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NARROW QUANTUM D-MODULES AND QUANTUM
SERRE DUALITY

by Mark SHOEMAKER (*)

Abstract. — Given Y a non-compact manifold or orbifold, we define a natural
subspace of the cohomology of Y called the narrow cohomology. We show that
despite Y being non-compact, there is a well-defined and non-degenerate pairing
on this subspace. The narrow cohomology proves useful for the study of genus zero
Gromov–Witten theory. When Y is a smooth complex variety or Deligne–Mumford
stack, one can define a quantum D-module on the narrow cohomology of Y. This
yields a new formulation of quantum Serre duality.
Résumé. — Étant donnée une variété ou une orbifold non compacte Y, on défi-

nit un sous-espace naturel de la cohomologie de Y que nous appelons cohomologie
étroite. On montre qu’en dépit du fait que Y est non compacte, il existe un cou-
plage non-dégénéré sur ce sous-espace. Cette cohomologie étroite s’avère utile pour
l’étude de la théorie de Gromov–Witten en genre 0. Lorsque Y est une variété com-
plexe lisse ou un champ de Deligne–Mumford lisse, on peut définir un D-module
quantique sur sa cohomologie étroite. Ceci nous amène à une nouvelle formulation
de la dualité de Serre quantique.

1. Introduction

Let X be a smooth complex variety (or orbifold) and let E → X be a
vector bundle over X , with a regular section s ∈ Γ(X , E). We can define
the subvarieties

Z := {s = 0} ⊂ X and Y := tot(E∨),

to obtain the following diagram

(1.1)
Y

Z X .

π

j
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symmetry.
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1136 Mark SHOEMAKER

As was originally observed in [17] in the case where X is projective space
PN , there is a nontrivial relationship between the genus zero Gromov–
Witten invariants of Z and those of Y. This correspondence was given
the name quantum Serre duality. It was originally proven by showing that
(equivariant lifts of) generating functions of Gromov–Witten invariants of
Z and Y obey very similar recursions.

1.1. Other incarnations

The correspondence has since been generalized and rephrased many
times. In [14], it was generalized to the case of an arbitrary base X us-
ing Givental’s Lagrangian cones. In this formulation, one endows Y with a
C∗-action by scaling fibers. Then the C∗-equivariant genus zero Gromov–
Witten theory of Y can be used to recover the genus zero Gromov–Witten
theory of Z. This result forms the basis (and the proof) of later formula-
tions.
Recently in [24], quantum Serre duality was re-expressed as a correspon-

dence between quantum D-modules. The quantum D-module QDM(X )
for a (compact) space X consists of

• the quantum connection:(1)

∇X : H∗(X ) −→ H∗(X )[t, z, z−1],

a flat connection defined in terms of the quantum product •t;
• a pairing:

SX ( · , · ) : H∗(X )[t, z, z−1]⊗H∗(X )[t, z, z−1] −→ C[z, z−1],

which is flat with respect to the connection.
See Definition 3.10 for details. As with Givental’s Lagrangian cone, the
quantum D-module of X fully determines the genus zero Gromov–Witten
theory of X . In [21], Iritani defined a corresponding integral structure, a
lattice lying inside the kernel of ∇X defined as the image of the bounded
derived category D(X ) under a map

sX : D(X ) −→ H∗(X )[t, z, z−1].

See Section 3.4.1 for details.

(1) In the case where Z and Y are orbifolds we should replace cohomology with Chen–
Ruan cohomology. See Section 2.2 for details.
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NARROW QUANTUM D-MODULES 1137

One benefit to the formulation in terms of quantum D-modules [24], is
that quantum Serre duality can be phrased non-equivariantly, as the quan-
tum connection ∇Y is well-defined without the need for C∗-localization. It
is shown ([24, Theorem 3.14, Corollary 3.17]) that the map

(1.2) π∗ ◦ j∗ : H∗amb(Z)[t, z, z−1] −→ H∗(Y)[t, z, z−1]

sends ker(∇Z) to ker(∇Y) after a change of variables. Here H∗amb(Z) de-
notes the image j∗(H∗(X )) ⊂ H∗(Z). Furthermore, they prove that this
map is compatible with the integral structures and with the functor

(−1)rk(E) det(E)⊗ (π∗ ◦ j∗)( · ) : D(Z) −→ D(Y).

It is important to note, however, that (1.2) does not give a map of quan-
tum D-modules, because the pairing SY( · , · ) is not well-defined when Y
is non-compact. Nevertheless, the formulation of quantum Serre duality in
terms of the quantum connection seems to be a natural and useful way of
viewing the correspondence.

1.2. Results

The work described above raises the following interrelated questions:
(1) Is there a well-defined quantum D-module associated to Y when Y

is non-compact? More precisely, can one define a pairing which is
flat with respect to the quantum connection?

(2) If (1) holds, can quantum Serre duality be rephrased as a map be-
tween quantum D-modules, identifying not just the quantum con-
nection but also the pairings?

(3) The map in (1.2) is not an isomorphism; under mild assumptions
it is an inclusion. Is there a natural way of describing the image
π∗ ◦ j∗(ker(∇Z)) inside ker(∇Y)?

This paper answers each of these questions in the affirmative. Given Y a
non-compact smooth variety, we define a subspace H∗nar(Y) ⊂ H∗(Y) which
we call the narrow cohomology of Y. There is a natural forgetful morphism

φ : H∗c (Y) −→ H∗(Y)

from compactly supported cohomology to cohomology. The narrow coho-
mology H∗nar(Y) is defined to be the image of φ. This turns out to be
the right framework in which to formulate quantum Serre duality as an
isomorphism of quantum D-modules.

TOME 71 (2021), FASCICULE 3



1138 Mark SHOEMAKER

One observes that the Poincaré pairing between H∗c (Y) and H∗(Y) in-
duces a non-degenerate pairing onH∗nar(Y). We use this to define a quantum
D-module on the narrow subspace.

Theorem 1.1 (Corollary 4.8). — The quantum connection

∇Y : H∗(Y) −→ H∗(Y)[[t]][z, z−1]

preserves H∗nar(Y). Furthermore, there is a well-defined and nondegenerate
pairing

SY,nar( · , · ) : H∗nar(Y)[[t]][z, z−1]⊗H∗nar(Y)[[t]][z, z−1] −→ C[z, z−1],

which is flat with respect to ∇Y . We obtain a quantum D-module
QDMnar(Y) on H∗nar(Y).

There is also a well-defined integral structure for the narrow quantum D-
module, coming from the derived category D(Y)c of complexes of coherent
sheaves on Y, exact outside a proper subvariety. The narrow quantum D-
module defined above turns out to be particularly relevant to quantum
Serre duality. In the particular case of Y and Z from (1.1), we show there is
an isomorphism of quantum D-modules from QDMnar(Y) to QDMamb(Z).
This is the main result of the paper.

Theorem 1.2 (Theorem 6.14). — There is an isomorphism

∆+ : H∗nar(Y)[z, z−1] −→ H∗amb(Z)[z, z−1]

which identifies the quantumD-moduleQDMnar(Y) with f∗(QDMamb(Z))
(where f is an explicit change of variables). Furthermore it is compatible
with the integral structure and the functor j∗ ◦ π∗, i.e., the following dia-
gram commutes;

(1.3)
D(Y)X j∗(D(X ))

QDMnar(Y) f∗(QDMamb(Z)).

j∗◦π∗

sY,nar sZ,amb

∆̄+

In the course of proving the above theorem we make several interesting
connections between the (non-equivariant) quantum connection on Y and
different modifications of the Gromov–Witten theory over X .
First, in Section 5.2 we give an explicit description of a modified quan-

tum product, denoted •Y→Xt , on X which pulls back to the usual (non-
equivariant) quantum product •Yt via π∗. This result is dual in spirit to [28,
Section 2] where the “•Z product induced by a hypersurface,” a modified

ANNALES DE L’INSTITUT FOURIER
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quantum product on X , is defined and related to the usual quantum prod-
uct on Z.

Second, we consider the quantum connection with compact support on Y:

∇Y,c : H∗c (Y) −→ H∗c (Y)[t, z, z−1]

which is defined identically to ∇Y but acts on cohomology with compact
support. In a short remark [24, Remark 3.17], it was reasoned by an analogy
that (the non-equivariant limit of) the Euler-twisted quantum connection
∇e(E) on X (see Definition 3.8) could be thought of as the quantum con-
nection with compact support. In Proposition 6.2 we make this observation
precise, showing that the pushforward isomorphism

ic∗ : H∗CR(X ) −→ H∗CR,c(Y)

identifies ∇e(E) with ∇Y,c up to a change of variables.
The above results imply yet another variation of quantum Serre duality,

which states, roughly, that

j∗ ◦ πc
∗ : H∗CR,c(Y) −→ H∗CR,amb(Z)

maps ker(∇Y,c) to ker(∇Z) and is compatible with integral structures and
with the functor

j∗ ◦ π∗ : D(Y)X −→ D(Z).
See Theorem 6.5 for the precise statement. This result is essentially the
adjoint of the statement given in Theorem 3.13 of [24], once one observes
∇Y,c and ∇Y as dual with respect to the pairing between cohomology and
compactly supported cohomology on Y. However there is a difference in
the change of variables used in [24] versus the theorem above. We give a
direct proof of Theorem 6.5 in a slightly more general context than that
appearing in [24], however the proof techniques are similar. See Remark 6.6
for more details on the connection.

1.3. Applications

We expect the constructions and results of this paper to be useful in for-
mulating and proving new correspondences in genus zero Gromov–Witten
theory. For instance, with the narrow quantum D-module on hand, one
can formulate a crepant transformation conjecture between non-compact
K-equivalent spaces Y and Y ′. Previously, most results along these lines
have assumed that Y and Y ′ be toric varieties and have used equivariant

TOME 71 (2021), FASCICULE 3



1140 Mark SHOEMAKER

Gromov–Witten theory for both the statement and proof of the correspon-
dence. In [29] we show how, in a particular case, the equivariant correspon-
dence implies the narrow correspondence. This is generalized to toric wall
crossings in [27].
The formulation of quantum Serre duality as in Theorem 1.2 will be

useful as a tool for proving other correspondences. In [26], we observed
that the LG/CY correspondence is implied by a suitable version of the
crepant transformation conjecture. We use the shorthand “CTC implies
LG/CY.” However the implication was somewhat messy to state in [26], as
it required a careful analysis of the non-equivariant limits of certain maps
and generating functions. Furthermore it did not involve integral structures.

In [29], we show that Theorem 1.2 together with a sister result involv-
ing FJRW theory may be used in tandem to clarify the “CTC implies
LG/CY” statement of [26]. We show that the narrow crepant transforma-
tion conjecture immediately implies a D-module formulation of the LG/CY
correspondence (first described in [11]). This result requires no mention
of equivariant Gromov–Witten theory, and is compatible with all integral
structures. In fact this was the first motivation for the current paper.
Another more recent application appears in [27], where R. Mi and the au-

thor us the results of this paper prove a comparison result for the Gromov–
Witten theory of extremal transitions.

1.4. Acknowledgments

I am grateful to R. Cavalieri, E. Clader, J. Guéré, H. Iritani, Y. P. Lee,
N. Priddis, D. Ross, Y. Ruan and Y. Shen for many useful conversations
about Givental’s symplectic formalism, quantum Serre duality, and quan-
tum D-modules. I am grateful to the referee for many useful comments and
suggestions.

2. Narrow cohomology

Let Y be a non-compact oriented manifold. Let H∗(Y ;R) and H∗c (Y ;R)
denote the de Rham cohomology and cohomology with compact support
respectively. We assume always that Y has a finite good cover [8, Section 5],
so that rank(H∗c (Y ;R)) and rank(H∗(Y ;R)) are finite. In this paper we will
primarily be concerned with the case where Y is the total space of a vector
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NARROW QUANTUM D-MODULES 1141

bundle on a compact manifold X. In this case the existence of a finite good
cover is automatic.
Let Ωk(Y ;R) and Ωkc (Y ;R) denote the real vector space of k-forms and k-

forms with compact support. We have the following commutative diagram:

0 Ω0
c(Y ) Ω1

c(Y ) Ω2
c(Y ) · · ·

0 Ω0(Y ) Ω1(Y ) Ω2(Y ) · · ·

d d d

d d d

where the vertical arrows are just the inclusion obtained by forgetting
that a k-form had compact support. This induces “forgetful” maps
φk :Hk

c (Y ;R)→Hk(Y ;R) for 16 k 6 dim(Y ). Let φ :H∗c (Y ;R)→H∗(Y ;R)
denote the direct sum of these maps.

Definition 2.1. — We define the narrow cohomology of Y to be the
image of φ:

Hk
nar(Y ;R) := im(φk : Hk

c (Y ;R) −→ Hk(Y ;R)),

H∗nar(Y ;R) :=
dim(Y )⊕
k=0

Hk
nar(Y ;R) ⊆ H∗(Y ;R).

The subspace ker(φ) consists of classes which can be represented by dif-
ferential forms with compact support but which are boundaries of classes
with non-compact support.

Definition 2.2. — Given a class α ∈ Hk
nar(Y ;R), we define a lift of α

to be any class α̃ ∈ Hk
c (Y ;R) such that φk(α̃) = α. Lifts are well defined

up to a choice of degree k element in ker(φ).

Using singular cohomology over an arbitrary coefficient ring R, a com-
pletely analogous definition can be made via the inclusion

C∗c (Y ;R) ↪→ C∗(Y ;R).

of the subchain complex C∗c (Y ;R) of singular cochains with compact sup-
port into the chain complex C∗(Y ;R) of singular cochains with coefficients
in R. Via the induced map φ : H∗c (Y ;R) → H∗(Y ;R), one defines the
narrow singular cohomology

H∗nar(Y ;R) := im(φ : H∗c (Y ;R) −→ H∗(Y ;R)).

It will be convenient to also introduce narrow homology. This can be
defined in terms of Borel–Moore homology (See e.g. [9, Section V] for an
exposition consistent with that described below). Assume for simplicity

TOME 71 (2021), FASCICULE 3
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that Y is σ-compact to simplify our exposition. Let R be a ring and let
Ck(Y ;R) denote the set of finite singular k-chains, consisting of finite R-
linear combinations ∑

aσσ

of continuous maps σ : ∆k → Y with aσ ∈ R. We define CBM
k (Y ;R) to be

the set of locally finite singular k-chains, consisting of (possibly infinite)
R-linear combinations ∑

aσσ

such that for each compact set C ⊂ Y , aσ is zero for all but finitely many of
the maps σ whose image meets C. In reasonable situations [9], Borel–Moore
homology can be defined as the homology of the complex CBM

∗ (Y ;R). Note
we have a similar map of complexes as before

· · · Ci+1(Y ;R) Ci(Y ;R) Ci−1(Y ;R) · · ·

· · · CBM
i+1(Y ;R) CBM

i (Y ;R) CBM
i−1(Y ;R) · · ·

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

again inducing a “forgetful” map φ : H∗(Y ;R)→ HBM
∗ (Y ;R).

Definition 2.3. — Define the narrow homology to be the image of φ:

Hnar
∗ (Y ;R) := im(φ : H∗(Y ;R) −→ HBM

∗ (Y ;R)).

Poincaré duality [9] gives isomorphisms

Hk
c (Y ;Z) ∼= Hn−k(Y ;Z)

Hk(Y ;Z) ∼= HBM
n−k(Y ;Z).

The following diagram commutes,

(2.1)
Hk

c (Y ;Z) Hn−k(Y ;Z)

Hk(Y ;Z) HBM
n−k(Y ;Z),

PD

φ φ

PD

as can be seen by observing that both horizontal maps are given by capping
with the fundamental class [Y ] ∈ HBM

n (Y ;Z). We immediately deduce the
following.

Lemma 2.4. — The Poincaré duality isomorphismHk(Y;Z)∼=HBM
n−k(Y;Z)

induces an isomorphism Hk
nar(Y ;Z) ∼= Hnar

n−k(Y ;Z).

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.5. — Let f : X → Y be a smooth, proper, oriented
map between the manifolds X and Y . There exist induced pullback and
pushforward maps

f∗nar : H∗nar(Y ;Z) −→ H∗nar(X;Z)
fnar
∗ : H∗nar(X;Z) −→ H∗nar(Y ;Z).

Proof. — Because f is proper, there is a pullback with compact support

f∗c : H∗c (Y ;Z) −→ H∗c (X;Z)

in addition to the usual pullback on cohomology

f∗ : H∗(Y ;Z) −→ H∗(X;Z).

The fact that f∗ induces a pullback on the narrow subspace follows from
the commutative diagram

H∗c (Y ;Z) H∗c (X;Z)

H∗(Y ;Z) H∗(X;Z).

f∗c

φ φ

f∗

The pushforward map

f c
∗ : H∗c (X;Z) −→ H∗c (Y ;Z)

is defined via Poincaré duality together with the pushforward on homology.
Because f is proper, there is a well defined pushforward map

fBM
∗ : HBM

∗ (X;Z) −→ HBM
∗ (Y ;Z).

Composing with Poincaré duality defines a pushforward

f∗ : H∗(X;Z) −→ H∗(Y ;Z).

The following diagram commutes,

H∗(X;Z) H∗(Y ;Z)

HBM
∗ (X;Z) HBM

∗ (Y ;Z).

f∗

φ φ

fBM
∗

By invoking Poincaré duality and (2.1), we see that φ◦f c
∗ = f c

∗ ◦φ, therefore
f∗ induces a pushforward on the narrow subspaces. �

TOME 71 (2021), FASCICULE 3



1144 Mark SHOEMAKER

2.1. Pairing

To simplify proofs, we will focus on the de Rham definition of narrow co-
homology in what follows. The wedge product on differential forms induces
the cup products

(2.2)
∪ : Hi(Y ;R)×Hj(Y ;R) −→ Hi+j(Y ;R),

∪ : Hi
c(Y ;R)×Hj(Y ;R) −→ Hi+j

c (Y ;R).

Lemma 2.6. — The cup product is zero when restricted to ker(φ) ×
H∗nar(Y ;R) ⊂ H∗c (Y ;R)×H∗(Y ;R).

Proof. — Let Ω denote a closed differential form representing a class ω
in ker(φ). Then by definition of ker(φ) there exists a form Ψ (potentially
with non-compact support) such that dΨ = Ω. If Θ is a closed form with
compact support representing θ ∈ H∗nar(Y ;R), then

d(Θ ∧Ψ) = Θ ∧ dΨ = Θ ∧ Ω.

Since the support of Θ∧Ψ is contained in the support of Θ and is therefore
compact, we conclude that θ ∪ ω = 0 ∈ H∗c (Y ;R). �

Of course the wedge product also induces a cup product

∪ : Hi
c(Y ;R)×Hj

c (Y ;R) −→ Hi+j
c (Y ;R).

It is clear from the definitions that for α, β ∈ H∗c (Y ;R),

(2.3) α ∪ β = α ∪ φ(β).

We let
〈 · , · 〉 : H∗(Y ;R)×H∗c (Y ;R) −→ R

denote the pairing defined by

〈α, β〉 :=
∫
Y

α ∪ β.

This is well-defined because β and therefore α∪β are compactly supported.
It is known to be non-degenerate [8].

Corollary 2.7. — With respect to the pairing 〈 · , · 〉, H∗nar(Y ;R) =
ker(φ)⊥.

Proof. — By Lemma 2.6, H∗nar(Y ;R) ⊆ ker(φ)⊥. However they are the
same rank and so must be equal. �

ANNALES DE L’INSTITUT FOURIER
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Given two classes α and β in H∗nar(Y ;R), a-priori the product α ∪ β lies
in H∗(Y ;R). It is clear that α∪ β in fact lies in H∗nar(Y ;R), so the narrow
state space inherits a ring structure from H∗(Y ;R).
We can refine this product to obtain a class α ∪c β lying in H∗c (Y ;R) as

follows.

Definition 2.8. — Given α and β in H∗nar(Y ;R), define the compactly
supported cup product of α and β to be

α ∪c β := α̃ ∪ β ∈ H∗c (Y ;R),

where α̃ is a lift of α.

Corollary 2.9. — The product described above is well-defined.

Proof. — The class α̃ is well-defined up to a choice of elements in ker(φ).
If α̃′ is a different lift, then

α̃′ = α̃+ αk

where αk ∈ ker(φ). By Lemma 2.6, αk ∪ β = 0 in H∗c (Y ;R), so α̃′ ∪ β =
α̃ ∪ β. �

With the above we can equip H∗nar(Y ;R) with a pairing.

Definition 2.10. — Given α and β in H∗nar(Y ;R), define

〈α, β〉nar :=
∫
Y

α ∪c β.

Proposition 2.11. — The pairing 〈 · , · 〉nar is nondegenerate.

Proof. — Given a nonzero element β ∈ H∗nar(Y ;R), there exists an ele-
ment α̃ ∈ H∗c (Y ;R) which pairs non-trivially with β. By definition,

〈φ(α̃), β〉nar =
∫
Y

φ(α̃) ∪c β =
∫
Y

α̃ ∪ β = 〈α̃, β〉 6= 0. �

2.2. Orbifolds

More generally, let Y be an oriented orbifold in the sense of [3]. Assume
Y admits a finite good cover [3]. Let IY denote the inertia stack of Y,
defined by the fiber diagram

IY Y

Y Y × Y.
∆

∆

TOME 71 (2021), FASCICULE 3
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The orbifold IY is a disjoint union of connected components called twisted
sectors. These components are indexed by equivalence classes {γ}T of
isotropy elements. The connected component indexed by γ is referred to as
the γ-twisted sector and will be denoted by Yγ . There is an involution

I : IY −→ IY

exchanging twisted sectors with their inverses. In the case Y = [V/Γ], the
involution I maps Yγ to Yγ−1 via the natural isomorphism.

Let Yγ be a twisted sector. Take a point (y, γ) ∈ Yγ . The tangent space
TyY splits as a direct sum of eigenspaces with respect to the action of γ:

TyY =
⊕

06f<1
(TyY)f

where γ acts on (TyY)f by multiplication by e2π
√
−1f . Define the age shift

for Yγ to be
ιγ =

∑
06f<1

f dimC(TyY)f .

Definition 2.12 ([3, 10]). — The Chen–Ruan cohomology of Y of
(Chen–Ruan) degree k is

Hk
CR(Y) :=

⊕
γ∈T

Hk−2ιγ (Yγ ;C),

and
H∗CR(Y) :=

⊕
k∈Q>0

Hk
CR(Y).

Note that we will always use complex coefficients in what follows. Define
the compactly supported Chen–Ruan cohomology H∗CR,c(Y) analogously.
Define the Chen–Ruan pairing

〈α, β〉Y : H∗CR(Y)×H∗CR,c(Y) −→ C

to be

〈α, β〉Y :=
∫
IY
α ∪ I∗(β).

As in the previous section, let φ : H∗CR,c(Y) → H∗CR(Y) denote the
natural map.

Definition 2.13. — Define the narrow subspace of H∗CR(Y) to be

H∗CR,nar(Y) := im(φ).

ANNALES DE L’INSTITUT FOURIER



NARROW QUANTUM D-MODULES 1147

Denote by ker(φ) the kernel in H∗CR,c(Y). Given α and β in H∗CR,nar(Y),
define

〈α, β〉Y,nar :=
∫
IY
α ∪c I∗(β).

By orbifold versions of the same arguments, Lemma 2.4, Proposition 2.5,
Corollary 2.7, and Proposition 2.11 also hold for the narrow Chen–Ruan
cohomology of an orbifold.

Remark 2.14. — The correct cup product to use in this setting is the
Chen–Ruan cup product [10]. Unless otherwise specified, all products of
classes in Chen–Ruan cohomology in this paper are understood to be Chen–
Ruan cup products. The definition will be given in Definition 3.7. For now
we simply note the following fact [31, Lemma 2.3.8]. For α ∈ H∗(Y) ⊂
H∗CR(Y) supported in the untwisted sector and any β ∈ H∗CR(Y),

α ∪ β = q ∗ (α) ∪IY β ∈ H∗CR(Y),

where q : IY → Y is the natural map and ∪IY denotes the usual cup
product on H∗(IY). As a consequence of the above fact, the fundamental
class on the untwisted sector 1 ∈ H∗(Y) ⊂ H∗CR(Y) is the multiplicative
identity with respect to the Chen–Ruan cup product.

2.3. The total space example

Let X be a compact oriented orbifold of dimension n and let E → X be
a complex vector bundle of complex rank r over X . Let Y denote the total
space of E∨ over X (we use E∨ only to be consistent with later sections),
endowed with the orientation induced by the orientation on X . Let i : IX →
IY denote the inclusion via the zero section. This is a proper, oriented map.
Let π : IY → IX denote the projection.

Proposition 2.15. — The following are equal:

H∗CR,nar(Y) = im(i∗ : H∗CR(X ) −→ H∗CR,nar(Y)).

If E is pulled back from a vector bundle E → X on the coarse space of X ,
then this is equal to

im(e(π∗E∨) ∪ · )

where e(π∗E∨) ∪ · : H∗CR(Y)→ H∗CR(Y) is the (Chen–Ruan) cup product
with the Euler class of π∗E∨ ∈ H∗(Y) ⊂ H∗CR(Y).
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Proof. — By the proof of Proposition 2.5, φ ◦ ic∗ = i∗ ◦ φ = i∗, so

im(i∗ : H∗CR(X ) −→ H∗CR,nar(Y)) ⊆ H∗CR,nar(Y).

The two are equal if ic∗ : H∗CR(X ) → H∗CR,c(Y) is an isomorphism. This
holds because the pushforward i∗ : H∗(IX ;R) → H∗(IY;R) in homology
is an isomorphism.
Assume that E is pulled back from a vector bundle E → X on the coarse

space of X . In this case all isotropy groups of X act trivially on the fibers
of E . Consequently each component Yγ of IY is given by the total space of
E∨ restricted to Xγ . The base Xγ ⊂ Yγ can be viewed as the zero locus of
the tautological section of π∗E∨ restricted to Yγ . On the untwisted sector,
we have e(π∗E∨) = i∗(1) ∈ H∗(Y) ⊂ H∗CR(Y). Then for all α ∈ H∗CR(Y),

e(π∗E∨) ∪ α = i∗(1) ∪ α = i∗(1 ∪ i∗(α)) = i∗(i∗(α))

where the second equality follows from the projection formula and Re-
mark 2.14 and the last equality is Remark 2.14. The proof concludes by
noting that i∗ : H∗CR(Y)→ H∗(X ) is an isomorphism. �

3. Quantum D-modules for a proper target

This section serves to recall the basic definitions and constructions of
Gromov–Witten theory and to set notation. We recall how the genus zero
Gromov–Witten theory of a smooth and proper Deligne–Mumford stack
X defines a flat connection known as the Dubrovin connection, which in
turn gives a quantum D-module with integral structure. See [15, 21, 23]
for more details.
For the remainder of the paper, X will be a smooth Deligne–Mumford

stack over C. We will use the same notation to denote the corresponding
complex orbifold. We always assume further that the coarse moduli space
of X , denoted by X, is projective.

Definition 3.1. — Given X as above, let M h,n(X , d) denote the
moduli space of representable degree d stable maps from orbi-curves of
genus h with n marked points (as defined in [1]). Here d is an element of
the cone Eff = Eff(X ) ⊂ H2(X ,Q) of effective curve classes. Denote by
[M h,n(X , d)]vir the virtual fundamental class of [1] and [6].

Recall that for each marked point pi there exist evaluation maps

evi : M h,n(X , d) −→ IX ,
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where IX is the rigidified inertia stack as in [1]. By the discussion in [1,
Section 6.1.3], it is convenient to work as if the map evi factors through
IX . While this is not in fact true, due to the isomorphism H∗(IX ;C) ∼=
H∗(IX ;C) it makes no difference in terms of defining Gromov–Witten in-
variants.

Definition 3.2. — Given α1, . . . , αn ∈ H∗CR(X ), d ∈ Eff and integers
h, b1, . . . , bn > 0, define the Gromov–Witten invariant

〈α1ψ
b1 , . . . , αnψ

bn〉Xh,n,d :=
∫

[Mh,n(X ,d)]vir

n∏
i=1

ev∗i (αi) ∪ ψbii .

3.1. Twisted invariants

Many of the results of Section 5 and Section 6 are in terms of twisted
invariants, which we define below. See [14] for details of the theory.
Let E be a vector bundle on a Deligne–Mumford stack X . Given formal

parameters sk for k > 0, one defines the formal invertible multiplicative
characteristic class

s : E 7−→ exp
(∑
k>0

sk c̃hk(E)
)
.

The twisted Gromov–Witten invariants depend on the parameters s =
(s0, s1, . . .) and take values in C[[s]]. Let f∗(E) denote the pullback of E to
the universal curve C̃ over M h,r(X , d).

Definition 3.3. — Given α1, . . . , αn in H∗CR(X ), d ∈ Eff and integers
h, b1, . . . , bn > 0, define the s-twisted Gromov–Witten invariant of X to be

〈α1ψ
b1 , . . . , αnψ

bn〉X ,sh,n,d

:=
∫

[Mh,n(X ,d)]vir
exp
(∑
k>0

sk c̃hk(Rπ∗f∗(E))
)

n∏
i=1

ev∗i (αi) ∪ ψbii .

Definition 3.4. — Define an s-twisted Gromov–Witten pairing as fol-
lows. Given α, β ∈ H∗CR(X )⊗ C[[s]], define

〈α, β〉X ,s :=
〈

exp
(∑
k>0

sk c̃hk(E)
)
α, β

〉X
.
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3.2. Quantum connections

Choose a basis {Ti}i∈I for the H∗CR(X ) state space such that I = I ′
∐
I ′′

where I ′′ indexes a basis for the degree two part of the cohomology sup-
ported on the untwisted sector, and I ′ indexes a basis for the cohomology
of the twisted sectors together with the degree not equal to two cohomol-
ogy of the untwisted sector. Let t′ =

∑
i∈I′ t

iTi and let t =
∑
i∈I′∪I′′ t

iTi.
Let qi = eti for i ∈ I ′′. Choose α1, . . . , αn from H∗CR(X ). For � = X or
� = (X , s),

(3.1) 〈〈α1ψ
b1 , . . . , αnψ

bn〉〉�(t)

:=
∑
d∈Eff

∑
k>0

1
k! 〈α1ψ

b1 , . . . , αnψ
bn , t, . . . , t〉�0,n+k,d

where a summand is implicitly assumed to be zero if d = 0 and n+ k < 3.
Let C[[t′]] := C[[ti]]i∈I′ and C[[q]] := C[[qi]]i∈I′′ . By the divisor equation [15,
Section 10.1], if b1 = · · · = bn = 0 then (3.1) can be viewed as a formal
power series in C[[t′, q]] or C[[t′, q, s]] in the twisted case.

Notation 3.5. — Denote by P� the power series C[[t′, q]] when � = X
refers to Gromov–Witten theory, or C[[t′, q, s]] when � = (X , s) refers to a
s-twisted theory.

Definition 3.6. — For elements α, β in H∗CR(X ) with � = X or (X , s),
define the quantum product α •�t β ∈ H∗CR(X )⊗ P� by the formula

〈α •t β, γ〉� = 〈〈α, β, γ〉〉�(t)

for all γ ∈ H∗CR(X ).

In the non-twisted setting (s = 0) this is equivalent to

α •�t β :=
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev3∗

(
ev∗1(α) ∪ ev∗2(β)

∪
k+3∏
j=4

ev∗j (t) ∩ [M 0,k+3(X , d)]vir
)

where to simplify notation we suppress the Poincaré duality isomorphism
PD : H∗CR(X ) → HBM

∗ (IX ) from (2.1) which identifies the vector spaces
on the left and right side of the expression.
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Definition 3.7. — For elements α, β inH∗CR(X ) define the Chen–Ruan
cup product α ∪ β ∈ H∗CR(X ) by the formula

〈α ∪ β, γ〉X = 〈〈α, β, γ〉〉X (0)|q=0

for all γ ∈ H∗CR(X ).

3.3. Quantum D-module

Following [23], define a z-sesquilinear pairing S� onH∗CR(X )⊗P�[z, z−1]
as

S�(u(z), v(z)) := (2π
√
−1z)dim(X )〈u(−z), v(z)〉�.

Definition 3.8. — The Dubrovin connection is given by the formula

∇�i = ∂i + 1
z
Ti•�t ,

where recall that {Ti}i∈I is a basis for H∗CR(X ). These operators act on
H∗CR(X )⊗ P�[z, z−1].

When we are not in the twisted setting, we can define the quantum
connection in the z-direction as well.(2) Define the Euler vector field

E := ∂ρ(X ) +
∑
i∈I

(
1− 1

2 deg Ti
)
ti∂i

where ρ(X ) := c1(TX ) ⊂ H2(X ;C).
Define the grading operator Gr by

Gr(α) := degα
2 α

for α in H∗CR(X ). Then define

∇Xz = ∂z −
1
z2E •

X
t +1

z
Gr .

Define the operator L�(t, z) by

L�(t, z)α := α+
∑
i∈I

〈〈 α

−z − ψ
, T i
〉〉�

(t)Ti.

(2)The definition of ∇�z is based on the fact that (when we are not in the twisted setting)
the virtual class is of pure dimension on connected components.

TOME 71 (2021), FASCICULE 3



1152 Mark SHOEMAKER

When we are not in the twisted setting this is equivalent to

(3.2) LX (t, z)(α)

:= α+
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev2∗

(
ev∗1(α)
−z − ψ

k+2∏
j=3

ev∗j (t) ∩ [M 0,k+2(X , d)]vir
)
.

Proposition 3.9 ([15, 23]). — Let � = X or (X , s). The quantum
connection ∇� is flat. In the untwisted case,

(3.3) ∇Xi (LX (t, z)z−Grzρ(X )α) = ∇Xz (LX (t, z)z−Grzρ(X )α) = 0

for i ∈ I and α ∈ H∗CR(X ). In the twisted case,

(3.4) ∇X ,si (LX ,s(t, z)α) = 0.

In both the twisted and untwisted setting the pairing S� is flat with respect
to ∇�. For α, β ∈ H∗CR(X ),

(3.5) 〈L�(t,−z)α,L�(t, z)β〉� = 〈α, β〉�.

Definition 3.10. — The quantum D-module for X , QDM(X ), is de-
fined to be the triple:

QDM(X ) := (H∗CR(X )⊗ PX [z, z−1],∇X , SX ).

3.3.1. Ambient Gromov–Witten theory

There is a restricted quantum D-module for local complete intersection
sub-stacks.

Definition 3.11. — A vector bundle E → X is called convex if, for
every representable morphism

f : C −→ X

from a genus zero orbi-curve C, the cohomology H1(C, f∗(E)) is zero.

Remark 3.12. — Note that convexity of E implies that it is pulled back
from a vector bundle E → X on the coarse space [13, Remark 5.3]. Fur-
thermore one can check that E will itself be convex in this case.

Let X be as before. Consider E a convex vector bundle on X , and let Z
be the zero locus of a transverse section s ∈ Γ(X , E). Let j : Z → X denote
the inclusion map and define H∗CR,amb(Z) := im(j∗).
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Assumption 3.13. — As in [24], we will always assume that the
Poincaré pairing on H∗CR,amb(Z) is non-degenerate. This is equivalent to
the condition that

(3.6) H∗CR(Z) = im(j∗)⊕ ker(j∗).

Assumption 3.13 holds for instance if E is the pullback of an ample line
bundle on X and Z intersects each twisted component of X transversally.

Proposition 3.14 ([23, Corollary 2.5]). — For t ∈ H∗CR,amb(Z), the
quantum product •Z

t̄
is closed on H∗CR,amb(Z). The quantum connection

and solution LZ(t, z) preserve H∗CR,amb(Z) for t ∈ H∗CR,amb(Z).

Remark 3.15. — The proof of the above proposition in [23, Corollary 2.5]
follows an argument from [28]. The assumptions on X and E above are
weaker than in either, but the same argument goes through, as observed
in [12, Remark 2.2].

Definition 3.16. — The ambient quantum D-module is defined to be

QDMamb(Z) := (H∗CR,amb(Z)⊗ PZ,amb[z, z−1],∇Z , SZ)

where PZ,amb denotes the restriction of PZ to H∗CR,amb(Z).

3.4. Integral structure

In [21], Iritani defines an integral structure for Gromov–Witten theory.
We recall the ingredients here.

For F a vector bundle on X , let Fγ := F|Xγ denote the restriction of F
to a twisted sector Xγ . Recall as in Section 2.2, that Fγ splits into a sum
of eigenbundles

Fγ =
⊕

06f<1
Fγ,f

where the action of γ on Fγ,f is multiplication by e2π
√
−1f .

Definition 3.17. — Define the Gamma class Γ̂(F) to be the class in
H∗(IX ):

Γ̂(F) :=
⊕
γ∈T

∏
06f<1

rk(Fb,f )∏
i=1

Γ(1− f + ρb,f,i)

where Γ(1 + x) should be understood in terms of its Taylor expansion at
x = 0, and {ρb,f,i} are the Chern roots of Fb,f . Define Γ̂X to be the class
Γ̂(TX ).
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3.4.1. Flat sections

Definition 3.18. — Define the operator deg0 to be the degree operator
which multiplies a homogeneous class by its unshifted degree. In Gromov–
Witten theory it multiplies a class in Hn(IX ) (with the standard grading)
by n.

Denote by D(X ) := Db(X ) the bounded derived category of coherent
sheaves on X . We will omit the superscript b. Given an object F in D(X ),
define sX (F )(t, z) to be

1
(2π
√
−1)dim(X )L

X (t, z)z−Grzρ(X )Γ̂X ∪IX ((2π
√
−1)deg0 /2I∗(c̃h(F ))),

where ∪IX denotes the ordinary cup product on H∗(IX ).

Proposition 3.19 ([23]). — The map sX identifies the pairing in the
derived category with SX :

SX (sX (F )(t, z), sX (F ′)(t, z)) = eπ
√
−1 dim(X )χ(F ′, F ).

Assumption 3.20. — Assume that H∗CR(X ) is spanned by the image of

c̃h : D(X ) −→ H∗CR(X ).

The set
{sX (F )(t, z) |F ∈ D(X )}

forms a lattice in ker(∇X ). This is the integral structure of the quantum
D-module QDM(X ).
Let j : Z → X be a smooth subvariety defined as in Section 3.3.1 (i.e. by

a convex vector bundle). Then again with assumption 3.20 we can define
an integral structure for the ambient quantum D-module as

{sZ(F )(t, z) |F ∈ j∗(D(X ))}.

Note that by orbifold Grothendieck–Riemann–Roch, c̃h(F ) will lie in
H∗CR,amb(Z) for F ∈ j∗(D(X )).

4. Quantum D-modules for a non-proper target

In fact most of the constructions of genus zero Gromov–Witten theory go
through in the case of a non-proper target Y. We explore this in this section.
The majority of this section is known to the experts, see e.g. [20, 24]. The
perspective of Section 4.2 in terms narrow cohomology, however, is new.
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Let Y denote a smooth Deligne–Mumford stack with quasi-projective
coarse moduli space Y . Although Y may not be proper, if the evaluation
maps

evi : M h,n(Y, d) −→ IY
are proper, one can still define Gromov–Witten invariants in many cases.
In particular, there is still a well-defined virtual class [M h,n(Y, d)]vir over
which one can integrate classes of compact support.

Definition 4.1. — Assume the maps evi : M h,n(Y, d)→ IY are proper
for 1 6 i 6 n. Given α1 ∈ H∗CR,c(Y), α2, . . . , αn ∈ H∗CR(Y) and integers
b1, . . . , bn > 0 define the Gromov–Witten invariant

〈α1ψ
b1 , . . . , αnψ

bn〉Yh,n,d :=
∫

[Mh,n(Y,d)]vir

n∏
i=1

ev∗i (αi) ∪ ψbii .

Given α1, α2 ∈ H∗CR,nar(Y), α3, . . . , αn ∈ H∗CR(Y) and integers b1, . . . , bn >
0 define the Gromov–Witten invariant

〈α1ψ
b1 , . . . , αnψ

bn〉Yh,n,d :=
∫

[Mh,n(Y,d)]vir
α1 ∪c α2 ∪

n∏
i=3

ev∗i (αi) ∪ ψbii

where recall the product ∪c : H∗CR,nar(Y) × H∗CR,nar(Y) → H∗CR,c(Y) was
defined via a lift α̃1 ∈ H∗CR,c(Y) as in Definition 2.8.

The lemma below gives an important scenario when the evaluation maps
are in fact proper. Let X be a smooth proper Deligne–Mumford stack, and
E → X a vector bundle on X . Let Y denote the total space of E∨ over X .

Lemma 4.2. — For 1 6 i 6 n, the evaluation map evi : M 0,n(Y, d) →
IY is proper in the following situations:

(1) The degree d = 0;
(2) The vector bundle E is convex.

Proof. — In the first case, the evaluation map evi : M 0,n(Y, 0) → IY
factors through a rigidification of InY =

∐
g Yg1,...,gn , the stack of n-

multisectors [3, Example 2.5]. The map π1 : M 0,n(Y, 0) → InY forgets
the source curve while remembering the maps Bµri → Y at each marked
point pi. The map evi : InY → IY sends the component Yg1,...,gn to Ygi .
The evaluation map evi is the composition of the proper map π1 and the
closed immersion evi and is therefore proper.

In the second case, we note that a map fY : C → Y consists of a map
to f : C → X together with a section s ∈ H0(C, f∗(E∨)). Let rC : C → C

be the map to the underlying coarse curve. Let i be the map IX → X.
By [2, Theorem 1.4.1], the composition C → X → X factors through a
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map |f | : C → X. By Remark 3.12, E is the pullback of a vector bundle
E → X and E is convex. Therefore on each irreducible component Cj of
C, E ∼=

∑r
i=1O(ki) with each ki > 0. Therefore the evaluation map

evi : H0(C, f∗(E∨)) = H0(C, |f |∗(E∨)) −→ E∨||f |(rC(xi)) = i∗E∨|f(xi)

is an injection (see [24, Lemma 3.8]). Then M 0,n(Y, d) is seen to be a
substack of M 0,n(X , d)evi ×proj tot(i∗E∨) via the map evi. Here proj is
the projection from tot(i∗E∨) to IX . In fact we have the following fiber
square

M 0,n(Y, d) M 0,n(X , d)evi ×proj tot(i∗E∨)

M 0,n(Y, d) M 0,n(X, d)evi ×proj tot(E∨).

inc

The bottom map is proper by [24, Lemma 3.8], and therefore so is the top
map. The map

M 0,n(X , d)evi ×proj tot(i∗E∨) (evi,id2)−−−−−→ IX id ×proj tot(i∗E∨) = IY

is proper. The evaluation map evi : M 0,n(Y, d) → IY is equal to the
composition (evi, id2) ◦ inc. �

Remark 4.3. — More generally, for a noncompact space Y, the evaluation
map evi : M g,n(Y, d)→ IY will be proper if Y is projective over an affine
variety [27]. However we will not use this in what follows so we omit the
proof.

4.1. Quantum connections

Let us assume from now on that Y is not necessarily proper, but that
the (genus zero) evaluation maps are proper.
As in Section 3 we may define double brackets. The setup is as before.

Choose a basis {Ti}i∈I for the H∗CR(Y) state space such that I = I ′
∐
I ′′

where I ′′ indexes a basis for the degree two part of the cohomology sup-
ported on the untwisted sector, and I ′ indexes a basis for the cohomology
of the twisted sectors together with the degree not equal to two cohomol-
ogy of the untwisted sector. Let t′ =

∑
i∈I′ t

iTi and let t =
∑
i∈I′∪I′′ t

iTi.
Let qi = eti for i ∈ I ′′. Denote by PY the power series C[[t′, q]]. Choose
α1, . . . , αn from H∗CR(Y) ∪H∗CR,c(Y). Assume that for at least one i, αi is
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in H∗CR,c(Y), or that for some i < j, αi, αj ∈ H∗CR,nar(Y). Then define

(4.1) 〈〈α1ψ
b1 , . . . , αnψ

bn〉〉Y(t)

:=
∑
d∈Eff

∑
k>0

1
k! 〈α1ψ

b1 , . . . , αnψ
bn , t, . . . , t〉Y0,n+k,d

where a summand is implicitly assumed to be zero if d = 0 and n+ k < 3.
In the absence of ψ-classes this yields a formal power series in PY .
In the case of a non-proper target, there are two possible quantum prod-

ucts, in analogy with (2.2). For elements α, β in H∗CR(Y), define α •Yt β ∈
H∗CR(Y)⊗ PY by the formula

〈α •t β, γ〉Y = 〈〈α, β, γ〉〉Y(t)

for all γ ∈ H∗CR,c(Y). Similarly to the cup product, we can also multiply
a cohomology class with a cohomology class with compact support. If α ∈
H∗CR(Y) and β ∈ H∗CR,c(Y), define α •Yt β ∈ H∗CR,c(Y) by the formula

〈γ, α •t β〉Y = 〈〈α, β, γ〉〉Y(t)

for all γ ∈ H∗CR(Y). Alternatively, in the first case the above definition is
equivalent to

(4.2) α •Yt β :=
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev3∗

(
ev∗1(α) ∪ ev∗2(β)

∪
k+3∏
j=4

ev∗j (t) ∩ [M 0,k+3(Y, d)]vir
)
.

The second case is the same but replacing ev∗2 and ev3∗ with ev2
∗
c and ev3

c
∗,

the pullback and pushforward in cohomology with compact support.
Exactly as in the proper case, The pairing 〈 · , · 〉Y can be extended to a

z-sesquilinear pairing SY between H∗CR(Y) ⊗ PY [z, z−1] and H∗CR,c(Y) ⊗
PY [z, z−1] by defining

SY(u(z), v(z)) := (2π
√
−1z)dim(Y)〈u(−z), v(z)〉Y .

Definition 4.4. — As before, the Dubrovin connection is defined by
the formulas

∇Yi = ∂i + 1
z
Ti•Yt

and
∇Yz = ∂z −

1
z2E •

Y
t +1

z
Gr

where recall that {Ti}i∈I is a basis for H∗CR(Y). These operators act on
both H∗CR(Y) ⊗ PY [z, z−1] and H∗CR,c(Y) ⊗ PY [z, z−1]. In particular, for
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α ∈ H∗CR,c(Y)⊗ PY [z, z−1], Ti •Yt α and therefore ∇Yi α lies in H∗CR,c(Y)⊗
PY [z, z−1]. To avoid confusion, we will denote the connection by ∇Y when
acting on cohomology and by ∇Y,c when acting on cohomology with com-
pact support.

Define LY(t, z) by

(4.3) LY(t, z)(α)

:= α+
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev2∗

(
ev∗1(α)
−z − ψ

k+2∏
j=3

ev∗j (t) ∩ [M 0,k+2(Y, d)]vir
)

for α in H∗CR(Y). Define LY,c(t, z) by

(4.4) LY,c(t, z)(α)

:= α+
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev2

c
∗

(
ev1
∗
c(α)

−z − ψ

k+2∏
j=3

ev∗j (t) ∩ [M 0,k+2(Y, d)]vir
)

for α in H∗CR,c(Y).
There is a completely analogous result to Proposition 3.9 in the non-

proper case.

Proposition 4.5. — Let Y be a non-proper space. The quantum con-
nection ∇� is flat, with fundamental solution L�(t, z)z−Grzρ(Y). More pre-
cisely,

(4.5) ∇Yi (LY(t, z)z−Grzρ(Y)α) = ∇Yz (LY(t, z)z−Grzρ(Y)α) = 0

for α ∈ H∗CR(Y) and

(4.6) ∇Y,ci (LY,c(t, z)z−Grzρ(Y)β) = ∇Y,cz (LY,c(t, z)z−Grzρ(Y)β) = 0

for β ∈ H∗CR,c(Y). Furthermore the pairing SY satisfies

(4.7) ∂iS
Y(u, v) = SY(∇Yi u, v) + SY(u,∇Y,ci v).

In other words ∇Y and ∇Y,c are dual with respect to SY . Finally, for
α ∈ H∗CR(Y) and β ∈ H∗CR,c(Y),

(4.8) 〈LY(t,−z)α,LY,c(t, z)β〉Y = 〈α, β〉Y .

Proof. — The proof of these statements is almost identical to the case of
a proper target. The only difference is the precise statement of the topologi-
cal recursion relation for a non-compact target, which is used to prove (4.5)
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and (4.6). In this context the statement is that for α ∈ H∗CR,c(Y), β, γ ∈
H∗CR(Y), and b1, b2, b3 > 0,

〈〈αψb1+1, βψb2 , γψb3〉〉Y =
∑
i∈I
〈〈αψb1 , Ti〉〉Y〈〈T i, βψb2 , γψb3〉〉Y

where recall that {Ti}i∈I and {T i}i∈I are bases for H∗CR(Y) and H∗CR,c(Y)
respectively, so both factors in the right hand sum are well-defined. Simi-
larly, if α, β ∈ H∗CR(Y) and γ ∈ H∗CR,c(Y) we have

〈〈αψb1+1, βψb2 , γψb3〉〉Y =
∑
i∈I
〈〈αψb1 , T i〉〉Y〈〈Ti, βψb2 , γψb3〉〉Y .

The proof of these statements is identical to the proof in the case of a
proper target, after using the following version of the Künneth formula

H∗CR(Y)⊗H∗CR,c(Y) ∼= H∗CR,c−vert(Y × Y),

where the right-hand side denotes cohomology with compact vertical sup-
port (i.e. in the second factor). Under this isomorphism, the class of the
diagonal [∆] in H∗CR,c−vert(Y × Y) is given by

∑
i∈I Ti ⊗ T i. �

Remark 4.6. — The notion above of the compactly supported quantum
connection and solution were described previously in [22, Section 2.5]. We
expect ∇Y and ∇Y,c to be related to the conjectures of [7].

4.2. Narrow quantum D-module

We cannot define a (non-equivariant) quantumD-module in the case that
Y is non-proper due to the fact that H∗CR(Y) does not have a well-defined
pairing. In this section we show that there is a well-defined narrow quantum
D-module for Y, defined in terms of the narrow cohomology of Section 2.
We will see in Section 6.2 the geometric significance of this construction.

Proposition 4.7. — The map φ : H∗CR,c(Y) → H∗CR(Y) commutes
with the quantum product, quantum connection, and the fundamental so-
lution: For u ∈ H∗CR,c(Y)⊗ PY and Ti ∈ H∗CR(Y)

Ti •Yt φ(u) = φ(Ti •Yt u);(4.9)

∇Yi φ(u) = φ(∇Y,ci u);(4.10)

LY(t, z)φ(u) = φ(LY,c(t, z)u).(4.11)
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Proof. — To prove (4.9), it suffices to show that for T j , β ∈ H∗CR,c(Y)

〈Ti •Yt φ(β), T j〉Y = 〈φ(Ti •Yt β), T j〉Y .

The left hand side is equal to 〈〈Ti, φ(β), T j〉〉Y . By the fact that φ commutes
with pullback and (2.3), we note that

ev∗2(φ(β)) ∪ ev3
∗
c(T j) = φ(ev2

∗
c(β)) ∪ ev3

∗
c(T j) = ev2

∗
c(β) ∪ ev3

∗
c(T j).

This implies that

〈〈Ti, φ(β), T j〉〉Y = 〈〈Ti, β, T j〉〉Y .

Again by (2.3),

〈φ(Ti •Yt β), T j〉Y = 〈φ(T j), Ti •Yt β〉Y ,

but by an identical argument as above, this is given by

〈〈Ti, β, φ(T j)〉〉Y = 〈〈Ti, β, T j〉〉Y .

Thus the two are equal. Formula (4.10) follows immediately from (4.9),
and (4.11) uses a similar argument. �

Define a z-sesquilinear pairing SY,nar on H∗CR,nar(Y)⊗ PY [z, z−1] by

SY,nar(u(z), v(z)) := (2π
√
−1z)dim(Y)〈u(−z), v(z)〉Y,nar.

Corollary 4.8. — For any t ∈ H∗CR(Y), the narrow state space is
closed under the quantum product •Yt . The quantum connection ∇Y and
solution LY(t, z) preserve H∗CR,nar(Y). The pairing SY,nar is flat with re-
spect to ∇Y , i.e.

∂iS
Y,nar(u, v) = SY,nar(∇Yi u, v) + SY(u,∇Yi v).

Finally, for α, β ∈ H∗CR,nar(Y),

〈LY(t,−z)α,LY(t, z)β〉Y,nar = 〈α, β〉Y,nar.

Proof. — The first two claims are immediate from (4.9), (4.10), (4.11),
and the definition of H∗CR,nar(Y) as the image of φ. The last two claims
follow from the same equations together with Proposition 4.5. �

With this we can define

Definition 4.9. — The narrow quantum D-module of Y is defined
to be

QDMnar(Y) := (H∗CR,nar(Y)⊗ PY [z, z−1],∇Y , SY,nar)
Note that the coefficients ring PY is not restricted to just the dual coordi-
nates of the narrow cohomology.
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4.3. Integral structure

Identical considerations to Section 3.4.1 in the non-proper case allow one
to define dual integral lattices in ker(∇Y) and ker(∇Y,c), compatible with
the Dubrovin connection.
Assumption 4.10. — The compactly supported Chern character

c̃h
c

: Dc(Y) −→ H∗CR,c(Y)

is given as Definition B.4 of the appendix. Assume thatH∗CR,c(Y) is spanned
by the image of c̃h

c
and that H∗CR(Y) is spanned by the image of

c̃h : D(Y) −→ H∗CR(Y).
Importantly, Assumption 4.10 holds if Y is the total space of a vector

bundle E on X and H∗CR(X ) is spanned by the image of c̃h. Let F be an
object in Dc(Y), assume F can be represented by a complex F • which is
exact outside a proper substack X . Define sY,c(F )(t, z) to be

1
(2π
√
−1)dim(Y)L

Y,c(t, z)z−Grzρ(Y)Γ̂Y ∪IY ((2π
√
−1)deg0 /2I∗(c̃h

c
(F ))),

where c̃h
c
(F ) = c̃h

c
(F •) is given by Definition B.4 and ∪IY denotes the or-

dinary cup product on H∗(IY). Similarly, for F ∈ D(Y), define sY(F )(t, z)
to be

1
(2π
√
−1)dim(Y)L

Y(t, z)z−Grzρ(Y)Γ̂Y ∪IY ((2π
√
−1)deg0 /2I∗(c̃h(F ))).

We obtain lattices

{sY,c(F )(t, z) |F ∈ Dc(Y)} and {sY(F )(t, z) |F ∈ D(Y)},

which are dual with respect to the pairing SY . Proposition 3.19 holds in
this context by the same argument. Namely,

SY(sY(F )(t, z), sY,c(F ′)(t, z)) = eπ
√
−1 dim(Y)χ(F ′, F ).

See [22, Section 2.5] for a similar description.
By Proposition B.5 the orbifold Chern character map c̃h :D(Y)→H∗CR(Y)

maps Dc(Y) to H∗CR,nar(Y). Therefore, given an object F in Dc(Y), define
sY,nar(F )(t, z) as

1
(2π
√
−1)dim(Y)L

Y(t, z)z−Grzρ(Y)Γ̂Y ∪IY ((2π
√
−1)deg0 /2I∗(c̃h(F ))).

Definition 4.11. — Define the integral structure for QDMnar(Y) to be

{sY,nar(F )(t, z)|F ∈ Dc(Y)}.

This set forms a lattice in ker(∇Y |H∗CR,nar(Y))
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5. Equivariant Euler twistings

In many cases, twisted invariants of a vector bundle E → X are closely
related to Gromov–Witten invariants of both the total space and a corre-
sponding complete intersection. In this section we recall the connections
to each, with a particular focus on the relationship to the non-equivariant
Gromov–Witten theory of the total space of E∨, which has not been studied
as thoroughly as the complete intersection.
Let E → X be a convex vector bundle. Let

j : Z −→ X

denote a smooth sub-variety of Z defined by the vanishing of a regular
section of E . Let T = C∗ act on E by scaling in the fiber direction, with
equivariant parameter λ.

5.1. Subvarieties

Choose sk such that s(E) = eλ(E), the equivariant Euler characteristic:

(5.1) s0 = ln(λ), sk = (−1)k−1(k − 1)!/λk for k > 0.

In this case, the genus-zero s-twisted invariants with respect to E are related
to invariants of the local complete intersection subvariety Z cut out by a
generic section of E by the so-called quantum Lefschetz principle ([14, 31]).
One way of phrasing this is the following:

Proposition 5.1 ([23, Proposition 2.4]). — Let Leλ(E)(t, z) denote the
fundamental solution of the equivariant twisted theory of E after specializ-
ing parameters as in (5.1). Then the non-equivariant limit

Le(E)(t, z) := lim
λ7→0

Leλ(E)(t, z)

is well defined. Furthermore, for α ∈ H∗CR(X ),

j∗(Le(E)(t, z)α) = LZ(j∗(t), z)j∗(α).

5.2. The total space

On the other hand, let Y denote the total space of E∨. One can consider
the equivariant Gromov–Witten invariants of Y with respect to the torus
action described above. We will denote the equivariant Gromov–Witten in-
variants by 〈α1ψ

b1 , . . . , αnψ
bn〉YT . These take values in H∗T (pt) = C[λ], the
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equivariant cohomology of a point. Let π : Y → X denote the projection.
If we specialize the twisted parameters to

(5.2) s′0 = − ln(−λ), s′k = (k − 1)!/λk for k > 0

then s′(E∨) = e−1
λ (E∨). In this case by (virtual) Atiyah–Bott localiza-

tion [20], the e−1
λ (E∨)-twisted invariants compute the equivariant invari-

ants of Y after inverting the equivariant parameter. Given α1, . . . , αn ∈
H∗CR,T (X ) and b1, . . . , bn ∈ Z>0, we have

〈α1ψ
b1 , . . . , αnψ

bn〉e
−1
λ

(E∨)
h,n,d :=

∫
[Mh,n(X ,d)]vir

∏n
i=1 ev

∗
i (αi) ∪ ψbii

eλ(Rπ∗f∗(E)∨) .

Proposition 5.2. — Let Le
−1
λ

(E∨)(t, z) denote the fundamental solu-
tion of the equivariant twisted theory of E∨ after specializing parameters
as in (5.2). Then the non-equivariant limit

Le
−1(E∨)(t, z) := lim

λ7→0
Le
−1
λ

(E∨)(t, z)

is well defined. Furthermore, for α ∈ H∗CR(X ),

π∗(Le
−1(E∨)(t, z)α) = LY(π∗(t), z)π∗(α).

Proof. — By [18, Section 4] using the virtual localization formula
of [20], the equivariant Gromov–Witten invariants of Y may be calculated
as twisted invariants of X :

(5.3) 〈α1ψ
b1 , . . . , αnψ

bn〉e
−1
λ

(E∨)
h,n,d = 〈α1ψ

b1 , . . . , αnψ
bn〉YTh,n,d

where YT denotes the T -equivariant Gromov–Witten theory of Y. By the
(non-virtual) localization theorem, the e−1

λ (E∨)-twisted pairing agrees with
the equivariant pairing on Y:

(5.4) 〈α, β〉e
−1
λ

(E∨) = 〈π∗(α), π∗(β)〉YT .

Thus if we are given a basis {Ti}i∈I for X and a dual basis {T i}i∈I with
respect to the e−1

λ (E∨)-twisted pairing, then {π∗(Ti)}i∈I and {π∗(T i)}i∈I
will be dual bases with respect to the equivariant pairing on Y.

By comparing term-by-term, we conclude that the fundamental solutions
agree:

(5.5) π∗(Le
−1
λ

(E∨)(t, z)α) = LYT (π∗(t), z)π∗(α).

Because we assume E is convex, by Lemma 4.2 the genus-zero evaluation
maps are proper and the non-equivariant limit of the right hand side is well
defined.
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If we pull back the left hand side via the map i : X → Y we re-
cover Le

−1
λ

(E∨)(t, z)α, which proves the first statement. Taking the non-
equivariant limit of (5.5) finishes the proof. �

In Proposition 5.6, we describe the non-equivariant limit of the e−1
λ (E∨)-

twisted quantum product more explicitly. To our knowledge this description
is new. It is similar (or more accurately dual) in spirit to the •Zt product
of [28].

Lemma 5.3. — Assume that E is convex. For a stable map

f : (C, p1, . . . , pn) −→ X

from a genus zero n-marked orbi-curve C,

H0(C, f∗(E∨)(−pi)) = 0

for any choice of 1 6 i 6 n.

Proof. — Let r : C → C be the map to the underlying coarse curve. By
Remark 3.12 E is the pullback of a convex vector bundle E → X. By [2,
Theorem 1.4.1], the map C → X → X factors through a map |f | : C → X.
Therefore f∗E = r∗|f |∗E. We observe that

H0(C, r∗(f∗(E∨)(−pi))) = H0(C, r∗(r∗|f |∗(E∨)(−pi)))

= H0(C, |f |∗E∨ ⊗ r∗(OC(−pi)))

= H0(C, |f |∗E∨ ⊗OC(−pi)),

where the second equality is the projection formula and the third can be
checked using local coordinates. On each irreducible component Cj of C,
E ∼=

∑r
l=1O(kl) with each kl > 0. From this we see that the only global

sections of |f |∗(E∨)(−pi)|Cj are constant sections (possibly just the zero
section) if pi is not on Cj , and the zero section if pi does lie on Cj . By an
induction argument on the number of components, the only global section
of |f |∗(E∨)(−pi) is the zero section. �

Consider the short exact sequence over the universal curve C̃ lying over
M h,n(X , d):

0 −→ f∗(E)∨(−pi) −→ f∗(E)∨ −→ f∗(E)∨|pi −→ 0.

Pushing forward we obtain the distinguished triangle

Rπ∗f∗(E)∨(−pi) −→ Rπ∗f∗(E)∨ −→ ev∗i (q∗(E∨))[1],

where q : IX → X is the natural map.
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From this and the previous lemma we can rewrite the twisted invariant
〈α1ψ

b1 , . . . , αnψ
bn〉e

−1
λ

(E∨)
0,n,d as

(5.6)
∫

[M 0,n(X ,d)]vir

n∏
j=1

(ev∗j (αj) ∪ ψ
bj
j ) ∪ eλ(R1π∗f

∗(E)∨(−pi))
ev∗i (q∗(eλ(E∨))) .

The above expression motivates the following definition.

Definition 5.4. — Fix i between 1 and n. Given α1, . . . , αn∈H∗CR,T (X )

and b1, . . . , bn ∈ Z>0, define 〈α1ψ
b1 , . . . , α̃iψbi , . . . , αnψ

bn〉e
−1(E∨)

0,n,d to be the
integral ∫

[M 0,n(X ,d)]vir

n∏
j=1

(ev∗j (αj) ∪ ψ
bj
j ) ∪ e(R1π∗f

∗(E)∨(−pi)).

Note that R1π∗f
∗(E)∨(−pi) may be represented by a vector bundle by

Lemma 5.3. We now define a new quantum product on X :

Definition 5.5. — Let {T i} be a basis forH∗CR(X ) and let {T i} denote
the dual basis. For α and β ∈ H∗CR(X ), define

α •Y→Xt β := 〈〈α, β, T̃ i〉〉e
−1(E∨)

T
i
.

Proposition 5.6. — The pullback

π∗ : H∗CR(X )⊗ PX −→ H∗CR(Y)⊗ PY

is a ring isomorphism from the •Y→Xt -product on X to the quantum product
•Yt on Y.

Proof. — We first show that in the non-equivariant limit, the product
•e
−1
λ

(E∨)
t specializes to •Y→Xt .
The bases {T i} and {T

i} give dual bases with respect to the equivariant
pairing on H∗CR,T (X ) via the inclusion H∗CR(X ) ⊂ H∗CR,T (X ) ∼= H∗CR(X )⊗
C[λ]. Define Ti := eλ(E∨) ∪ T i and T i := T

i. Note that with respect to
the e−1

λ (E∨)-twisted pairing, {Ti} and {T i} are dual bases. Therefore, for
α, β ∈ H∗CR(X ),

(5.7)

α •e
−1
λ

(E∨)
t β =

∑
i∈I
〈〈α, β, Ti〉〉e

−1
λ

(E∨)
T i

=
∑
i∈I
〈〈α, β, eλ(E∨) ∪ T i〉〉e

−1
λ

(E∨)
T
i
.
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By (5.6) and Remark 2.14, the factor of eλ(E∨) in the third insertion
cancels with part of the twisted virtual class and this expression becomes∑

i∈I

∑
d∈Eff

∑
k>0

T i

k!

∫
[M 0,k+3(X ,d)]vir

ev∗1(α) ∪ ev∗2(β) ∪ ev∗3(Ti)

∪
k+3∏
j=4

ev∗j (t) ∪ eλ(R1π∗f
∗(E)∨(−p3)).

In the nonequivariant limit λ 7→ 0, this is exactly α •Y→Xt β.
On the other hand, by (5.3) and (5.4), if we pull back (5.7) by π we

obtain ∑
i∈I
〈〈π∗(α), π∗(β), π∗(Ti)〉〉YT π∗(T i),

which may be rewritten as

∑
i∈I

∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev3∗

(
ev∗1π

∗(α) ∪ ev∗2π∗(β)

∪
k+3∏
j=4

ev∗jπ
∗(t) ∩ [M 0,k+3(YT , d)]vir

)
,

where [M 0,k+3(YT , d)]vir is the equivariant virtual fundamental class. In
the non-equivariant limit we recover π∗(α) •Yπ∗(t) π

∗(β) by (4.2).
Combining the above results we conclude

π∗(α •Y→Xt β) = π∗( lim
λ7→0

α •e
−1
λ

(E∨)
t β)

= lim
λ 7→0

π∗(α •e
−1
λ

(E∨)
t β)

= lim
λ 7→0

(π∗(α) •YTπ∗(t) π
∗(β))

= π∗(α) •Yπ∗(t) π
∗(β). �

6. Quantum Serre duality

In this section we use the definition of the compactly supported quan-
tum connection and the narrow quantum D-module to reframe quantum
Serre duality in two new ways. First we relate the compactly supported
quantum connection of Y to the quantum connection of Z. Second, we
show there is an isomorphism between the narrow quantum D-module of
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Y and the ambient quantum D-module of Z. In both cases we show these
correspondences to be compatible with the integral structures.
In all of this section we assume:
• The vector bundle E → X is convex;
• Assumption 3.13;
• Assumption 3.20;
• The stack X has the resolution property.

6.1. Compactly supported quantum Serre duality

In [24], it is observed (Remark 3.17) that the e(E)-twisted quantum D-
module can be viewed as the quantum D-module with compact support of
the total space E∨. We make this observation precise by relating the Eu-
ler twisted fundamental solution Le(E)(t, z) with the compactly supported
fundamental solution LY,c(t, z). This then allows us to directly relate the
compactly supported fundamental solution of Y with the ambient funda-
mental solution LZ(t, z), obtaining a new perspective on quantum Serre
duality. In Remark 6.6 we explain that the results of this section should be
viewed as adjoint to a similar theorem in [24]. The majority of the tech-
niques of this section appeared already in [24], it is mainly the perspective
which is new. This particular formulation of quantum Serre duality, de-
scribed in Theorem 6.5, is convenient for then proving the more refined
statement in Section 6.2.
Recall the definition of PX given in Notation 3.5. Consider the map

f̂λ(t) : H∗CR,T (X )→ H∗CR,T (X )⊗ PX [[λ]] given by

(6.1) f̂λ(t) :=
∑
i∈I
〈〈eλ(E∨), Ti〉〉eλ(E∨)

T i

where {Ti} and {T i} as dual bases with respect to the e−1
λ (E∨)-pairing.

Proposition 6.1. — The map f̂λ(t)/eλ(E∨) has a well defined non-
equivariant limit f̂X (t) given by∑

i∈I
〈〈1̃, T i〉〉e

−1(E∨)
T
i
,

where {T i} and {T i} as dual bases with respect to the usual pairing on
H∗CR(X ).
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Proof. — Due to the difference in the usual pairing on H∗CR,T (X ) and
the e−1

λ (E∨)-twisted pairing, f̂λ(t)/eλ(E∨) can be expressed as∑
i∈I
〈〈eλ(E∨), T i〉〉e

−1
λ

(E∨)
T
i
.

The claim then follows by the same argument as in Proposition 5.6. �

Proposition 6.2. — Let fX (t) = f̂X (t) − π
√
−1c1(E). The isomor-

phism
ic∗ : H∗CR(X ) −→ H∗CR,c(Y)

identifies the connections (fX ◦ i∗)∗(∇e(E)) and ∇Y,c. Furthermore,

(6.2) LY,c(t, z)ic∗(β) = ic∗(Le(E)(fX (i∗(t)), z)e−π
√
−1c1(E)/zβ)

for all β ∈ H∗CR(X ).

Proof. — The first claim follows from the second. By Theorem A.3, the
symplectic transformation

∆� := eπ
√
−1c1(E)/z/eλ(E∨)

maps L e−1
λ

(E∨) to L eλ(E).
By (A.3) and (A.5), ∆�z∂−eλ(E∨)J

e−1
λ

(E∨)(t,−z) is a C[z]-linear combi-
nation of derivatives of Jeλ(E)(t̂,−z) at some point t̂. Observe that

∆�z∂−e(E∨)J
e−1
λ

(E∨)(t,−z)

= 1
eλ(E∨) (1 + π

√
−1c1(E)/z)(−eλ(E∨)z

+
∑
i∈I
〈〈eλ(E∨), Ti〉〉e

−1
λ

(E∨)
T i) +O(1/z)

= −z + 1
eλ(E∨)

(∑
i∈I
〈〈eλ(E∨), Ti〉〉e

−1
λ

(E∨)
T i

)
− π
√
−1c1(E) +O(1/z).

From this we can see that ∆�z∂−e(E∨)J
e−1
λ

(E∨)(t,−z) is equal to
Jeλ(E)(fλ(t),−z) where

fλ(t) = 1
eλ(E∨)

(∑
i∈I
〈〈eλ(E∨), Ti〉〉e

−1
λ

(E∨)
T i

)
− π
√
−1c1(E)

= f̂λ(t)/eλ(E∨)− π
√
−1c1(E).

This implies that

∆�(T
J
e
−1
λ

(E∨)(t,−z)
L e−1

λ
(E∨)) = TJeλ(E)(f̄λ(t),−z)L

eλ(E)
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and so by (A.6), ∆+(∂αJe
−1
λ

(E∨)(t,−z)) is a C[z]-linear combination of
derivatives of Jeλ(E)(t,−z) evaluated at t = fλ(t). Comparing z0-coeffic-
ients, we see

e−π
√
−1c1(E)/z

eλ(E∨) ∂eλ(E∨)∪αJ
e−1
λ

(E∨)(t, z) = ∂αJ
eλ(E)(t, z)|t̂=f̂(t),

where we have replaced −z by z. By (A.4), this equation can be written as

e−π
√
−1c1(E)/z

eλ(E∨) (Le
−1
λ

(E∨)(t, z)−1eλ(E∨) ∪ α) = Leλ(E)(t, z)−1α

or, equivalently,

(6.3) Le
−1
λ

(E∨)(t, z)(eλ(E∨) ∪ α) = eλ(E∨) ∪ Leλ(E)(t, z)e−π
√
−1c1(E)/zα.

By Proposition 6.1, the non-equivariant limit of f̂λ(t)/eλ(E∨) exists.
Then by Proposition 5.1 the right side therefore has a non-equivariant
limit for α ∈ H∗CR,T (X ) ⊂ H∗CR,T (X )⊗RT ST .
To finish the proof, let α, β ∈ H∗CR(X ) and consider the following:

〈LY(t,−z)π∗(α), LY,c(t, z)ic∗β〉Y = 〈π∗(α), ic∗β〉Y

= 〈α, β〉X

where the first equality is (4.8) and the second is the projection formula [8].
Note that this equation completely determines LY,c(t, z) in terms of
LY(t, z). On the other hand, we have

〈α, β〉X

= lim
λ7→0
〈α, β〉X

= lim
λ7→0
〈α, eλ(E∨) ∪ β〉e

−1
λ

(E∨)

= lim
λ7→0

〈
Le
−1
λ

(E∨)(i∗(t),−z)α,Le
−1
λ

(E∨)(i∗(t), z)(eλ(E∨) ∪ β)
〉e−1
λ

(E∨)

= lim
λ7→0

〈
Le
−1
λ

(E∨)(i∗(t),−z)α,

eλ(E∨) ∪ Leλ(E)(fλ(i∗(t)), z)e−π
√
−1c1(E)/zβ

〉e−1
λ

(E∨)

= lim
λ7→0

〈
Le
−1
λ

(E∨)(i∗(t),−z)α,Leλ(E)(fλ(i∗(t)), z)e−π
√
−1c1(E)/zβ

〉X
=
〈
Le
−1(E∨)(i∗(t),−z)α,Le(E)(fX (i∗(t)), z)e−π

√
−1c1(E)/zβ

〉X
=
〈
π∗(Le

−1(E∨)(i∗(t),−z)α), ic∗
(
Le(E)(fX (i∗(t)), z)e−π

√
−1c1(E)/zβ

)〉Y
=
〈
LY(t,−z)π∗(α), ic∗

(
Le(E)(fX (i∗(t)), z)e−π

√
−1c1(E)/zβ

)〉Y
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The third equality is (3.5), the fourth is (6.3), the fifth is from the difference
in the twisted and untwisted pairing, the seventh is again the projection
formula and the last is Proposition 5.2.
Combining the above two chains of equalities yields (6.2). �

Definition 6.3. — Define

∆c
+ := j∗ ◦ πc

∗ : H∗CR,c(Y) −→ H∗CR,amb(Z).

Define

∆c
+ := (2π

√
−1z)rk(E)∆c

+.

We will show that ∆c
+ is compatible with the quantum connections,

integral structures and the functor

j∗ ◦ π∗ : D(Y)X −→ D(Z).

Lemma 6.4. — Assume that X has the resolution property. Consider
the functor j∗ ◦ π∗ : D(Y)X → D(Z). The induced map on cohomology
from H∗CR,c(Y) to H∗CR,amb(Z) is given by ∆c

+( · ∪ Td(π∗E∨)), i.e.

(6.4) ∆c
+(c̃h

c
(F ) ∪ Td(π∗E∨)) = c̃h ◦j∗ ◦ π∗(F )

for all F ∈ D(Y)X , where c̃h
c
is defined in Definition B.4.

Proof. — By [5, Lemmas 4.6 and 4.8], D(Y)X is strongly generated by
i∗(D(X )). Thus any element of D(Y)X may be expressed, via a finite se-
quence of extensions, in terms of elements in i∗(D(X )). It therefore suffices
to check the statement when F = i∗(G) for some G ∈ D(X ). By orbifold
Grothendieck–Riemann–Roch [30, 31], c̃h

c
(i∗(G))∪Td(π∗E∨) = i∗(c̃h(G)).

Then,

∆c
+(c̃h

c
(i∗(G)) ∪ Td(π∗E∨)) = ∆c

+(i∗(c̃h(G)))

= j∗(c̃h(G))

= j∗(c̃h(π∗ ◦ i∗G))

= c̃h(j∗ ◦ π∗ ◦ i∗G)). �

Theorem 6.5. — ∆c
+ maps (Y, c)-flat sections to Z-flat sections. In

particular,

(6.5) ∆c
+◦LY,c(t, z)(β) = LZ,amb(j∗◦fX ◦i∗(t), z)◦∆c

+◦e−π
√
−1c1(π∗E)/zβ.
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Furthermore it is compatible with the integral structure and the functor
j∗ ◦ π∗, i.e., the following diagram commutes;

(6.6)
D(Y)X j∗(D(X ))

ker(∇Y,c) ker((j∗ ◦ fX ◦ i∗)∗(∇Z)).

j∗◦π∗

sY,c sZ,amb

∆̄c
+

Proof. — The first statement is an immediate consequence of the previ-
ous proposition, the fact that πc

∗ is the inverse of ic∗, and Proposition 5.1.
To show that

∆c
+ ◦ sY,c(t, z)(F ) = sZ,amb(j∗ ◦ fX ◦ i∗(t), z) ◦ j∗ ◦ π∗(F ),

note the following facts. First, recalling the definition of Γ̂Y from Defini-
tion 3.17, we see that

(6.7)

Γ̂Y = π∗
(
Γ̂X Γ̂(E∨)

)
= π∗

(
Γ̂X

Γ̂(E)
Γ̂(E∨)Γ̂(E)

)

= π∗

(
Γ̂X

Γ̂(E)

rk(E)∏
j=1

Γ(1− ρj)Γ(1 + ρj)
)

= π∗

(
Γ̂X

Γ̂(E)

rk(E)∏
j=1

(2π
√
−1)eπ

√
−1ρj (−ρj)

1− e2π
√
−1ρj

)

= π∗
(
eπ
√
−1c1(E) Γ̂X

Γ̂(E)
(2π
√
−1)deg0 /2 Td(E∨)

)
where ρj are the Chern roots of E . Second,

j∗
(

Γ̂X
Γ̂(E)

)
= Γ̂Z .

Observing that

∆c
+(z−Grzρ(Y)(2π

√
−1)deg0 /2( · ))

=
(

z

2π
√
−1

)rk(E)
z−Grzρ(Z)(2π

√
−1)deg0 /2∆c

+( · ),
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by Lemma 6.4 we then have that for all F ∈ D(Y)X ,(
z

2π
√
−1

)rk(E)
∆c

+
(
e−π
√
−1c1(π∗E)/zz−GrΓ̂Y(2π

√
−1)deg0 /2I∗(c̃h

c
(F ))

)
(6.8)

= z−GrΓ̂Z(2π
√
−1)deg0 /2I∗(c̃h(j∗ ◦ π∗(F ))).

Finally, note that dim(Y) = dim(Z) + 2 rk(E). The claim follows from this,
(6.5), and (6.8). �

Remark 6.6 (Relation to [24]). — A very similar statement was shown
in [24, Theorem 3.13] and the proof above uses the same ingredients. In-
deed the statement above may be seen implicitly in the results of [24] as we
explain below. Among other things, they show that the ambient quantum
connection ∇Z is related to ∇e−1(E∨) by the functor j∗ after a twist by
det(E)[rk(E)]. After composing with the pullback π∗, that result is essen-
tially the adjoint to Theorem 6.5, the observation of which almost gives
a second proof of Theorem 6.5, via Proposition 4.5 and the relations in
Section 4.5.
Note, however, that the statements differ further in the change of vari-

ables. One is the inverse of the other which, to the author’s knowledge,
is most easily seen a-posteriori by comparing the statements of [24, The-
orem 3.13] and Theorem 6.5 above. The presentation given above implies
more directly the results below involving the narrow quantum D-module
of Y, and the change of variables given above is designed to be useful in
applications such as the LG/CY correspondence of [29].

6.2. Narrow quantum Serre duality

In this section we prove a variation of quantum Serre duality which
gives an isomorphism between the narrow quantum D-module of Y and
the ambient quantum D-module of Z. An application of this theorem is
given in [29].

Definition 6.7. — Define the map f̂Y :H∗CR(Y)→H∗CR,nar(Y)⊗PY by

f̂Y(t) :=
∑
d∈Eff

∑
k>0

1
k!I∗ ◦ ev2∗(ev∗1(e(E∨)) ∪

k+2∏
j=3

ev∗j (t) ∩ [M 0,k+2(Y, d)]vir).

Since the evaluation maps are proper and e(E∨) ∈ H∗CR,nar(Y), f̂Y(t) will
also lie in the narrow cohomology.
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Lemma 6.8. — In H∗CR(Y)⊗ PY ,

f̂Y(t) = i∗(f̂X (i∗(t)).

Proof. — Using (5.3) and (5.4) and the same analysis as in the proof of
Proposition 5.2,

f̂Y(t) = lim
λ7→0

π∗(f̂λ(i∗(t))).

Next note that

i∗(f̂λ(t)/eλ(E∨)) = π∗(i∗(i∗(f̂λ(t)/eλ(E∨))))

= π∗(f̂λ(t))

and f̂X (t) = limλ 7→0 f̂
λ(t)/eλ(E∨). �

Definition 6.9. — We define the transformation ∆+ : H∗CR,nar(Y) →
H∗CR,amb(Z) as follows. Given α ∈ H∗CR,nar(Y), let α̃ ∈ H∗CR,c(Y) be a lift
of α. Define

∆+(α) := ∆c
+(α̃).

Define
∆+ := (2π

√
−1z)rk(E)∆+.

Lemma 6.10. — With assumption 3.13, the map ∆+ : H∗CR,nar(Y) →
H∗CR,amb(Z) described above is well-defined.

Proof. — The lift α̃ is only defined up to an element of ker(φ). We check
that

πc
∗(ker(φ)) ⊂ ker(j∗).

Given α̃ ∈ ker(φ), since ic∗ is an isomorphism there exists an element
β ∈ H∗CR(X ) such that α̃ = ic∗(β). Then πc

∗(α) = πc
∗(ic∗(β)) = β. We want

to show that j∗(β) = 0. By assumption, φ(α̃) = φ ◦ ic∗(β) = i∗(β) = 0.
Write β as i∗(γ), for some γ ∈ H∗CR(Y). Consider the following diagram

Y|Z Y

Z X .

j̃

π̃ π

j

ĩ i

Then j∗(β) = j∗i∗(γ) = ĩ∗j̃∗(γ) is zero if and only if j̃∗(γ) = 0. By Assump-
tion 3.13, j̃∗(γ) = 0 if and only if j̃∗j̃∗(γ) = e(E)∪γ = 0. Up to a sign, this
is equal to e(E∨) ∪ γ = i∗i

∗(γ) = i∗(β), which is zero by assumption. �

Lemma 6.11. — Given α = e(E∨) ∪ β ∈ H∗CR(X ),

∆+(π∗(α)) = j∗β.

In particular, ∆+ : H∗CR,nar(Y)→ H∗CR,amb(Z) is an isomorphism.
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Proof. — Observe that

π∗(α) = e(E∨) ∪ π∗(β)
= i∗ ◦ i∗ ◦ π∗(β)
= i∗(β)
= φ ◦ ic∗(β).

Therefore, ∆+(π∗(α)) = j∗ ◦ πc
∗ ◦ ic∗(β) = j∗(β). The second claim follows

from

H∗CR,amb(Z) = im(j∗)
∼= H∗CR(X )/(ker( · ∪ e(E∨))
∼= im( · ∪ e(E∨))
= π∗(im( · ∪ e(E∨)))
= H∗CR,nar(Y).

where the second and third terms are isomorphic by (3.6) and the final
equality is by Proposition 2.15. �

We will need the following lemma.

Lemma 6.12. — ∆+(f̂Y(t)) = j∗ ◦ f̂X ◦ i∗(t).

Proof. — By Lemma 6.8 and the definition of ∆+,

∆+(f̂Y(t)) = ∆+(i∗(f̂X (i∗(t)))

= ∆+(φ ◦ ic∗(f̂X (i∗(t))))

= j∗ ◦ πc
∗(ic∗(f̂X (i∗(t))))

= j∗ ◦ f̂X ◦ i∗(t). �

Proposition 6.13. — The following operators are equal after a change
of variables:

∆+ ◦ LY(t, z) ◦ φ = ∆c
+ ◦ LY,c(t, z)

= LZ,amb(j∗ ◦ fX ◦ i∗(t), z) ◦∆c
+ ◦ e−π

√
−1c1(π∗E)/z

= LZ,amb(fY(t), z) ◦∆+ ◦ e−π
√
−1c1(π∗E)/z ◦ φ,

where

fY(t) = ∆+(f̂Y(t))− π
√
−1c1(E)

= ∆+

( ∑
i∈Inar

〈〈e(E∨), Ti〉〉Y(t)T i
)
− π
√
−1c1(E).(6.9)
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Proof. — This follows almost immediately from the previous section, by
applying the map φ : H∗CR,c(Y)→ H∗CR,nar(Y). Recall (6.5):

(6.10) ∆c
+ ◦ LY,c(t, z)(β)

= LZ,amb(j∗ ◦ fX ◦ i∗(t), z) ◦∆c
+ ◦ e−π

√
−1c1(π∗E)/z(β).

By Proposition 4.7, the left hand side of (6.10) is equal to

∆c
+ ◦ φ(LY,c(t, z)(β)) = ∆+ ◦ LY(t, z)(φ(β))

for all β ∈ H∗CR,c(Y). By Lemma 6.12 the right hand side of (6.10) is

LZ,amb(fY(t), z) ◦∆c
+ ◦ e−π

√
−1c1(π∗E)/z(β)

= LZ,amb(fY(t), z) ◦∆+ ◦ e−π
√
−1c1(π∗E)/z(φ(β)). �

Theorem 6.14. — Assume X has the resolution property. The map
∆+ identifies the quantum D-module QDMnar(Y) with f∗(QDMamb(Z)).
Furthermore it is compatible with the integral structure and the functor
j∗ ◦ π∗, i.e., the following diagram commutes;

(6.11)
D(Y)X j∗(D(X ))

QDMnar(Y) QDMamb(Z).

j∗◦π∗

sY,nar sZ,amb

∆̄+

Proof. — The fact that ∇Y,nar is mapped to ∇Z,amb follows from Propo-
sition 6.13. To see that the pairings agree, first observe that for α, β ∈
H∗CR(X ),

〈∆+i∗α,∆+i∗β〉Z =
∫
IZ
j∗(α) ∪IZ I∗(j∗β)

=
∫
IX
α ∪IX I∗(β ∪IX q∗e(E))

= (−1)rk(E)
∫
IX
α ∪IX I∗(ic∗ic∗(β))

= (−1)rk(E)
∫
IY
ic∗α ∪IY I∗(ic∗β)

= (−1)rk(E)
∫
IY
i∗α ∪IY,c I∗(i∗β)

= (−1)rk(E)〈i∗α, i∗β〉Y ,

where ∪IZ (resp. ∪IY , etc.) indicates we are using the usual cup product
on IZ (resp. IY, etc.) as opposed to the Chen–Ruan cup product. The
fourth equality is the projection formula ([8, Proposition 6.15]). In the fifth
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equality we use the fact that i∗α∪IY,c I∗(i∗β) = (φ◦ic∗α)∪IY,c I∗(φ◦ic∗β) =
ic∗α∪IY I∗(ic∗β) by Definition 2.8 of the compactly supported cup product.
Because ∆+ contains the factor of zrk(E),

SZ(∆+i∗α,∆+i∗β) = (−1)rk(E)(2π
√
−1z)dim(Z)+2 rk(E)〈∆+i∗α,∆+i∗β〉Z

= (2π
√
−1z)dim(Y)〈i∗α, i∗β〉Y

= SY(i∗α, i∗β).

Because H∗CR,nar(Y) = im(i∗) by Proposition 2.15, we conclude that ∆+
preserves the pairing on all of H∗CR,nar(Y).
Commutativity of the square (6.11) follows from the equalities of Propo-

sition 6.13 and Theorem 6.5 after observing that c̃h = φ ◦ c̃h
c
. �

Appendix A. Givental’s formalism

Let � denote either Gromov–Witten theory of a proper Deligne–
Mumford stack X or an s-twisted theory over X . In this section we recall
Givental’s formalism of an overruled Lagrangian cone for encoding genus-
zero Gromov–Witten theory. For more details see [19].
Let H� be the state space for the theory. Given a basis {Ti}i∈I , a point

in H� may be written as t =
∑
i∈I t

iTi. Denote by t(z) the power series

t(z) =
∑
k>0

tkz
k =

∑
i∈I

∑
k>0

tikTiz
k

inH�[[z]]. Define the genus zero descendent potential as the formal function

F�0 (t(z)) :=
∑
d∈Eff

∑
n>0

1
n! 〈t(ψ), . . . , t(ψ)〉�0,n,d.

Let V � denote the infinite-dimensional vector space H�[z][[z−1]][[s]]
(where s = 0 in the untwisted case). We endow V � with a symplectic
pairing defined as follows:

Ω�(f1(z), f2(z)) := Res〈f1(−z), f2(z)〉�.

The vector space V � may be polarized as

V �+ = H�[z],

V �− = z−1H�[[z−1]].
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The polarization on V � determines Darboux coordinates {qik, pk,i}. Each
element of V � may be written as∑

k>0

∑
i∈I

qikTiz
k +

∑
k>0

∑
i∈I

pk,iT
i(−z)−k−1

We view F�0 (t(z)) as a formal function on V �+ via the dilaton shift

q(z) = t(z)− z.

Definition A.1. — Define the overruled Lagrangian cone for � to be

(A.1) L � := {p = dqF�0 }.

Explicitly, L � contains the points of the form

(A.2) − z +
∑
k>0
i∈I

tikTiz
k

+
∑
d∈Eff

∑
a1,...,an,a>0
i1,...,in,i∈I

ti1a1
· · · tinan

n!(−z)a+1 〈ψ
aTi, ψ

a1Ti1 , . . . , ψ
anTin〉�0,n+1,dT

i.

As shown in [19], L � takes a special form:
• it is a cone;
• for all f ∈ L �,

L � ∩ TfL = zTfL

where TfL is the tangent space to L � at f .
Consider a generic family in L � parameterized by H�, this will take

the form {
f(t)

∣∣ t ∈ H�} ⊂ L �,

and will be transverse to the ruling. With this, the above properties imply
that we can reconstruct L � as

(A.3) L � =
{
zTf(t)L

�
∣∣ t ∈ H�}.

Givental’s J–function is such a family. It is given by the intersection:

J�(t,−z) = L � ∩ −z ⊕ t⊕ V −.

More explicitly,

J�(t,−z) = −z + t +
∑
d∈Eff

∑
n>0

∑
i∈I

1
n!

〈
Ti

−z − ψ
, t, . . . , t

〉�
0,n+1,d

T i.

By (3.5), we see that

(A.4) L�(t, z)−1α = L�(t,−z)Tα = ∂αJ
�(t, z).
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In [19] it is shown that the image of J�(t,−z) is transverse to the ruling
of L �, so J�(t,−z) is a function satisfying (A.3). It follows that the ruling
at J�(t,−z) is spanned by the derivatives of J�, i.e.

(A.5)
zTJ�(t,−z)L =

{
J�(t,−z)+z

∑
ci(z)

∂

∂ti
J�(t,−z)

∣∣∣∣ ci(z)∈C[z]
}

=
{
z
∑

ci(z)
∂

∂ti
J�(t,−z)

∣∣∣∣ ci(z) ∈ C[z]
}
.

where the second equality is by the string equation, z ∂
∂t0 J

�(t, z) = J�(t, z).
We note finally that

(A.6) TJ�(t,−z)L =
{∑

ci(z)
∂

∂ti
J�(t,−z)

∣∣∣∣ ci(z) ∈ C[z]
}
.

A.1. Quantum Serre duality with Lagrangian cones

Since its discovery in [17], quantum Serre duality (or non-linear Serre
duality) has been formulated in many different ways. Below we recall one
of the most general and applicable, in terms of twisted theories and La-
grangian cones. Let s denote the twisting parameters of Section 3.1 and
define s∗ by

s∗k = (−1)k+1sk.

Note
s∗(E∨) = 1

s(E) .

In this case (genus zero) quantum Serre duality takes the following form.

Theorem A.2 ([14, Corollary 9]). — The symplectic transformation

V s(E) −→ V s∗(E∨)

f(z) 7−→ s∗(E∨)f(z)

identifies L s(E) with L s∗(E∨).

See [31] for the orbifold version of this theorem.
Note however that the specializations of the twisting parameters given

by (5.1) and (5.2) are not exactly of the form given above, i.e. s′ 6= s∗. The
statement must be modified slightly in this case. We state here the modified
statement of the above theorem for the case of the Euler class-twisted
theories of Section 5. This specific formulation appears as Theorem 5.17
in [26].
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Theorem A.3 ([26, Theorem 5.17]). — The symplectic transformation

∆� : V e−1
λ

(E∨) −→ V eλ(E)

f(z) 7−→ eπ
√
−1c1(E)/z

eλ(E∨) f(z)

identifies L e−1
λ

(E∨) with L eλ(E).

Appendix B. Orbifold localized Chern character

Given a complex F • ∈ K0
X(Y ) (exact off X), there exists a localized

Chern character
chYX(F •) ∈ H∗(Y, Y −X)

as described in [16, Example 19.2.6] (see also [4, 25]).
On the other hand, given a bundle F on a stack Y with the resolution

property, there is an orbifold Chern character [30, 31] landing in the co-
homology of the inertia stack and defined as follows. Restricting F to a
twisted sector Fγ → Yγ , Fγ decomposes into eigenbundles according to the
action of γ on F

Fγ =
⊕

06f<1
Fγ,f ,

where the generator γ acts as multiplication by e2π
√
−1f on Fγ,f . Define

ρ(Fγ) :=
∑

06f<1
e2π
√
−1fFγ,f .

Observe that for a complex

F • = 0 −→ F a −→ · · · −→ F i −→ F i+1 −→ · · · −→ F b −→ 0

of vector bundles, the map diγ : F iγ → F i+1
γ is compatible with the splitting

into eigenbundles. I.e. diγ is a direct sum of the maps

diγ,f : F iγ,f −→ F i+1
γ,f .

Consequently ρ gives a well-defined map on K0(Yγ).
Summing over each twisted sector, this defines a map ρ : K0(IY) →

K0(IY).

Definition B.1. — The orbifoldChern character c̃h:K0(Y)→H∗CR(Y)=
H∗(IY) is defined as the composition

K0(Y) q∗−→ K0(IY) ρ−→ K0(IY) ch−→ H∗(IY),

TOME 71 (2021), FASCICULE 3



1180 Mark SHOEMAKER

where q : IY → Y is the natural union of inclusions and ch is the usual
Chern character defined by passing to the coarse space.

One can combine the two notions above to obtain a localized orbifold
Chern character. Let X be a closed substack of Y and let F • be a complex
on Y, exact off of X . Consider the restriction to a twisted sector Yγ , by the
observation above, F •γ splits into eigen-complexes

F •γ =
⊕

06f<1
F •γ,f ,

with each F •γ,f exact off Xγ . This implies that the twisting ρ gives a well
defined map on K0

Xγ (Yγ). Summing over all twisted sectors defines a map
ρ : K0

IX (IY)→ K0
IX (IY).

Definition B.2. — Define the localized orbifold Chern character

c̃h
Y
X : K0

X (Y) −→ H∗CR(Y,Y − X )

to be the composition

K0
X (Y) q∗−→ K0

IX (IY) ρ−→ K0
IX (IY)

chYX−→ H∗(IY, IY − IX ).

For Y a non-compact manifold, define K0
c (Y ) to be the direct limit

K0
c (Y ) = lim−→K0

X(Y )

over all compact subvarieties X ⊂ Y . Assume X1 ⊂ X2 ⊂ Y and F • is a
complex exact off X1 (and therefore also exact off X2), let j : X1 → X2,
i1 : X1 → Y , and i2 : X2 → Y denote the inclusions. Then the following
diagram commutes:

(B.1)

K0
X1

(Y ) K0
X2

(Y )

H∗(Y, Y −X1) H∗(Y, Y −X2)

H∗(X1) H∗(X2)

H∗(Y ) ∼= H∗c (Y ) H∗(Y ) ∼= H∗c (Y ).

j∗

chYX1 chYX2

∩[Y ] ∩[Y ]

j∗

i1
c
∗ i2

c
∗

The commutativity of the top square follows, for instance, from [16, Defi-
nition 18.1 and Example 19.2.6].
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Definition B.3. — For i : X → Y the inclusion of a closed and proper
subvariety, define chc

X : K0
X(Y )→ H∗c (Y ) by

chc
X(F •) = ic∗(chYX(F •) ∩ [Y ]).

By diagram (B.1), this induces a homomorphism

chc : K0
c (Y ) −→ H∗c (Y )

which we will refer to as the compactly supported Chern character.

The above argument can be extended to the situation where Y is a
smooth Deligne–Mumford stack, we obtain:

Definition B.4. — The compactly supported orbifold Chern character

c̃h
c

: K0
c (Y) −→ H∗CR,c(Y) = H∗c (IY)

is defined to be the composition

K0
c (Y) q∗−→ K0

c (IY) ρ−→ K0
c (IY) chc

−→ H∗c (IY).

Given i : X → Y the inclusion of a closed and proper subvariety, by [25,
Theorem 1.3],

i∗(chYX(F •) ∩ [Y ] = ch(F •).
This immediately gives the following.

Proposition B.5. — For F • a complex of vector bundles on Y with
proper support,

φ(c̃h
c
(F •)) = c̃h(F •)

in H∗CR(Y).
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