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ARITHMETICITY OF THE MONODROMY OF THE
WIMAN–EDGE PENCIL

by Benson FARB & Eduard LOOIJENGA (*)

Abstract. — The Wiman–Edge pencil is the universal family of projective,
genus 6, complex-algebraic curves endowed with a faithful action of the icosahedral
group. The goal of this paper is to prove that its monodromy group is commen-
surable with a Hilbert modular group; in particular is arithmetic. We then give a
modular interpretation of this, as well as a uniformization of its base.
Résumé. — Le pinceau de Wiman–Edge est une famille universelle de courbes

projectives non singulières de genre 6 et munie d’une action fidèle du groupe ico-
sahédral. Le but principal de ce travail est la détermination de son groupe de
monodromie. Nous montrons que ce groupe est arithmétique et commensurable
avec un groupe modulaire de Hilbert. Nous donnons une interprétation modulaire
de ce fait et décrivons en plus une uniformisation de la base.

1. Introduction

The Wiman–Edge pencil is the universal family C /B of projective, genus
6, complex-algebraic curves admitting a faithful action of the icosahedral
group A5. It has 5 singular members; including a reducible curve of 10
lines with intersection pattern the Petersen graph, and a union of 5 conics
with intersection pattern the complete graph on 5 vertices. Discovered by
Wiman [9] and Edge [6], the Wiman–Edge pencil appears in a variety of
contexts, including:

(1) C /B is a natural pencil of curves on the quintic del Pezzo surface S.
It is invariant by the full automorphism group of S, i.e., the symmet-
ric group of degree five, S5, with each Ct ∈ B being A5-invariant,
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and with a unique smooth member C0 that is S5-invariant, called
the Wiman curve.

(2) B is the moduli space of K3-surfaces with (a certain) faithful µ2×A5
action; see Section 5.3.

(3) C /B is the quotient of one of the two 1-parameter families of lines
on a nonsingular member of the Dwork pencil of Calabi–Yau quintic
threefolds by its group of automorphisms.

For a number of recent papers on the Wiman–Edge pencil, see [3, 4, 5, 10].
Given a family of varieties, it is a basic problem to compute its mon-

odromy, to relate this to geometric properties of the family, and to use
this information to uniformize (if possible) the base in terms of a period
mapping, via Hodge structures. While general theory has been developed
around these questions, explicit computations can be quite difficult, and ac-
cordingly there are fewer of these. The purpose of this paper is to solve these
problems for the Wiman–Edge pencil C /B. We prove that the monodromy
of C /B is commensurable with a Hilbert modular group; in particular that
it is arithmetic. We then give a modular interpretation of this, and use it
to uniformize B.
Restricting to the smooth locus C /B◦, we obtain a family of smooth,

genus 6 curves, and so (choosing, say, the Wiman curve C0 as representing
the base point) a monodromy representation

(1.1) ρ : π1(B◦)→ Aut(H1(C0;Z)) ∼= Sp12(Z)

that records how the fibers Ct twist along loops in B◦. The isomorphism
in (1.1) comes from the fact that diffeomorphisms of C0 preserve the
algebraic intersection number on C0, which is a symplectic pairing on
H1(C0;Z). But the monodromy preserves more structure, for example it
commutes with the A5 action on C0. The main result of this paper is to
determine (up to finite index) the monodromy group ρ(π1(B◦)). To state
our main result, first note that Z[

√
5] is a subring of the ring of integers of

Q(
√

5) of index 2. We will see that the monodromy representation ρ factors
through SL2(Z[

√
5]). In fact we will prove the following.

Theorem 1.1 (Arithmeticity of the monodromy). — The monodromy
group of the Wiman–Edge pencil is isomorphic to a finite index subgroup
of SL2(Z[

√
5]); in particular it is arithmetic.

In Section 5 we apply Theorem 1.1 to various period mappings associated
to the Wiman–Edge pencil. For example, let H denote the hyperbolic upper
half-plane. The group SL2(Z[

√
5]) acts properly discontinuously on H×H.

ANNALES DE L’INSTITUT FOURIER
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The quotient of this action is a quasi-projective, complex-algebraic surface,
called a Hilbert modular surface.
The above monodromy representation ρ is induced by an algebraic map

B◦ = Γ\H→ SL2(Z[
√

5])\H2,

called the period map, which assigns to a curve with faithful A5-action its
Jacobian with the induced A5-action. In Section 5.1 we use Theorem 1.1
and its proof to study this period map.
Finally, in Section 5.3, we show that one can attach to the Wiman–

Edge pencil a family of K3 surfaces with base B. We then show how this
description can be used to uniformize B. We find:

Theorem 1.2 (Uniformization of B). — The smooth, projective curve
B (which we recall, is a copy of P1) supports in a natural manner a family of
polarized K3 surfaces endowed with a particular faithful action of µ2 ×A5
(described explicitly in Section 5.3), and the associated period map gives
B the structure of a Shimura curve.

Method of proof of Theorem 1.1. — As is usual with computations of
monodromies, the proof of Theorem 1.1 consists of two main steps. First,
in Section 3, we find constraints on the monodromy in order to narrow its
target to a copy of SL2(Z[

√
5]); such restrictions come not only from the

necessary commutation with the A5-actions on the members of the family,
but also from torsion in the Picard group of C0, as well as an involutive
structure coming from the extra symmetry of the Wiman curve. The final
result is to prove that in fact ρ takes its values in SL2(Z[

√
5]).

The second step in the proof of Theorem 1.1, which we accomplish in
Section 4, is to prove that the image of ρ has finite index. To do this, we
first use Picard–Lefschetz theory to find the conjugacy classes of the local
monodromies about each of the 5 cusps of B◦. These cusps correspond to
the singular members of C : two irreducible curves, 6-noded rational curves
Cir and C ′ir; two curves Cc and C ′c, each consisting of 5 conics whose
intersection graph is the complete graph on 5 vertices; and a union C∞
of 10 lines whose intersection graph is the Petersen graph. The group S5
acts on C with A5 leaving each member of C invariant. This action has
two S5-invariant members: the singular curve C∞ and the Wiman curve
C0. The main effort of Section 4 is to understand these degenerations and
the structures they preserve. After improving “up to conjugacy” to actual
elements, we are able to apply an arithmeticity criterion due to Benoist–
Oh [1] to deduce Theorem 1.1.

TOME 71 (2021), FASCICULE 4



1328 Benson FARB & Eduard LOOIJENGA

Added in proof

Although we prove the monodromy group to be arithmetic and give a
presentation of it, we were not able to characterize it by a complete set
of congruence conditions. Recently Matthew Stover informed us that with
the help of a computer he has been able to extract such a description from
our presentation: he finds a complete set of congruence conditions which
involve the primes 5 (the one observed in this paper) and 2.

Acknowledgements

We are grateful for the comments of an anonymous referee, as these led
us to improve the paper.

2. Some algebra of ZA5-modules

We found in an earlier paper ([5], Cor. 3.6) that the first homology group
H1(Co;C) of the Wiman curve is, as a CS5-module, twice an irreducible
representation EC of degree six. Since it is known that the characters of
the irreducible QS5-modules are those of the irreducible CS5-modules,
it follows that H1(Co;Q) is as a QS5-module also twice an irreducible
representation of degree six (denoted here by EQ). This implies that if we
replace Co by an arbitrary smooth member C, then it is still true that
H1(C;Q) ∼= E2

Q as QA5-modules.
The main goal of this section and the subsequent one is to lift this to

the integral level, while also taking into account the intersection pairing. In
other words, we want to identify H1(Co) as a symplectic ZS5-module. This
will be used in Section 4 to determine the monodromy of the Wiman–Edge
pencil. The present section is only concerned with the algebraic aspects of
the symplectic ZS5-modules that appear here.
Convention. — In this section we identify A5 with a triangle group de-

fined by the group of motions of a regular icosahedron. By this we mean
that we make use of the following presentation of A5: a set of generators is

σ5 = (01234),
σ2 = (04)(23),
σ3 = (142)

and a complete set of relations is given by prescribing their order (indicated
by the subscript) and the identity σ2σ3σ5 = 1. We make this more concrete
in Remark 2.7.

ANNALES DE L’INSTITUT FOURIER
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2.1. Irreducible ZS5-modules of degree six

Recall that the reflection representation ofS5 is the quotient of its “natu-
ral” representation on C5 (given by permutation of its basis vectors) mod-
ulo the main diagonal C ↪→ C5 (which is a trivial representation). It is
irreducible and so is the degree 6 representation EC := ∧2(C5/C). It is
clear that this construction is defined over Q (even over Z) and so let us
write EQ for the irreducible QS5-module ∧2(Q5/Q). If we consider this a
QA5-module, it is still irreducible, but if we extend the scalars to Q(

√
5),

it will split into two absolutely irreducible representations of dimension 3.
To be precise (we will recall and explain this below), the endomorphism
ring K := EndQA5 EQ is isomorphic to Q(

√
5) and if we tensor EQ over K

with R via one of the two field embeddings σ, σ′ : K ↪→ R, we obtain real
forms of the two complex A5-representations of degree 3 that differ from
each other by an outer automorphism of A5 (these were denoted in [5] by
I and I ′).

An obvious integral form of EQ is the ZS5-module ∧2(Z5/Z). If {fi}i∈Z/5
is the standard basis of Z5 and fij denotes the image of fi ∧ fj (i 6= j) in
∧2(Z5/Z), then the set {fij}i6=j generates ∧2(Z5/Z) and a complete set
of linear relations among them is fij = −fji and

∑
j fij = 0. Note that

{fij}i 6=j is an A5-orbit and consists of 10 antipodal pairs. We take as our
integral form the ZS5-submodule Eo of ∧2(Z5/Z) defined as follows. Let
φ : Z5 → Z be the coordinate sum (this is a generator of Hom(Z5,Z)S5)
and denote by Eo the image of the ZS5-homomorphism

(Definition Eo) δ : ∧3(Z5) ιφ−→ ∧2(Z5)→ ∧2(Z5/Z),

where ιφ is the inner product with φ and the second map is the obvious one.
In other words, Eo is generated by the vectors δ(fi∧fj∧fk) = fij+fjk+fkj .
The lattice Eo comes with an A5-invariant basis, given up to signs:

Lemma 2.1. — Let e :=
∑
i fi,i+1 ∈ ∧2(Z5/Z). Then the A5-orbit of

e is the union of a basis of Eo and its antipode. In particular, the inner
product

s : Eo × Eo → Z

for which this basis is orthonormal is A5-invariant.

Proof. — We first note that e is fixed by the 5-cycle (01234) and that
(14)(23) takes e to −e. So the A5-orbit of e consists of antipodal pairs, at
most 60/(2.5) = 6 in number. Since EQ is irreducible, it must be spanned
by this orbit and so we have equality: we have 6 antipodal pairs and the

TOME 71 (2021), FASCICULE 4
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A5-stabilizer of e is generated by (01234). It remains to show that this orbit
spans Eo.

The identity (f01 + f12 + f20) + (f02 + f23 + f30) + (f03 + f34 + f40) = e

shows that Eo contains e and hence the ZA5.e-submodule generated by e.
On the other hand, it is straightforward to check that e and its translates
under (04)(23) and (124) sum up to δ(f1 ∧ f2 ∧ f4) = f12 + f24 + f41 and
since ∧3(Z5) is generated by the A5-orbit of f1 ∧ f2 ∧ f4, it follows that
ZA5.e contains Eo. �

Remark 2.2. — The A5-orbit of e and the inner product s determine each
other, but this A5-orbit is not a S5-orbit, and so s is not S5-invariant.
Indeed, the S5-stabilizer of e is its A5-stabilizer (namely the cyclic group
of order 5 generated by (01234)) and so the S5-orbit of e has size 24. On
the other hand, it is clear that the vectors in Eo that have unit length for
s make up the A5-orbit of e, and so s cannot be S5-invariant.

For later use (in Subsection 3.1), we note that there is an equivariant
map from Eo to a F5S5-module N5 that can be defined as follows. In
terms of our basis, N5 is the set of Z-linear combinations of f0, . . . , f4
with coordinate sum zero, modulo the sublattice generated by the elements
(−5fi +

∑
j∈Z/5 fj)i∈Z/5. Since {fi ∧ fj ∧ fk}06i<j<k64 is a basis of ∧3Z5,

we can define a homomorphism ψ̃ : ∧3Z5 → N5 by assigning to fi ∧ fj ∧ fk
the image of fl − fm in N5 which is characterized by the property that
(i, j, k, l,m) is an even permutation of (0, 1, 2, 3, 4). This map is clearly
onto and it is easy to see that it is also S5-equivariant.

Lemma 2.3. — The homomorphism ψ̃ factors through a surjection ψ :
Eo → N5 of ZS5-modules.

Proof. — We must show that the kernel of the map ∧3(Z5) ιφ−→ ∧2(Z5)→
∧2(Z5/Z) is contained in the kernel of ψ̃. The kernel of the former is gener-
ated by the S5-orbit of f0∧f1∧(f2+f3+f4) and ψ̃(f0∧f1∧(f2+f3+f4)) =
(f3 − f4) + (f4 − f2) + (f2 − f3) = 0. �

Some special orbits in Eo

We now select an element from each antipodal pair in the A5-orbit of e:

e0 := σ2(e) = f41 + f13 + f32 + f20 + f04

ei = σi5e0, (i ∈ Z/5).

ANNALES DE L’INSTITUT FOURIER
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The icosahedral generators act on this basis as follows:

σ5 : e0 7→ e1 7→ e2 7→ e3 7→ e4 7→ e0 (fixes e),
σ2 : e↔ e0 ; e1 ↔ e4 ; e2 ↔ −e2 ; e3 ↔ −e3 (fixes e+ e0),
σ3 : e 7→ e0 7→ e1 7→ e ; e2 7→ e4 7→ −e3 7→ e2 (fixes e+ e0 + e1).

This is the matrix representation of A5 that we will use. We first note that
the sublattice E ⊂ E0 consisting of integral linear combinations of our basis
with even coefficient sum is A5-invariant and of index 2 in Eo.
The next lemma reproduces some of the preceding in terms of this basis:

Lemma 2.4. — We have the following special orbits and its stabilizers:
(i) The A5-stabilizer of e is generated by σ5. Its A5-orbit generates Eo

over Z and consists of the 6 antipodal pairs ∆ir :={±e,±e0, ...,±e4}.
(ii) The A5-stabilizer of e+e0 is generated by σ2. Its A5-orbit generates

E over Z and consists of the 15 antipodal pairs ∆∞ := {±(e+ ei),
±(ei + ei+1),±(ei+1 − ei+1)}i.

(iii) The A5-stabilizer of e+e0+e1 is generated by σ3. ItsS5-orbit equals
its A5-orbit, generates Eo over Z and consists of the 10 antipodal
pairs ∆c := {±(e+ ei + ei+1),±(ei − ei−2 − ei+2)}i.

The lattice E is S5-invariant.

Proof. — We already established the first assertion.
Since σ2 stabilizes e+ e0, its orbit has at most 30 elements. That it con-

tains the 15 pairs listed is straightforward to verify (for example,
σi5(e + e0) = e + ei and then note that for i = 0, 1, 2, 3, 4, the vector
σ2(e+ ei) equals resp. e0 + e, e0 + e4, e0− e2, e0− e3, e0 + e1). This orbit is
contained in E and the subset (e1−e2, e2−e3, e3−e4, e4−e0, e0−e, e0 +e)
of this orbit is a basis of E.

We next consider the orbit of e+ e0 + e1. We compute

e+ e0 + e1 = f12 + f24 + f41

and this shows that e+e0 +e1 is not only stabilized by σ3 = (142), but also
by the transposition (03). This implies that its S5-orbit of e+e0 +e1 equals
its A5-orbit. This orbit has at most 20 elements and we show that this orbit
contains the 10 pairs listed. We have σ2σ5(e+ e0 + e1) = σ2(e+ e1 + e2) =
e0 + e4 − e2 and the σ5-orbits of e+ e0 + e1 and e0 + e4 − e2 yield all the
listed pairs up to sign. Since σ2

5σ2σ
−2
5 (e0 + e4− e2) = σ2

5σ2(e3 + e2− e0) =
σ2

5(−e3−e2−e) = −e1−e0−e, it is also invariant under taking the opposite.
This orbit generates Eo: it contains σ2(e+ e0 + e1)− (e+ e0 + e1) = e4− e1
and with it then the span of the A5-orbit of e4 − e1, that is E. Since
e+ e0 + e1 /∈ E and E has index 2 in Eo, we get all of Eo.

TOME 71 (2021), FASCICULE 4
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As to the last statement, we have seen in the proof of Lemma 2.1 that
δ(f1∧f2∧f4) = e+e0 +e1. Since the A5-orbit of the latter generates Eo, it
follows that E can also be characterized as the set of Z-linear combinations
of the δ(fi ∧ fj ∧ fk) with even coefficient sum. This lattice is clearly S5-
invariant. �

The s-dual of E, denoted E∨, consists by definition of the e ∈ EQ with
s(e, e′) ∈ Z for all e′ ∈ Eo. It contains Eo as a sublattice of index 2 and
a representative of the nontrivial coset is ε := 1

2 (e +
∑
i∈Z/5 ei). We have

E∨/E ∼= Z/2 ⊕ Z/2 with the nonzero elements being represented by ε, e
and ε + e. The action of A5 on E∨/E is trivial; this can be verified by
computation, but this also follows from the fact that A5 is simple so that
any action of A5 on a 3-element set must be trivial.

Remark 2.5. — This situation is familiar in the theory of root systems:
the α ∈ E with s(α, α) = 2 make up a root system of typeD6 that generates
E (so E is the root lattice) and E∨ the weight lattice. The fact that A5
acts trivially on E∨/E implies that A5 embeds in the Weyl group of this
root system.)

2.2. Commutants of ZA5-modules

We shall see that the ZA5-modules above admit endomorphisms that are
nontrivial in the sense that they are not multiples of the identity. One such
element is X ∈ End(E∨), defined by

X(ε) :=ε+ e,

X(ei) :=ε− (ei+2 + ei−2).

Lemma 2.6. — The endomorphism X is selfadjoint with respect to s
and satisfies X2 = X + 1. In particular, X preserves E and E∨ so that X
also acts on E∨/E. We have X(e) = ε and (so) X acts transitively on the
set of the (3) nonzero elements of E∨/E. Moreover, X commutes with the
A5-action.

Proof. — We only verify the last assertion, as checking the others is
straightforward. Since σ5 and σ2 generate A5, it suffices to check that these
elements commute with X. This is obvious for σ5. In the case of σ2, we
must verify that

σ2 : X(e)↔X(e0) ; X(e1)↔X(e4) ; X(e2)↔−X(e2) ; X(e3)↔−X(e3).

This is also straightforward. �

ANNALES DE L’INSTITUT FOURIER
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Thus E becomes a module over the ring O := Z[X]/(X2 − X − 1).
Notice that the map X 7→ 1

2 + 1
2
√

5 identifies K = Q[X]/(X2 − X − 1)
with the number field Q(

√
5) and O with its ring of integers. Any unit of

O is an integral power of X up to sign. It is clear that E is a torsion free
O-module of rank 3 and EQ a K-vector space of dimension 3. Since K has
class number 1, E is in fact a free O-module. For the same reason this is
true for E∨. Since X acts transitively on the nonzero elements of E∨/E,
there are no intermediate O-submodules E ( L ( E∨. We note that the
K-stabilizer of Eo in EQ is the subring

Oo := Z + Z.2X ∼= Z + Z
√

5

of O of index 2. The group of units of Oo is generated by −1 and X3 =
2X+1; it contains the subgroup of totally positive units ofOo as a subgroup
of index 2, and the latter is generated by X6 = 8X + 5.

Remark 2.7 (The icosahedral realizations). — When we regard EQ as a
KA5-module of degree 3, it is absolutely irreducible. For example, we have
two field embeddings σ, σ′ : K ↪→ R characterized by σ(X) = 1

2 (1 +
√

5)
resp. σ′(X) = 1

2 (1 −
√

5) which are exchanged by the nontrivial Galois
involution of K and the associated RA5-modules R⊗K,σEQ and R⊗K,σ′EQ
are irreducible. Since the K-action on EQ is self-adjoint with respect to s,
the inner product extends to a symmetric K-bilinear form sK : EQ×EQ →
K and the two field embeddings define A5-invariant inner products on IR
and I ′R preserved by the A5-action. The convex hull of the A5-orbit of the
image of e in each of these is a regular icosahedron relative to this inner
product, thus making explicit the realization of A5 as the icosahedral group.

Lemma 2.8. — The commutant of the ZA5-module E resp. Eo is O
resp. Oo. Conjugation with an element of S5 r A5 induces in these rings
the Galois involution (which sends X to 1−X).

Proof. — Since EK is absolutely irreducible as A5-representation,
EndKA5(EK) = K by Schur’s lemma. So EndZA5(E) is a subring of K.
The integrality implies that this subring must be contained in O. On the
other hand, the previous lemma shows that it contains O so that we have
equality. The proof that EndZA5(Eo) = Oo is similar.

We also know that EC is irreducible as an CS5-module, and so Schur’s
lemma implies that the commutant of the ZS5-module E is just Z. Hence
conjugation with an element of S5 r A5 induces a nontrivial involution of
the ring O with fixed point ring Z. There is only such involution, namely
the Galois involution of O. �

TOME 71 (2021), FASCICULE 4
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It is clear that E∨ is also O-invariant. The definition of X shows that the
action of O on E∨/E factors through a faithful action of O/2O. But 2O is
a prime ideal of O so that the finite ring O/2O is a field with 4 elements
(hence denoted F4). It has the order 2 subring Oo/2O as its prime field
F2 ⊂ F4. Thus E∨/E acquires the structure of a 1-dimensional vector
space over O/2O = F4. The subgroup Eo/E ⊂ E∨/E is a module over
Oo/2O = F2, and so defines an F2-form of the F4-line E∨/E.

Remark 2.9. — One may check that the S5-orbit of e is the union of
two A5-orbits, namely of e and of X3e = (2X + 1)e. One computes that
s(X3e,X3e) = 9. Since s(e, e) = 1, this makes it evident that s is not
preserved by S5. Nevertheless, since 2X takes E∨ to E, S5 will preserve
each coset of E in E∨ (in other words, it will act as the identity in E∨/E).

2.3. The functors V and Vo

Let H be a finitely generated ZA5-module. Then the isogeny module

Vo(H) := HomZA5(Eo, H) resp. V (H) := HomZA5(E,H)

is in a natural manner an Oo-module resp. O-module (acting by pre-
composition). So Vo resp. V is a functor from the category of finitely
generated ZA5-modules to the category of finitely generated Oo-modules
resp. O-modules. Restriction defines a natural transformation Vo → V .
The evaluation map Vo(H) × Eo → H factors through a homomorphism
Vo(H) ⊗Oo E → H of ZA5-modules. There will be two cases of special
interest to us.
First assume thatH is free as a Z-module. Then both isogeny modules are

torsion free, but in the case of Vo(H), it need not be free. In fact, Vo applied
to the chain E ⊂ Eo ⊂ E∨ yields the chain of Oo-modules O ×2−−→ Oo ⊂ O,
and O is not free as a Oo-module. On the other hand, V (H) is a free O-
module, as O has class number 1. (Indeed, if we apply V to the above chain
we find that E ⊂ Eo induces an isomorphism V (E) = V (Eo) = O and that
Eo ⊂ E∨ induces V (Eo) = O ×2−−→ O = V (E∨).)
Suppose now H is also endowed with a A5-invariant symplectic form

(x, y) ∈ H ×H 7→ x · y ∈ Z. Then for every pair v1, v2 ∈ Vo(C), the form

(x, y) ∈ Eo × Eo 7→ v1(x) · v2(y) ∈ Z

is also A5-invariant. This means that there exists a unique A5-equivariant
endomorphism A(v1, v2) of Eo such that

v1(x) · v2(y) = s(A(v1, v2)(x), y)

ANNALES DE L’INSTITUT FOURIER
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for all x, y ∈ E. But any such endomorphism is in Oo. Using the fact
that X is self-adjoint with respect to s, one checks that the resulting map
A : Vo(C)×Vo(C)→ Oo is symplectic: it is Oo-bilinear, antisymmetric and
becomes nondegenerate over K.
The other case is of interest is when H is the F5A5-module N5 defined

in Subsection 3.1. Recall that we constructed in Lemma 2.3 a surjection
ψ : Eo → N5. So this is a nontrivial element of Vo(N5). As N5 is an
F5-vector space, so will be Vo(N5). At the same time it is an Oo-module.
Indeed, the prime 5 ramifies in Oo, for Oo is additively generated by 1 and
2X − 1 and 2X − 1 is a square root of 5. So 2X − 1 generates a prime ideal
Oo with residue field F5 and the Oo-module structure on Vo(N5) factors
through this residue field.

Lemma 2.10. — The Oo-module Vo(N5) is a vector space over F5 of
dimension one, generated by ψ.

Proof. — Let ψ′ ∈ Vo(N5). Since f01 + f12 + f20 generates Eo as a A5-
module, it suffices to prove that ψ′(f01 + f12 + f20) is unique up to a scalar
in F5. Let us represent ψ′(f01 +f12 +f20) by

∑
i aifi with ai ∈ Z such that∑

i ai = 0. If we sum over the orbit of (012), we find that 3ψ′(f01+f12+f20)
is represented by an element of the form a(f0 + f1 + f2) + bf3 + cf4 with
3a+ b+ c = 0. This element is also represented by

a(f0 + f1 + f2) + bf3 + cf4 − a(f0 + f1 + f2 + f3 − 4f4)
= (b− a)f3 + (c+ 4a)f4

= (b− a)(f3 − f4).

This proves that ψ′(f01 + f12 + f20) is unique up to scalar. �

3. Structures preserved by the monodromy

The Wiman–Edge pencil B◦ is a family of genus 6 smooth algebraic
curves. Since the action of π1(B◦) on the integral first homology of the
fiber preserving algebraic intersection number, we obtain a monodromy
representation π1(B◦) → Sp12(Z). The monodromy action preserves a lot
more structure, for example it intertwines the A5 automorphism group of
each fiber. Our goal in this section is to find and describe other structure
preserved by the monodromy, thus giving strong restrictions on its image.
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3.1. Torsion in the Picard group of the Wiman–Edge pencil

Recall (see for example [4, 5]) that the Wiman–Edge pencil (when re-
garded as lying on the del Pezzo surface S) has as its base locus the unique
S5-orbit Σ in S of size 20. We follow [5] and denote by H2

0 (S) ⊂ Pic(C)
the orthogonal complement of the anticanonical class. This is a negative
definite lattice spanned by its elements of self-intersection −2. Each such
(−2)-vector can be represented by the difference of two disjoint lines and
together they make up a root system of type A4.

For the discussion in this subsection, we shall regard S as obtained from
P2 by blowing up in 4 points in general position. Then a basis of H2

0 (S)
is (`, ε0, ε1, ε2, ε3), where the εi’s are the classes of the exceptional curves
and ` is the image of a class of a line in P2 (see [5, §3], where the notation
slightly differs from the one used there). The anti-canonical class of S is
−KS = 3` − ε0 − ε1 − ε2 − ε3, a root basis of its orthogonal complement
H2

0 (S) is (α1, α2, α3, α4) = (ε0 − ε1, ε1 − ε2, ε2 − ε3, ` − ε1 − ε2 − ε3) and
the 10 line classes of S are {εi}3i=0 and {` − εi − εj}06i<j63. The S5-
action is realized as the Weyl group of this root system and we choose an
identification which makes S4 correspond with the stabilizer of `, i.e., the
full symmetric group of {εi}3i=0.

A finite group associated with the root system in H2(S)

The intersection pairing identifies the dual lattice H2
0 (S)∨ =

Hom(H2
0 (S),Z) with a sublattice of H2

0 (S;Q) of vectors that have integral
intersection product with vectors in H2

0 (S). This is the weight lattice of the
above root system; it contains H2

0 (S). By definition, H2
0 (S) is the orthogo-

nal complement of KS in the unimodular lattice H2(S). Since KS ·KS = 5,
it follows from the basic theory of lattices that H2

0 (S)∨/H2
0 (S) is cyclic of

order 5. We have ` ·KS = −1 and so a generator of H2
0 (S)∨/H2

0 (S) is rep-
resentable by the orthogonal projection of −` in H2

0 (S);Q). This is just the
fundamental weight$4 ∈ H2

0 (S)∨ defined by$4·αi = −δi4. The orbit of$4
under the Weyl group generates H2

0 (S)∨. Since 5$4 = α1 +2α2 +3α3 +4α4
is indivisible in H2

0 (S),

N5 := H2
0 (S)/5H2

0 (S)∨

is an F5-vector space of dimension 4−1 = 3. Essentially by construction, the
intersection pairing induces a nonsingular quadratic form N5 × N5 → F5.
Note that N5 is an F5S5-module on which S5 acts orthogonally (it is an
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incarnation of the standard representation SL2(F5) of degree 3, which in-
deed leaves invariant a quadratic form). In terms of the usual description
of the root system A4 (see for example [2]), H2

0 (S) is identified with the
corank one sublattice of Z5 consisting of vectors with coordinate sum zero
and 5H2

0 (S)∨ with the sublattice generated by the vectors with four coordi-
nates equal to −1 and the remaining coordinate equal to 4. The S5-action
is the obvious one and from this we easily see that every S5-invariant el-
ement of N5 and every S5-invariant F5-valued linear form on N5 is zero.
Since F5A5 has only the trivial representation in dimension one, this implies
that N5 is irreducible as an F5A5-module.

A map to the Jacobian

Let C be a member of the Wiman–Edge pencil. Every point of Σ lies in
the smooth part of C so that it defines a Cartier divisor of degree one on C.
We thus obtain a homomorphism H0(Σ)→ Pic(C). This map restricts to a
homomorphism H̃0(Σ) → Pic0(C), where the source is reduced homology
and the target is the degree zero part of Pic(C) (which is also the Jacobian
of C, when C is smooth). A line in S meets C in Σ in an opposite pair in
Σ whose sum represents the image of this line under the restriction map
H2(S) = Pic(S) → Pic(C). So if H̃0(Σ)+ ⊂ H̃0(Σ) stands for the sublat-
tice for which opposite pairs have the same coefficient (so that H̃0(Σ)+ is
the generated by differences of opposite pairs), then the homomorphism
H̃0(Σ)+ → Pic0(C) factors through H̃0(Σ)+ → H2

0 (S). The last map will
be onto because H2

0 (S) is generated by differences of lines. Observe that
all these maps are A5-equivariant.

Proposition 3.1. — When C is smooth, the kernel of the restriction
map H2

0 (S)→ Pic0(C) factors through an A5-equivariant embedding of N5
in the 5-torsion of Pic0(C).

The proof rests on the fact that if we restrict the A5-action to (a copy of)
Klein’s VierergruppeV4 ⊂ S4 (the abelian subgroup of A4 whose nontrivial
elements are the three elements of order 2), then the orbit space is still of
genus zero:

Lemma 3.2. — Let C → V4\C := C form the orbit space. Then C is
rational and the degree 4 cover C → C has nine singular fibers in which
we have simple ramification.
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Proof. — In order to apply Riemann–Hurwitz, we need to determine the
ramification data. Since H1(C;C) is as a A5-representation of type 2I+2I ′,
the trace of every order 2 element of S5 on H1(C;C) is −4 and so the
Lefschetz number of such an element is 1 − (−4) + 1 = 6. Hence it has as
many fixed points. The stabilizer of a point of C is cyclic and so the fixed
point sets of distinct order 2 elements are disjoint. We therefore find that
C → C has 6.3 = 18 points of simple ramification. Since C → C is a Galois
cover of degree 4, it follows that we have 18/2 = 9 singular fibres. The
identity of Euler numbers 4e(C)− 18 = e(C) = −10 shows that e(C) = 2.
This proves that C is rational. �

Since Pic0 of a rational curve is trivial, the fibers of C → C all define the
same class in Pic(C). We will use the preceding lemma via this implication.

Proof of Proposition 3.1. — Every element of Σ has an A5-stabilizer
of order 3 and so is not a ramification point of the projection C → C. It
follows that Σ is the union of 60/(4 · 3) = 5 regular fibers of C → C. We
want to understand how the antipodal involution of Σ acts in these fibers.

Since we agreed that the subgroup S4 of S5 is realized as the permuta-
tion group of {εi}i, the Vierergruppe V4 becomes a subgroup of this per-
mutation group. We see that the V4-orbits in the set of line classes are the
4-element set {εi}i and the three 2-element sets of the form {` − εi − εj ,
` − εk − εl}, where i, j, k, l are mutually distinct. The image of

∑
i εi in

Pic(C) is the represented by the sum of 4 antipodal pairs and since V4 per-
mutes the εi’s transitively, it follows that they are also the sum of two reg-
ular fibers of C → C. By the same reasoning, the image of the V4-invariant
element (`−ε0−ε1)+(`−ε2−ε3) is represented 2 antipodal pairs in a sin-
gle fiber. These fibers are linearly equivalent and so the kernel of Pic(S)→
Pic(C) contains n := −

∑
i εi+2(2`−ε0−ε1−ε2−ε3) = 4`−3

∑
i εi. This

is a sum of roots: n =
∑

06i<j<k63(`−εi−εj−εk) = α1 +2α2 +3α3 +4α4.
It is in fact equal to 5$4. Since n is fixed by a reflection, its A5-orbit is
the full S5-orbit. The lattice generated by this orbit is 5H2

0 (S)∨ and as
the kernel must be invariant under A5, it will contain this sublattice. This
proves the factorization.
So restriction defines a homomorphism from N5 → Pic(C)[5]. This map

is A5-equivariant and hence its kernel is a A5-invariant subspace of N5.
Since N5 is irreducible, this kernel is either trivial or all of H2

0 (S)/5H2
0 (S)∨.

Suppose the latter. This then means that for every antipodal pair in C its
sum is a degree 2 divisor whose class is independent of that pair. The linear
system of this class then defines a pencil of degree 2 on C for which the
antipodal pairs are fibers. A degree 2 pencil on a curve of positive genus
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must define a hyperelliptic involution and hence is intrinsic to the curve.
In our case, this hyperelliptic involution must be normalized by the A5-
action. But according to Corollary 3.6 of [5], the automorphism group of
C is contained in S5 (with equality for the Wiman curve) and no order
two element of S5 commutes with A5. As this yields a contradiction, this
proves that N5 → Pic(C)[5] has trivial kernel. �

Remark 3.3. — Since Pic0(C)[5] can be identified with Hom(H1(C), µ5),
we have an embedding of N5 in Hom(H1(C), µ5). Dually, this yields an
surjection H1(C) � Hom(N5, µ5). If we choose a primitive 5th root of
unity (which identifies µ5 with F5) and use the quadratic form to identify
N5 with its dual, then we obtain an isomorphism Hom(N5, µ5) ∼= N5 and
there results a surjection H1(C) � N5. Proposition 3.1 has therefore a
topological consequence: the surjection H1(C) � N5 is locally constant
as C varies in the smooth fibers of the Wiman–Edge pencil, and so this
imposes restriction (a ‘level structure’) on the monodromy of this family.
We shall see this illustrated when we compute the monodromy group in
Section 3 and Section 4.

Remark 3.4. — In the above argument we divided out by the Klein Vier-
ergruppe. If we divide out by the bigger group A4 instead, then the orbit
space a fortiori of genus zero. This intermediate orbit space defines a (non-
Galois) cover of the A5-orbit space P̃ → P of degree 5. Such a covering
can be given by a rational function f on the smooth rational curve P̃ of
degree 5. The monodromy group of f is A5 so that the Galois closure of the
associated degree 5 extension of rational function fields C(P̃ )/C(f) defines
an A5-covering. This covering will be a copy of C → P .

If C is a smooth member C of the Wiman–Edge pencil then H1(C)
is a symplectic ZA5-module, and we then abbreviate Vo(H1(C)) by Vo(C).
Recall that in Remark 3.3 we found (after identifying µ5 with F5) a natural
surjection H1(C) → N5 of ZA5-modules. The following is then immediate
from Lemma 2.10:

Corollary 3.5. — There is a natural surjection Vo(C) → F5 that is
locally constant when C varies in the smooth members of the Wiman–Edge
pencil.
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3.2. The homology of the Wiman curve as a symplectic
ZS5-module

The goal of this subsection is to determine H1(Co) as a symplectic ZS5-
module. This information will help us to determine the global monodromy
group of the Wiman–Edge pencil.
Recall that the S5-action on the Wiman curve Co makes it a S5-orbifold

cover of an orbifold Po of type (0; 6, 4, 2) and that the restriction of the
action to A5 defines an intermediate orbifold P of type (0; 3, 2, 2, 2) such
that P → Po is of degree 2 and ramifies over the orbifold points of orders
6 and 4. In order to identify H1(Co) as a symplectic ZS5-module, we take
a closer look at this situation.
Let w be the affine coordinate on Po such that the orbifold points of

order 6, 4 and 2 are given by w = ∞, w = 0 and w = 1 respectively (this
makes a Po as a projective line defined over R (even over Q). Then P is
also defined over R: it admits an affine coordinate z for which w = z2, so
that the orbifold point of order 3 is given by z =∞, and the orbifold points
of order 2 are z = 0, 1,−1. Note that z is unique up to sign.
The preimage of the real projective line (that is, where w is real) in Co

defines a S5-invariant triangulation of Co; if we endow Co with its hyper-
bolic structure (i.e., the unique metric of constant curvature −1 inducing
the given conformal structure), then this is in fact a hyperbolic triangula-
tion. Let K ⊂ Co be a 2-simplex of this triangulation which maps onto the
upper half plane of Po. We denote the vertices of K by p6, p4, p2 according
to the order of their stabilizer. The stabilizer of such a point is cyclic and
the orientation of Co singles out a natural generator τj (counter clockwise
rotation over 2π/j around pj). It is elementary to see that the cycle type of
these generators is (3, 2) for τ6, (4) for τ4 (so both are odd) and (2, 2) for τ2
(so τ2 is even) and that τ6τ4τ2 = 1; see [7, §2.3]. In fact, Theorem 2.1 of [7]
implies that any ordered triple (τ6, τ4, τ2) of generators S5 whose orders
are as their subscript and satisfy τ6τ4τ2 = 1, differ from the triple above
by an inner automorphism. So any such triple comes from some choice of
K. We shall exploit this below.
Let K∗ ⊂ Co be the geodesic 2-simplex adjacent to K that has in common

with K the edge p4p6. Then K ∪ K∗ is a fundamental domain of the S5-
action on Co. We denote the vertex of K∗ distinct from p4 and p6 by p′2. So
p′2 = τ−1

4 p2 and its S5-stabilizer is generated by τ ′2 := τ−1
4 τ2τ4. Every edge

of K or K∗ lies on a closed geodesic that lies over an interval in Po(R).
We write α resp. α′ for the complete geodesic in Co that contains the

geodesic segment [p4, p2] resp. [p4, p
′
2]. Both map to the segment [0, 1] in
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Figure 3.1. The closed oriented geodesics ~α, ~α′ and ~β on the Wiman
curve.

Po(R), but their images in P are distinct and consist of [0, 1] resp. [0,−1].
It is clear that both τ2

4 and τ2 leave α invariant and act in α as a reflection.
They generate in α a reflection group with [p4, p2] as fundamental domain.
Since [p4, p2] maps injectively to the S5-orbit space, it follows that this
subgroup of S5 is in fact the S5-stabilizer of α. Both generators are even
permutations, and so this stabilizer is in fact a subgroup of A5. The product
τ2
4 τ2 is easily shown to be of order 3 (otherwise, see our specific choice for
the τi’s below), and so this stabilizer is a dihedral reflection group of order 6.
It follows that α has 120/6 = 20 S5-translates and 60/6 = 10 A5-translates.
Since α′ is a translate of α under an odd permutation (namely τ4), it cannot
be a A5-translate. Note that if ~α stands for α with the orientation defined
by [p4, p2], then the stabilizer of ~α is the cyclic group generated by τ2

4 τ2
and hence its A5-obit consists of 10 oppositely oriented pairs.
We will also be interested in the geodesic β on Co that contains the

geodesic segment [p′2, p2]. This geodesic is also closed; it maps in Po to the
unit circle |w| = 1 and hence (upon perhaps replacing z by −z) its image in
P will be the semicircle |z| = 1, <(z) > 0. A similar argument shows that
the stabilizer of β is the reflection group generated by the even permutations
τ2 and τ ′2. The product τ2τ ′2 has order 5 and hence the stabilizer of β
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is a dihedral subgroup A5 of order 10, whereas the stabilizer of ~β (the
orientation being given by [p′2, p2]) is generated by τ2τ ′2. It follows that β
has 120/10 = 12 S5-translates and 60/10 = 6 A5-translates. AS5-translate
which is not an A5-translate is for instance β′ := τ4(β). Its image in P will
be the semicircle |z| = 1, <(z) 6 0.

Since the A5-orbit of α resp. β is the preimage of an arc in P that
connects two orbifold points of order 2, it must consist of resp. 10, 6 closed
geodesics that are pairwise disjoint. As shown in [7, §2], these A5-orbits
make up a configuration of K5-type resp. dodecahedral type. The same is
true for the A5-orbits of α′ and β′. Recall that at the beginning of Section 2
we specified the generators σ5 = (01234), σ3 = (142) and σ2 = (04)(23) for
A5.

Lemma 3.6. — We can choose K such that the associated triple
(τ6, τ4, τ2) in S5 has the property that σ3 resp. σ5 generates the stabilizer
of ~α resp. ~β and σ−1

5 σ3σ5 stabilizes ~α′ := τ4(~α).

Proof. — We take

τ6 = (012)(34), τ4 = (0432), τ2 = (03)(12).

Then τ6τ4τ2 = 1. Since τ2
4 = (03)(24), α is stabilized by τ2

4 τ2 = (03)(24)
(03)(12) = (24)(12) = (142) = σ3.
Furthermore, τ ′2 = τ4τ2τ

−1
4 = (0432)(03)(12)(0234) = (01)(24) and β is

stabilized by τ2τ ′2 = (03)(12)(01)(24) = (02413) = σ2
5 and hence also by σ5.

Finally, α′ is stabilized by τ ′2τ2
4 = (01)(24)(03)(24) = (01)(03) = (031).

But we also have σ−1
5 σ3σ5 = (04321)(142)(01234) = (031). �

From now on we assume that K and (τ6, τ4, τ2) are as in Lemma 3.6.

Lemma 3.7. — Every A5-translate of α′ meets α transversally in at
most one point. Similarly, exactly three A5-translates of β meet α resp. α′,
and they do so simply in at most one point.

Proof. — The A5-translates of α′ meet the fundamental segment [p4, p2]
of α in p4 only and through that point passes just one member, namely
α′ = τ4α. It then follows that theS5-translates of α distinct from αmeeting
α is the collection {σi3α′}i. These are pairwise distinct, proving the first
assertion.
The property regarding β is proved in a similar fashion. The cyclic group

generated by σ5 resp. σ3 is the A5-stabilizer of ~α resp. ~β. Any A5-translate of
β which intersects α is of the form σi3β for some i ∈ Z/3. The A5-stabilizer
of σi3~β is generated by σi3σ5σ

−i
3 . We have σ3σ5σ

−1
3 = (142)(01234)(124) =

(04132) and σ−1
3 σ5σ3 = (124)(01234)(142) = (02431) and neither is a power
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of σ5 = (01234). So these stabilizers are pairwise distinct. Hence so are the
{σi3~β}i∈Z/3, so that β meets α in at most one point.

Changing the orientation of Co has the effect of replacing τ4 by its inverse,
and this exchanges K and K∗, α and α′, but preserves β. So β meets α′ in
at most one point. �

Note that ~α · ~α′ = 1, ~β · ~α = 1 and ~β · ~α′ = 1. They define classes in
H1(Co) which we continue to denote by the same symbol. We write ∆(α)
for the A5-orbit of ~α in H1(Co). This is a set of 10 antipodal pairs. We
define ∆(α′) and ∆(β) likewise: these are sets of 10 resp. 6 antipodal pairs.

The following proposition gives us the structure ofH1(Co) as a symplectic
S5-module that we need in order to determine the monodromy group.
The group S5 acts in both Eo and H1(Co), but elements of Vo(Co) =
HomZA5(Eo, H1(Co)) will rarely beS5-equivariant. This gives therefore rise
to an anti-involution ι in Vo(Co): for τ ∈ S5, the element ι(v) := τvτ−1 is
also in Vo(Co) and only depends on the image of τ in S5/A5 ∼= Z/2. The
resulting involution is anti-linear with respect to the Galois involution in
Oo: for λ ∈ Oo and v ∈ Vo(Co), we have ι(λv) = λ′ι(v).

Proposition 3.8. — There exists a basis (v, v′) of Vo(Co) with the
following properties:

(1) The map E2
o → H1(Co) given by (a1, a2) 7→ v(a1) + X3v′(a2) is

an isomorphism of ZS5-modules which maps each summand onto
a Lagrangian submodule of H1(Co), and is symplectic in the sense
that A(v,X3v′) = 1.

(2) The anti-involution ι in Vo(Co) takes (v, v′) to ±(v′, v) (we leave
the sign as an unknown here).

(3) We have v(∆c) = ∆(α), v′(∆c) = ∆(α′) and (v−v′)(X3∆ir) = ∆(β).

The proof of Proposition 3.8 will use the following Lemma.

Lemma 3.9. — Suppose that ∆ ⊂ EQ consists of 10 (resp. 15) antipodal
pairs and has the property that s takes on ∆×∆c values in {−1, 0, 1}. In
the second case, assume also that at most three antipodal pairs of ∆ are
not perpendicular to a member of ∆c. Then ∆ equals X−3∆c (resp. ∆ir

or X−3∆ir).

Proof. — Since ∆c generates Eo and s is unimodular on Eo, our assump-
tion implies that ∆ ⊂ Eo. The fact that ∆c resp. ∆ir generates Eo also
implies that ∆ is the image of ∆c resp. ∆ir under a A5-equivariant homo-
morphism Eo → Eo, so is given by a scalar λ ∈ Oo. This scalar is unique
up to sign, for any element of O×o which leaves ∆ invariant will be of finite
order and hence equal to ±1.
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A straightforward computation shows that X−3 = 2X − 3 sends the
vector e+e0 +e1 to e2−e3 +e4. Noting that {1, 2X−3} is a Z-basis of Oo,
we write λ out on this basis: λ = p+ qX−3 = p+ q(2X − 3) with p, q ∈ Z.
Assume now that ∆ = λ∆c. We have e + e1 + e2 ∈ ∆c and so by our

assumption

s(λ(e+ e0 + e1), e+ e0 + e1)
= s(p(e+ e0 + e1) + q(e2 − e3 + e4), e+ e0 + e1) = 3p,

s(λ(e+ e0 + e1), e+ e1 + e2)
= s(p(e+ e0 + e1) + q(e2 − e3 + e4), e+ e1 + e2) = 2p+ q

both lie in {−1, 0, 1}. It follows that p = 0 and q = ±1, so that λ = ±X−3.
If ∆ = λ∆ir, then λ(e+ e0 + e1) = p(e+ e0 + e1) + q(e2 − e3 + e4) has

s-inner product of absolute value 6 1 with the elements of ∆c. This means
that |p| 6 1 and |q| 6 1. It remains to show that (p, q) is either (±1, 0) or
(0,±1). If (p, q) 6= (0, 0), then for every i ∈ Z/5,

s(λei, e+ e0 + e1) = s(ei, λ(e+ e0 + e1))
= s(ei, p(e2 − e3 + e4) + q(e+ e0 + e1) 6= 0,

so that at least 5 antipodal pairs in ∆ would be not orthogonal to e+e0+e1.
This we excluded. �

Proof of Proposition 3.8. — Recall that e + e0 + e1 is stabilized by
σ3 and that its A5-orbit generates Eo. Since H1(Co;Q) is isotypical as a
QA5-module (it is isomorphic to two copies of EQ), it follows that there
exists a v ∈ Vo(Co)Q = HomZA5(Eo, H1(Co;Q)) such that v(e+ e0 + e1) =
~α. Then v will take its values in H1(Co) and so will lie in Vo(Co). By
Lemma 3.6, the vector ~α′ ∈ H1(Co) is stabilized by σ−1

5 σ3σ5. Since σ−1
5 σ3σ5

stabilizes σ−1
5 (e + e0 + e1), it follows that there exists a v′ ∈ Vo(Co) such

that v′σ−1
5 (e+ e0 + e1) = ~α′.

Consider the pairing (x, y) ∈ Eo × Eo 7→ v(x) · v′(y). This pairing is
A5-invariant. We saw in Lemma 3.7 that it takes on ∆c×∆c values only in
{−1, 0, 1}. It then follows from Lemma 3.9 that v(x) · v′(y) = ±s(x,X−3y)
when x, y ∈ ∆c. In order to determine the sign, we note that v(e + e0 +
e1) · v′σ−1

5 (e+ e0 + e1) = ~α · ~α′ = 1 and

s(e+e0 +e1, X
−3σ−1

5 (e+e0 +e1)) = s(X−3(e+e0 +e1), σ−1
5 (e+e0 +e1))

= s(e2−e3 +e4, e+e4 +e0) = 1

This shows that v(x) ·v′(y) = s(x,X−3y). Equivalently: A(v,X3v′) = 1. So
(v,X3v′) is a symplectic basis of Vo(Co) in the sense that the A5-equivariant
map Eo ⊕ Eo → H(Co;Z) defined by (v,X3v′) pulls back the intersection
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pairing on H(Co;Z) to the symplectic pairing on Eo ⊕ Eo defined by s.
Since the latter is unimodular (since s is), this also implies that the map
Eo ⊕ Eo → H(Co;Z) is an isomorphism of symplectic modules.
According to Lemma 2.4, ∆c is S5-invariant. On the other hand, τ4 ∈

S5 r A5 takes α to α′, and so it follows that ι(v) = τ4vτ
−1
4 is an element

of Vo(Co) that takes ∆c to ∆(α′). But v′ also has this property. It is the
only element of Vo(Co) with this property up to sign, for any two elements
of Vo(Co) for which the images of ∆c coincide will differ by a factor in O×o
which is of finite order, in other words, will differ by a sign. As we are only
interested in the effect of conjugation with ι, this sign is unimportant for
us and we leave it as an unknown: we have ι(v) = ±v′. The map ι is an
antilinear involution of Vo(Co) and so v = ι2(v) = ι(±v′), which shows that
ι(v′) = ±v.
Finally, since the A5-stabilizers of e and ~β are generated by σ5, there

exists a u ∈ Vo(Co) such that u(e) = ~β. The set ∆(β) consists of 6 antipodal
pairs in H1(Co). Lemma 3.7 tells us that the hypotheses of Lemma 3.9 are
fulfilled (second case): (x, y) ∈ ∆ir × ∆c 7→ u(x) · v(y) takes its values in
{−1, 0, 1} with for a given y ∈ ∆c, a nonzero value occurring for at most
three antipodal pairs in ∆ir. It then follows that either u(x)·v(y) = ±s(x, y)
or u(x) · v(y) = ±s(x,X−3y). We have u(e) · v(e + e0 + e1) = ~β · ~α = 1,
s(e, e+ e0 + e1) = 1 and s(e,X−3(e+ e0 + e1)) = s(e, e2 − e3 + e4) = 0. It
follows that u(x) · v(y) = s(x, y), in other words, A(u, v) = 1.
The same argument works if we replace v by v′: u(x) ·v′(y) = ±s(x, y) or

u(x) · v′(y) = ±s(x,X−3y). Since we have u(e) · v′(e+ e4 + e0) = ~β · ~α′ = 1,
s(e, σ−1

5 (e+ e0 + e1)) = s(σ5(e), e+ e0 + e1) = 1 and

s(e,X−3σ−1
5 (e+ e0 + e1)) = s(e, σ−1

5 X−3(e+ e0 + e1))
= s(σ5(e), e2 − e3 + e4) = s(e, e2 − e3 + e4) = 0,

it follows that u(x) · v′(y) = s(x, y), so that A(u, v′) = 1. Since A(v, v′) =
X−3, this proves that u = X3(v − v′) and so ∆(β) = (v − v′)(X3∆ir). �

Remark 3.10. — The second property implies that if an endomorphism
T of Vo(Co) has on the basis (v, v′) the matrix

(
a b
c d

)
, then ιT ι has the

matrix
(
d′ c′

b′ a′

)
.

Remark 3.11. — We can realize ∆(α), ∆(β) and their ι-transforms as
sets of vanishing cycles as follows. Consider in P the union of the four arcs
α, α′, β, β′. So this is the union of the unit circle and its center line [−1, 1]. It
contains all the order 2-orbifold points. By moving these points we deform
Co as a A5-curve. In the present case, each of the four arcs determines a
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simple way to do this and gives a path in B from co to one of the points
cc, c

′
c, cir, c

′
ir. For the arc α, we move the central point 0 along the ray [0, 1]

to its end point 1 and for the arc β we move 1 along the semi-circle to
its end point −1 (we fix the other orbifold points) and we do the obvious
analogue for α′ and β′. The arcs γα, γβ , γα′ , γβ′ in B thus obtained have
the property that they do not meet away from co and avoid discriminant
points except at the end point. We assume the labeling such that the end
points are cc, c′c, cir and c′ir respectively. Notice that ι exchanges the items
of γα, γα′ and γβ , γβ′

To the arc γα from co to cc there is associated element [γα] ∈ πi(B◦, co)
represented by a positive simple loop based at co around the end point cc of
γα and similarly for the other arcs. The four elements [γα], [γβ ], [γα′ ], [γβ′ ]
generate πi(B◦, co) freely and [γα][γβ ][γα′ ][γβ′ ] (read from right to left)
represents a negative simple loop around c∞.

3.3. The local system of isogeny modules of the Wiman–Edge
pencil

The Vo(Ct) define a local system Vo of symplectic Oo-modules of rank
2 over B◦. The involution ι of B◦ (that is given by precomposition with a
non-inner automorphism of A5) lifts to an isomorphism between the pull-
back ι∗Vo and the twist of Vo as a Oo-module by the Galois involution.
In other words, the involution ι lifts in an anti-linear manner to Vo. As
proved in Theorem 1.1 (see also Remark 2.5) of [7], there is an identification
B◦ = Γ\H with Γ ⊂ PSL2(Z) being torsion free and so Vo pulls back to
H as a trivial symplectic local system with Γ-action. The basis (v, v′) of
Vo(Co) constructed in Proposition 3.8 extends to one of the pull-back of
Vo to H (so we use co as our base point). Now the Γ-action (and hence the
monodromy of Vo) is given by a homomorphism

ρ : Γ→ SL2(Oo)

that is compatible with the involutions named ι (it acts in SL2(Oo) as pre-
scribed by Remark 3.10. (So this yields a group homomorphism between the
semi-direct products defined by these involutions; this can be understood
as a monodromy representation of a local system on the Deligne–Mumford
stack B◦/ι.)
Our goal is to describe this monodromy representation. We first do this

locally.
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The cusps of SL2(Oo)

We observed that O/2O ∼= F4 and that the Galois involution of O in-
duces in O/2O the Frobenius map (so its fixed point set is the prime field
Oo/2O = F2). Reduction modulo 2 defines a homomorphism SL2(O) →
SL2(F4). It is surjective and the permutation representation of SL2(F4) on
P1(F4) identifies SL2(F4) with the alternating group A5. (It is also known
that the full permutation group of P1(F4) is the semi-direct product of
SL2(F4) and the Frobenius.)
We shall write SL2(O)[2] for the kernel of SL2(O) → SL2(F4). Since

P1(F4) has 5 elements, SL2(O)[2] has as many cusps (= SL2(O)[2]-orbits
in P1(K)). These are represented by [1 : 0], [0 : 1], [1 : 1], [X : 1], [1 : X].
Note that the involution I : (x0, x1) 7→ (x1, x0) exchanges [1 : 0] and [0 : 1]
and [X : 1] and [1 : X], whereas the Frobenius only exchanges [X : 1] and
[1 : X] (for [X2 : 1] = [1 : X−2] = [1 : −X + 2] and [1 : X] define the same
element of P1(F4)).
It is clear that SL2(Oo) is the preimage of SL2(F2), when regarded as a

subgroup of SL2(F4). The subgroup SL2(F2) ⊂ SL2(F4) has two orbits in
P1(F4), namely {[1 : 0], [1 : 1], [0 : 1]} and {[X : 1], [1 : X]}, and so SL2(Oo)
has only 2 cusps (which we shall denote ∞0 resp. ∞X), both of which are
invariant under the involution I. This has the following implication.

Lemma 3.12. — A rank one Oo-submodule L ⊂ O2
o which is primitive

in the sense that O2
o/L is torsion free, is a SL2(Oo)-transform of either

(type ∞0): the first summand of O2
o (the associated SL2(Oo)-cusp is

∞0), or
(type ∞X): the image of a ∈ O 7→ (2a, 2Xa) ∈ O2

o (the associated
SL2(Oo)-cusp is ∞X).

Proof. — By regarding Q⊗ZL = K⊗Oo L as a K-linear subspace of K2

of dimension one, we get an element of P1(K). Since the SL2(Oo)-orbits
in P1(K) are represented by [1 : 0] and [1 : X], we can assume that either
Q⊗ZL is the first summand of K2 or the graph of X. In the first case, it is
clear that L is the first summand of O2

o. In the second case, we note that
if u ∈ Oo is such that Xu ∈ Oo, then by writing u as an integral linear
combination of 1 and X, we find that u ∈ 2O. Conversely, every element
of 2O has that property. �

The cusps of the principal level 2 subgroup of SL2(Oo)

We next consider the mod 2 reduction of Oo and SL2(Oo). A Z-basis of
Oo consists of 1 and Y := 2X. Since Y 2 = 4X+4 = 2Y +4 ∈ 2Oo, it follows
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that Oo/2Oo ∼= F2[Y ]/(Y 2) as a ring. Its group of units is {1, 1 + Y }. So
a nonzero submodule of (Oo/2Oo)2 generated by a single element are the
ones generated by (1, 0), (1, Y ), (1, 1), (1 + Y, 1), (Y, Y ), (Y, 1), (0, 1). These
seven submodules are pairwise distinct. Note that the involution (x0, x1) 7→
(x1, x0) exchanges the items of {[1 : 0], [0 : 1]} and {[Y : 1], [1 : Y ]} and fixes
the other three [1 : 1], [1 + Y : 1], [Y : Y ]. The reduction homomorphism
SL2(Oo)→ SL2(Oo/2Oo) is onto.

4. Arithmeticity of the monodromy

In Section 3 we proved that the monodromy representation of the
Wiman–Edge pencil has target SL2(Oo), giving a representation ρ : Γ →
SL2(Oo). The goal of this section is to prove Theorem 1.1, that the image of
ρ has finite index in SL2(Oo). The first step in doing this is to compute the
image under ρ of the generators of Γ. As explained above, Γ is generated
by loops around the cusps, i.e. the degenerations of the pencil. We start
by applying classical Picard–Lefschetz theory to compute the conjugacy
classes of these local monodromies. Computing them on the nose requires
more work, which we do later in the section.

4.1. The monodromy around a cusp

In order to gain a better understanding of what ρ is like, let us recall that
Γ is a free group and is generated by simple loops around the punctures of
the 5-punctured sphere B◦. We therefore concentrate on the monodromy
around each puncture.
Assume that Cs is singular, and choose a disk-like neighborhood U of s in

{s}∪B◦ (so that Cs ⊂ CU is a homotopy equivalence). Choose also η ∈ Ur
{s} and write C for Cη. Then the natural map H1(C)→ H1(CU ) ∼= H1(Cs)
is onto, and the kernel is a A5-invariant isotropic sublattice. If Gs denotes
the dual intersection graph of Cs then there is a natural homotopy class of
maps Cs → Gs. Since the irreducible components of the normalization of
Cs are all of genus zero, this homotopy class induces an isomorphism on
the first (co)homology. We note that in each case H1(Gs) is free of rank
6, and so the kernel of H1(C) → H1(Cs) ∼= H1(Gs) is in fact a primitive
Lagrangian sublattice. The intersection pairing identifies this kernel with
the dual H1(Gs) of H1(Cs), so that we have an exact sequence of ZA5-
modules

(vanishing sequence) 0→ H1(Gs)→ H1(C)→ H1(Gs)→ 0,
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where H1(Gs)→ H1(C) is the composition of H1(Gs)→ H1(C) with the
isomorphism H1(C) ∼= H1(C) defined by the intersection pairing. The se-
quence is preserved by the monodromy operator of the family CUr{s}, with
the monodromy acting nontrivially only on the middle term. Its difference
with the identity (which is also called the variation of the monodromy) is
therefore given by a homomorphism

(variation of the local monodromy) νs : H1(Gs)→ H1(Gs)

of ZA5-modules. This homomorphism can be read off from Gs. To see this,
we recall that the monodromy is given by the classical Picard–Lefschetz
formula. Each node of Cs determines a vanishing circle on C up to isotopy,
and hence, after orienting it, an element of H1(C) up to sign (a vanishing
cycle). We denote the collection of vanishing cycles by ∆C ⊂ H1(C). It is
clear from the preceding that ∆C lies in the image of H1(Gs)→ H1(C) ∼=
H1(C). In fact, ∆C generates that image. The monodromy around Cs is a
multi Dehn twist which acts on H1(C) as:

Ts : x ∈ H1(C) 7→ x+
∑

δ∈∆C/{±1}

(δ · x)δ ∈ H1(C)

(the sum makes sense because replacing δ by −δ does not alter (δ · x)δ).
We now see that if we identify H1(Gs) with the dual of H1(Gs), then
νs ∈ Hom(H1(Gs), H1(Gs)) ∼= H1(Gs) ⊗ H1(Gs) is represented by the
symmetric tensor

ts :=
∑

δ∈∆C/{±1}

δ ⊗ δ ∈ H1(Gs)⊗H1(Gs).

We shall refer to ts as the variation tensor. It is the sum over the squares
of the edges of Gs and so canonically associated with Gs. It is of course
also A5-invariant. By construction Ts(x)− x is obtained by contracting ts
on the right with the image [x] of x in H1(Gs) and regard the resulting
element of H1(Gs) as sitting in H1(C) via Poincaré duality. In order to
determine ts in each case, we first note that the inverse form of s (i.e., the
quadratic form on E∨o ) is the tensor

š = e⊗ e+
∑

i∈Z/(5)

ei ⊗ ei ∈ Eo ⊗ Eo.

Proposition 4.1 (Variation tensors of the singular fibers). — For a
singular fiber Cs of the Wiman–Edge pencil, its homology as a A5-module
and its variation tensor are as follows:
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(1) When Cs is irreducible, there exists an isomorphism vs : Eo ∼=
H1(Gs) of ZA5-modules (so the associated cusp is ∞0) such that
ts = vs ⊗ vs(š).

(2) When Cs consists of five conics, there exists an isomorphism vs :
Eo ∼= H1(Gs) (so the associated cusp is ∞0) such that ts =
(3 + 4X)vs ⊗ vs(š).

(3) When Cs consists of ten lines, there exists an isomorphism vs :
E ∼= H1(Gs) (so the associated cusp is ∞X) such that ts =
(4 + 2X)v ⊗ v(š).

Proof when Cs is irreducible. — In this case G := Gs has one ver-
tex with 6 loops attached. Choose an orientation of each loop of G. This
selects a vanishing cycle from each of our six antipodal pairs and the as-
sociated classes in H1(G) make up a basis and the variation of the mon-
odromy assigns to the oriented loop the associated vanishing cycle. An
A5-isomorphism v : E0 ∼= H1(G) ⊂ H1(C) is defined by assigning to e one
such vanishing cycle. It is clear that then ts is as asserted. �

Proof when Cs is the union of 5 conics. — In this case Gs is the K5
graph (which has S5 as its automorphism group). It has 20 oriented edges
and A5 acts transitively on this set. We have in fact an A5-equivariant
bijection between the order 3-elements in A5 (the conjugacy class of 3-
cycles) and the oriented edges ofK5 by assigning to the 3-cycle h = (τ1τ2τ3)
the oriented edge [τ4, τ5] which is characterized by the property that the
permutation i 7→ τi is even. Note that this assigns to the inverse element
(τ1τ3τ2) the oppositely oriented edge [τ5, τ4]. Thus the group Z1(K5) of
simplicial 1-cochains on K5 is identified with the Z-module of rank 10
generated by the order 3 elements h ∈ A5, subject to the relations h+h−1 =
0. Its ZA5-module structure is defined by conjugation. The 1-coboundary
submodule B1(K5) has rank 4 and is spanned by the vertices subject to the
relation that the sum of the vertices is zero. So B1(K5)C is the reflection
representation; it is irreducible as a A5-module.
According to Lemma 2.4, the A5-orbit ∆c of e+ e0 + e1 ∈ Eo consists of

the 10 opposite pairs {±(e+ ei + ei+1)}i∈Z/(5),±(ei − ei−2 − ei+2)}i∈Z/(5),
spans Eo over Z and σ3 ∈ A5 generates the A5-stabilizer of e+ e0 + e1. A
ZA5-module epimorphism Z1(K5)→ Eo is then defined by demanding that
it takes the oriented edge fixed by σ3 to e+e0+e1. Since EQ is irreducible as
a QA5-module, the image of B1(K5)Q in EQ is zero. So B1(K5) is contained
in the kernel of Z1(K5) → Eo. But B1(K5) is a primitive submodule of
Z1(K5) (forH1(K5) is torsion free) and has the same rank as this kernel. So
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it is equal to the kernel and we have an induced isomorphism ZA5-module
isomorphism vs : Eo → H1(K5).
The associated quadratic tensor is the image under vs ⊗ vs of

∑
i∈Z/(5)

(e+ ei−1 + ei+1)⊗2 +
∑

i∈Z/(5)

(ei − ei−2 − ei+2)⊗2.

If we write this tensor as u⊗e+
∑
i ui⊗ei we find that u = 5e+

∑
i ei−1 +∑

i ei+1 = 3e+ 2(e+
∑
i ei) = 3e+ 4ε = (3 + 4X)(e). Likewise we find that

ui = (3 + 4X)(ei). �

Proof when Cs is the union of 10 lines. — In this case Gs is the Petersen
graph P . Recall that the vertices of P are indexed by the 2-element subsets
of Z/5 (a set of size 10) and that two such 2-element subsets span an edge if
and only they are disjoint (a set of size 15). This makes it plain that A5 acts
transitively on its set of oriented edges (a set of 15 antipodal pairs), so that
the stabilizer of an oriented edge is of order 2. The elements of order 2 in
A5 make up a single conjugacy class, and a given order 2 element preserves
just one edge in an orientation preserving manner. The centralizer of that
element is a copy of Z/2 ⊕ Z/2; it preserves the edge, but may reverse
orientation.
Similarly, e + eo ∈ E has as its A5-stabilizer a subgroup of order 2

(namely σ2). It is clear that if g ∈ A5 maps e + eo to −(e + eo), then it
must centralize σ2. It follows that there exists a A5-equivariant bijection
of the set of oriented edges of P onto the A5-orbit of e + eo with the
property that orientation reversal corresponds to taking antipode. In view
of Lemma 2.4 this homomorphism is onto.
Recall that EC is an CA5-module isomorphic to IC ⊕ I ′C, where IC and

I ′C are irreducible of degree 3. So to prove that Z1(P )→ E factors through
an isomorphism H1(P )→ E, it suffices to show that the coboundary space
B1(P ;C), does not contain a copy of IC or I ′C. As we observed in the proof
of Lemma 2.1 of part I [5], the vertex set of P spans a CA5-module which
decomposes into a trivial representation and two irreducible representations
of dimension 4 and 5. Hence the latter two will span B1(P ;C). In particular,
neither IC nor I ′C appears in B1(P ;C) and so we have an isomorphism
H1(P )→ E. We denote by vs : E ∼= H1(P ) its inverse.

The associated quadratic tensor is then the image under vs ⊗ vs of

∑
i∈Z/(5)

(e+ ei)⊗2 +
∑

i∈Z/(5)

(ei + ei+1)⊗2 +
∑

i∈Z/(5)

(ei−1 − ei+1)⊗2.
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Proceeding as in the previous case, we write this as u ⊗ e +
∑
i ui ⊗ ei

and find that u = 5e +
∑
i ei = 4e + 2ε = (4 + 2X)(e) and likewise that

ui = (4 + 2X)(ei). �

Remark 4.2. — The descriptions in Proposition 4.1 also tell us what the
monodromy variations, or rather their SL2(Oo)-conjugacy classes, are in
terms of Vo(η): as this endomorphism of Vo(η) is Oo-linear, they are in the
three cases given by respectively the images of v ⊗ v, (3 + 4X)v ⊗ v, and
(4 + 2X)v⊗ v in Vo(η)⊗Oo Vo(η) (in the last case this element lies a priori
only in V(η) ⊗O V(η), but one checks that it actually lies in the image of
Vo(η)⊗Oo Vo(η)).
As we might expect, each of these three conjugacy classes is Galois in-

variant. In the first case this is obvious. To see this in the two other cases,
recall that the group of units of Oo is generated by X3 = 2X + 1. So we
can change the representative of the conjugacy class by conjugation with
the diagonal matrix in SL2(Oo) with diagonal entries X3 and X−3. Its ef-
fect on

(1
0
)
⊗K

(1
0
)
is multiplication with X6. Since (3 + 4X)′ = 7− 4X =

X−6(3 + 4X), it follows that the conjugacy class defined by the five con-
ics is indeed Galois invariant. This also the case for the conjugacy class
defined by the ten lines: A := ( 1 −1

2 −1 ) ∈ SL2(Z) takes
( 1
X′

)
=
( 1

1−X
)
to(

X
1+X

)
= X

( 1
X

)
and hence takes (4 + 2X ′)

( 1
X′

)
⊗K

( 1
X′

)
to

(6− 2X)X2
(

1
X

)
⊗K

(
1
X

)
= (4 + 2X)

(
1
X

)
⊗K

(
1
X

)
.

We can be more precise in that we can obtain actual monodromies rather
than just their conjugacy classes. Recall that the involution of the Wiman–
Edge pencil determines an involution ι of B with fixed points co and c∞
representing the Wiman curve resp. the union of ten lines. This involution
is covered by an involution of Vo which is anti-linear: if V′o denotes the same
local system but for which the Oo-module structure has been precomposed
with nontrival Galois element X 7→ X ′ = 1 − X, then we have an iden-
tification Vo ∼= ι∗V′o such that applying this twice gives the identity. The
singular fibers 6= C∞ come in two (unordered) pairs {Cir, C ′ir}, {Cc, C ′c}
and lie over points denoted cir, c′ir = ι(cir) resp. cc, c′c = ι(cc). We focus on
the affine line B r {c∞}.

We observed in Remark 3.11 that the elements of π1(B◦, co) ∼= Γ defined
by γα, γα′ and γβ , γβ′ freely generate π1(B◦, co) ∼= Γ; that ι exchanges each
pair; and that a simple negative loop around c∞ is represented by the
product [γα][γβ ][γα′ ][γβ′ ]. We shall abuse notation a bit by writing ρ(γα)
for ρ([γα]) and likewise for the other generators.
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Corollary 4.3. — The monodromies satisfy the following identities:

ρ(γα) =
(

1 −1 + 2X
0 1

)
, ρ(γα′) =

(
1 0

1− 2X 1

)
and

ρ(γβ) =
(

1 +X3 X3

−X3 1−X3

)
, ρ(γβ′) =

(
1 +X−3 X−3

−X−3 1−X−3

)
.

These elements determine the monodromy representation of Vo and gener-
ate its monodromy group. This monodromy group fixes the map O2

o → F5
defined by taking the symplectic product with

( 1
−1
)
(= v − v′) followed by

the reduction Oo → F5. Up to a scalar this is the map Vo(Co)→ F5 found
in Corollary 3.5.

Proof. — The set of vanishing cycles for the degeneration along γα is
v(∆c). According to Proposition 4.1, the variation tensor of ρ(γα) is then
(3 + 4X)š(v⊗ v). Now note that (3 + 4X)A(v, v′) = (3 + 4X)(−3 + 2X) =
−1 + 2X. Hence ρ(γα)(v) = v and

ρ(γα)(v′) = v′ + (3 + 4X)A(v, v′)v = v′ + (−1 + 2X)v

so that ρ(γα) is as asserted. Proposition 3.8 also shows that the set of
vanishing cycles for the degeneration along γβ is the image of ∆ir under
u = X3v −X3v′. We have A(u, v′) = A(u, v) = +1 and so

ρ(γβ)(v) = v + u = (1 +X3)v −X3v′,

ρ(γβ)(v′) = v′ + u = X3v + (1−X3)v′,

which yields the matrix for ρ(γβ). The matrices for ρ(γα′) and ρ(γβ′) are
then obtained using Remark 3.10 and the fact that (−1 + 2X)′ = 1 − 2X
and (X3)′ = −X−3.

We note that the images of ρ(γα) and ρ(γα′) are trivial in SL2(F5).
The images of ρ(γβ) and ρ(γβ′) must generate the same one-parameter
subgroup U ⊂ SL2(F5), namely the additive copy of F5 defined by the
quadratic tensor

( 1
−1
)
⊗
( 1
−1
)
. So the monodromy fixes pointwise the line

in F5 ⊗ Vo(Co) spanned by v − v′ and it is the only line spanned by that
property. So it is the one determined by Corollary 3.5. �

Question 4.4. — It is well-known that the reduction homomorphism
SL2(Z) → SL2(F5) is onto and hence so is SL2(Oo) → SL2(F5). Are there
no other restrictions on the monodromy group other than the one given in
Corollary 4.3, in the sense that it contains the kernel of the reduction map
SL2(Oo)→ SL2(F5)?

TOME 71 (2021), FASCICULE 4



1354 Benson FARB & Eduard LOOIJENGA

We note that γβγαγβ′γα′ represents a negative loop around c∞ and so its
image under ρ is in the conjugacy class of the unipotent element defined by
the variation −2(2+X)vs⊗vs(š) for some vector vs of type∞X (as defined
in Lemma 3.12). Hence the following proposition gives an additional check
on our computations.

Proposition 4.5. — Let v∞ := v + Xv′. Then ρ(γαγβγ′αγ′β) is given
by the variation tensor −2(2 +X)v∞ ⊗ v∞(š).

Proof. — We put B := ρ(γαγβ), so that ρ(γαγβγ′αγ′β) = BιBι. We com-
pute

B = ρ(γα)ρ(γβ) =
(

1 −1 + 2X
0 1

)(
1 +X3 X3

−X3 1−X3

)
=
(
−1− 2X −3
−1− 2X −2X

)
.

Then in view of Remark 3.10,

ιBι = ρ(γβ′)ρ(γα′) =
(
−2X ′ −1− 2X ′
−3 −1− 2X ′

)
=
(
−2 + 2X −3 + 2X
−3 −3 + 2X

)
and so

BιBι =
(
−1− 2X −3
−1− 2X −2X

)
.

(
−2 + 2X −3 + 2X
−3 −3 + 2X

)
=
(

7− 2X 8− 6X
−2 + 4X −5 + 2X

)
It follows that

BιBι− 1 = 2
(

3−X 4− 3X
−1 + 2X −3 +X

)
= −2(2 +X)

(
−X−2 X−3

−X−1 X−2

)
.

Now note that A(v∞, v)v∞,= −X−2(v + Xv′) = −X−2v − X−1v′ and
A(v′∞, v′)v∞ = X−3(v + Xv′) = X−3v + X−2v′ and so the last ma-
trix is indeed the matrix of the endomorphism x ∈ Vo(Co) 7→ −2(2 +
X)A(v∞, x)v∞ ∈ Vo(Co). �

4.2. Arithmeticity

Now that we know the image of the generators of Γ under the monodromy
representation, we can prove arithmeticity of the monodromy group. We
use a criterion due to Benoist–Oh, namely Theorem 1.1 of [1]. That theorem
gives the following as a special case.
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Theorem 4.6 (Benoist–Oh). — LetK be a real quadratic number field,
OK its ring of integers, and Ω < K a lattice. Let Λ < SL2(OK) be the
subgroup generated by a matrix of the form

(
a b
c d

)
with c 6= 0, together

with the set of matrices {(
1 ω

0 1

)
: ω ∈ Ω

}
.

If σ, σ′ : K → R are the two real embeddings of K, then the associated
embedding SL2(OK)→ SL2(R)×SL2(R) maps Λ onto a lattice in SL2(R)×
SL2(R); in particular Λ has finite index in SL2(OK).

Proof of Theorem 1.1. — It suffices to check that ρ(Γ) satisfies the crite-
ria of Theorem 4.6. Of course it suffices to do this after a single conjugation
by an element of SL2(R)× SL2(R); that is, after a single change of basis.
For parabolic property, we note that the elements ρ(γβ) and ρ(γβ′) both

stabilize v + v′. The variation construction shows that under the above
homomorphism, ρ(γβ) resp. ρ(γβ′) is the image of X3 = 2X + 1 resp.
X−3 = 3− 2X. The additive span Ω of these elements is of finite index in
Oo and so Ω is a lattice in K. We conclude that the parabolic condition of
Theorem 4.6 is satisfied.
We now claim that, after conjugating ρ(Γ) so that the parabolic subgroup

P := 〈ρ(γβ), ρ(γβ′〉 has upper triangular form with 1 on the diagonal, ρ(Γ)
contains a matrix of the form

(
a b
c d

)
with c 6= 0. If this were not the case then

the Zariski closure G of the image of monodromy group in SL2(C)×SL2(C)
would lie in the group of upper triangular matrices. We claim that G is in
fact all of SL2(C) × SL2(C), a contradiction, finishing the proof of the
theorem.
To prove the claim, note that the images ρ(γα) and ρ(γα′) in SL2(C) ×

SL2(C) are (
( 1 −

√
5

0 1 ), ( 1
√

5
0 1 )

)
resp.

(
( 1 0√

5 1 ), ( 1 0
−
√

5 1 )
)
.

It is clear that G contains the subgroup generated by the one-parameter
subgroups obtained by replacing

√
5 by a complex variable. These two

groups generate the subgroup of SL2(C)× SL2(C) that is in fact the graph
of an automorphism u of SL2(C), namely that assigns to g ∈ SL2(C) the
transpose inverse of g followed by conjugation with ( 0 1

1 0 ). Let U ⊂ SL2(C)
be the image of the one parameter group t ∈ C 7→ ( 0 t

1 0 ). The parabolic
property shows that G also contains the U ×U . Since SL2(C) is generated
by the conjugacy class of U , the SL2(C) × SL2(C)-conjugates of U × {1}
generate SL2(C)×{1}. Similarly, the SL2(C)×SL2(C)-conjugates of {1}×U
generate {1} × SL2(C) and so G = SL2(C)× SL2(C) as asserted. �
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5. The period map

In this section we use Theorem 1.1 to study various period maps associ-
ated to the Wiman–Edge pencil.

5.1. The period map of the Wiman–Edge pencil

We shall see that the monodromy representation ρ : π1(B◦) → SL2(Oo)
is induced by an algebraic map from B◦ to a quotient of a period domain D

isomorphic to H2 by an action of SL2(Oo). This is the period map, which
assigns to a curve with faithful A5-action its Jacobian with the induced A5-
action. (Beware however, that there is a priori no obvious relation between
Γ as a subgroup in PSL2(Z) and its image in SL2(Oo).) The quotient Y ◦ :=
SL2(Oo)\D is a quasi-projective, complex-algebraic surface, called a Hilbert
modular surface. In this subsection we prove some properties of the period
mapping; in particular we prove that it comes equipped with some extra
structure.
The two ring embeddings σ, σ′ : Oo ↪→ R define an algebra-isomorphism

(σ, σ′) : R⊗ZOo = R⊗QK ∼= R⊕R. So for a member C of the Wiman–Edge
pencil we have the decomposition

H1(C;R) = R⊗Z H1(C) ∼= R⊗Z Vo(C)⊗Oo Eo
Note that for C = Co, the basis (v, v′) of Vo(Co) introduced in Proposi-
tion 3.8 yields the R-basis {σv, σv′, σ′v, σ′v′} for R ⊗Z V (Co). The anti-
involution ι exchanges v and v′ up to a common sign, but also exchanges
the two real embeddings of K. In other words, it exchanges the basis ele-
ments σv, σ′v′ resp. σ′v, σv′ up to a common sign. The Oo-module Vo(Co)
does not have a Z-basis consisting of elements invariant under ι, but the K-
vector space Vo(Co)Q does, namely (v+v′, X3(v−v′)) or (v−v′, X3(v+v′)),
depending on whether ι exchanges v and v′ of v and −v′.

Let (w,w′) be such a basis. Assuming that C is smooth, then H1(C)
acquires a Hodge structure of weight −1 polarized by the intersection pair-
ing. It is completely given by the complex subspace F 0H1(C) ⊂ H1(C;C).
This is an A5-invariant subspace that can be written as the graph of a A5-
equivariant map from the image of w′C to the image of wC. The positivity
property of the associated Hermitian form implies that there exist τ, τ ′ ∈ H

such that F 0H1(C) is spanned by images of τσw + σw′ and τ ′σ′w + σ′w′.
The action of SL2(K) on H2 is then the standard one:(

a b

c d

)
(τ, τ ′) =

(
σ(a)τ + σ(b)
σ(c)τ + σ(d) ,

σ′(a)τ ′ + σ′(b)
σ′(c)τ ′ + σ′(d)

)
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We prefer however to work with (v, v′). Let us simply write D for the
space of Hodge structures of weight −1 on Vo(Co) of the above type so
that (by the above discussion) D is a domain isomorphic to H2. Then
Y ◦ := SL 2(Oo)\D is an algebraic surface equipped with an involution
ι. We note that the fixed-point set (Y ◦)ι of ι in Y ◦ contains the image
D◦ ⊂ Y ◦ of what corresponds to the diagonal of H2. Since the stabilizer
of the diagonal in SL2(Oo) is SL2(Z), the latter is just a copy of the j-line
SL2(Z)\H. The closure D of D◦ in Y adds the cusp ∞0, and is of course
contained in Y ι. But Y ι has other curves as irreducible components. It also
contains the other cusp.

Proposition 5.1. — The period map

Π◦ : B◦ = Γ\H→ SL2(Oo)\D = Y ◦

is an ι-equivariant closed embedding. It extends to an ι-equivariant mor-
phism Π : B → Y such that Π−1Y ι is the union of the 5 points of B r B◦
and the point associated to the Wiman curve. The preimage of ∞X is the
C∞-point of B r B◦ and the preimage of ∞0 consists of the other four
points over which there is a singular fiber.

Proof. — The ι-equivariance has already been established. The rest of
the proposition follows essentially from the Torelli theorem, which asserts
that a smooth projective curve can be reconstructed from its Jacobian as a
principally polarized abelian variety. An automorphism of the latter is up
to the composition with the involution −1 in J(C) induced an automor-
phism of the curve. This automorphism is then unique unless the curve is
hyperelliptic. A curve C in the Wiman–Edge pencil is nonhyperelliptic and
hence Aut(C) is identified with the group of automorphisms of J(C) as a
polarized abelian variety modulo ±1. Thus Π can be understood as the lift
of the usual period map which also takes into account the identification of a
group of automorphisms of the curve with A5 up to inner automorphism. It
is therefore an embedding. The cusps in B define stable degenerations. This
implies that Π◦ is proper and extends to a morphism from B (which adds
five points) to the Baily–Borel compactification Y of SL2(Oo)\D (which
adds two cusps). �

5.2. Relation with the Clebsch–Hirzebruch model

We briefly explain the relation between our Hilbert modular surface Y ◦
and another one that was investigated by Hirzebruch [8] and described by
him in terms of the Clebsch surface.
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Recall that the natural map SL2(O) → SL2(O/2O) ∼= SL2(F4) is onto
with kernel the principal level 2 congruence subgroup SL2(O)[2] and that
SL2(Oo) is the preimage of SL2(F2) ⊂ SL2(F4). (Note that SL2(F2) can be
identified with the full permutation group of the three elements of P1(F2).)
This is replicated by applying the functor Vo to the chain E ⊂ Eo ⊂ E∨, for
as we observed earlier, we then get (2O)2 ⊂ O2

o ⊂ O2. The group SL2(O)[2]
contains −1, hence acts onD through PSL2(O)[2] := SL2(O)[2]/{±1}. This
action is faithful and even free so that Y ◦[2] := SL2(O)[2]\D is a smooth
surface. Its Baily–Borel compactification Y ◦[2] ⊂ Y [2] is a normal projec-
tive surface obtained by adding the five points of P1(F4). All five points
are cusp surface singularities of the same type; following Hirzebruch they
are resolved by a toroidal resolution Ŷ [2] → Y [2] for which the preimage
of each cusp is a triangle of rational curves of self-intersection −3. We thus
end up with a smooth surface Ŷ [2] endowed with an action of SL2(F4), or
rather, of PSL2(F4). As we mentioned earlier, PSL2(F4) ∼= A5, but since
we do not know whether that is a curious coincidence or that PSL2(F4) is
naturally identified with the automorphism group of a general member of
the Wiman–Edge pencil, we prefer to make the notational distinction.
Recall that what we called in [5] the Klein plane and denoted by P , a

projective plane with faithful SL2(F4)-action. It is obtained from complex-
ification followed by projectivization of a real irreducible representation
of degree 3 in which PSL2(F4) is identified with the group of motions of
a regular icosahedron. The 12 vertices of the icosahedron determine an
PSL2(F4)-orbit in P of size 6. The blowup P̃ → P of this orbit is then a
cubic surface with PSL2(F4)-action. It is the classical Clebsch surface: it is
isomorphic to the cubic surface in the diagonal hyperplane

∑
i zi = 0 in P4

(a copy of P3) defined by
∑
i z

3
i = 0, where A5 of course acts by permuting

coordinates. Since the Clebsch surface actually comes with an S5-action,
so must P̃ . The barycenters of the 20 faces of the icosahedron determine
SL2(F4)-orbit in P of size 10 and appear on P̃ as its set of Eckardt points,
that is, the set of points of P̃ through which pass three distinct lines on P̃ .
Hirzebruch proves in [8] that Ŷ [2] is equivariantly isomorphic to the blowup
P̂ → P̃ at this size 10 orbit. It is in particular a rational surface. It follows
that our period map defines a morphism from the base of the Wiman–
Edge pencil B to the SL2(F2)-orbit space of P̂ . It would be worthwhile to
determine its image in terms of the above construction.
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5.3. The associated family of K3 surfaces

There is another period map for the Wiman–Edge pencil, which in the
terminology of Kudla–Rapoport, is of occult type. Recall that the Wiman–
Edge pencil is realized on a quintic del Pezzo surface S whose automorphism
group (a copy of S5) preserves the pencil and induces in each member
Ct ⊂ S the A5-action. There exists a section αt of ω−2

S with divisor Ct.
Then √αt defines a surface Ŝt in the total space of ω−1

S (the determinant
bundle of the tangent bundle) such that the projection Ŝt → St is a double
cover ramified along Ct. Then α̂t := √αt is unambiguously defined on Ŝt
as a 2-vector and is there nowhere vanishing.

Proposition 5.2. — The surface Ŝt is a K3-surface (with an ordinary
double point over every node of Ct). The A5-action on S lifts uniquely
to one on Ŝt (and hence commutes with the involution) and the orthog-
onal complement of the QA5-embedding H2(S;Q) ↪→ H2(Ŝt;Q) is as a
QA5-module isomorphic to 3.1 ⊕ V ⊕ 2W . The 3-dimensional summand
on which A5 acts trivially has signature (2, 1), and its complexification
contains H2,0(Ŝt).

Proof. — The inverse of α̂t is a nowhere zero 2-form. In order to conclude
that Ŝt is a K3 surface, it suffices to show that H1(Ŝt) = 0. If π : Ŝt → S

is the projection, then we have H1(Ŝt) = H1(S;π∗Z). The cokernel of
ZS → π∗Z is a rank one local system L on S r Ct and since H1(S) = 0,
it follows that H1(Ŝt) embeds in H1(S;π∗Z/ZS) = H1

c (S r Ct;L). But
S r Ct is affine, and hence H1

c (S r Ct;L) = 0.
A priori, there is a central extension of order 2 of A5 that lifts the A5-

action on S, with the nontrivial center acting as involution. The definition
makes it clear that the center takes α̂t to −α̂t. This implies that the central
extension must be split. In particular, the A5-action on S lifts to Ŝt. It is
unique, since any homomorphism from A5 to a cyclic group is trivial.
The A5-representation H2(Ŝt;Q) contains H2(St;Q) as a direct sum-

mand that is nondegenerate for the intersection pairing and so the or-
thogonal complement, denoted H2(Ŝt;Q)−, is a QA5-module of dimen-
sion 22− 5 = 17. We determine its character by computing some Lefschetz
numbers. We assume here that Ct is smooth, so that the A5-character of
H1(Ct;Q) is 2EQ.

The element (01234) has 2 fixed points in S; this is best seen using the
modular interpretation (S, S r C∞) = (M0,5,M0,5). The fixed points are
then represented by the stable 5-tuples on P1 given by (1, ζ5, ζ2

5 , ζ
3
5 , ζ

4
5 ) and

(1, ζ2
5 , ζ

4
5 , ζ5, ζ

3
5 ), where ζ5 is a 5th root of unity 6= 1. These do not lie on C∞
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and hence not on Ct for general t (in fact, each of the singular dodecahedral
curves contains one of them). It follows that (01234) has 4 fixed points in
Ŝt. So the trace of (01234) acting on H2(Ŝt;Q)− is 4−2 = 2. On the other
hand, (012) has 4 fixed points and they are represented by taking as the
first three points (1, ζ3, ζ2

3 ) and letting the last two be arbitrary chosen in
{0,∞}. So exactly two lie outside C∞ so that (012) has 2.2 + 2 = 6 fixed
points in Ŝt. It follows that its trace on H2(Ŝt;Q)− is 6− 4 = 2.
Write

H2(Ŝt;Q)− = a1⊕ bV ⊕ cW ⊕ dE
as QA5-modules. The character table of A5 shows that we have a+4b+5c+
6d = 17, a− b+ d = 2, a+ b− c = 2. We noted that H2,0(Ŝt)⊕H0,2(Ŝt) is
a subspace of H2(Ŝt;C)− on which A5 acts trivially. This subspace cannot
be constant in t, and so we must have a > 3. We then find that the only
solution is (a, b, c, d) = (3, 1, 2, 0).
We observed that the complexification 3-dimensional subspace of

H2(Ŝt;Q)− defined by the trivial character contains H2,0(Ŝt). This im-
plies that its signature is (2, 1). �

With the above in hand, we are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. — Since (H2(Ŝt;Q)−)A5 has signature (2, 1), a

connected component of its associated symmetric domain, which we shall
denote by C, is of dimension one: it is copy of H. This domain parametrizes
the Hodge structures of the K3-surfaces with a faithful action of µ2×A5 of
the type above. If M is the subgroup of the orthogonal transformations of
H2(Ŝt) of spinor norm one and acting trivially on the vectors perpendicular
to (H2(Ŝt;Q)−)A5 , then our period map is defined on all of B and lands in
the Shimura curve M\C. The Torelli theorem for K3-surfaces implies that
this morphism is injective. So it must be an isomorphism. In particular,
M\C is compact. This means that the intersection form on (H2(Ŝt;Q)−)A5

does not represent zero, and that M\C is of quaternionic type. �

We remark that the structure of B as a Shimura curve of quaternionic
type cannot be induced from the period map defined by the Hodge structure
H1(Ct), for the latter has cusps (and goes to a Hilbert modular surface).
Simply put, the monodromy along a simple loop around a puncture is
of finite order for the former and of infinite order for the latter, so the
monodromy representation Γ→M is not injective.
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