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THE CONFORMAL EINSTEIN FIELD EQUATIONS
WITH MASSLESS VLASOV MATTER

by Jérémie JOUDIOUX,
Maximilian THALLER & Juan A. VALIENTE KROON (*)

Abstract. — We prove the stability of de Sitter space-time as a solution to
the Einstein–Vlasov system with massless particles. The semi-global stability of
Minkowski space-time is also addressed. The proof relies on conformal techniques,
namely Friedrich’s conformal Einstein field equations. We exploit the conformal
invariance of the massless Vlasov equation on the cotangent bundle and adapt
Kato’s local existence theorem for symmetric hyperbolic systems to prove a long
enough time of existence for solutions of the evolution system implied by the Vlasov
equation and the conformal Einstein field equations.
Résumé. — Nous prouvons la stabilité de l’espace-temps de de Sitter, solution

du système d’Einstein–Vlasov avec des particules sans masse. Nous considérons
également la stabilité semi-globale de l’espace-temps de Minkowski pour le même
système. La preuve de la stabilité repose sur l’usage de techniques conformes, et
plus précisément les équations de champs conformes d’Einstein introduites par
Friedrich. Nous exploitons l’invariance conforme de l’équation de Vlasov sans masse
et adaptons le résultat d’existence locale en temps suffisamment long de Kato au
système d’Einstein–Vlasov.

1. Introduction

1.1. The Einstein–Vlasov system

Kinetic theory in general relativity is used to model the global behaviour
of a space-time when, for instance, galaxy clusters are identified with parti-
cles. The Vlasov matter model is a sub-class of these kinetic models arising
when the collision of particles is neglected. This approximation is relevant
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when collisions either do not affect the motion of the particles or can be
neglected —for instance in the description of low-density gases. In this ar-
ticle we consider ultra-relativistic matter —that is to say, particles whose
velocity is close to the speed of light. A good approximation would then
be that the particles, like photons, are massless and, in the context of gen-
eral relativity, follow the path of freely falling massless particles —i.e. null
geodesics. Reviews on relativistic kinetic theory can be found in [1, 24].
In the context of general relativity, ultra-relativistic matter is modelled

by the Einstein–Vlasov system. In the following let (M̃, g̃) be a four di-
mensional Lorentzian manifold and consider the subset of the cotangent
bundle P defined by

P =
{

(x,p) ∈ T ∗M : g̃−1
x (p,p) = 0

}
.

The matter distribution at x with momentum p is a non-negative function

f : P → R+,

satisfying the transport equation

L̃f = 0,

where L̃ is the Liouville vector field —i.e. the Hamiltonian vector field of
the Hamiltonian function (x,p) 7→ −1

2 g̃
−1
x (p,p). The stress-energy tensor

associated with this matter model is

T [f ] = Tαβ [f ](x)dxα ⊗ dxβ , Tαβ [f ](x) = 8π
∫
P̃x
f(x, p) pαpβ d̃volP̃x .

The Einstein–Vlasov system couples the Einstein equations for the metric
g̃ to the transport equation satisfied by f :

Ricg̃ −
1
2Rg̃g̃ + λg̃ = T [f ],(1.1a)

L̃f = 0.(1.1b)

1.2. Stability results

Written in an appropriate coordinates system, the Einstein–Vlasov sys-
tem is a hyperbolic system of partial differential equations for which the
Cauchy problem is well-posed and admits “ground state” solutions. These
correspond to the absence of gravitational radiation and the absence of
matter. The ground states are Minkowski space-time when the cosmologi-
cal constant vanishes and de Sitter space-time when the cosmological con-
stant is a negative number in our metric signature convention. Since the
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Cauchy problem is well-posed, the dynamical stability of such solutions can
be discussed. We are proving here the following theorem:

Theorem. — The de Sitter space-time is a dynamically stable solution
of the massless Einstein–Vlasov system. In particular, any small enough
perturbation of the de Sitter initial data leads to a future lightlike and
timelike geodesically complete space-time.

As part of our analysis, we also prove that the curvature of the pertur-
bation and the stress-energy tensor approach zero asymptotically. To that
extent, this theorem can be seen as an asymptotic stability result.

This result has already been proven by Ringström [25]. The novelty lies
here in the approach. The particularity of the Vlasov equation, written
on the cotangent bundle, is that solutions are conformally invariant. This
is a consequence of two facts: up to reparametrisation, null geodesics for
conformal metrics coincide; and the Vlasov equation implies that the distri-
bution function is constant along null geodesics. This conformal invariance
suggests the use of conformal techniques to analyse the stability properties
of solutions to the Einstein–Vlasov system. The use of conformal techniques
reduces the problem of the global existence of solutions to the Einstein–
Vlasov system to the study of the local existence for sufficiently long times
of a symmetric hyperbolic problem obtained from a conformal recasting of
the Einstein–Vlasov system. The long (enough) time of existence of solu-
tions to this system obtained using the theory developed by Kato [15].

Following the same strategy, we also address the problem of the stability
of Minkowski space-time. It is well-known that the standard compactifica-
tion of Minkowski space-time contains a singular point, i0, corresponding to
the end-points of the inextendible spacelike geodesics. Hence, to avoid the
problem of considering the evolution of the initial data from the point i0, we
work with perturbations which, initially, coincide with the Schwarzschild
solution outside a compact set —in the spirit of the glueing results [7, 8].
The construction of such data is not discussed here. These data evolve
to coincide with the Schwarzschild solution outside a compact set on a
hyperboloid —that is to say, on a spacelike hypersurface asymptote to a
Minkowski light-cone, and transverse to the boundary at infinity. From the
Cauchy stability results for the Einstein-Vlasov system [5, 25] it follows
that small enough initial perturbations remain small in the evolution. We
then prove the following semi-global stability result of Minkowski space:

Theorem. — Consider a hyperboloidal initial data set for the mass-
less Einstein–Vlasov system close enough to the initial data giving rise
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to the Minkowski space-time. These initial data lead to a future light-
like and timelike geodesically complete space-time, solution to the massless
Einstein–Vlasov system.

As before, the curvature and the stress-energy tensor asymptote zero,
and this result can consequently be considered as a semi-global asymptotic
stability result. Note that, in the absence of estimates for the conformal
factor, this result contains no estimates on the behaviour of the curvature,
other than the convergence to zero as a power of the conformal factor.
Nonetheless, it can be expected that the decay would be stronger than the
decay obtained through the vector field method by a factor (1 + |t− r|)1/2.

Following the work of Dafermos [9] in spherical symmetry, Taylor has
already proven the stability of Minkowski space-time [28] as a solution to
the Einstein-massless Vlasov system. The method relies on energy estimates
in the double null gauge. It is interesting to note that in that work the
Vlasov matter is compactly supported both in space and momentum, while
the stability outside the space support of the matter distribution is handled
by the stability and peeling result of [16]. Nonetheless, the metric data
handled in [28] are not compactly supported, hence, [28] is a global stability
result. A complete stability of Minkowski space-time as a solution to the
Einstein-massless Vlasov system result can be found in [4].

1.3. Conformal techniques and stability problems

The problem of stability of solutions in general relativity has been, since
the ’80s, at the core of many publications. A stepping stone is the work
by Christodoulou–Klainerman [6], which has been simplified, and repro-
duced for other matters models (electro-magnetism [3], non-linear electro-
magnetism [27], Klein–Gordon [17], massless [28], and massive Vlasov [18,
10]). Nonetheless, the first and pioneering stability result has been obtained
by Friedrich [12] for the de Sitter space-time, by methods of a completely
different nature, exploiting the conformal structure of the underlying space-
time.

Conformal methods are well adapted to the study of the longtime exis-
tence and stability of asymptotically simple space-times. In [13], Friedrich’s
conformal Einstein field equations have been used to study the semi-global
stability of the Minkowski space-time and the global stability of the
de Sitter space-time under non-vacuum perturbations sourced by the
Maxwell and Yang–Mills fields. These results generalise the original vac-
uum stability results in [12]. The key property that makes the Maxwell
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and Yang–Mills fields amenable to a treatment using conformal methods
is the fact that their energy-momentum tensor has vanishing trace. As a
consequence, the conservation equation satisfied by the energy-momentum
tensor is conformally invariant. Moreover, the field equations satisfied by
the Maxwell and Yang–Mills fields can also be shown to be suitably con-
formally invariant. Other fields with trace-free energy-momentum tensor
are the conformally coupled scalar field and a perfect fluid with the equa-
tion of state of radiation —see e.g. [29]. Global existence results for the
Einstein field equations coupled to these fields have been given in [14, 21],
respectively. It should be noticed that conformal methods (more specifi-
cally, conformal rescaling) have also been used to study the occurrence of
cosmological singularities [2].

1.4. Description of the result

It is well-known that de Sitter and Minkowski space-times admit a con-
formal compactification —that is, these space-times can be conformally
embedded into a compact manifold with boundary. This compact mani-
fold with boundary is often referred to as the unphysical space-time. The
trace on the boundary of the closure of the timelike and lightlike geodesics
in the unphysical space-time has two connected components (for the fu-
ture and past endpoints of these geodesics). These components form a
subset of the boundary which is timelike in the de Sitter case and light
like in the Minkowski case. This particular structure at infinity is charac-
teristic of a larger class of spacetimes introduced by Penrose in the 60s
—the so-called asymptotically simple space-times. Since de Sitter space-
time and Minkowski space-time both admit such an asymptotic structure,
it could be expected that small enough perturbations thereof would also
lead to geodesically complete asymptotically simple solutions to the Ein-
stein equations. The rigidity of the asymptotic structure and of the geodesic
completeness for small enough perturbations would prove the stability of
those solutions.

This approach to the stability of solutions to the Einstein equation was
developed by Friedrich in the 80s. Although the Einstein equations are not
conformally invariant, he proved that it is possible to incorporate a con-
formal degree of freedom within these equations. The resulting equations
are known as the Conformal Einstein Field Equations (CFE). In the right
gauge, the conformal Einstein field equations imply a symmetric hyper-
bolic system. Moreover, a global solution to the Einstein equations can be
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obtained as a local solution to the conformal field equations. These obser-
vations allowed him to prove the stability of de Sitter space-time and the
semi-global stability of Minkowski space-time as a solution to the Einstein
equations in vacuum in his pioneering work [12]. For this reason, we focus
on our presentation on the Vlasov equation and only recall the set-up and
the necessary properties of the conformal Einstein field equations.
A critical aspect of the study of the Einstein equations as evolution equa-

tions is, in the first instance, the choice of the gauge. This choice guaran-
tees that the Einstein equations become symmetric hyperbolic and that a
Cauchy problem can be discussed. The approach adopted by Friedrich [12]
relies on the choice of a tetrad which satisfies a wave map. Following this
approach, we use the tetrad formalism as in [19] or [24] also for the Vlasov
equation. The formulation of the transport equation on the cotangent bun-
dle can then be entirely expressed in terms of the Cartan structure coeffi-
cients.

The conformal field equations require, in the presence of a matter field,
control of the derivatives of the energy-momentum tensor in the frame di-
rection. Hence, equations for these derivatives of the matter distribution
need to be incorporated to the set of unknown functions to complete the
system. To that end, one needs to calculate the commutator of the tetrad
with the Liouville vector field. These commutators have been calculated in,
for instance, [26] and lie at the core of the approach of [10]. The experience
suggests working with the derivatives which naturally appear in the expres-
sion of the Liouville vector field, the horizontal lifts of the tetrad vectors, so
that curvature terms appear in the expression of the commutator —see [11,
Appendix].

Finally, this work relies on the use of local existence results for symmet-
ric hyperbolic systems applied to the conformal equations coupled to the
Vlasov equation. The fact that the massive Vlasov equation is symmetric
hyperbolic is discussed in many reviews [1, 24]. The local existence for the
Einstein–Vlasov system has been addressed, by means of standard energy
estimates, in [5]. This local existence result, tailored to handle a coupling
with nonlinear wave equations and weighted Sobolev spaces (in particular
to address the global existence problem) is extended in [25]. It is somehow
expected that the Einstein–Vlasov system (or the CFE–Vlasov system)
should fit the framework developed by Kato [15], as it was, for instance,
for the Vlasov–Maxwell equations [30].
When applying Kato’s theorem to handle the local existence for the

conformal field equations coupled to the massless Vlasov equations one has
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to be careful at several points. First, the unknowns functions have different
variables. This could be typically handled by considering separately the
two systems. Secondly, the nature of the coupling in the Einstein equations
is integral, and it has to be verified whether this fits the framework for
the non-linearity as required by Kato’s result. These two problems are
solved by running, based on the linear result by Kato, the same fixed point
argument. Finally, and specifically for the massless Vlasov equation, the
massless equation is singular for particles with vanishing velocities. This has
the consequence that the evolution ceases to be symmetric hyperbolic. This
is difficulty is dealt with by proving, in the context of the aforementioned
fixed point argument, a priori estimates on the support in momentum of
the matter distribution.

1.5. Outline of the paper

Section 2 contains preliminaries and notation. The matter model is pre-
sented in Section 3; the conformal transformations are specifically ad-
dressed in Section 3.2, the equation for the derivatives of f are stated
in Section 3.4, and the commutation formula with the stress-energy tensor
are to be found in Section 3.4. The hyperbolic nature of the Vlasov sys-
tem, made out of the matter distribution and its derivatives, is obtained in
Section 4. In Section 5, the conformal Einstein field equations are recalled
both in the frame and the spin formalism, and the hyperbolic reduction of
the conformal field equation is described. In Section 7 we discuss the cou-
pled symmetric hyperbolic system and adapt Kato’s existence and stability
theorems to it. Finally, the stability result for de Sitter and the semi-global
stability result for Minkowski are respectively derived in Sections 8 and 9.

2. Preliminaries and Notations

2.1. Index notation

The signature convention for (Lorentzian) space-time metrics is (+,−,−,
−). In this signature convention, the cosmological constant Λ of de Sitter
space-time is negative. Spacetimes with negative cosmological constants
will be said to be de Sitter-like.
In what follows, Greek indices are used as coordinate indices. The Latin

indices a, b, c, . . . are used as abstract tensor indices while the boldface
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Latin indices a, b, c, ldots are used as space-time frame indices taking the
values 0, . . . , 3. In this way, given a frame {ea} a generic tensor is de-
noted by Tab while its components in the given frame are denoted by
Tab ≡ Tabea

aeb
b. We reserve the indices i, j , k, . . . to denote frame spatial

indices respect to an adapted spacelike frame taking the values 1, 2, 3. If
an object is a tensor, we write it in bold font, i.e. for a vector field we write
X = Xµ∂µ, respectively, Xa = Xbeb

a.
Moreover we make systematic use of spinors. We follow the conventions

and notation of Penrose and Rindler [22]. In particular, A, B , C , . . . are
abstract spinorial indices while A, B, C , . . . will denote frame spinorial in-
dices with respect to some specified spin dyad {εAA}. Greek indices µ, ν , λ
will denote coordinate indices with respect to some local chart.
Our conventions for the curvature tensors are fixed by the relation

(2.1) (∇a∇b −∇b∇a) vc = Rcdabv
d.

2.2. The Einstein cylinder

Next we introduce the Einstein cylinder E = (R × S3, gE ). In order
to endow it with coordinates we view S3 as being embedded in R4 with
coordinates x1, . . . , x4, i.e.

S3 =
{

(x1, . . . , x4) ∈ R4 : (x1)2 + · · ·+ (x4)2 = 1
}
.

On any open neighbourhood of S3, one can then choose three of the four
coordinates x1, . . . , x4 in order to obtain an atlas on S3. Completing this
atlas with the time coordinate τ yields an atlas on the Einstein cylinder.
Sometimes we also will make use of the local coordinate chart ψ ∈ [0, π],
θ ∈ [0, π], ϕ ∈ [0, 2π) of angular coordinates. The metric gE of the Einstein
cylinder is given by

(2.2) gE = dτ ⊗ dτ − σ,

where σ is the round metric on S3. Moreover, the fields

c1 = x1∂x4 − x4∂x1 + x2∂x3 − x3∂x2 ,(2.3a)

c2 = x1∂x3 − x3∂x1 + x4∂x2 − x2∂x4 ,(2.3b)

c3 = x1∂x2 − x2∂x1 + x3∂x4 − x4∂x3(2.3c)

in TR4 form an orthonormal frame on S3. With the field

(2.4) c0 = ∂τ
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the collection {c1, c2, c3} can be completed to an orthonormal frame on
the Einstein cylinder.
Both de Sitter space-time, denoted by (M̃dS, g̃dS), and Minkowski space-

time, denoted by (M̃M, g̃M), can be identified with the interior of certain
compact submanifolds of the Einstein cylinder. These submanifolds are
denoted byMdS andMM. OnMdS andMM we then have the relations

gE = Ξ2
dS g̃dS, ΞdS = cos(τ),(2.5a)

gE = Ξ2
M g̃M, ΞM = cos(τ) + cosψ,(2.5b)

respectively, where the conformal factors ΞdS and ΞM are functions globally
defined on E . More details are provided in 8 and 9, below. The submanifolds
MdS andMM are the maximal connected submanifolds of E where ΞdS > 0
or ΞM > 0, respectively.
As already outlined in the introduction, the strategy in this article, as

in [12] for the vacuum case, is to consider the Cauchy problem for the
conformal Einstein field equations with massless Vlasov matter with initial
data provided on S3. We will prove that the solution to this Cauchy problem
provides a manifoldM endowed with a metric g and a conformal factor Ξ
defined on M. This manifold M, which we call the unphysical manifold,
is diffeomorphic to [τ0, τ•]× S3, where τ0 ∈ [−π/2, τ•) and τ• ∈ [3π/4,∞).
The region on M̃ where Ξ > 0 we call the physical manifold and the metric
g̃ given by the relation

(2.6) g̃ = Ξ−2g

we call the physical metric. The space-time (M̃, g̃) will then be a perturbed
version of de Sitter space-time or Minkowski space-time, respectively.

2.3. Orthonormal frames

We denote by {ea}3a=0 and {ẽa}3a=0 the orthonormal frames on TM̃
which correspond to g and g̃, respectively. The corresponding co-frames
we denote by {αa}3a=0 and {α̃a}3a=0 , respectively. The co-frames {αa}3a=0
and {α̃a}3a=0 induce coordinates on T ∗M̃ in the following way. Let x ∈ M̃
and p ∈ T ∗xM̃. Then we write

(2.7) p = pµdxµ = vaα
a = ṽaα̃

a.

The relation between those coordinates is

(2.8) Ξea
a = ẽa

a, αa
a = Ξα̃a

a, Ξva = ṽa.
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3. Massless Vlasov matter in the cotangent bundle
formulation

3.1. Introduction of the model

On the cotangent bundle T ∗M̃ of the (physical) manifold M̃ we define
the particle distribution function f ∈ C1(T ∗M̃;R). Integrated over a vol-
ume in phase space it gives the number of particles in the corresponding
volume of physical space which have momentum in the corresponding range
in momentum space.
The Vlasov matter model describes an ensemble of freely falling particles.

In other words, the particles are assumed to move through phase-space TM̃
along the integral curves of the Liouville vector field L̃. This behaviour is
captured by the Vlasov equation

(3.1) L̃f = 0.

On T ∗M̃ we have the canonical coordinates (xµ, pν), µ, ν = 0, . . . , 3 —
i.e. a co-vector v ∈ T ∗xM̃, x ∈ M̃, has the form v = pµdxµ|x. In these
coordinates the Liouville vector field L̃ reads

(3.2) L̃ = g̃µνpµ∂xν −
1
2∂x

γ g̃αβ pαpβ ∂pγ .

The quantity m > 0, given by

(3.3) m2 ≡ −g̃µν(x)pµpν , x ∈ M̃, p ∈ T ∗xM̃,

is interpreted as the rest mass of the particles. It can be shown that it
stays constant along the characteristic curves of the Vlasov equation (3.1).
For this reason the particle distribution function f can be assumed to be
supported on the co-mass shell P̃m, a seven dimensional submanifold of
T ∗M̃, which defined to be

(3.4) P̃m ≡
{

(x,p) ∈ T ∗M̃ : g̃−1
x (p,p) = −m2, p is future pointing

}
.

If f is supported on P̃m then it describes the distribution of particles which
all have the same rest mass m. In the remainder of this article we assume
m = 0 and we denote the corresponding mass shell simply by P̃. The
particle distribution function f gives rise to an energy momentum tensor
T̃ via

ANNALES DE L’INSTITUT FOURIER
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T̃ [f ](x) = T̃αβ [f ](x) dxαdxβ , x ∈ M̃,(3.5)

where

Tαβ [f ](x) = 8π
∫
P̃x
f(x, p) pαpβ d̃ volP̃x ,(3.6)

where d̃ volP̃x is the volume form on the mass shell fibre P̃x over x ∈ M̃.
It can be expressed by

(3.7) d̃ volP̃x =
√
|det(gµν)|
g0µpµ

dp1dp2dp3.

We see from the mass shell relation (3.3) that the massless Vlasov matter
model gives rise to a trace free energy momentum tensor.
In the remainder of this section we discuss the Vlasov matter model

for massless particles in more detail and we show that it is an amenable
matter model for being integrated into the hyperbolic reduction procedure
described in Section 5, below.

Remark 3.1. — Since we work with massless particles, the matter distri-
bution is a mapping over the massless mass shell P. Nonetheless, to ease
the calculations, we consider a matter distribution defined on the cotangent
bundle, and then restrict it to the mass shell. It is then necessary, when dif-
ferentiating derivatives, to take derivatives parallel to the mass shell. This
is the case of the Liouville vector field L, as well as other derivatives after-
wards, in particular, the horizontal derivatives (3.38). To check that these
vectors are tangent to the mass shell, it is sufficient to either check they
lie in the kernel of the differential of the Hamiltonian (x,p) 7→ g−1

x (p,p),
or orthogonal to L for the symplectic product (or orthogonal to the null
vector va∂va for the Sasaki metric), using the symmetry relation (3.20).

3.2. Conformal properties of the Liouville vector field

In Section 3.1 the Liouville vector field and the energy momentum tensor
have been introduced. Both of these objects are metric-dependent —the
metric shows up directly in the definition (3.2) of the Liouville vector field
and the volume form in the definition (3.6) of the energy-momentum tensor.

If, on a manifold M̃, one has two metric tensors g̃ and g which are
conformally related via

(3.8) g = Ξ2g̃

TOME 71 (2021), FASCICULE 2
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each of these metrics gives rise to a different Liouville vector field and
energy-momentum tensor. We give now the relation between those quan-
tities and prove that if a particle distribution function f ∈ C1(T ∗M̃,R+)
solves the Vlasov equation for one metric in the conformal class, it solves
the Vlasov equations for all metrics in the conformal class.
To this end we consider on T ∗M̃ the orthonormal frames {ẽa}3a=0 and

{ea}3a=0 corresponding to g̃ and g, respectively. The corresponding co-
frames are denoted by

{
α̃b
}3

b=0 and {αb}3b=0 , respectively. Both frames
give rise to coordinates (xµ, ṽa) and (xµ, va) on T ∗M̃, respectively, cf. (2.7)
and (2.8). Note, further, that with respect to this frame the mass shell
relation reads

(xµ, va) ∈ P ⇔ v0 = −|v|, |v| ≡
√

(v1)2 + (v2)2 + (v3)2,(3.9)

(xµ, ṽa) ∈ P̃ ⇔ ṽ0 = − |ṽ| , |ṽ| ≡
√

(ṽ1)2 + (ṽ2)2 + (ṽ3)2.(3.10)

We observe that

(3.11) P̃ = P

as a manifold. The definition of the Liouville vector field depends on the
metric. We have already defined L̃ for g̃ in equation (3.2). For each of the
metrics g̃ and g we consider the corresponding Liouville vector field L̃ and
L, given by

L̃ ≡ g̃µνpµ∂xν −
1
2∂x

γ g̃αβ pαpβ ∂pγ ,(3.12a)

L ≡ gµ νpµ∂xν −
1
2∂x

γgαβ pαpβ ∂pγ .(3.12b)

Lemma 3.2. — We have

L̃ = ηa bṽaẽb
µ∂xµ + ηabṽaṽc Γ̃b

c
d ∂ṽd

, Γ̃a
c

b ≡ α̃c
(
∇̃ẽa ẽb

)
,(3.13a)

L = ηabvaeb
µ∂xµ + ηabvavc Γb

c
d ∂vd

, Γa
c

b ≡ αc (∇eaeb) .(3.13b)

Proof. — The result is only proved for L since the calculation goes com-
pletely analogously for L̃. We consider the coordinate transformation

(3.14) xµ 7→ yµ(x) = xµ, pα 7→ va(x, p) = ea
αpα.

This implies

(3.15) ∂pα = ea
α∂va , ∂xµ = ∂yµ + (∂µea

α)αb
αvb ∂va .
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Then, using gαβ = ηabea
αeβb and pµ = αa

µva we calculate

gµνpµ∂xν = ηabeb
νva∂yν + ηabvaeb

ν
(
∂νec

β
)
αd

βvd∂vc ,(3.16)

−1
2∂x

γgαβpαpβ∂pγ = −ηabvaec
γ
(
∂γeb

β
)
αd

βvd∂vc .(3.17)

Combined this yields

(3.18) L = ηabeb
νva∂yν + ηabva

(
eb
ν
(
∂νec

β
)
− ec

γ
(
∂γeb

β
))
αd

βvd∂vc .

Now, noting that for the bracket we have

(3.19)
(
eb
ν
(
∂νec

β
)
− ec

γ
(
∂γeb

β
))
αd

β = [eb, ec]d.

Using Cartan’s structure equation, [eb, ec]d = Γ[b
d

c], and the symmetry

(3.20) Γa
d

bηdc + Γa
d

cηdb = 0

which holds for any connection which is metric (cf. [29]), we arrive at the
asserted formula for L (after renaming the coordinates yµ as xµ). �

Lemma 3.3. — On P we have

(3.21) L̃ = Ξ2L.

Proof. — Using the relations (2.8) the frames and co-frames with respect
to g and g̃, respectively, we derive

Γ̃b
c

d = α̃c
(
∇̃ẽb

ẽd

)
= 1

Ξα
c
(

Ξ∇̃eb
(Ξed)

)
(3.22)

= αc (eb(Ξ)ed) + Ξαc
(
∇̃eb

)
(3.23)

= eb(Ξ)δc
d + Ξ (Γb

c
d +Qb

c
d) ,(3.24)

where Qb
c

d is the transition tensor, in the case of our conformal transfor-
mation given by

(3.25) Qb
c

d = 1
Ξ
(
eb(Ξ)δc

d + ed(Ξ)δc
b − ea(Ξ)ηacηbd

)
,

cf. [29]. This yields

(3.26) Γ̃b
c

d = ΞΓb
c

d + 2eb(Ξ)δc
d + ed(Ξ)δc

b − ea(Ξ)ηacηbd.

We consider the Liouville vector field L̃ and we want to perform the change
of coordinates given by

(3.27) xµ 7→ yµ(x) = xµ, ṽa 7→ va(x, ṽa) = 1
Ξ ṽa,

cf. the relations (2.8). This yields

(3.28) ∂ṽa = 1
Ξ∂va , ∂xµ = ∂yµ + Ξva

(
∂µ

1
Ξ

)
∂va .
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Then, using the mass shell relation ηabvavb = 0, and inserting (3.26)
and (3.28) into the formula (3.13a) for L, we obtain the following asser-
tion: �

Corollary 3.4. — For any function f ∈ C1(P;R+) we have

(3.29) L̃f = 0 ⇔ Lf = 0.

Let f ∈ C1(T ∗M̃;R+). For different coordinate maps the particle dis-
tribution is realised by different functions R7 → R. Let p ∈ T ∗M̃ be an
arbitrary point with coordinates (xµ, ṽa) and (xµ, va), respectively. We de-
note (abusing notation)

(3.30) f(p) = f(xµ, pν) = f̃(xµ, ṽa) = f(xµ, va).

The relation (2.8) yields

(3.31) f(xµ, va) = f̃ (xµ,Ξva) .

Remark 3.5. — The scaling law (3.31) has a concrete physical mean-
ing. We construct here conformal compactifications of de Sitter like or
Minkowski like space-times. These space-times are compactly embedded
into the Einstein cylinder on which we have the (almost) flat unphysical
metric g which is related to g̃ via (3.8) and the conformal factor Ξ ap-
proaches zero as one approaches the boundary of this embedding. The mass-
less Vlasov particles move along null geodesics which, as sets, are invariant
under the conformal rescaling. The parametrisation of the geodesics, how-
ever, depends on the metric. As it will be shown later, measured with
respect to the unphysical metric, the (absolute value of the) velocities only
change a little. This means, by (3.31), that the velocity with respect to
the physical metric approaches zero. This is consistent since the conformal
boundary, representing null infinity, cannot be reached in finite time.

Next, we consider the energy-momentum tensor. Recall the definition on
the physical manifold

(3.32) T̃ ab[f ](x) ≡ 8π
∫
P̃x
f(x,p) papb d̃volP̃x , (x,p) ∈ T ∗M̃.

The domain of integration is unchanged by the conformal rescaling (3.8)
since P = P̃. However, the volume form depends on the metric. So we
define as well

(3.33) Tab[f ](x) ≡ 8π
∫
Px
f(x,p) papb d̃volPx , (x,p) ∈ T ∗M.
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A calculation shows

(3.34)
T̃ab[f ](x) = T̃ ab[f ](x)ẽa

aẽb
b

= −8π
∫
rmR3

v

f̃ (xµ, ṽa) ṽaṽb

|ṽ|
dṽ1dṽ2dṽ3,

(3.35)
Tab[f ](x) = Tab[f ](x)ea

aeb
b

= −8π
∫

R3
v

f (xµ, va) vavb

|v|
dv1dv2dv3.

Note that with respect to frame coordinates g0µpµ = −v0 = |v| and there-
fore volume form is given by

(3.36) dvolPx = 1
|v|

dv1dv2dv3.

Lemma 3.6. — Let f ∈ C1(P;R+). We have

(3.37) T̃ [f ] = Ξ2T [f ].

Proof. — Write T̃ = T̃abα̃
aα̃b and T = Tabα

aαb. Performing a change
of variables ṽa 7→ Ξva and using the scaling law (3.31) we obtain T̃ab =
Ξ4Tab. Since α̃a = Ξ−1αa we obtain the asserted relation. �

3.3. Commuting with the Liouville vector field

In the remainder of this section we only consider the unphysical quanti-
ties. We define

(3.38) êa ≡ ea + vcΓa
c

d ∂vd
,

as the horizontal lifts of the frame fields ea to the cotangent bundle T ∗M̃.
For details on the horizontal lifts, see [19]. Observe that these vectors
are tangent to the mass shell. Note that then the formula (3.13b) for the
Liouville vector field with respect to the orthonormal frame ea reads

(3.39) L = ηabvaêb.

Lemma 3.7. — The Liouville vector field satisfies the commutator for-
mulas

(3.40a) [L, êg] = ηab
(
vaΓ[b

c
g]êc − vcΓg

c
aêb

)
+ ηabvavc

(
Ξdc

dbg + 2Sd[b
ceLg]e

)
∂vd

,

(3.40b)
[
L, ∂vg

]
= −ηgaêa − ηabvaΓb

g
c ∂vc .
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Proof. — First we verify formula (3.40a). We calculate

[L, êg] = ηabva [eb, eg] + ηab
[
vaeb, veΓg

e
f∂vf

]
− ηabvavceg (Γb

c
d)∂vd

+ ηabΓb
c

dΓg
e

f

[
vave∂vd

, ve∂vf

]
= ηabva [eb, eg] + ηabvave e[b

(
Γg]

e
f

)
∂vf

− ηabveΓg
e

aeb + ηabΓb
c

eΓg
e

fvavc∂vf

− ηabvevcΓb
c

dΓg
e

a∂vd
− ηabvevaΓb

c
dΓg

e
c∂vd

There are two terms which are not given in terms of the variables xµ, va

or the geometric fields ea, Γa
c

b. Using curvature identities we can however
make them disappear. These are the no torsion condition and the expres-
sion of the Riemann tensor in terms of the frame field and the Christoffel
symbols, namely

0 = Σa
c

b = Γa
c

b − Γb
c

a − αc ([ea, eb]) ,(3.41)

Rc
dab = e[a

(
Γb]

c
d

)
+ Γf

c
dΓ[b

f
a] + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f ,(3.42)

cf. [29]. Simplification and decomposing the Riemann tensor as

(3.43) Rc
dab = Ξdc

dab + 2Sd[a
ceLb]e

yields formula (3.40a). Equation (3.40b) can be obtained by a straightfor-
ward calculation. �

3.4. Commuting with the energy momentum tensor

As it will be described in the sections below, the source terms of the
conformal Einstein field equations involve terms depending on the matter
fields. These terms are the components Tab, ∇aTbc of the energy momen-
tum tensor and its covariant derivative, respectively. It is important to
express these components without derivatives of the unknowns. For this
reason we consider the components of the covariant derivatives in more
detail. Using the definition (3.38) of the lifts of the frame vector fields we
obtain the formula

(3.44) ∇aTbc[f ]

= Tbc [ea(f)]− Γa
d

bTdc[f ]− Γa
d

cTbd[f ]

= Tbc [êa(f)] + 8πΓa
e

d

∫
R3
v

(∂vd
f (xµ, va)) vevbvc

|v|
dv1dv2dv3

− Γa
d

bTdc[f ]− Γa
d

cTbd[f ].

ANNALES DE L’INSTITUT FOURIER



CONFORMAL EINSTEIN EQUATIONS - MASSLESS VLASOV 815

This motivates to include the fields êa(f) and ∂vaf to the collection of
unknowns.

4. The symmetric hyperbolic system for massless Vlasov
matter

4.1. System for the matter fields

The conformal Einstein field equations (CEF) with massless Vlasov mat-
ter will be formulated and solved in the coordinates (τ, x, va), where x are
coordinates on S3 and va, a = 0, . . . , 3 are the coordinates induced by the
g-frame {ea}3a=0.
The matter field will be described by the unknowns

(4.1) uf = (f, fa, ϕa) ,

where

(4.2) fa ≡ ea
α∂xα f + vcΓa

c
d∂vd

f, ϕa ≡ ∂va f.

In the remainder of this article these functions will be referred to as the
matter fields. Denote by Nf the number of components of uf —there are
nine components.

Remark 4.1. — It is important to note that the initial for uf are not
independent. Indeed, the initial data for the field ϕa can be calculated
from the derivatives of f initially. Hence, it is necessary to impose, initially,
constraints on the initial data of this system. It is then necessary to check
that these constraints are propagated. The propagation of this constraints
is done in Section 6.

Now, we consider the equation for the matter fields f, fa, ϕa. In frame
coordinates these equations read

(4.3a) ηabvaeb
µ∂xµ f + ηabvavc Γb

c
d ∂vd

f = 0,

(4.3b) ηabvaeb
µ∂xµ fg + ηabvavc Γb

c
d ∂vd

fg

= ηab
(
vaΓ[b

c
g]fc − vcΓg

c
afb
)

+ ηabvavc

(
Ξdc

dbg + 2Sd[b
ceLg]e

)
ϕd,

(4.3c) ηabvaeb
µ∂xµϕ

g + ηabvavc Γb
c

d ∂vd
ϕg = −ηgafa − ηabvaΓb

g
cϕ

c.

The first equation is just the Vlasov equation in the frame coordinates,
cf. (3.13b). The last two equations follow directly from the commutator
formulas (3.40a) and (3.40b).

TOME 71 (2021), FASCICULE 2



816 J. Joudioux, M. Thaller & J. A. Valiente Kroon

We want to write these equations in a more compact form. To this end,
we denote the collection of all geometric fields, i.e. the metric and con-
comitants, by ug —see the definition in (5.18), below. We introduce the
matrices Aµ

f [ug(τ, ·)](x, va), Ab[ug(τ, ·)](x, va), µ, b = 0, . . . , 3, and the
vector Ff[ug(τ, ·),uf(τ, ·)](x, va) such that the equations (4.3a)–(4.3b) can
be written as

(4.4) A0
f [ug(τ, ·)]∂x0uf +Ai

f[ug(τ, ·)]∂xiuf + Ac[u(τ, ·)]∂vcuf

= Ff[ug(τ, ·),uf(τ, ·)],

where

(4.5) Ff[ug(τ, ·),uf(τ, ·)] =

0
ηab

(
vaΓ[b

c
0]fc − vcΓ0

c
afb
)

+ ηabvavc

(
Ξdc

db0 + 2Sd[b
ceL0]e

)
ϕd

...
ηab

(
vaΓ[b

c
3]fc − vcΓ3

c
afb
)

+ ηabvavc

(
Ξdc

db3 + 2Sd[b
ceL3]e

)
ϕd

−η0afa − ηabvaΓb
0

cϕ
c

...
−η3afa − ηabvaΓb

3
cϕ

c


and

(4.6)
Aµ

f [ug(τ, ·)](x, va) = ηabvaeb
µI7,

Ad[ug(τ, ·)](x, va) = ηabvavcΓb
c

dI7,

where I7 is the unit matrix in R7.

Remark 4.2. — Observe that the matrix A0
f [ug(τ, ·)] looses rank if va

= 0. Hence, whenever va = 0 the system (4.4) is not symmetric hyperbolic.

5. The conformal Einstein field equations and their
hyperbolic reduction

In this section, we state the conformal Einstein field equations with mat-
ter which are satisfied by the unphysical metric g. The system of equations
will first be stated in general coordinates and then with respect to an or-
thonormal g-frame and finally in the spinor formalism. This will be the
starting point for the hyperbolic reduction procedure described in the next
section.
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The statements in this section are valid for any matter model giving
rise to a trace-free energy momentum tensor, so in particular for massless
Vlasov matter.

5.1. The metric equations

In the following let (M̃, g̃ab) denote a space-time satisfying the Einstein
field equations

(5.1) R̃ab −
1
2 R̃g̃ab + λg̃ab = T̃ ab

with trace-free matter, that is,

(5.2) T̃ a
a = 0.

Moreover, let (M, gab) denote a conformally related (unphysical) space-
time such that

(5.3) gab = Ξ2g̃ab.

An unphysical energy-momentum Tab is defined through the relation

(5.4) Tab ≡ Ξ−2T̃ ab.

This definition is consistent with massless Vlasov matter, cf. Lemma 3.6.
It can be readily verified that

(5.5) ∇aTab = 0.

For reference, we list here the metric conformal Einstein field equations
coupled to trace-free matter:

∇a∇bΞ = −ΞLab + sgab + 1
2Ξ3Tab,

∇as = −Lac∇cΞ + 1
2Ξ2∇cΞTac + 1

6Ξ3∇cTca,
∇cLdb −∇dLcb = ∇aΞdabcd + ΞTcdb,

∇adabcd = Tcdb,

6Ξs− 3∇cΞ∇cΞ = λ.

In the previous equations

(5.6) Tabc ≡ Ξ∇[aTb]c +∇[aΞTb]c + gc[aTb]d∇dΞ,

denotes the rescaled Cotton tensor. The unknowns of the metric conformal
Einstein field equations are the Schouten tensor Lab, the Friedrich scalar
s, and the rescaled Weyl tensor dabcd. In terms of the conformal factor Ξ
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and the Riemann tensor Rcdab, these concomitants of the metric g can be
expressed in the following way. The Schouten tensor is given by

(5.7) Lab = 1
2Rab −

1
2Rgab,

where Rdb = Radab is the Ricci tensor and R = gabRab is the Ricci scalar.
The Weyl tensor Ccdab is defined by the relation

(5.8) Rcdab = Ccdab + 2Sd[a
ceLb]e,

where
Sab

cd = δa
cδb

d − gabgcd,

and the rescaled Weyl tensor dcdab is given by

(5.9) Ccdab = Ξdcdab.

The Friedrich scalar is defined by

(5.10) s = 1
4∇

c∇cΞ + 1
24RΞ.

See [29] for details.

5.2. The spinorial formulation of the equations

In this section, we use Penrose’s spinorial notation and conventions. The
hyperbolic reduction of the CFE is more conveniently discussed in terms of
their spinorial formulation. The reader can refer to [29] for further details.
Since the machinery is heavy, and only the end result is of relevance for
this work, we just state with no further details the equations. The main
ideas behind this hyperbolic reduction procedure can be traced back to the
work by Friedrich [13].

Given an orthonormal frame {ea}3a=0 one constructs a Newman–Penrose
(NP) frame, that is to say a null frame, {eAA′}A=0, 1, A′=0′, 1′ . The Infeld-
van der Waerden symbols σa

AA′ , a = 0, . . . , 3, A = 0, 1, A′ = 0′, 1′
mediate between these frames, i.e.

(5.11) eAA′ = σa
AA′ea.

The spinorial components of the fields

(5.12) Σacb, Rcdab, Tab, Lab, dabcd, Tabc, Γabc,
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will be denoted, respectively, by

ΣAA′
CC′

BB′ , RCC′
DD′AA′BB′ , TAA′BB′ ,

LAA′BB′ , dAA′
BB′CC′DD′ , TAA′BB′CC′ , ΓAA′

BB′
CC′ .

The relation between tensor components, and the spinorial components is
then obtained through the Infeld–van der Waerden symbols, i.e. we have

ΣAA′
CC′

BB′ = σa
AA′σc

CC′σb
BB′Σacb

etc. See [29, Section 3.1.9] for a definition of the Infeld–van der Waerden
symbols through a spinor basis. They can be explicitly written in terms of
the Pauli matrices as(

σAA′

0

)
≡ 1√

2

(
1 0
0 1

)
,

(
σAA′

1

)
≡ 1√

2

(
0 1
1 0

)
,

(
σAA′

2

)
≡ 1√

2

(
0 i

−i 0

)
,

(
σAA′

3

)
≡ 1√

2

(
1 0
0 −1

)
,

and (
σ0

AA′
)
≡ 1√

2

(
1 0
0 1

)
,

(
σ1

AA′
)
≡ 1√

2

(
0 1
1 0

)
,

(
σ2

AA′
)
≡ 1√

2

(
0 −i
i 0

)
,

(
σ3

AA′
)
≡ 1√

2

(
1 0
0 −1

)
.

Furthermore, the connection coefficients can be decomposed in terms of
reduced spin connection coefficients as

(5.13) ΓAA′
BB′

CC′ = ΓAA′
B

CδC′
B′ + Γ̄AA′

B′
C′δC

B,

where ΓAA′BC = ΓAA′(BC) as the connection is metric. The curvature
spinor can be written as

(5.14) RCC′
DD′AA′BB′ = RC

DAA′BB′δD′
C′ + R̄C′

D′AA′BB′δD
C ,

where RCDAA′BB′ = R(CD)AA′BB′ . Their expression in terms of the re-
duced spin connection coefficients is given by

RC
DAA′BB′ = eAA′

(
ΓBB′

C
D

)
− eBB′

(
ΓAA′

C
D

)
− ΓF B′

C
DΓAA′

F
B − ΓBF ′

C
DΓ̄AA′

F ′
B′

+ ΓF A′
C

DΓBB′
F

A + ΓAF ′
C

DΓ̄BB′
F ′

A′

+ ΓAA′
C

F ΓBB′
F

D − ΓBB′
C

F ΓAA′
F

D.

Moreover, in view of its symmetries one can write

(5.15) RC
DAA′BB′ = −ΞφC

DABεA′B′ +LDB′AA′δB
C −LDA′BB′δA

C ,
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with φABCD and LAA′BB′ the components of the Weyl and Schouten
spinors, respectively.
The spinorial counterpart of Tab satisfies, in view of its vanishing trace,

the property
TAA′BB′ = T(AB)(A′B′).

Finally, exploiting the anti-symmetry Tcdb = −Tdcb of the rescaled Cot-
ton tensor, one has the split

TCC′DD′BB′ = TCDBB′εC′D′ + T̄C′D′BB′εCD,

where TCDBB′ ≡ 1
2TCQ′D

Q′
BB′ . Observe that TCDBB′ = T(CD)BB′ .

The spinorial counterparts of the frame conformal Einstein field equa-
tions are obtained by suitable contractions with the Infeld–van der Waerden
symbols. Simpler expressions are obtained if one takes into account the re-
marks made in the previous subsection. The conformal field equations in the
spinorial formalism can then be stated, in an arbitrary Newman–Penrose
tetrad (eAA′):

(5.16a) [eAA′ , eBB′ ]−
(

ΓAA′
CC′

BB′ − ΓBB′
CC′

AA′

)
eCC′ = 0

(5.16b) eAA′(ΓBB′
C

D)− eBB′(ΓAA′
C

D)− ΓF B′
C

DΓAA′
F

B

− ΓBF ′
C

DΓ̄AA′
F ′

B′ + ΓF A′
C

DΓBB′
F

A + ΓAF ′
C

DΓ̄BB′
F ′

A′

+ ΓAA′
C

F ΓBB′
F

D − ΓBB′
C

F ΓAA′
F

D + ΞφC
DABεA′B′

− LDB′AA′δB
C + LDA′BB′δA

C = 0,

(5.16c) ∇AA′∇BB′Ξ + ΞLAA′BB′ − sεABεA′B′ −
1
2Ξ3TAA′BB′ = 0,

(5.16d) ∇AA′s+ LAA′CC′

− 1
2Ξ2∇CC′ΞTAA′CC′ −

1
6Ξ3∇CC′TAA′CC′ = 0,

(5.16e) ∇CC′LDD′BB′ −∇DD′LCC′BB′

−∇AA′ΞdAA′
BB′CC′DD′ − ΞTCC′DD′BB′ = 0,

(5.16f)
∇AA′d

AA′
BB′CC′DD′ − TCC′DD′BB′ = 0,

6Ξs− 3∇CC′Ξ∇CC′Ξ− λ = 0.

The connection between the conformal Einstein field equations and the
Einstein field equations is given by the following:

ANNALES DE L’INSTITUT FOURIER



CONFORMAL EINSTEIN EQUATIONS - MASSLESS VLASOV 821

Proposition 5.1. — Let(
eAA′ ,ΓAA′

B
C ,Ξ, s, LAA′BB′ , φABCD, TAA′BB′

)
denote a solution to the frame conformal field equations with

∇AA′TAA′BB′ = 0

and such that, on an open set U ⊂M,

Ξ 6= 0, det
(
εABεA

′B′eAA′ ⊗ eBB′

)
6= 0,

where ε is the symplectic product on spinors related to the unphysical
metric by gab = εABεA′B′ . Then the metric

g̃ = Ξ−2εABεA′B′ω
AA′ ⊗ ωA′B′

where {ωAA′}3a=0 is the dual frame to {eAA′}3a=0, is a solution to the
Einstein field equations (5.1) on U .

5.3. Basic set-up for the frame

In the following, all the calculations will be performed in an open subset
U ⊂M of (M, g). On U one considers some local coordinates x = (xµ) and
an arbitrary frame {ca}3a=0 which may or may not be a coordinate frame.
Let {αa}3a=0 denote the dual co-frame so that 〈αa, cb〉 = δb

a. Moreover,
let ∇ denote the Levi-Civita covariant derivative of the metric g.

It will be assumed that U is covered by a non-singular congruence of
curves with tangent vector τ satisfying the normalisation condition g(τ , τ )
= 2. The vector τ does not need to be hypersurface orthogonal. Let τAA′

denote the spinorial counterpart of τa. We restrict attention to spin bases
{εAA} satisfying the condition

τAA′ = ε0
Aε0′

A′ + ε1
Aε1′

A′ .

All spinors will be expressed in components with respect to this class of
spin bases.
Let {eAA′} and {ωAA′} denote, respectively, the null frame and co-frame

associated to the spin basis {εAA}. One therefore has that〈
ωAA′ , eBB′

〉
= εB

AεB′
A′ .

At every point p ∈ U a basis of the subspace of T |p(U) orthogonal to τ is
given by eAB = τ(B

A′eA)A′ . The spatial frame can be expanded in terms
of the vectors ca as eAB = eAB

aca. Moreover, one also has that

eAA′ = eAA′
aca.
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The frame coefficients can be decomposed using τAA′ as

eAA′
a = 1

2τAA′ − τQ
A′eAQ

a,

with

ea ≡ τAA′eAA′
a, eAB

a ≡ τ(A
A′eB)A′

a.

5.4. Gauge source functions

Following the hyperbolic reduction procedure introduced in [13, Sec-
tion 6], see also [29, Section 13.2.2], we consider gauge source functions
Fa(x), FAB(x) and R(x) such that

∇AA′∇AA′eAA′
a = Fa(x),(5.17a)

∇CC′ΓCC′AB = FAB(x),(5.17b)

∇AA′LAA′BB′ = 1
6∇BB′R(x).(5.17c)

The fields Fa(x), FAB(x) and R(x) are, respectively, the coordinate gauge
source function, the frame gauge source and the conformal gauge source
function. In particular, R(x) can be identified with the Ricci scalar of the
unphysical metric g.

5.5. Symmetric hyperbolic form of the CEF

It is convenient to introduce the unknown function

(5.18) ug = (Ξ, ΣAA′ , s, , e
µ
AA′ , ΓAA′BC , ΦAA′BB′ , φABCD)

denoting the collection of all geometric fields and uf denotes the collection
of all matter fields, cf. Equation (4.1). Denote the number of independent
components in ug by Ng. We can now state the reduced hyperbolic form of
the Einstein equations, the theorem initially proved by Friedrich (see [12,
Section 2] for the first version, [13, Sections 3 and 6] for the spinorial version,
and the monograph [29, Proposition 13.1])

Proposition 5.2. — Given arbitrary smooth gauge source functions

Fa(x), FAB(x), R(x),
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such that

∇QQ′eQQ′
a = Fa(x), ∇QQ′ΓQQ′AB = FAB(x),

∇QQ′LQQ′BB′ = 1
6∇BB′R(x),

and assuming that the components of the matter tensors Tab and Tabc can
be written in such a way that they do not contain derivatives of the matter
fields uf, then the conformal Einstein field equations (5.16a)–(5.16f) imply a
symmetric hyperbolic system of equations for the independent components
of the geometric fields ug of the form

(5.19) A0
g [ug(τ, ·)] (x) · ∂τug +Ai

g [ug(τ, ·)] (x) · ∂xiug
= Fg [ug(τ, ·),uf(τ, ·)] (x),

where

Aµ
g : Hm

loc

(
M ; RNg

)
→ Hm

loc

(
M ; RNg×Ng

)
, µ = 0, . . . , 3,(5.20a)

Fg : Hm
loc

(
M ; RNg

)
×Hm

loc

(
P; RNf

)
→ Hm

loc

(
M ; RNg

)
(5.20b)

where uf : M → RNf is mapping containing as components the distribution
matter f and some of its derivatives, see Equation (4.1). The operator A0

g

can be decomposed as
A0
g = I + Ã0

g

where I is the identity of the corresponding dimension, and Ã0
g is containing

the actual dependency on the metric quantity. Moreover the matricesAµ
g [z]

are polynomials in z ∈ RNg of degree at most one with constant coefficients
and they are symmetric.

6. Subsidiary equations and propagation of the constraints

The conformal field equations come with constraints imposed by the form
of the system (see for instance [29, Chapter 13.3]). This constraints relate
quantities within the system of conformal field equations, and form a sys-
tem of compatibility equations which need to be satisfied. In the presence of
matter fields, the coupling imposes further constraints. These have two ori-
gins: the constraints coming from the presence of matter in the conformal
field equations, and those directly related to the matter fields. Altogether,
to verify that solutions for the system (5.16a)-(5.16f) coupled to the sys-
tem (4.3a) to (4.3c), it is necessary to check that the following so-called
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zero quantities,

Zab ≡ ∇a∇bΞ + ΞLab − sgab −
1
2Ξ3Tab,(6.1a)

Za ≡ ∇as+ Lac∇cΞ− 1
2Ξ2∇cΞTac −

1
6Ξ3∇cTac,(6.1b)

∆cdb ≡ ∇cLdb −∇dLcb −∇aΞda
cdb − ΞT cdb,(6.1c)

Λacd ≡ ∇ad
a

bcd − Tcdb,(6.1d)
Z ≡ 6Ξs− 3∇cΞ∇cΞ− λ,(6.1e)

Σa
c

b ≡ Γa
c

b − Γb
c

a − αc ([ea, eb]) ,(6.1f)

(6.1g) Ξc
dab ≡ Ξdc

dab + 2Sd[a
ceLb]e

−
(
e[a
(
Γb]

c
d

)
+ Γf

c
dΓ[b

f
a] + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f

)
,

completed with the matter zero quantities

Φa ≡ ϕa − ∂va f,(6.2a)
Fa ≡ fa − êa(f),(6.2b)

remain zero throughout the time evolution.
It is known that the constraints related to the Einstein equations, when

the stress-energy tensor is stress-free can be recast as a symmetric hyper-
bolic system (see [13]; also [29, Proposition 13.2]). Hence, if these quantities
are initially vanishing, they will remain so during the evolution. A similar
calculation needs to be performed for the matter zero-quantities. We prove
the following

Lemma 6.1. — The zero quantities Φa and Fa, a = 0, . . . , 3 obey the
homogeneous equations in the zero quantities:

LΦg = −ηgaFa − ηabvaΓb
g

cΦc,(6.3a)

LFg = ηab
(
vaΓ[b

c
g]Fc − vcΓg

c
aFb

)
(6.3b)

+ ηabvavc

(
Ξdc

dbg + 2Sd[b
ceLg]e

)
Φd

+ ηabvavcΞc
dbg

(
ϕd − Φd

)
+ ηabvaΣb

c
g

(
fc − Fc − vf Γc

f
d(ϕd − Φd)

)
.

Proof. — To perform this calculation, we need to calculate the commu-
tator between the Liouville vector field and derivatives of the matter field,
without assuming that the expression of the metric is torsion-free, or that
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the curvature expression hold. We observe that, using Equation (3.40a),

[L, êg] = ηabvaΓ[b
c

g]êc − ηabvcΓg
c

aêb − ηabvaΣb
c

g

(
êc − vf Γc

f
d∂vd

)
+ ηabvavc

(
Ξdc

dbg + 2Sd[b
ceLg]e − Ξc

dbg

)
∂vd

.

We deduce that the zero quantity Fa satisfies (6.3b). In a similar fashion,
we observe that, using Equation (3.40b), we can establish (6.3a). �

7. Existence and Stability Theory

7.1. The initial value problem.

The strategy here is as outlined in [12]. The initial data which we pre-
scribe on S3 for the Cauchy problem will be chosen to be a background
space-time (de Sitter or Minkowski) plus a perturbation. The background
space-times are discussed and explicitly given in Section 8 and 9, below.
The conformal Einstein field equations with massless Vlasov matter are
given with respect to the orthonormal g-frame {ea}3a=0. In order to under-
stand the space-times provided by the Cauchy problem as perturbation of
de Sitter or Minkowski we wish to have some notion of background frame
on M̂ with whom the g-frame {ea}3a=0 can be compared. With the help
of so called cylinder maps φ : U ⊂ M̂ → R × S3 (cf. [12]), one can on M̂
define the fields c0, . . . , c3 in terms of the φ-pull-backs of the coordinate
functions τ, x0, . . . x4 from the Einstein cylinder to M̂. By these means,
one obtains a collection of fields which are globally defined on M̂. More-
over, these are orthonormal with respect to the φ-pull back of the metric
gE of the Einstein cylinder and for the g-frame {ea}3a=0 we have

(7.1) ea = ea
bcb.

In [12], it is shown that this procedure fixes the gauge source functions Fa,
FAB, R, cf. (5.17a)–(5.17c), to be

(7.2) F a = 0, FAB = 0, R = −6.

We take the spinorial counterparts ebAA′ of the components ea
b of the

frame fields ea with respect to the vacuum frame fields cb as unknowns
of the conformal Einstein field equations with massless Vlasov matter and
express the other geometric fields in terms of these unknowns. Note that
as this place we make a specific choice for the frame fields {ca}3a=0 already
mentioned in Section 5.3.

TOME 71 (2021), FASCICULE 2



826 J. Joudioux, M. Thaller & J. A. Valiente Kroon

Combining the equations (4.4) for the matter fields and the equations
(5.19) for the geometric fields, we obtain the the conformal Einstein field
equations with massless Vlasov matter

(7.3a) A0
g[ug(τ, ·)](x)∂τug +Ai

g[ug(τ, ·)](x)∂xiug
= Fg[ug(τ, ·),uf(τ, ·)](x),

(7.3b) A0
f [ug(τ, ·)](x, va)∂τuf +Ai

f[ug(τ, ·)](x, va)∂xiuf

+ Ac[ug(τ, ·)](x, va)∂vcuf = Ff [uf (τ, ·),uf(τ, ·)] (x, va).

We recall that a solution u = (ug,uf) of the system (7.3a)–(7.3b) consists
of the geometric fields in ug as given by (5.18), and matter fields in uf, as
given by (4.1).
In order to apply Kato’s theorem, we have to assume that, initially, the

coefficient matrices and the source terms are bounded from above, and
that the A0-matrices are bounded away from zero. This could, a priori, be
problematic if the range of the va-variables is neither bounded above, nor
away from the zero velocity. Let δ ∈ (0, 1) and define

(7.4) Ωδ ≡
{

(v0, v1, v2, v3) ∈ R4 : v0 = −|v|, δ 6 |v| 6 1
δ

}
.

In order to avoid the aforementioned boundedness issues we consider the
matter fields as functions from the space Hm

0 (S3 × Ω1/4; RNf) and we re-
gard the coefficients and the source terms in the system (7.3a)–(7.3b) as
operators

(7.5a) Aµ
g : Hm

(
S3; RNg

)
→ Hm

(
S3; RNg×Ng

)
, µ = 0, . . . , 3,

(7.5b) Aν
f ,Aa : Hm

(
S3; RNg

)
→ Hm

0
(
S3 × Ω1/4; RNf×Nf

)
,

ν,a = 0, . . . , 3,

(7.5c) Fg : Hm
(
S3; RNg

)
×Hm

0
(
S3 × Ω1/4; RNf

)
→ Hm

(
S3; RNg

)
,

(7.5d) Ff : Hm
(
S3; RNg

)
×Hm

0
(
S3 × Ω1/4; RNf

)
→ Hm

0
(
S3 × Ω1/4; RNf

)
.

Remark 7.1. — One has the following:
(i) We assume later that m > 5. At this level of regularity, the consid-

ered Sobolev spaces are algebras. Since all the operators considered
above are algebraic expressions in the components ug, the integral
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in a compact v set of the components of uf, and of the components
of uf, they take values in the corresponding Sobolev space.

(ii) Kato [15] considers uniformly local Sobolev spaces, which are not
relevant for us since we are working with spaces which are compact
in space and velocities.

(iii) Moreover we remark that the operators (7.5a)–(7.5d) are special
cases of the operators considered in [15]. There the operators are
denoted by Gj(t), F (t) and they are assumed to be non-linear oper-
ators sending functions with values in a Hilbert space P to functions
with values in B(P ) or P , respectively. These non-linear operators
have an explicit t-dependence. The operators (7.5a)–(7.5d) however
have no explicit t-dependence and the Hilbert space is RNg or RNf ,
respectively.

We will see that for the class of initial data which we prescribe for the
system (7.3a)–(7.3b), if the v-support is bounded initially in Ω1/2, say, it
will remain bounded sufficiently long in Ω1/4. We now discuss this class of
initial data. To this end, we use the notation

(7.6) ů = (ůg, ůf) ∈ Hm+1 (S3 × Ω1/4; RNg+Nf
)
, where ůf = 0

to denote a background solution. For technical reasons, we need to assume
higher regularity which is available since this background solution describes
either the de Sitter or the Minkowski space-time (see [15, Theorem I and
equation (3.29)]). The metric functions ůg are explicitly given in Sections 8
and 9 below. At this stage, it is only important that these functions solve
the conformal Einstein field equations with massless Vlasov matter (7.3a)–
(7.3b) on the whole Einstein cylinder R×S3. Denote furthermore, the initial
data for ůg by ů?g —this data is prescribed on the whole of S3.
Let ε, δ > 0 and define for τ ∈ [0, π]

(7.7a) Dg
ε(τ) ≡

{
w ∈ Hm

(
S3; RNg

)
: ‖ůg(τ)−w‖Hm(S3;RN ) 6 ε

}
,

(7.7b) Df
ε, δ ≡

{
v ∈ Hm

0
(
S3 × Ω1/4; RNf

)
:

supp(v) ⊂ S3 × Ωδ, ‖v‖Hm0 (S3×Ω1/4;RNf) 6 ε
}
.

Note that Dg
ε(τ) and Df

ε, δ(τ) are bounded, closed subsets of Hm(S3; RNg )
and Hm(S3 × Ω1/4;RNf), respectively. Finally, denote

D(ε, δ)(τ) ≡ Dg
ε(τ)×Df

ε, δ,(7.8)
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and

Dg
ε ≡

⋃
τ ∈ [0, π]

Dg
ε(τ), D(ε, δ) ≡

⋃
τ ∈ [0, π]

D(ε, δ)(τ)(7.9)

The initial data ů will be chosen in D(ε, 1/2)(0).

7.2. Application of Kato’s theorem

In the following lemmas we establish the necessary conditions on the op-
erators (7.5b)–(7.5d) so that Kato’s theorem can be applied. It has already
been discussed in Proposition 5.2 that the coefficients matrices (7.5a) of
the system (7.3a) of the geometric fields fulfil all necessary conditions.

Lemma 7.2 (Assumptions of Kato’s theorem – matter equations ). —
The operators (7.5b), (7.5c) in the system for the matter fields uf fulfil the
following conditions:

(i) There exists a constant ϑ > 0 such that for all ν,a = 0, . . . , 3 one
has the bounds, for all v ∈ Dg

ε and w ∈ Df
(ε, 1/4),

(7.10a)
∥∥Aν

f [v]
∥∥
Hm

(
S3 × Ω1/4; RNf×Nf

)
+

‖Aa[v]‖Hmul (S3×Ω1/4;RNf×Nf) 6 ϑ,

(7.10b) ‖Ff[v,w]‖Hm0 (S3×Ω1/4;RNf) 6 ϑ.

(ii) There exists a (Lipschitz) constant µ > 0 such that for all j =
1, 2, 3, a = 0, . . . , 3 one has the bounds, for all v1,v2 ∈ Dg

ε and
w1,w2 ∈ Df

(ε, 1/4),

(7.11a)
∥∥∥Aj

f [v1]−Aj
f [v2]

∥∥∥
Hm(S3×Ω1/4;RNf×Nf)

6 µ ‖v1 − v2‖Hm(S3;RNg ) ,

(7.11b) ‖Aa[v1]− Aa[v2]‖Hm(S3×Ω1/4;RNf×Nf)
6 µ ‖v1 − v2‖Hm(S3;RNg ) ,

(7.11c) ‖Ff[v1,w1]− Ff[v2,w2]‖Hm0 (S3×Ω1/4;RNf)

6 µ
(
‖v1 − v2‖Hm(S3;RNg ) + ‖w1 −w2‖Hm0 (S3×Ω1/4;RNf)

)
.
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(iii) There exists a (Lipschitz) constant µ′ > 0 such that, for all v1,v2 ∈
Dg
ε ,

(7.12)
∥∥Aν

f [v1]−Aν
f [v2]

∥∥
Hm−1(S3×Ω1/4;RNf×Nf)

6 µ′ ‖v1 − v2‖Hm−1(S3;RNg) ,

(iv) For each ν = 0, . . . , 3 the matrices Aν
f [v](x, vb) and Aa[v](x, vb)

are symmetric for all x ∈ S3, vb ∈ Ω1/4.
(v) There exists a constant d > 0 such that, for all v,v1,v2 ∈ Dg

ε and
w,w1,w2 ∈ Df

(ε, 1/4), A
0
f [v](x, vb) > d for all x ∈ S3, vb ∈ Ω1/4.

Proof. — By inspecting the formulas of the operators one can easily con-
vince oneself that the continuity and symmetry properties hold. For bound-
edness, it is essential that the v-variables do not range over R4 but only
over the bounded domain Ω1/4. �

For the source term in equation (7.5c) of the system (7.3a) for the geo-
metric fields only the source terms containing the matter fields have to be
considered. For the other quantities Proposition 5.2 provides the necessary
properties.

Lemma 7.3 (Assumptions of Kato’s theorem – metric equations).
Consider u?g,u

?(1)
g ,u?(2)

g ∈ Dg
ε and u?f ,u

?(1)
f ,u?(2)

f ∈ Df
(ε, 1/4) (defined in

(7.8)), where

(7.13) u?g = (. . . , (Γa
c

b)?, . . . ) , u?f =
(
f?, f

?
a, ϕ

b
?

)
.

Consider the operators

(7.14a) Tab

[
u?f
]

(x) = 8π
∫
R3

f? (x, vc) vavb√
v2

1 + v2
2 + v2

3
dv1dv2dv3,

(7.14b) Tabc

[
u?g,u?f

]
(x)

= 8π (Γa
e

d)? (x)
∫
R3
ϕd
? (0, x, va) vevbvc

|v|
dv1dv2dv3.

These operators fulfil the conditions:
(i) There exists a constant ϑ > 0 such that, for all a, b, c,d, e =

0, . . . , 3, the following bounds hold: for all u?g ∈ Dg
ε and u?f ∈

Df
(ε, 1/4), ∥∥Tab

[
u?f
]∥∥
Hm(S3;RNg ) 6 ϑ,(7.15a) ∥∥Tcde

[
u?g,u?f

]∥∥
Hm(S3;RNg ) 6 ϑ.(7.15b)
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(ii) There exists a (Lipschitz) constant µ > 0 such for that, all a, b, c,d,
e = 0, . . . , 3, the following bounds hold: for all u?(1)

g ,u?(2)
g ∈ Dg

ε and
u?(1)
f ,u?(2)

f ∈ Df
(ε, 1/4)

(7.16a)
∥∥∥Tab

[
u?(1)
f

]
− Tab

[
u?(2)
f

]∥∥∥
Hm(S3;RNg )

6 µ
∥∥∥u?(1)

f − u?(2)
f

∥∥∥
Hm0 (S3×Ω1/4;RNg )

,

(7.16b)
∥∥∥Tcde

[
u?(1)
g ,u?(1)

f

]
− Tcde

[
u?(2)
g ,u?(2)

f

]∥∥∥
Hm(S3;RNg )

6 µ

(∥∥∥u?(1)
g − u?(2)

g

∥∥∥
Hm(S3;RNg )

+
∥∥∥u?(1)

f − u?(2)
f

∥∥∥
Hm0 (S3×Ω1/4;RNf)

)
.

Proof. — Let u?g,u
?(1)
g ,u?(2)

g ∈ Dg
ε and u?f ,u

?(1)
f ,u?(2)

f ∈ Df
(ε, 1/4), arbi-

trary.
(i) Boundedness of the operators can be seen as follows. Observe first

that in the support of w we have 1/4 < |v| < 4. So, the terms
vavb/|v| are bounded and can be pulled out of the integrals. Fur-
thermore, since u?g,u

?(1)
g ,u?(2)

g ∈ Dg
ε , the Christofell symbols of the

perturbation are bounded. Integrating over S3 and using Jensen’s
inequality yield the L2(S3 × Ω1/4; R)-norm of f times a constant.
Note that there the compact support of f in velocities is crucial.
The L2(S3 × Ω(1/4);R)-norm of f? can course be bounded by the
Hm

0 (S3 × Ω(1/4);R)-norm of f?, which in turn is smaller than ε.
(ii) Lipschitz-continuity with respect to w. Consider first (7.16).

Again, we observe that due to the assumption on the support of
w we can pull the factors vavb/|v| out of the integrals. Now the
claim follows by linearity of the integral. The operator Tabc can be
dealt with analogously. �

We are now ready to state and prove our stability result.

Theorem 7.4. — Let ε > 0 and consider initial data u? ∈ Dε, 1/4, as
defined in (7.8), on S3. Given m > 5 and τ• > 3

4π then, if ε is small enough
this initial data give rise to a solution

(7.17) u ∈ C0
(

[0, τ•] ;Hm
(
S3;RNg

)
×Hm

(
S3 × R4

v;RNf
) )

∩ C1
(

[0, τ•] ;Hm−1 (S3;RNg
)
×Hm−1 (S3 × R4

v;RNf
) )
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of the conformal Einstein field equations with massless Vlasov matter, equa-
tions (5.16a)–(5.16f), (4.3a)–(4.3c). This solution satisfies

(7.18) supp(uf(τ, ·)) ∈ S3×
{

(v0, . . . , v3) ∈ R4
v : v0 = −|v|, 1

4 6 |v| 6 2
}

for all τ 6 τ•. Furthermore, given a sequence of initial data u(n)
? = ů(n)

? +
ŭ(n)
? such that ∥∥∥ŭ(n)

?

∥∥∥
m
< ε and ŭ(n)

? → 0 as n→∞,

then for the corresponding solutions ŭ(n)
n one has that ŭ(n) → 0 uniformly

in τ ∈ [0, τ•] as n→∞.

Remark 7.5. — The proof of Theorem 7.4 relies on the proofs of [15,
Theorems II and III]. Our situation differs in in the following points from
the situation considered there:

(i) In the current setting we look for an existence and stability result for
a system of two coupled, non-linear symmetric hyperbolic systems,
one system for the geometric fields ug and one system for the matter
fields uf. The two systems cannot simply be considered as one single
system since the unknowns are of different dimensions.

(ii) The domain of the solution functions of the symmetric hyperbolic
systems considered in this article is not Rm for somem > 0 but S3 or
S3×Ω1/4. A localisation procedure described in [13] or [29] makes it
possible to state and prove Kato’s existence and stability theorems
on compact manifolds without boundary (in particular on S3). For
solutions that are launched by initial data which are sufficiently
close to the vacuum solution and the matter fields of which have
v-support contained in Ω1/2, we will show that the support in the v-
variables stays within Ω1/4. For this reason, for the specific system
of equations at hand and solutions close to the de Sitter solution
we can work with Ω1/4 instead of R4.

In this proof we will use the shorthand

Hm ≡ Hm
(
S3; RNg

)
×Hm

(
S3 × Ω1/4; RNf

)
,(7.19)

‖ · ‖m ≡ ‖ · ‖Hm .(7.20)

Recall that Ng denotes the number of independent components of the geo-
metric fields and Nf the number of independent components of the matter
fields. Ω1/4 is defined in (7.4).
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The proof consists in several steps. First a local existence result for the
solution u with initial data u? is demonstrated on a (short) time interval
[0, T ′], T ′ 6 τ• via a contraction argument [15, Proof of Theorem II]. This
proof implies that for initial data ũ? close to u? a solution ũ exists on the
same interval [0, T ′]. In the next step a local stability result is established on
the (short) interval [0, T ′], i.e. sup06 τ 6T ′ ‖ũ(τ)− u(τ)‖m → 0, uniformly
in τ , as ‖ũ? − u?‖m → 0 [15, Proof of Theorem III]. Finally these local
results can be applied successively in order to establish them on the interval
[0, τ•] [15, p. 200, last paragraph].

Remark 7.6. — This proof relies on the proofs of Theorems II and III
in [15] and details are given only for the parts which differ from these
proofs. Since the reader might want to compare with the proofs in [15], we
comment on the notations. In [15], the contraction for the local existence
result is set up on a set S of functions which stay close to a function
u00. This is a technical help function, needed to use stability estimates for
linear hyperbolic systems which need more regularity. In our setting the
background solution ů(τ) is chosen for u00, with τ = 0 for the result on
[0, T ′], and τ > 0 in the successive application of the local result. At this
point, the higher regularity of the initial data of the background solution
is used.

First we establish the local existence result.

Lemma 7.7. — Let ε > 0 and consider initial data u? ∈ D(ε, 1/4)(0)
such that ‖u? − ů?‖m 6 ε2 for some ε2 ∈ (0, ε]. Then, if ε2 is chosen
sufficiently small, there exists R such that

• if (w,v) ∈ Hm and ‖(w,v)− ů?‖m 6 R then (w,v) ∈Dε, 1/2(0),

• ε2

(∥∥A0
g[v]

∥∥1/2
L∞

+
∥∥A0

f [v]
∥∥1/2
L∞

)
6 R/3 for (w,v) ∈Dε, 1/2(0).

We define the operator

(7.21) Φ : C1
(

[0, T ]; Hm
(
S3;RNg

)
×Hm

0
(
S3 × Ω1/4;RNf

) )
→ C0

(
[0, T ]; Hm

(
S3;RNg

)
×Hm

(
S3 × R4;RNf

) )
which assigns to a function (w,v) the solution u(w,v) ≡ (u(w,v)

g ,u(w,v)
f )

of the linear hyperbolic system

(7.22a) A0
g[w(τ, ·)](x)∂τu(w,v)

g +Ai
g[w(τ, ·)](x)∂xiu(w,v)

g

= Fg [(wτ, ·) ,v(τ, ·)] (x),
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(7.22b) A0
f [w(τ, ·)](x, va)∂τu(w,v)

f +Ai
f[w(τ, ·)](x, va)∂xiu

(w,v)
f

+ Ac[w(τ, ·)](x, va)∂vcu(w,v)
f = Ff[w(τ, ·),v(τ, ·)](x, va)

equipped with the initial data u? ∈ D(ε, 1/4). Note that the linear sys-
tem (7.22a)–(7.22b) is not coupled. So we can solve each system individu-
ally by [15, Theorem I]. This shows that the operator Φ is well-defined.

Next, we wish to set up a contraction argument. To this end we first define
the set S = S(R, T ′, L′) as the set of all functions (w,v) : [0, T ′] → Hm

such that

‖(w,v)(τ, ·)− ů?‖m 6 R, for τ ∈ [0, T ′] ,(7.23)
‖(w,v)(τ, ·)− (w,v)(τ ′, ·)‖m−1 6 L

′(τ − τ ′) for 0 6 τ ′ 6 τ 6 T ′(7.24)

where T ′ 6 T and L′ are positive constants to be determined later.
The next steps are now to check that if T ′ is chosen sufficiently small

and L′ sufficiently large we have for all (w,v) ∈ S that Φ(w,v) ∈ S, and
that Φ acts as a contraction on S. First we check that Φ(w,v) ∈ S. We
have to verify (7.23), (7.24), and the support condition

(7.25) supp(Φ(w,v)(τ, ·)) ⊂ S3 × Ω1/4, τ ∈ [0, T ′].

[15, Theorem I] provides the stability estimates∥∥∥u(w,v)
g (τ, ·)− ů?g

∥∥∥
Hm(S3;RNg )

6 β(L′, T ′),(7.26) ∥∥∥u(w,v)
f (τ, ·)− ů?f

∥∥∥
Hm(S3×R4;RNf)

6 β(L′, T ′),(7.27)

and

(7.28)
∥∥∥∂τu(w,v)

g (τ, ·)
∥∥∥
Hm−1(S3;RNg )

6 c(1 + ϑm−1)ϑ (1 + ‖ů?‖m + β(L′, T ′)) ,

(7.29)
∥∥∥∂τu(w,v)

g (τ, ·)
∥∥∥
Hm−1(S3×R4;RNf)

6 c
(
1 + ϑm−1)ϑ (1 + ‖ů?‖m + β(L′, T ′)) ,

where c > 0 is a universal constant and, furthermore,

(7.30) β(L′, T ′)

= cϑeα(L′)T ′( ‖u? − ů?‖m + c (1 + ϑm)ϑ
(
1 + ‖ů?‖m+1

)
T ′
)
,

(7.31) α(L′) = c
(
ν + µ′L′ + ϑ+ ϑm+1) ,
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and the constants ϑ, µ, and µ′ are the constants of Lemma 7.2. Since

(7.32) ‖ · ‖m . ‖ · ‖Hm(S3;RNg ) + ‖ · ‖Hm(S3×R4;RNf)

the conditions (7.23) and (7.24) follow similarly as in [Kato, 1975].
The support property (7.25) can be shown by an analysis of the char-

acteristic system of the Vlasov equation. Let ς 7→ (xµ(ς), va(ς), ς ∈ R
be a solution of the characteristic system of the massless Vlasov equation
reading

ẋµ(ς) = ηab
w
ea
µ(x(ς)) vb(ς),(7.33a)

v̇d(ς) = ηab
w

Γb
c

d(x(ς)) va(ς)vc(ς),(7.33b)

where the mass shell condition

(7.34) v0(ς) = −
√

(v1(ς))2 + (v2(ς))2 + (v3(ς))2

is propagated. The notation
w
ec
µ,

w
Γa

c
b indicates that we refer to the com-

ponents of w which correspond to ec
µ and Γa

c
b, respectively.

The support of f consists in characteristic curves ς 7→ (xµ(ς), vb(ς))
which are launched from the initial hypersurface S3 × Ω1/2, which is char-
acterised by τ = 0, i.e. x0(0) = 0. Denote further

(7.35) xµ? ≡ xµ(0), v?b ≡ vb(0).

The functions
w
ec
µ,

w
Γa

c
b can be written as

(7.36)
w

Γa
c

b = Γ̊a
c

b + Γ̆a
c

b,
w
ec
µ = e̊c

µ + ĕc
µ,

the quantities with a “˚” denote quantities of the background solution and
quantities with “ ˘ ” denote a small perturbation. In view of the explicit
expressions given in (8.2)–(8.3) for de Sitter or (9.2)–(9.3) for Minkowski,
this yields

(7.37)
∣∣∣∣ w
Γa

c
b

∣∣∣∣ 6 ε0a
c

b + ε,

∣∣∣∣ w
e0
µ

∣∣∣∣ > δ0µ − ε, ∣∣∣∣ w
ei
µ

∣∣∣∣ > 1− ε

on S3× [0, T ′). Without loss of generality we assume T ′ 6 3π/4. Otherwise
we just change T ′ to 3π/4. Consider now the differential equation for v0.
Observing that Γ̊b

c
0 = 0 we deduce that there exists a constant C > 0

such that

|v̇0(ς)| =
∣∣∣ηabΓ̆b

c
0(x(ς)) va(ς)vc(ς)

∣∣∣ 6 Cε(v0(ς))2.
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This equation yields

(7.38) |v0(ς)| >
(

1
v?0

+ ες

)−1
> (2 + ες)−1

,

where in the last inequality |v?0| > 1
2 has been used. Next, we control

the range of the affine parameter ς for which the characteristic curve
(xµ(ς), vb(ς)) reaches x0(ς) = T ′. We have

(7.39) ẋ0(ς) =
∣∣∣∣ηab

w
eµavb

∣∣∣∣ > (1− ε) |v0(ς)| > 1− ε
2 + ες

.

In the second inequality we used |v0| > |v1|, |v2|, |v3| and in the last in-
equality we substituted (7.38). This yields

(7.40) x0(ς) > 1− ε
ε

ln
(

2 + ε2
2

)
and therefore see that x0(ς) reaches min{T ′, 3π/4} before ς reaches

(7.41) ς̂ ≡ 2
ε

(
e

3π
4

ε
1−ε − 1

)
.

Substituting this again into (7.38) yields

(7.42) ∀ ς 6 ς̂ , |v0(ς̂)| > 1− 1
2e

3π
4

ε
1−ε >

1
4 ,

provided that ε is small enough. Now we have established that for all (w,v)
we have Φ(w,v) ∈ S. The next step is to show that Φ acts as a contraction
on S. This goes however analogously to the proof of [15, Lemma 4.5]. By
Banach’s fixed point theorem, the local existence of the solution on [0, T ′]
follows.
The remaining steps of the proof require very little modification of the

original proofs of [15, Theorems II and II]. The operator Φ and the norms
(7.32) have to be replaced. Furthermore, as above, results for linear hy-
perbolic systems have to be applied to each of the subsystems (7.22a)
and (7.22b) separately. Finally, when the local result is applied succes-
sively in order to obtain the result on the interval [0, τ•], in the above, ů?
has to be replaced by ů(T ′) etc.

8. De Sitter like space-times

In this section we state the non-linear stability result for the de Sitter
space-time. It is obtained by applying Theorem 7.4 to initial data where
the background solution ů is de Sitter space-time.
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Let udS be the collection of functions

(8.1) udS ≡
(

ΞdS, (ΣAA′)dS , sdS, (eAA′
a)dS ,

(ΓAA′BC)dS , (ΦAA′BB′)dS , (φABCD)dS

)
,

where

(8.2) ΞdS = cos(τ), sdS = −1
4 cos(τ), (eAA′

a)dS = σAA′
a,

with σAA′
a the Infeld-van der Waerden symbols and the remaining func-

tions are the spinorial counterparts of

(8.3)
(Γa

c
b)dS = ε0a

c
b, (Σi)dS = 0,

(Lab)dS = δa
0δb

0 − 1
2ηab, (da

bcd)dS = 0.

We are now using [29, Lemma 15.1].

Lemma 8.1. — The functions udS defined over the Einstein cylinder
R×S3 constitute a solution to the spinorial vacuum conformal Einstein field
equations, where the gauge source functions associated to these solutions
are given by (7.2).

The de Sitter spacetime corresponds to the domain

(8.4) M̃dS =
{

(τ, x) ∈ E : τ ∈ (−π, π), x ∈ S3} .
In particular, observe that M̃dS is a domain in E where ΞdS > 0. Further-
more, we denote

(8.5) u?dS ≡ udS
∣∣
τ=0.

Hence, u?dS is initial data which, if prescribed on S3, yields udS on [0,∞)
× S3.

The perturbation ansatz gdS + ğ of the de Sitter metric gdS on the Ein-
stein cylinder E gives rise to initial data u? on S3. It turns out (cf. [29,
Section 15.2]) that this initial data is of the form u? = udS + ŭ? and that
u? ∈D(ε, 1/2), if ğ is small enough, where in the definition (7.8) of D(ε, 1/2)
we choose u?dS as background solution ů?. We assume that the initial data
u? solves the conformal constraint equations on S3 with source terms gen-
erated by the initial value u?f of the particle distribution function. Then
Theorem 7.4 yields a solution u (which can be extended) on [0, τ•]×S3×R4

v

which is close to the de sitter solution udS, where τ• > 3π/4.
Initially, the conformal factor Ξ is not zero (it is close to one to be

precise). We will now demonstrate that there exists a hypersurface I +,
diffeomorphic to S3 such that Ξ = 0 on I + and Ξ > 0 on the domain
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bounded by {τ = 0} and I +. This domain will then be identified as the
perturbed de Sitter space-time. This characterisation is now made precise.

Lemma 8.2. — Given a solution ŭ as given by Theorem 7.4 with ‖ŭ?‖m
< ε sufficiently small, there exists a function τ+ = τ+(x), x ∈ S3 such that
0 < τ+(x) < τ• and

Ξ > 0 on M̃ ≡
{

(τ, x) ∈ [0, τ•]× S3 ∣∣ 0 6 τ < τ+(x)
}
,

Ξ = 0 and ΣaΣa = −1
3λ < 0 on I + ≡

{
(τ+(x), x) ∈ R× S3} .

Remark 8.3. — From the previous lemma, it follows that the solution to
the Einstein–Vlasov equations obatined from Theorem 7.4 is future asymp-
totically simple. Accordingly, the spacetime is null geodesically complete
—see e.g. [23]. The future timelike geodesic completeness of the solution
can be obtained using the notion of conformal geodesics as described in [20].
Conformal geodesics provide a convenient conformal description of physical
geodesics. The completeness of these curves in the physical portion of the
conformal spacetime follows from the Cauchy stability of solutions to ordi-
nary differential equations and the fact that is possible to obtain a common
ε for all the curves starting on the initial hypersurface as it is compact.

Theorem 8.4. — Given m > 5, a de Sitter-like solution u? = u?dS + ŭ?
to the Einstein–Vlasov conformal constraint equations such that ‖ŭ?‖m <

ε for ε > 0 suitably small gives rise to a unique Cm−2 solution to the
conformal Einstein–Vlasov field equations on

M≡ M̃ ∪I +

with M̃ and I + as defined in Lemma 8.2. The solution implies, in turn, a
solution (M̃, g̃), to the Einstein field equations with de Sitter-like cosmo-
logical constant for which I + represents conformal infinity. The space-time
(M̃, g̃) is geodesically complete.

Proof. — Once a solutions u on [0, τ•] × S3 is obtained by virtue of
Theorem 7.4, the remaining properties can be shown by using that the
geometric fields ug are close to the de Sitter ones, udS. The arguments are
identical to the vacuum case and we refer to [29, Section 8]. �

9. Minkowski-like space-times

Theorem 7.4 also allows to obtain a semi-global stability result for the
Minkowski sace-time. To this end, we first discuss the background solution
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uM on the Einstein cylinder E . Locally on S3 we work with the coordinates
(ψ, ϑ, ϕ) ∈ [0, π]× [0, π]× [0, 2π). Let uM be the collection of functions

(9.1) uM ≡
(

ΞM, (ΣAA′)M , ΣM,

(eAA′
a)M , (ΓAA′BC)M , (ΦAA′BB′)M , (φABCD)M

)
,

where

(9.2)

ΞM = cos τ + cosψ,

sM = −1
4 (cos τ − 3 cosψ) ,

(eAA′
a)M = σAA′

a,

and σAA′
a are the Infeld–van der Waerden symbols. The remaining func-

tions in uM are the spinorial counterparts of

(9.3)
(Γa

c
b)M = ε0a

c
b, (Σi)M = 0,

(Lab)M = δa
0δb

0 − 1
2ηab, (da

bcd)M = 0.

Lemma 9.1. — The functions uM defined over the Einstein cylinder
R×S3 constitute a solution to the spinorial vacuum conformal Einstein field
equations, where the gauge source functions associated to these solutions
are given by (7.2).

In terms of the coordinates on E the Minkowski spacetime corresponds
to the domain

(9.4) M̃M = {x ∈ E : 0 < ψ < π, ψ − π < τ < π − ψ} .

Recall that M̃M is the domain in E where ΞM > 0. As in the case of
the de Sitter space time, we want to identify an initial data set which
evolves into Minkowski space-time (M̃M, g̃M). This can however not be
done in an analogous way as for the de Sitter space-time since the initial
data for the conformal Einstein field equations are generically singular at
the point i0 = {χ = π, τ = 0} describing space-like infinity —see e.g. [29,
Chapter 21]. For this reason we only prove a semi-global stability result
where we prescribe initial data on the hypersurface

(9.5) S̄ =
{

0 6 ψ 6 π

2 , τ = π

2

}
which corresponds to a hyperboloid —any other positive value for τ

would work as well. Only a portion of the Minkowski (-like) space-time can
be obtained this way. Following [12] we construct an initial data set for
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the conformal Einstein field equations with massless Vlasov matter (7.3a)–
(7.3b) on S3 with help of a so called extension operator

(9.6) E : Hm
(
S; RNg

)
→ Hm

(
S3; RNg

)
.

This operator permits to extend the initial data set on S to a vector-valued
function on the whole of S3 (which does not satisfy the constraints on S3\S)
such that for a constant K > 0 there holds for any w ∈ Hm(S; RNg )

(9.7) (Ew)(x) = w(x) a.e. inS, ‖Ew‖m 6 K‖w‖Hm(S;RNg ).

In view of the above we write

(9.8) u?M ≡ E
(
uM
∣∣
S

)
.

Accordingly u?M are initial data which, if prescribed on S3, yield a solution
u of the conformal Einstein field equations on [0,∞)× S3 which coincides
with Minkowski space-time in the causal future D+(S̄) of S̄.
As in the stability analysis of de Sitter space-time, we consider a pertur-

bation ansatz gM + ğ on the Einstein cylinder E which gives rise to initial
data on S̄. This initial data can, by virtue of the operator E, be extended
to initial data u? on S3. It turns out (cf. [29]) that this initial data is of the
form u? = uM + ŭ? and that u? ∈D(ε, 1/2), if ğ is small enough, where in
the definition (7.8) ofD(ε,1/2) we choose u?M as background solution ů?. We
assume that the initial data u? solves the conformal constraint equations
on S with source terms generated by the initial value u?f of the particle
distribution function. Then Theorem 7.4 yields a solution u (which can be
extended) onM• = [π/2, τ•]× S3×R4

v, where τ• > 3π/4, which is close to
the Minkowski solution uM.

The structure of the conformal boundary of the space-time thus ob-
tained can be analysed using the methods used in [12] without any further
modification. These methods allow to show that the development of the
hyperboloidal initial data set is asymptotically simple. Moreover, there ex-
ists a point i+ ∈ (π/2, τ•) × S3 at which the generators of null infinity
intersect. The geodesic completeness of the spacetime can be studied with
similar methods to those used for perturbations of de Sitter spacetime —see
Remark 8.3.
The above observations can be collected in the following:

Theorem 9.2. — Given m > 5, hyperboloidal initial data u? = uM + ŭ
to the Einstein–Vlasov conformal constraint equations such that |‖ŭ‖m < ε

for ε > 0 suitably small gives rise to a unique Cm−2 solution to the confor-
mal Einstein–Vlasov equations such that there exists a point i+ such that
the causal past J−(i+) of i+ and the future domain of dependence D+(S̄)
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of S̄ in the Lorentz-space (M•, g) coincide. The conformal factor Ξ is pos-
itive on D+(S̄)\H+(S̄), where H+(S̄) denotes the future Cauchy horizon
of S̄. Furthermore, Ξ vanishes on H+(S̄), dΞ 6= 0 on I + = H+(S̄)\{i+},
and dΞ = 0 but the Hessian is non-degenerate at i+. In particular, one
has the following: the metric g̃ = Ξ−2g onM• together with the particle
distribution function f is, whenever Ξ 6= 0, a solution of class Cm−2 (with
curvature tensor of class Cm−2) of the massless Einstein–Vlasov system
which is future asymptotically simple, thus future null geodesically com-
plete, for which I + represents future null infinity and i+ future time-like
infinity.
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