, so we ignore them.

3.3. Effect of mutations

The polygon R(Π) has vertices at x′1 = Ax2 and at x′2, the point of
intersection between B1 and R2. Since the type of a vertex is invariant
under Z-affine transformations, we see that x′1 has type 1

p2
2
(1, p2q2 − 1).

Remark 3.8. — Remembering our convention that a smooth point has
(p1, q1) = (1, 0) or (p2, q2) = (1, 1) if it occurs on the left or on the right
respectively, one sees that this should switch under a mutation; however,
if (p2, q2) = (1, 1) then the polygon is not right-mutable, so it is never an
issue.

To identify the type of vertex x′2 we need a recognition lemma:

Lemma 3.9. — Suppose we have an edge R of a polygon and a branch
cut B disjoint from R whose semi-infinite extension B intersects R. Make
a Z-affine transformation M to put R in the vertical direction with the
polygon on its right. If −MB points in the direction (p, q + kp) with 0 <
q < p then the result of mutation along B will have a vertex of type
1
p2 (1, pq − 1) at the point of intersection between B and R.

Proof. — The polygon π(p2, pq−1) equipped with a branch cut starting
at the origin and pointing in the (p, q) direction can be mutated to get
the right half-space with a branch cut pointing out to infinity in the (p, q)-
direction. Shearing this using matrices ( 1 0

k 1 ) gives the local models in the
lemma, which will then necessarily give (a shear of) the original polygon
π(p2, pq − 1) upon mutation. (The sign in −MB is because we reverse the
direction of the branch cut when we mutate). �

Lemma 3.10. — Let R(Π) be the right mutation of Π(p1, q1, p2, q2, 1, a).
Define:

δ := −σ(Π) = p2q1 − p1q2,

p3 := δp2 − p1, q3 := δq2 − q1.

Then:
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• the affine length of ER(Π) is p1a/p3;
• the vertex x′2 has type 1

p2
3
(1, p3q3 − 1) where

• σ(R(Π)) = σ(Π) = −δ.

Proof. — To find x′2, we parametrise B1 as (τ1(p1− q1), τ1p1) (or (τ1, τ1)
if p1 = q1 = 1) and R2 as (a + τ2(p2(p2 − q2) + 1), τ2p2

2) and we see this
intersection occurs when

τ1 = p2
2τ2
p1

τ2 = p1a

δp2 − p1
,

where δ = p1q2 − p2q1 (since c = 1). After mutation, a fraction τ2 of the
affine length of R2 becomes the edge ER(Π), so the affine length of this
edge in the new polygon is τ2 = ap1/(δp2 − p1).
To see what kind of vertex we get at x′2 after a left mutation, we can use

the affine transformation M :=
(

−p2
2 p2(p2−q2)+1

−p2q2−1 q2(p2−q2)+1

)
to put the ray R2 in

the direction (0,−1); this makes R2 vertical and puts Π to the right of R2
so we may apply Lemma 3.9 and compute −MB1 = (p3, q3) to get the type
1
p3

3
(1, p3q3 − 1) of x′2. Since B1 points in the direction (p1 − q1, p1), −MB1

points in the direction (p3, q3) where p3 = δp2 − p1 and q3 = δq2 − q1.
For the final part of the lemma, σ(Π) = p2q1 − p1q2 and

σ(R(Π)) = p3q2 − p2q3

= (δp2 − p1)q2 − p2(δq2 − q1)
= p2q1 − p1q2. �

3.4. Mori sequences

3.4.1. Definition of Mori sequences

Definition 3.11. — Let (p1, q1) and (p2, q2) be pairs of positive integers
with gcd(pi, qi) = 1, qi 6 pi. Using the notation

[b1, . . . , br] = b1 −
1

b2 − 1
···− 1

br

for continued fractions, let
p2
i

piqi − 1 = [bi,1, . . . , bi,ri
],
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and suppose that ∆ = p2
1 + p2

2 + σp1p2 > 0 and that the rational number

∆
Ω := [b1,1, . . . , b1,r1 , 1, b2,1, . . . , b2,r2 ]

is well-defined (no division by zero). Let

δ = p1q2 − p2q1

and suppose that δ > 0. The Mori sequenceM(p1, q1; p2, q2) is the sequence
of pairs (pi, qi) extending (p1, q1), (p2, q2) and satisfying the recursions

pi+2 = δpi+1 − pi,
qi+2 = δqi+1 − qi.

3.4.2. Behaviour of Mori sequences

If (pi, qi) is a Mori sequence then we can recast the recursion relation for
the pi as a matrix equation(

pi+1

pi+2

)
=
(

0 1
−1 δ

)(
pi
pi+1

)
.

This matrix M =
( 0 1
−1 δ

)
has eigenvalues λ± = δ±

√
δ2−4
2 ; if δ > 2 then

these are real and satisfy λ−λ+ = 1. In this case, there are eigenrays with
slopes λ±.
Repeated application of M defines a discrete dynamical system on the

plane, and the behaviour of (pi+1, pi+2) = M i(p1, p2) under repeated ap-
plication of M is indicated by the arrows in the figure. This behaviour
separates into three distinct regions, separated by the eigenrays:

• In the region p2 > λ+p1, the Mori sequence is increasing and the
ratio pi+1/pi tends to λ+ from above.

• In the region p2 < λ−p1, the Mori sequence is decreasing and ter-
minates when M i(p1, p2) leaves the positive quadrant.

• In the region between the two eigenrays, the Mori sequence de-
creases, reaches a minimum, then increases again. It does not ter-
minate in either direction.

Note that (p1, p2) lives in the region between the eigenrays if and only if
∆(Π) = p2

1 +p2
2 +δp1p2 is negative. Recall from Lemma 2.7 and Remark 2.9

that ∆(Π) > 0 for all truncated wedges, so we find ourselves automatically
in the situation where our Mori sequence is increasing or decreasing (if
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p1 < p2 or p2 < p1 respectively).

slo
pe
λ +

slop
e λ−

p2

p1

3.5. Infinite mutability

Definition 3.12. — We say that a K-negative polygon Π is infinitely
right-mutable if Rj(Π) is right-mutable for j = 0, 1, . . .. From the previous
subsection, this is equivalent to δ > 2, p1 6 p2.

If Π is infinitely right-mutable, then, by Lemma 3.10, we obtain a se-
quence of mutations Π(pi, qi, pi+1, qi+1, 1, ai) where (pi, qi) is a Mori se-
quence M(p1, q1; p2, q2) (δ = −σ(Π)).
By construction, the symplectic manifold URj−1(Π) contains Lagrangian

pinwheels Lpj ,qj and Lpj+1,qj+1 as visible surfaces in its almost toric fi-
bration, see Section 2.2.1. The manifolds URj−1(Π) and UΠ are symplecto-
morphic by Lemma 3.3, since their almost toric structures are related by
mutations. We summarise this in the following corollary.

Corollary 3.13. — Let Π = Π(p1, q1, p2, q2, 1, a) be an infinitely mu-
table polygon. The symplectic manifold UΠ contains Lagrangian pinwheels
Lpi,qi where (pi, qi) is the Mori sequenceM(p1, q1; p2, q2) with δ = −σ(Π) =
p1q2 − p2q1.

In practice, we are looking for these Mori sequences of pinwheels in com-
pact symplectic manifolds, so it is important that we can perform the
sequence of mutations in a compact subdomain of UΠ. To that end, we
introduce some new notation:
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Definition 3.14. — Given a truncated wedge Π = Π(p1, q1, p2, q2, c, a)
and two positive real numbers `1, `2, let yi ∈ Ri be the unique point on the
ray Ri at a distance `i from xi, for i = 1, 2. Define Π`1,`2 to be the convex
hull of x1, x2, y1, y2. Let VΠ(`1, `2) (respectively UΠ(`1, `2)) be the preimage
of Π`1,`2 under the moment map (respectively almost toric fibration).

The manifold UΠ(`1, `2) is a compact symplectic manifold whose bound-
ary is a lens space L(∆,Ω) of contact-type. The diffeomorphism type is
independent of the parameters a, `1, `2, but these are important for the
symplectic structure.

Lemma 3.15. — Let Π− = Π(p1, q1, p2, q2, 1, a−) be an infinitely right-
mutable K-negative polygon and let `1, `2 be positive real numbers. If
`2 >

a−

λ2
+−1 then the right mutations of Π− may be performed inside the

subpolygon Π−`1,`2 . As a consequence, UΠ−(`1, `2) contains an infinite Mori
sequence M(p1, q1; p2, q2) of Lagrangian pinwheels.

Proof. — As we can see in Figure 3.3, each mutation we perform “eats
up” a certain amount of the affine length `2 of R2: by Lemma 3.10, the first
mutation uses a1 := a−p1/p3 and the kth mutation uses ak := ak−1pk/pk+2.
Therefore, in total, to perform arbitrarily many mutations of this subpoly-
gon, we need `2 to be at least

a−
p1

p3

(
1 + p2

p4

(
1 + p3

p5
(1 + · · · )

))
.

By the discussion in Section 3.4, since p2
p1
> λ+, the sequence of quotients

pi

pi+1
is increasing and its limit is λ−; likewise, the sequence pi

pi+2
= pi

pi+1

pi+1
pi+2

is increasing and its limit is λ2
−. Therefore, the infinite sum is bounded from

above by

a−λ2
−
(
1 + λ2

− (1 + · · · )
)

=
a−λ2

−
1− λ2

−
= a−

λ2
+ − 1 ,

as required. �

4. When mutation fails

4.1. Immutability: flips and the initial antiflip

Suppose we have a right-immutable polygon Π. We can make a sym-
plectic deformation (Ut, ωt) of UΠ and a deformation of the almost toric
structure to put us into a situation where the mutation can be performed.
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a
k

` 1

`2•
•

ak+1 =
akpk

pk+2

` 1
+
a
k

`2−
ak+1

•

•

kth mutation

Figure 3.3. A mutation eats up available affine length. Before the mu-
tation, the right-hand edge R2 has affine length `2; after mutation, it
has lost affine length ak+1.

We will show this by giving a family of almost toric base diagrams Πt (which
determine the symplectic manifolds Ut). See Figure 4.1 for an illustration
of this deformation.

(1) We first perform the right mutation along B1 (as Π is immutable,
this will not be a truncated wedge: see Figure 4.1). This replaces
B1 with an opposite branch cut B′1.

(2) Pick a smooth path γ : [0, 1]→ Π such that:
• γ(0) = z1,
• γ(t) 6∈ B2 for all t ∈ [0, 1],

Let B1(t) (respectively B′1(t)) be the ray pointing the direction of
B1 (respectively B′1) and emanating from γ(t). Assume that γ(1)
is sufficiently far to the right so that B1(1) intersects R2 at some
point x.

(3) When we perform a mutation along B′1(1), we therefore obtain a
new truncated wedge having x as a vertex.

Remark 4.1. — Note that this is a continuous deformation of symplectic
manifolds: although it involves steps which look discrete (mutations) these
steps do not affect the symplectomorphism type of Ut (see Lemma 3.3). We
are simply choosing to draw pictures using different branch cuts at different
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× ×
B1 B2

(a) We start with a K-positive
polygon Π with branch cuts B1,
B2.

× ×

B′1

(b) We perform a right mutation, re-
placing the branch cut B1 with B′

1.

γ ×
×

B′1(t)

(c) We parallel-translate B′
1 along the

path γ. . .

×

×
B2

B′1(1)

(d) . . . until it is sufficiently far to the
right. . .

×

×
B1(1)

(e) . . . then we mutate again, switching
B′

1(1) to B1(1).

Figure 4.1. A cartoon of an initial antiflip.

stages of the deformation, as this allows us to highlight different aspects of
the geometry.

Definition 4.2. — Suppose we have a K-positive polygon

Π+(a+) := Π(p0, q0, p1, q1, c, a
+).

Suppose that Π−(a−) is the result of performing the aforementioned op-
erations to Π+(a+), where a− is the affine length of the compact edge in
the truncated wedge at the end of the process. We call Π−(a−) the initial
right-antiflip polygon of Π+(a+) with parameter a− (initial left-antiflip is
defined in the obvious way). We call the symplectic manifold (UΠ−(a−), ω1)
the initial antiflip of the symplectic form with parameter a−. We will omit
the a± when it is unimportant to the discussion.

Remark 4.3. — The reverse procedure, in which we begin with a left-
immutable K-negative polygon and follow the same steps to force a left
mutation, is called the flip.
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The parameter a− may be chosen freely by picking γ suitably; however,
when we work with a bounded subset Π+

`1,`2
⊂ Π+ as in Definition 3.14,

we will not have complete freedom and a− will need to be chosen suffi-
ciently small. Namely, after an initial antiflip, Π+(a+)`1,`2 is replaced by
Π−(a−)`1+a+,`2−a− , so we need a− < `2. If we wish additionally to ensure
infinite right-mutability within this bounded polygon, we need the stronger
inequality

`2 − a− >
a−

λ2
+ − 1 ,

by Lemma 3.15. This can also be achieved by picking a− sufficiently small.
We deduce the following corollary:

Corollary 4.4. — Let Π+(a+) = Π(p1, q1, p2, q2, c, a
+) be a K-posi-

tive truncated wedge whose initial antiflip Π−(a−) = Π(p1, q
′
1, p2, q2, 1, a−)

is infinitely right-mutable (the numbers q′1, p2, q2 will be defined in Lem-
ma 4.5). If we are given `1, `2 > 0, then there exists a constant C > 0 such
that, for all 0 < a− 6 C, the full Mori sequence of right mutations can
be performed on Π−(a−)`1+a+,`2−a− . In particular, the initial antiflip of
the symplectic form with parameter a− in the range (0, C] admits a Mori
sequence M(p1, q1; p2, q2) of Lagrangian pinwheels.

4.2. Numerology of the initial antiflip

The following lemma is proved using Lemma 3.9; its proof is very similar
to Lemma 3.10, and we omit it:

Lemma 4.5. — Suppose we have a K-positive polygon

Π+ := Π(p0, q0, p1, q1, c, a
+).

Let

δ = σ(Π) = (c− 1)p0p1 + p1q0 − p0q1.

Given a positive real number a− > 0, the initial antiflip polygon Π−(a−)
is Z-affine isomorphic to the polygon

Π−(a−) = Π(p1, q
′
1, p2, q2, 1, a−),
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where:

q′1 =
{

0 if p1 = q1 = 1
q1 otherwise,

p2 := δp1 + p0,

q2 := δ + p2q1

p1
.

The following lemma is easy to check using Lemma 2.7 and the definitions
of p2, q2:

Lemma 4.6. — The initial antiflip polygon Π− is a left-immutable, K-
negative polygon with

σ(Π−) = −δ, ∆(Π+) = ∆(Π−), Ω(Π+) = Ω(Π−).

Consequently, both Π+ and Π− are truncations of the same wedge π(∆,Ω).

4.3. Variation of the cohomology class [ωt]

Each almost toric base diagram in the family Πt from Section 4.1 deter-
mines a symplectic manifold, so we get a symplectic deformation (Ut, ωt).
The de Rham cohomology group H2

dR(Ut) is one-dimensional, so the coho-
mology class [ωt] is determined by its integral over some fixed(6) homology
class.
We use as our fixed class the unique class Gt ∈ H2(Ut;R) such that

KUt · Gt = δ. Since KUt is an integral class, this means that Gt is also
an integral class, hence constant in the family. Recall the class GΠ from
Section 2.2.2:

• When t = 0, we know that KUΠ+ · GΠ+ = σ(Π+) = δ, so take
G0 = GΠ+ .

• When t = 1, we know that KUΠ−
· GΠ− = σ(Π−) = −δ, so take

G1 = −GΠ− .
We know that

∫
GΠ+

ω0 = p0p1a
+ and

∫
GΠ−

ω1 = p1p2a
−. Therefore, at

the level of cohomology classes [ωt], the deformation of ωt gives a path in
H2
dR(U) = R from a+p0p1 to −a−p1p2. In particular, at some point in this

path ωt is exact (at this point the edge has length zero, so GΠ consists of
two multiples of Lagrangian discs sharing a common circle boundary).

(6) i.e. constant with respect to the Gauss–Manin connection.
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The cohomology H2
dR(U) inherits a Z-affine structure from its isomor-

phism with H2(U ;Z)⊗R, so there is an intrinsic notion of affine distances
daff along lines of rational slope. For surfaces of general type, we use this
to give an estimate on how far one needs to deform [ω] away from the
canonical class before one gets unbounded Mori sequences of Lagrangian
pinwheels using our antiflip-and-mutate construction:

Lemma 4.7. — Let Π+ = Π(p0, q0, p1, q1, c, a
+) be a K-positive trun-

cated wedge whose initial antiflip polygon is infinitely right-mutable (so
δ = −σ(Π+) = σ(Π−) > 2). Suppose that a compact UΠ+(`1, `2) embeds
symplectically into a symplectic manifold (X,ω) with [ω] = KX . Let ωt
be the initial antiflip deformation of the symplectic form on X along the
submanifold UΠ+(`1, `2) with parameter a−. Then there exists a constant
ε > 0 such that (X,ωt) contains a Mori sequence of Lagrangian pinwheels
when daff([ω0], [ωt]) ∈ (δ, δ + ε].

Proof. — By Corollary 4.4, there is a constant C > 0 such that the initial
antiflip with parameter a− ∈ (0, C] contains a Mori sequence of Lagrangian
pinwheels. Therefore (X,ωt) contains a Mori sequence of Lagrangian pin-
wheels whenever

∫
Gt
ωt ∈ [−Cp1p2, 0). Let t0 and t1 be the times such that∫

Gt0
ωt0 = 0 and

∫
Gt1

ωt1 = −Cp1p2 (we have t0 < t1 since the ωt-area of
Gt is decreasing in t).

Since [ω] = KX , the number a+p0p1 is integral (it is the canonical
class evaluated on the generator GΠ+ ∈ H2(U ;Z) from Section 2.2.2). In
fact, a+p0p1 = δ = −σ(Π+) = σ(Π−). Therefore, daff(ω0, ωt0) = δ and
daff(ω0, ωt1) = δ + Cp1p2, so we take ε = Cp1p2. �

4.4. Link with Mori theory

Given a K-positive polygon Π+, we have constructed an initial antiflip
Π− with the property that UΠ+ is symplectic deformation equivalent to
UΠ− . This whole discussion was inspired by results in Mori theory [6]. Here
is an alternative, Mori-theoretic proof that UΠ+ and UΠ− are diffeomorphic:

Theorem 4.8. — Let Π+ be a K-positive truncated wedge and let Π−
be its initial antiflip. The manifolds UΠ+ and UΠ− are diffeomorphic.

Proof. — The variety VΠ− admits a Q-Gorenstein smoothing π− : V− →
C. The curve CΠ− ⊂ VΠ− ⊂ V− is a KVΠ−

-negative curve, and, in this
situation, Mori theory furnishes us with a flip π+ : V+ → C such that:

• π+ : V+ → C is a Q-Gorenstein smoothing of VΠ+ ;
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• there is a biholomorphism f : V+ \C+ → V− \C− such that π− =
π+ ◦ f .

See [6, proof of Corollary 3.23, p. 44 of arXiv version] for a justification of
the particular numbers involved in the definitions of the polygons Π±.
The smooth fibre of the Q-Gorenstein smoothing π± : V± → C is diffeo-

morphic to UΠ± , and since V− and V+ are fibre-preservingly biholomorphic
away from the singular fibre this means that UΠ− and UΠ+ are diffeomor-
phic to one another. �

Of course, in Mori theory, a Q-Gorenstein smoothing with at worst
canonical singularities of any K-negative VΠ (not necessarily an initial an-
tiflip) admits a flip. In terms of our pictures, the algorithm to find the flip
is to perform left mutations down the Mori sequence until your K-negative
polygon is not longer left-mutable. At that point, one of two things hap-
pens:

• the polygon becomes left-immutable, in which case you perform the
flip as in Definition 4.2;

• the polygon becomes borderline for left-mutability.
In the borderline case, B2 is parallel to R1. In this case, there is a visible
surface in the almost toric base Π, connecting the singular point z2 at
the end of B2 to the edge R1 (visible surfaces are surfaces which project
to paths in the almost toric base; see [22, Definition 7.2]). This visible
surface is a symplectic −1-sphere (see Symington [22, Lemma 7.11]). This
corresponds to the phenomenon of divisorial contraction in the minimal
model programme; rather than the 3-fold Q-Gorenstein smoothing of VΠ
admitting a flip along CΠ, a whole surface can be contracted; this surface
is the union of CΠ and all these visible −1-spheres.

×

×
visible −1-sphere

Remark 4.9. — We remark that the term “antiflip” is not always a well-
defiend operation in algebraic geometry: not only is there a whole Mori
sequence of antiflips, but it is entirely possible for a 3-fold containing a
curve C with K · C > 0 (e.g. some Q-Gorenstein smoothings of VΠ for a
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K-positive Π) not to arise as a flip at all. See [6] for a discussion of when
antiflips exist in the algebro-geometric sense.

4.5. Flips of type k1A

The paper [6] also discusses flips where the K-negative surface has only
one Wahl singularity, obtained by Q-Gorenstein smoothing VΠ for some K-
negative Π. We explain by example how this situation arises in our almost
toric pictures.

Example 4.10. — The following chain defines a K-negative polygon Π
such that the QHP UΠ is a symplectic filling of L(11, 3):

[2, 5, 3]− 1− [2, 3, 2, 2, 7, 3].

If we Q-Gorenstein smooth the singularity [2, 5, 3] and take the minimal
resolution of the other singularity then we find a configuration of spheres
C1, . . . , C6, E, where

⋃
Ci is the exceptional locus of the minimal resolu-

tion ([−C2
1 , · · · ,−C2

6 ] = [2, 3, 2, 2, 7, 3]) and E is a −1-sphere, intersecting
according to the following graph:

•
C1

•
C2

•
C3

•
C4

•
C5

•
C6

•E

We can also understand this in terms of almost toric pictures. An almost
toric picture of the k1A neighbourhood can be obtained by performing a
single nodal trade the left-hand vertex of Π. The minimal resolution of the
other vertex can also be performed torically. We now see the −1-sphere as
a visible surface, since the branch cut is parallel to the edge representing
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the sphere C3 in the minimal resolution.

• •
•

•

•

•

•

•

×

C1

C2

C3

C4

C5

C6

E

In our picture, the k1A flip is no different from the k2A flip: one simply
performs one nodal trade and mutation at a time.

4.6. A topological viewpoint

An almost toric structure on a truncated wedge Π exhibits UΠ as a
handlebody obtained by attaching two Lagrangian 2-handles (the pinwheel
discs) to S1 × B3. The process of performing a flip or initial antiflip is,
topologically, a handleslide, from which point of view it is clear that they
are diffeomorphic.
On the other hand, if we think of them as smoothings of singular orb-

ifolds then the flip, initial antiflip and all the mutations can be seen as
compositions of well-known topological operations:

(1) Find two rational homology balls Bpi,qi , i = 1, 2. Perform gen-
eralised rational blow-up in both balls, yielding Hirzebruch–Jung
chains of exceptional spheres [bi,1, . . . , bi,ri

] representing the con-
tinued fractions p2

i

piqi−1 .
(2) If you can find another curve C in the rational blow-up with self-

intersection −c such that the union of the Hirzebruch–Jung chains
and C forms a chain

[b1,1, . . . , b1,r1 ]− c− [b2,1, . . . , b2,r2 ],
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then continue.
(3) Perform blow-up and blow-down on this chain to transform it into

another chain of the form

[b′1,1, . . . , b′1,r′1 ]− c′ − [b′2,1, . . . , b′2,r′2 ].

with [b′i,1, . . . , b′i,r′
i
] = (p′i)

2

p′
i
q′

i
−1 for some p′i, q′i, i = 1, 2.

(4) Rationally blow down the bracketed Hirzebruch–Jung chains at ei-
ther end to obtain a new 4-manifold with two new rational homology
balls Bp′

i
,q′

i
, i = 1, 2.

Such a string of operations need not yield a result diffeomorphic to the
manifold you started with; from this point of view, the fact that the flip,
initial antiflip and its mutations are all diffeomorphic is something of a
miracle.

Example 4.11. — Suppose we can rationally blow-up a B2,1 to get a
chain [4] − 3 (we will see an example of this in the quintic surface later).
Starting with the chain [4, 3] we can blow up a point on the −4-sphere
(away from its intersection with the −3-sphere) to get [1, 5, 3], then once
on the −1-sphere then rationally blow-down the [2, 5, 3] to get the initial
antiflip. If we want to get the first right mutation of the initial antiflip, we
continue blowing up and down:

[1, 2, 5, 3]
[1, 5, 3]

[2, 1, 6, 3]
[2, 2, 1, 7, 3]

[2, 3, 1, 2, 7, 3]
[2, 4, 1, 2, 2, 7, 3]

[2, 5, 1, 2, 2, 2, 7, 3]
[2, 5, 2, 1, 3, 2, 2, 7, 3]

[2, 5, 3, 1, 2, 3, 2, 2, 7, 3]

Finally, we can rationally blow-down [2, 5, 3] and [2, 3, 2, 2, 7, 3] to get B5,3
and B14,9.
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5. Examples

Our examples will be built by smoothing certain singular surfaces to find
starting configurations of rational homology balls to which we can apply
Lemma 3.15.

5.1. Symplectic smoothing

We wish to consider three fillings of the lens space L(p2, pq − 1):
(1) the rational homology ball Bp,q,
(2) the singularity of type 1

p2 (1, pq − 1) (an orbifold filling),
(3) the minimal resolution of this singularity.

All three are almost toric (2 and 3 are actually toric) and have the same
contact boundary. Symington defines generalised rational blowdown as the
surgery of almost toric manifolds going from 3 to 1; in other words, it is a
surgery of almost toric symplectic manifolds defined by performing surgery
on the almost toric base diagrams. Similarly:

Definition 5.1. — We define symplectic smoothing as the surgery of
almost toric orbifolds going from 2 to 1.

Example 5.2. — The symplectic smoothing of VΠ is UΠ.

We remark that you do not need a global almost toric structure to per-
form these surgeries, only one over the region where the surgery is taking
place.

Lemma 5.3. — If V is a surface with Wahl singularities, which admits
a Q-Gorenstein smoothing whose total space supports a relatively ample
line bundle, then any smooth fibre of this smoothing is a surface symplec-
tomorphic to the symplectic smoothing U of V.

Proof. — The relatively ample line bundle yields a symplectic form on
all the fibres (away from the singular locus) and a symplectic connection on
this family of symplectic manifolds. The link of each Wahl singularity in V
is a lens space L(p2, pq−1) of contact type (equipped with a Milnor-fillable
contact structure), and we can symplectically parallel transport this link
into the smooth fibres. Each smooth fibre X therefore contains a separating
lens space Σ of contact type; we will write X = U ∪Σ (X \ U) where U is
the region in X which has Σ has convex (rather than concave) boundary.
This subset U is a symplectic filling of Σ.

ANNALES DE L’INSTITUT FOURIER



ANTIFLIPS AND MUTATIONS 1839

A Q-Gorenstein smoothing of a Wahl singularity has Milnor number
zero, so U is a rational homology ball. By Lisca’s classification [11] of sym-
plectic fillings of lens spaces, U is diffeomorphic to Bp,q. Bhupal–Ono [1]
showed that this is a classification up to symplectic deformation, but Bp,q
has trivial second cohomology, so in this case it is a classification up to sym-
plectomorphism. Thus U is symplectomorphic to Bp,q, and X is obtained
from V by symplectic smoothing. �

5.2. Strategy

We now explain how to construct examples of symplectically embed-
ded copies of UΠ+(`1, `2) in compact complex surfaces of general type (for
suitable K-positive polygons Π+ and real numbers `1, `2) using algebraic
geometry. Then we will perform the initial antiflip of the symplectic form
and obtain an infinitely mutable UΠ−(`1, `2) containing a Mori sequence of
Lagrangian pinwheels.
Recall that a KSBA-stable surface is a complex projective surface with

semi-log canonical singularities and ample dualising sheaf. If V is a KSBA-
stable surface with at worst Wahl singularities then it is Q-factorial, so we
can replace this condition with having ample canonical bundle; let k be a
positive integer such that K⊗kV is very ample. Pulling back a Fubini–Study
form along the k-canonical embedding V → P((H0(K⊗kV ) ‹) and rescaling
by 1/k furnishes V with a Kähler form ω satisfying [ω] = KV .
We can symplectically smooth the singularities of V to obtain a sym-

plectic manifold U as in Definition 5.1. Suppose that V is Q-Gorenstein
smoothable. Since V is KSBA-stable, its canonical bundle is ample, and
since amplitude is an open condition, the relative canonical bundle for this
smoothing is ample (at least for fibres near the singular fibre). By Lem-
ma 5.3, the smooth fibre, which is necessarily a canonically polarised surface
of general type, is symplectomorphic to the symplectic smoothing U .

Theorem 5.4. — Let V be a KSBA-stable surface with at worst Wahl
singularities. Suppose that V contains a rational curve passing through
precisely two of its singularities x0 and x1 such that xi is a Wahl singularity
of type 1

p2
i
(1, piqi − 1), and the preimage of C in the minimal resolution of

X0 is a chain
[b0,1, . . . , b0,r0 ]− c− [b1,1, . . . , b1,r1 ],

with C̃2
0 = −c, p2

i

piqi−1 = [bi,1, . . . , bi,ri
]. Then the symplectic smoothing U

contains a symplectically embedded copy of UΠ+(`0, `1) for some `0, `1 > 0,
where Π+ = Π(p0, q0, p1, q1, c,KV · C).
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Let Π− = Π(p1, q1, p2, q2, 1, a−) be an initial right antiflip of Π+ with
parameter a− sufficiently small and suppose that Π− is infinitely right-
mutable. Then the symplectic smoothing U admits a family of symplectic
forms ωt such that [ω0] = K and such that ω1 admits an infinite Mori
sequence M(p1, q1; p2, q2) of Lagrangian pinwheels.

Proof. — By the symplectic neighbourhood theorem for symplectic sub-
orbifolds ([4, Theorem 11]), a neighbourhood of C in V is symplectomorphic
to VΠ+(`0, `1) for some `0, `1 > 0, where Π+ = Π(p0, q0, p1, q1, c, a

+) and a+

is the symplectic area of C. Since [ω] = KV , this means that a+ = KV ·C.
The symplectic smoothing U of V is therefore obtained by performing

the symplectic smoothing on the almost toric region VΠ+(`0, `1), which (as
in Example 5.2) yields a copy of UΠ+(`0, `1) inside U .

The initial right antiflip U ′ of U along UΠ+ with parameter a− is a
symplectically embedded copy of UΠ−(`′1, `′2) for some `′1, `′2, where Π− is
the initial right antiflip polygon of Π+ with parameter a−. By Lemma 3.15,
if a− is sufficiently small then U ′ admits the required Mori sequence of
Lagrangian pinwheels. �

5.3. The quintic surface

Lemma 5.5. — There exists a KSBA-stable surface V with K2 = 5,
pg = 4 with a single singularity of type 1

4 (1, 1) such that its minimal reso-
lution contains a chain of spheres:

[4]− 3.

Moreover, V admits a Q-Gorenstein smoothing whose smooth fibre is a
quintic surface.

Proof. — Following Rana [18], observe that the minimal resolution of
a stable quintic surface with a 1

4 (1, 1) singularity is a Horikawa surface
with K2 = pg = 4 containing a −4-sphere. Moreover, such stable quintic
surfaces V are always Q-Gorenstein smoothable, since the local-to-global
obstruction group H2(V, TV ) vanishes by [18, Theorem 4.10]. Let B ⊂
CP1 × CP1 be a curve of bidegree (6, 6); the branched double cover of
CP1 × CP1 branched over B is a Horikawa surface of the required type.

• If B intersects the diagonal at six points each with multiplicity 2
then the preimage of the diagonal contains two irreducible rational
−4-spheres (intersecting at four points).
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• If B intersects CP1 × {z} at three points each with multiplicity 2
then the preimage of this ruling is a pair of rational −3-spheres
(intersecting at three points).

If we have found such a B then we obtain a [4] − 3 configuration in the
minimal resolution of a stable quintic.
One can verify that the curve B given in the affine chart ([x : 1], [y : 1]))

by {1−2y3+y6+2x3−xy5−2x5y+x6y6 = 0} has the required properties: it
is smooth, it intersects the ruling {x = 0} at the three points (0, µ), µ3 = 1,
each with multiplicity two, and it intersects the diagonal at the six points
(µ, µ), µ6 = 1, each with multiplicity two. �

By Theorem 5.4, this implies that the smooth quintic surface contains
a symplectically embedded UΠ+(`1, `2) where Π+ = Π(2, 1, 1, 1, 3, a+) with
a+ = KV · C = δ

p1p2
= 3

2 , and that its initial right antiflip contains a
Mori sequence of Lagrangian pinwheels. In this case, we have δ = 3 and
the initial antiflip polygon is Π− = Π(1, 0, 5, 3, 1, a−), so the relevant Mori
sequence is M(1, 0; 5, 3).

5.4. A Godeaux surface

Lemma 5.6. — There exists a KSBA-stable surface V with K2 = 1,
pg = 0 with one ordinary double point and four Wahl singularities with
continued fractions

[7, 2, 2, 2], [3, 5, 2], [6, 2, 2], [4],

such that its minimal resolution contains a chain of spheres:

[2, 2, 6]− 1− [3, 5, 2]

Moreover, V admits a Q-Gorenstein smoothing whose smooth fibre is a
simply-connected Godeaux surface.

Proof. — This surface is constructed in [23, Section 5] by flipping an
example of Lee and Park [9]. �

Below, we reproduce Figure 5 from [23] which illustrates a configuration
of curves in the minimal resolution of V including the chain we want (in
red). The solid curves are collapsed by the minimal resolution to give the
ordinary double point and four Wahl singularities of V . The dashed curves
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become rational curves in V .
−3

−7

−2

−2
−2

−2
−2

−2

−2

−1

−6

−2

−2

−1

−1
−5

−2

−1

−1
−1

−4

−1

−2

Theorem 5.4 implies that the simply-connected Godeaux surface obtained
by smoothing V contains a symplectically embedded UΠ+(`1, `2) where
Π+ = Π(4, 3, 5, 2, 1, a+) with a+ = KV · C = δ

4×5 = 7
20 , and that its initial

right antiflip contains a Mori sequence of Lagrangian pinwheels. In this case,
we have δ = 7 and the initial antiflip polygon is Π− = Π(5, 2, 39, 17, 1, a−),
so the relevant Mori sequence is M(5, 2; 39, 17).
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