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REVISITING THE MODULI SPACE OF SEMISTABLE
G-BUNDLES OVER ELLIPTIC CURVES

by Dragoş FRĂŢILĂ

Abstract. — We show that the moduli space of semistable G-bundles on an
elliptic curve for a reductive group G is isomorphic to a power of the elliptic curve
modulo a certain Weyl group which depend on the topological type of the bundle.
This generalises a result of Laszlo to arbitrary connected components and recovers
the global description of the moduli space due to Friedman–Morgan–Witten and
Schweigert. The proof is entirely in the realm of algebraic geometry and works in
arbitrary characteristic.
Résumé. — Nous démontrons que l’espace de module des G-fibrés semistables

sur une courbe elliptique pour un groupe réductif G est isomorphe à une certaine
puissance de la courbe elliptique quotientée par un groupe de Weyl qui dépendent
du type topologique des fibrés considérés. Ceci généralise un résultat de Laszlo à
toute composante connexe de l’espace des modules et permet de retrouver ainsi
la description globale de l’espace des modules due initialement à Schweigert et
Friedman–Morgan–Witten. Les démonstrations n’utilisent que de la géométrie al-
gébrique et sont aussi valables en caractéristique positive.

1. Introduction

1.1.

The study of principal G-bundles on elliptic curves began with the semi-
nal paper of Atiyah [1] where he gave a complete and beautiful description
of all the semistable vector bundles. He didn’t discuss the moduli space but
one could have easily guessed from his results the precise statement. Let
us denote byMd

r the moduli space of semistable vector bundles of rank r
and degree d on en elliptic curve E/C. In case r and d are coprime Atiyah
essentially proved that the determinant map

(1.1) det :Md
r →Md

1
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616 Dragoş FRĂŢILĂ

is an isomorphism of algebraic varieties.
In general, if we put m = gcd(r, d), we have

(1.2) Md
r ' Em/Sm

where E is the elliptic curve and Sm is the symmetric group on m letters
(the isomorphism is not canonical however). The isomorphisms (1.1) and
(1.2) hold in any characteristic and the proof, in characteristic 0, appeared
in a paper by Tu [21, Theorem 1].
For a reductive group G and an elliptic curve E over an algebraically

closed field k of arbitrary characteristic we denote by Md
G the moduli

space of semistable G-bundles on E of topological type d ∈ π1(G). The
main result of this note can be summarized a bit imprecisely as

Theorem. — For any d ∈ π1(G) there is an isomorphism of moduli
spaces

Md
G 'Md′

Cd
/Wd

where Cd is a certain algebraic torus, d′ ∈ π1(Cd) and Wd a certain Weyl
group, all depending strongly on d.

Remark 1.1. — The result is surely well known to experts in character-
istic 0 by passing through flat connections or twisted representations of
fundamental groups. However, to the author’s knowledge, this is the first
entirely algebraic proof that works also in positive characteristic.

Laszlo [15] proved the above theorem over C in the case d = 0, general-
izing thus the isomorphism (1.2). More precisely, he proved that

M0
G 'M0

T /W

where we have denoted by T a maximal torus of G and W is the Weyl
group. His proof is through a Birkhoff–Grothendieck type result which says
that every semistable G-bundle of degree zero over an elliptic curve is an
extension of line bundles of degree zero. Looijenga has proved [16] that the
RHS above is a weighted projective space where the weights can be read
off the combinatorics of the root system of G.
Concerning the other components of the moduli space, motivated by

2d-conformal field theory, Schweigert has shown in [19] that for any given
topological type, say d ∈ π1(G), there is another reductive group, call it
Gd, such that Md

G ' M0
Gd

as differentiable varieties. His statements are
in the realm of differential geometry but one could possibly find a more
algebro-geometric approach.
Another take on this problem has been given by Friedman–Morgan–

Witten in a series of papers [7, 8, 9]. They have two approaches: one is
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G-BUNDLES ON ELLIPTIC CURVES 617

analytic through flat bundles which is very hands-on and adapted to con-
crete computations, however not very suitable to questions regarding fam-
ilies and moduli spaces. In their second approach, which uses deformation
theory and is algebraic in nature, they provided a description ofMd

G as a
weighted projective space, thus recovering also Looijenga’s theorem. How-
ever, their method is very different from Laszlo’s and the relation to line
bundles is not transparent.

1.2.

Our goal in this note is to give a description of Md
G in arbitrary char-

acteristic in terms of line bundles by generalising Laszlo’s approach. Let
us explain how to arrive at the statement of our theorem and then the
difficulties and the ideas that arise in proving it.
The first difficulty is to find what should replace the torus. This has

been dealt with in [6, Theorem 3.2]. It was shown that for a reductive
group G and a topological type d ∈ π1(G), there is a Levi subgroup Ld and
a d′ ∈ π1(Ld) such that every polystable G-bundle comes from a stable
Ld-bundle of degree d′. The role of the Weyl group W will be taken by the
relative Weyl group Wd := NG(Ld)/Ld.
This provides us with a well defined map of moduli spaces ind : Md′

Ld

→Md
G that is moreover finite andWd-invariant. The second difficulty is to

prove that the quotient map is an isomorphism. This would follow immedi-
ately by Zariski’s main theorem provided we knew the map to be separable.
It turns out that the question of separability (generic smoothness) is rather
non-trivial in positive characteristic.
The next step is relating Md′

Ld
to line bundles. Inspired by Atiyah’s

theorem, the natural choice is to take the determinant map det : Ld
→ Ld/[Ld, Ld] =: Cd and to show that it induces an isomorphism of vari-
eties

det :Md′

Ld
→Mdet(d′)

Cd
.

Notice that Cd is an algebraic torus soMdet(d′)
Cd

is isomorphic to a certain
power of the Jacobian of E.
We have arrived at the following diagram

(1.3)

Md′

Ld

Md
G Mdet(d′)

Cd

ind det
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618 Dragoş FRĂŢILĂ

and our main theorem follows by proving two things: (i) det is an isomor-
phism; (ii) ind is generically étale with Galois group Wd.
The solution to both issues comes from the same tool: an extra symmetry

on the diagram (1.3), namely the abelian variety(1) M0
Z(Ld)

acts on both
Md′

Ld
andMdet(d′)

Cd
making the map det equivariant. Moreover, the action is

transitive and by computing the (reduced) stabilizers we conclude that det
is an isomorphism. In addition, the action on Md′

Ld
is used to prove that

ind is generically étale by constructing a generic enough(2) Ld-bundle.

1.3.

Some of the advantages of this approach over those in [7, 9] are that it
also works in positive characteristic and the proofs in this paper are uniform
with respect to the Dynkin type of the group G and its isogeny class. To
obtain precise information on the groups Ld above, we do use however some
results from [6, Corollary 4.3 and Section 4.2], that are done by inspecting
the combinatorics of each root system. Whereas in [9, 19] the approach is
set-theoretical and the structure of differential or complex variety needs
to be constructed, here we’re always dealing with the moduli stack/space
as an algebro-geometric object and the maps between them are defined by
functoriality, thus we never need to define or compare algebraic structures
on a manifold.
Under some numerical conditions on G and d it was proved in [8], inde-

pendent of Looijenga’s result [16], that the moduli spaceMd
G is isomorphic

to a certain weighted projective space. A shortcoming of our approach is
that it doesn’t permit us to get this isomorphism without using Looijenga’s
result.
We do not address in this paper the existence or the construction of

universal bundles since they rarely exist on moduli spaces. Indeed, the
universal bundle on Md′

Ld
, if it exists, which is a rather subtle question,

doesn’t descend to Md
G. See also Remarks 3.9, 4.13 where a few more

details are provided. For a more thorough discussion of universal bundles
onMd

G or opens of it we invite the reader to look at [9].

(1)Just a product of several copies of Jac(E) and maybe a finite abelian group.
(2)For the differential of ind.
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1.4.

Below we introduce the necessary notation and we formulate precisely
our main theorem.

We’ll be working over an algebraically closed field k of arbitrary char-
acteristic, E is a smooth projective curve of genus one over k and G is a
reductive group over k. We fix a Borus T ⊂ B ⊂ G and we denote by X∗(T )
the group of cocharacters of T . For a reductive group G, the algebraic fun-
damental group is defined to be the quotient of the lattice of cocharacters
by the lattice of coroots (see [14, Section 31.1]). An algebraic group P is an
extension of a reductive group by a unipotent subgroup. Given that unipo-
tent groups are (at least topologically, in char. 0) simply connected, one
can define the algebraic fundamental group of a linear group by considering
its reductive quotient.
In particular, in the situation that is of interest to us, namely for a para-

bolic subgroup B ⊂ P ⊂ G, the algebraic fundamental group is defined by

π1(P ) := π1(M) = X∗(T )/〈α̌ coroot of M〉Z,

where M = P/Radu(P ) is the Levi quotient of P . We’ll denote by λ̌P an
element of π1(P ).
Remark that with this definition of fundamental group we have π1(SLn)

= 1, π1(PGLn) = Z/nZ and π1(GLn) = Z. Similarly, one can easily see
that π1(Sp2n) = 1 and π1(SO2n) = Z/4Z or (Z/2Z)2 according to n being
odd or even (see for example [5, Planche I-VIII]).
The choice of B gives us a notion of positive coroots and hence a partial

order on the cocharacter lattice X∗(T ): we say λ̌ 6 µ̌ if µ̌ − λ̌ is a posi-
tive linear combination of positive coroots. It extends naturally to rational
coefficients X∗(T )Q.
The above partial order induces a partial order on the fundamental group

π1(P ) for any parabolic subgroup B ⊂ P ⊂ G which extends naturally to
π1(P )Q.
We denote by Bunsst

G and by MG the moduli stack, respectively moduli
space, of semistable G-bundles over E. Their connected components are
labeled by elements of π1(G), see [13]. We’ll write Bunλ̌G,sst

G and Mλ̌G

G for
such a connected component. Each such connected component is of finite
type.
In [2] it was proved, under some restrictions on the characteristic of

the field, that Mλ̌G
G exists as a normal projective variety. More precisely,

the existence and normality of the moduli space was proved in arbitrary
characteristic in [10, Section 1.1 Main Theorem]. For projectivity, in [10,
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620 Dragoş FRĂŢILĂ

Section 1.2] some assumptions on the characteristic of the field was needed.
However, Heinloth showed in [11, 12] that the projectivity holds over arbi-
trary fields.
We have a canonical map Bunλ̌G,sst

G →Mλ̌G

G which identifies two semista-
ble G-bundles if their associated polystable G-bundles(3) are isomorphic
and kills all the automorphisms.
Here are the main results of this paper formulated precisely:

Theorem 1.2. — Let λ̌G ∈ π1(G) be a fixed topological type. Then
there exists a Levi subgroup L = Lλ̌G ⊂ G (unique up to conjugation) and
λ̌L ∈ π1(L) with the following properties:

(1) [6] the inclusion L ⊂ G induces a well defined map Mλ̌L

L → Mλ̌G

G

and all the semistable L-bundles in Mλ̌L

L are stable, in particular
the S-equivalence relation reduces to isomorphism classes.

(2) Mλ̌L

L →Mλ̌G

G is a finite map, generically Galois, with Galois group
the relative Weyl group WL,G = NG(L)/L.

(3) the following natural map is an isomorphism

Mλ̌L
L /WL,G 'Mλ̌G

G .

Remark 1.3. — In characteristic 0 the above Theorem 1.2 can be deduced
rather easily from our previous result [6, Theorem 3.2]. However, in the
course of the proof we prove a technical result (see Lemma 3.7) that allows
one to extend the results of [6] to arbitrary characteristic.

Theorem 1.4. — Let L and λ̌L be as in the previous Theorem 1.2. The
map

(1.4) det :Mλ̌L
L →M

det(λ̌L)
L/[L,L]

is an isomorphism.

Corollary 1.5. — Let λ̌G ∈ π1(G) and L, λ̌L as in Theorem 1.2. Then
we have

Mλ̌G
G 'Mdet(λ̌L)

L/[L,L]/WL,G.

Remark 1.6. — For a torus Z we haveM0
Z ' Pic0(E)⊗Z X∗(Z) and we

see therefore that Mλ̌G

G can be described in terms of line bundles and a
Weyl group.

(3)For a semistable G-bundle FG, the associated polystable G-bundle is the unique
closed point of {FG} ⊂ Bunλ̌G,sst

G .
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In particular, this Theorem 1.2 recovers Laszlo’s result since for λ̌G = 0
the Levi L0 is just the maximal torus. It also recovers the result of Tu
because for G = GLn and λ̌G ≡ d we have that L = (GLn/m)m and
WL,G = Sm, where m := gcd(d, n). It is not possible to compare di-
rectly our description ofMλ̌G

G with the one of Schweigert [19] or Friedman–
Morgan–Witten [7, 9] since there’s no obvious algebraic relationship be-
tween

Mλ̌L
Lλ̌G

andM0
Gλ̌G

(in loc. cit. the relation was made through representations of fundamen-
tal groups). However, one can check easily that the Weyl group of Gλ̌G

is the same as our relative Weyl group WL,G and the maximal torus of
Gλ̌G

corresponds to the center Z(Lλ̌G
). In the case of GLn the isomorphism

between
Bunλ̌G,sstG (E) and Bun0,sst

Gλ̌G

(and their coarse moduli spaces) is provided by Fourier–Mukai transforms.
It would be very nice to see if one can extend the Fourier–Mukai transforms
to more general reductive groups. This subject will be discussed elsewhere.

Acknowledgements

I would like to thank the Max Planck Institut für Mathematik in Bonn,
where part of this work was done, for providing excellent working condi-
tions.

2. Preliminaries

2.1. Notation

For some notation, see the last paragraph of the introduction. Here are
a few more that we’ll be using. By a G-bundle we mean a G-torsor in the
fppf topology over the scheme/stack in question. Over a curve this is the
same as étale G-torsors for G a smooth group. If FG is a G-bundle over B
and F is a quasi-projective variety with a G action (e.g. a representation)
then we denote by FFG = FGG×F the associated fiber space over B with
fiber F . In particular, if V is a representation of G, we have the associated
vector bundle VFG .

TOME 71 (2021), FASCICULE 2



622 Dragoş FRĂŢILĂ

We’ll denote by X a smooth projective curve over k. When we say curve,
we always mean a smooth projective curve over k. Some results and defi-
nitions make sense for any genus so we’ll state them like that.
For an algebraic group H we denote by BH = pt/H the classifying stack

of H-bundles. We denote by BunG(X) the moduli stack of G-bundles on
X and byMG(X) the corresponding moduli space (existence in arbitrary
characteristic is proved in [10]. Similarly for the other groups T,B, P , etc.
When we omit X and write BunG or MG we mean BunG(E) or MG(E)
where E is an elliptic curve.
The algebraic fundamental group of a reductive group is defined to be

the quotient.
The connected components of BunG(X) are labeled by π1(G) (see [13]).
Let us begin by giving some definitions and citing some results that we’ll

be using throughout the paper.

2.2. The slope map

Before giving the definition of the slope map let us recall some basic
things about cocharacters. If L is a reductive group with maximal torus T
then the center of L can be described as

Z(L) =
⋂

α root of L
ker(α) ⊂ T.

The natural map Z(L) ↪→ T induces a map on cocharacters

X∗(Z(L))→ X∗(T )→ X∗(T )/ 〈α̌ | α̌ coroot of L〉 = π1(L)

which upon tensoring by Q provides an isomorphism

X∗(Z(L))Q ' π1(L)Q.

This follows from the following two simple facts: π1(L)Q = π1(L/[L, L])Q
and Z(L)→ L/[L, L] is a finite surjective map (of diagonalizable groups).

Definition 2.1 (see [18]). — For a parabolic subgroup B ⊂ P ⊂ G

with Levi subgroup L we define the slope map φP : π1(P ) → X∗(T )Q as
follows

π1(P )→ π1(P )Q ' X∗(Z(L))Q → X∗(T )Q
where we indicated by a subscript Q the tensoring ⊗ZQ.

Let us give some examples of fundamental groups and slopes for a few
parabolic subgroups.

ANNALES DE L’INSTITUT FOURIER
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If G = GLn and λ̌i, i = 1, . . . , n are the coordinate cocharacters of the
diagonal matrices then π1(G) ' Zλ̌1 and φG(dλ̌1) = d

n (λ̌1 + . . . + λ̌n).
Continuing the previous example, let P 6 GLn be the parabolic with

blocks of size (k, n− k). Then π1(P ) ' Zλ̌k ⊕Zλ̌k+1 and φP (dλ̌k + eλ̌k+1)
= d

k (λ̌1 + . . . + λ̌k) + e
n−k (λ̌k+1 + . . . + λ̌n).

For another example, let G be a group of type G2. This group is adjoint
and simply connected at the same time. The coroot lattice is generated by α̌
and β̌. The notation of the roots is such that 〈α, β̌〉 = −1 and 〈β, α̌〉 = −3.
Let P = Pα̌ be the parabolic corresponding to the coroot α̌. Then

π1(P ) ' Zβ̌ and we can compute φP (β̌) = 1
2 α̌ + β̌. For the other max-

imal parabolic Q = Pβ̌ we have π1(Q) = Zα̌ and φQ(α̌) = α̌+ 3
2 β̌.

The slope map has some very nice properties and we refer the interested
reader to [18] for a thorough treatment.

2.3. Semistability

Definition 2.2. — Let H ⊂ K be a pair of algebraic groups and let
FK → Y be a K-bundle over Y . A reduction of FK to H is a couple (FH , θ)
of an H-bundle and an isomorphism θ : FHH

×K ' FK . Two reductions
(FH , θ), (F ′H , θ′) are equivalent if there is an isomorphism of H-bundles
FH → F ′H such that its extension to K composed with θ′ is equal to θ.

Remark 2.3. — To give a reduction of a K-bundle FK to H is the same
as to give a section of FK/H → Y . Two such sections give equivalent reduc-
tions if and only if there exists an automorphism σ ∈ Aut(FK) translating
one into the other.

Remark 2.4. — For example, if K = GLn and H is the subgroup of
upper-triangular matrices, then to give a reduction to H of a rank n vector
bundle (i.e. a GLn-bundle) is the same as to give a filtration of it with
sub-quotients being line bundles.

The following Definition 2.5 of semistability for G-bundles is from [18]
where it is also proved the equivalence with the Ramanathan’s semistability.

Definition 2.5. — A G-bundle FG of degree λ̌G over a smooth projec-
tive curve X is (semi)stable if for any proper parabolic subgroup P ⊂ G

and for any reduction FP of FG to P of degree λ̌P we have

φP (λ̌P ) <
(6)

φG(λ̌G).
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Proposition 2.6 ([18, Proposition 3.2(b)]). — If V is a highest weight
representation of G of highest weight λ and FG is a G-bundle of degree λ̌G
over a curve X then the slope (i.e degree divided by rank) of the associated
vector bundle VFG is

µ(VFG) =
〈
φG(λ̌G), λ

〉
.

2.4. Frobenius semistability

In case k is of characteristic p, there is a stronger notion of stability, called
Frobenius semistability and it behaves better with respect to associated
vector bundles.
Denote by FX : X → X the absolute Frobenius: it is the identity at

the level of topological spaces and raising to the power p at the level of
functions.

Definition 2.7. — AG-bundle FG is Frobenius semistable if (Fn)∗(FG)
is semistable for all n > 0.

In characteristic zero we have the following remarkable property: the
tensor product of two semistable vector bundles of the same slope is again
semistable. The correct analogue in characteristic p is the following:

Lemma 2.8 ([20, Corollary 1.1]). — Let FG be a Frobenius semistable
G-bundle over a smooth projective curve X and let f : G→ G′ be a mor-
phism of reductive groups such that f(Z(G)) ⊂ Z(G′). Then the induced
G′-bundle is also Frobenius semistable. In particular, if V is a representa-
tion of G such that the center of G acts by a character, the induced vector
bundle VFG is semistable.

This result is relevant to us because of the following Theorem 2.9:

Theorem 2.9 ([20, Theorem 2.1]). — For curves of genus one semista-
bility and Frobenius semistability are equivalent notions.

These two put together give

Corollary 2.10. — Let FG be a semistable G-bundle over an elliptic
curve and let V be a representation of G such that the center of G acts by
a character. Then the vector bundle VFG is semistable.

The above Corollary 2.10 is crucially used in the proof of Lemma 3.7.
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2.5. Jordan–Hölder series

In the case of vector bundles it makes sense to talk about the category of
semistable vector bundles of fixed slope. This is a finite length category so
we can also talk about Jordan–Hölder series. To give a filtration of a vector
bundle is the same as to give a reduction of the corresponding GLn-bundle
to a certain parabolic subgroup. In general, the Jordan–Hölder series has no
reason to have the same slopes of the graded parts when the vector bundle
varies. However, this is a particularity of elliptic curves. Namely, it can be
extracted from Atiyah’s paper [1] that for semistable vector bundles of rank
n and degree d there is a (unique up to conjugation) parabolic subgroup
such that all the semistable vector bundles of rank n and degree d admit
a reduction to it and moreover the graded parts are stable vector bundles
of equal slope. For example, for slope 0, all semistable vector bundles are
extensions of degree zero line bundles.
The following is an analogue for any reductive group G and any de-

gree λ̌G.

Theorem 2.11 ([6, Lemma 2.12, Theorem 3.2, Corollary 4.2]).
Let λ̌G ∈ π1(G) and consider Bunλ̌G,sst

G the stack of semistable G-bundles
of degree λ̌G on an elliptic curve E. Then there exists a unique (up to
conjugation) parabolic subgroup P and a unique λ̌P ∈ π1(P ) such that

(1) φG(λ̌G) = φP (λ̌P ),
(2) every semistable G-bundle of degree λ̌G has a reduction to P of

degree λ̌P ,
(3) the map Bunλ̌P,sst

P → Bunλ̌G,sst
G is proper, generically Galois with Ga-

lois group WL,G = NG(L)/L where L is the Levi subgroup of G.
(4) for any FP ∈ Bunλ̌P,sst

P the induced L-bundle is stable.
(5) ([6, Corollary 4.3]) For a reductive group L and λ̌L ∈ π1(L) there

exist stable L-bundles of degree λ̌L if and only if Lad =
∏
i PGLni

and λ̌ad
L ≡ (di)i with gcd(di, ni) = 1, ∀ i.

Remark 2.12. — In [6] there is a table with all the possible subgroups
L that appear in the above theorem. For the convenience of the reader we
provide a copy of the table in the Appendix.

Remark 2.13. — The proof from [6] is in characteristic zero, however
the only moment that we used it was to apply “generic smoothness” (see
[6, Lemma 3.9]) and deduce the existence of certain regular bundles (see
Definition 3.5) which we prove here in arbitrary characteristic(see Lem-
ma 3.7). Therefore the results of [6] hold in positive characteristic as well.
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2.6. Vector bundles over elliptic curves

Theorem 2.14 ([1, Corollary to Theorem 7] ). — Let n > 1 and d ∈ Z
be coprime.

(1) Any stable rank n degree d vector bundle over E is uniquely deter-
mined by its determinant bundle.

(2) If V is a vector bundle as above and L ∈ Pic0(E) then V ⊗ L ' V
if and only if L ∈ Pic0(E)[n], the n-torsion subgroup.

Theorem 2.15 ([3, Lemma 2.2.1 and Example 5.1.4]). — Let X be a
smooth projective curve and let

1→ Z → G→ H → 1

be a central extension. Fix λ̌G ∈ π1(G) and denote by λ̌H the image of λ̌G
in π1(H). Then the map

Bunλ̌GG (X)→ Bunλ̌HH (X)

is a Bun0
Z(X)-torsor.

Remark 2.16. — The same holds for semistable bundles also since being
semistable for G or H is the same thing (the flag varieties are the same).

Corollary 2.17. — Let n > 1 and d ∈ Z be coprime. Then over an
elliptic curve E we have

Bund, stPGLn ' BPic0(E)[n]red,

where we have denoted by Pic0(E)[n] the kernel (subgroup scheme) of the
multiplication by n : Pic0(E) → Pic0(E). In particular, we deduce that
Md

PGLn
= pt.

Proof. — Using Theorem 2.15 we have that

Bund, stGLn → Bund, stPGLn

is a Bun0
Gm-torsor. By Theorem 2.14 we deduce that Bund, st

PGLn
has only one

isomorphism class of objects and the automorphism group is the kernel of
the action of Pic0(E) on Bund, st

GLn
. However, this kernel must be a smooth

group scheme because BunPGLn is a smooth stack, so by Theorem 2.14 it
must be Pic0(E)[n] red. �

Remark 2.18. — I don’t know a direct way of showing that the scheme
theoretic stabilizer of the action of Pic0(E) on Bund,sstPGLn

is precisely Pic0

(E)[n] red.
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3. Proof of Theorem 1.2

3.1. The action of the center

Corollary 3.1. — Let E be an elliptic curve, let L be a reductive
group and let λ̌L ∈ π1(L) such that there exist stable L-bundles of degree
λ̌L on E (see Theorem 2.11(5)). Then the action of M0

Z(L) on Mλ̌L

L is
transitive.

Proof. — From Theorem 2.11(5) we have Lad '
∏
i PGLni and λ̌ad

L

= (di)i such that gcd(di, ni) = 1. So we can apply Corollary 2.17 to con-
clude thatMλ̌ad

L

Lad = pt.
Since Bunλ̌L, st

L → Bun
Ladλ̌

ad
L
, st is a Bun0

Z(L)-torsor (see Theorem 2.15) we
deduce that Bun0

Z(L) acts on Bunλ̌L,st
L transitively on objects. This property

is clearly preserved when we pass to moduli spaces. �

Corollary 3.2. — Under the hypotheses of the previous Corollary 3.1,
all L-bundles FL in Bunλ̌L, st

L have the same automorphism group.

Proof. — We put Z := Z(L). For FZ ∈ Bun0
Z and FL ∈ BunL there is

a canonical isomorphism Aut(FL) → Aut(FL ⊗ FZ) sending θ to θ ⊗ id.
From Corollary 3.1 the action Bun0

Z y Bunλ̌L, st
L is transitive on objects so

we conclude. �

Remark 3.3. — The above Corollary 3.2 is never used in the sequel but
it allows us to see that Bunλ̌L, st

L →Mλ̌L

L is a gerbe.

3.2. Regular bundles

This subsection is dedicated to proving the following Lemma 3.4 which
was one of the key obstacles:

Lemma 3.4. — Let λ̌G ∈ π1(G) and L,P, λ̌L ∈ π1(L) be as in Theo-
rem 2.11. Then the map ind :Mλ̌L

L →Mλ̌G

G is generically étale.

Let us introduce the notion of regular L-bundles.(4)

(4)There exists another notion of regular stable bundles: those whose automorphism
group is exactly the center of the group (see [7, 9]). However we’ll not use this notion in
this paper.
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Definition 3.5.
(1) Let H be an algebraic group and V a representation of H. Consider

λ̌H ∈ π1(H) such that its image in π1(GL(V )) is 0. An H-bundle
FH of degree λ̌H is called V -regular if H0(X,VFH ) = 0,

(2) Let P ⊂ G be a parabolic subgroup with Levi subgroup L. A P -
bundle over a curve X is called regular if it is g/p-regular. An
L-bundle is regular if it is g/l-regular.

Remark 3.6. — This condition on FP is in order for the differential of
p : Bunλ̌P

P → Bunλ̌G

G to be injective at FP . However, Serre duality over
elliptic curves implies also the surjectivity, i.e. smoothness of p at FP .

The core of the proof of Lemma 3.4 is to show that there exist regular
bundles:

Lemma 3.7. — Let X be a curve and λ̌G, P, L, λ̌P as in Theorem 2.11.
Then the substack of regular L-bundles in Bunλ̌L, st

L is open and dense.

Proof. — The strategy is the following: we start with an arbitrary Frobe-
nius semistable L-bundle (see Theorem 2.9 for existence) and we tensor it
with a sufficiently generic Z := Z(L)-bundle of degree zero to produce a
regular L-bundle.
The openness follows from the semi-continuity of dim(H0(X, (g/l)FL))

so all we need to prove is the non-emptiness of the regular locus.
More precisely, let FL be a Frobenius stable L-bundle of degree λ̌L and

V be a highest weight representation of L such that VFL is of degree zero
and such that the center Z = Z(L) acts on V by a nontrivial character χ.
Corollary 2.10 guarantees that VFL is semistable of degree zero and hence
the set of isomorphism classes of line subbundles of degree zero of VFL is
finite.
Now let us consider a Z-bundle FZ of degree zero. Using the group

morphism Z × L → L we can produce a new L-bundle that we denote
FL ⊗ FZ which is still Frobenius semistable of degree λ̌G. The center Z
acts on V by χ so we have that VFL⊗FZ = VFL ⊗ χFZ , hence the set of
line subbundles of degree zero of VFL⊗FZ is the one for VFL tensored by
χFZ . Since χ is non-trivial, we obtain that for almost all Z-bundles the
trivial line bundle O is not a line subbundle of VFL⊗FZ , in other words
H0(X,VFL⊗FZ ) = 0. So we’ve produced an open dense substack of L-
bundles FL of degree λ̌P that are V -regular.
Let us apply the previous paragraph to the representation L y g/l.

It is not a highest weight representation but it admits a filtration with
subquotients of highest weight. LetW be such a subquotient. It is of highest
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weight, say α, that belong to the roots of g. By Proposition 2.6 we have
deg(WFL) = 〈φL(λ̌P ), α〉. By hypothesis (see Theorem 2.11(1)) we get
deg(WFL) = 〈φG(λ̌G), α〉 which is zero because by the definition of the
slope map φG(λ̌G) is a cocharacter of the center of G, hence it vanishes on
the roots of G.
As the weights of g/l are among the roots of g, we see that if W is

such a subquotient, then WFL is semistable of degree zero (see Lemma 2.8
and Proposition 2.6). Also the central characters are not trivial because
the centraliser of Z(L) in G is precisely L. Therefore, by the previous
paragraph applied to each such subquotient W , the substack of W -regular
L-bundles is open and dense and so is their intersection (finite number)
which is nothing else than the substack of regular L-bundles. �

Proof of Lemma 3.4. — Proving generic étaleness is equivalent to prov-
ing the map is étale at some point, say FL. By looking at the differential
of the map we have to show the bijectivity of

H1(E, lFL)→ H1(E, gFL).

This is implied by the vanishing of Hi(E, (g/l)FL), i = 0, 1.
Let FL be a regular L-bundle (see Lemma 3.7). Then by definition we

have H0(E, (g/l)FL) = 0. By Riemann–Roch we get that H1(E, (g/l)FL)
= deg((g/l)FL) = 0 where for the last equality we used genus one and
Proposition 2.6. �

Lemma 3.8. — Let λ̌G ∈ π1(G) and L,P, λ̌L ∈ π1(L) as in Theo-
rem 2.11 and put W := WL,G the relative Weyl group of L ⊂ G. Then
the map π : Mλ̌L

L → Mλ̌G
G is W -invariant and the fibers are W -orbits. In

particular it is a finite map.

Proof. — Both moduli spaces are projective varieties so finiteness follows
from quasi-finiteness which in turn follows from the fact that the fibers are
W -orbits.

Remark that the map π is clearly W -invariant. Indeed, this is a general
fact: an H-bundle doesn’t change its isomorphism class when acted upon
by an inner automorphism of H. In our case, the action of an element
w ∈ W = NG(L)/L on L becomes an inner automorphism of G, so the
isomorphism class of the induced G-bundle is not affected.

Let us prove now that the fibers are W -orbits. Let FL,F ′L ∈Mλ̌L

L be two
L-bundles in the fiber of π, namely FLL×G ' F ′L

L
×G. Let us call FP and

F ′P the induced P -bundles. Notice that we can recover the L-bundles as
FP /U = FL and F ′P /U = F ′L where U is the unipotent radical of P .
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The P -bundle F ′P is a reduction of the G-bundle FP P×G to P so by
Remark 2.3 we can think of F ′P as given by a section s : E → FP P×G/P .

By the Bruhat decomposition we have G =
⊔
w∈WL\WG/WL

PwP where
WL = NL(T )/T and WG = NG(T )/T are the corresponding Weyl groups
of L respectively G.

Let us recall the notion of relative position(5) for two reductions to P :
we say that the bundles FP and F ′P are (generically) in relative position
w ∈ WL\WG/WL if the section s : X → FP P×G/P lands (generically) in
FP

P
×PwP/P .
Let us denote by w ∈ NG(T )/T a lift of the generic relative position of FP

and F ′P which we recall are both of degree λ̌P (see Lemma 2.11). Semista-
bility and the assumption on the degree allow us to use [6, Lemma 3.5] and
obtain that the two P -bundles are in relative position w everywhere (not
merely generically) and then Lemma 3.7 from loc.cit gives us moreover that
w ∈ NG(L)/L = WL,G.
To summarize, we have s : E → FP P×PwP/P and the bundle F ′P is given

by pullback

F ′P
� � i //

��

FP
P
× PwP

��

E
s // FP

P
× PwP/P

The quotient map PwP → LwL is P × P equivariant so using it in the
above diagram and composing with i we get a P -equivariant map of bundles
F ′P → FP

P
×LwL. It clearly factors through F ′P /U = F ′L and since the action

of P × P on LwL factors through L × L we obtain an L-equivariant map
of L-bundles F ′L → FL

L
×LwL. It remains to notice that FLL×LwL is none

other than w∗(FL) and the proof is complete. �

3.3. Proof of Theorem 1.2

Proof. — We finish the proof of Theorem 1.2. The point (1) is contained
in Theorem 2.11(4).

To prove (2) we combine Theorem 2.11(3), Lemma 3.4 and Lemma 3.8.
To provee (3), from Lemma 3.8 we have that the natural map

Mλ̌L
L →Mλ̌G

G

(5) It is a generalization of the notation of relative position of two flags of a vector space.
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factorises throughMλ̌L
L /WL,G and moreover the morphism

Mλ̌L
L /WL,G →Mλ̌G

G

is bijective and separable, see Lemma 3.4. Since the target is a normal
variety (see [10]), we can apply Zariski’s main theorem to conclude that it
is an isomorphism. �

Remark 3.9. — One might think that ifMλ̌L

L has a universal bundle then
it descends to Mλ̌G

G . However, unless L = G, this is not the case and one
reason is that the dimension of the automorphism group of a G-bundle
induced from L varies (the jumps arise at non regular L-bundles).

4. Proof of Theorem 1.4

Unless otherwise stated, in this section L is a reductive group and λ̌L is
an element of π1(L) such that there exist stable L-bundles of degree π1(L)
where E is an elliptic curve. In this section we’ll prove Theorem 1.4 which
asserts that det is an isomorphism of varieties

det :Mλ̌L
L →M

det λ̌L
L/[L,L].

The idea of the proof is rather simple: we show that the map is bijective
on k-points by exploiting the action ofM0

Z(L) on both varieties; using the
differential criterion we show that it’s also étale. We have thus a finite,
étale map of degree 1, hence an isomorphism.

4.1. Preliminaries

Recall from Theorem 2.11(5) that the assumption on L forces Lad

'
∏
i PGLni for some ni. We denote by Zc = L/[L,L] the co-center of

L and by Z = Z(L) the center of L.
Let us recall that the natural map det : L→ Zc is called the determinant.

The homomorphisms ZL
× → L and Z × Zc → Zc naturally give actions of

Bun0
Z on Bunλ̌L, st

L and on Bundet(λ̌L)
Zc .

A diagonalizable group is a linear algebraic group that is isomorphic
to a product of several Gm and µn for various n > 2. The category of
diagonalizable groups is anti-equivalent to the category of finitely generated
abelian groups, where the functors are given by D 7→ Homgr(D,Gm) and
Λ 7→ Spec(k[Λ]).
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For a diagonalizable group D, we write Bun0
D(X) for the moduli stack

of D-bundles FD on X of degree zero, that is such that for any character
χ : D → Gm the associated line bundle χFD is of degree zero. If D is
not a torus, then this stack might not be connected. For example if the
characteristic of k doesn’t divide n then for D = µn we have Bun0

µn
(X)

= Pic0(X)[n]× Bµn, where Pic0(X)[n] is the n-torsion in Pic0(X).
We denote by M0

D(X) the moduli space of D-bundles of degree zero
on X in the same sense as above. It is a group scheme whose (reduced)
connected component of the identity is an abelian variety. For example, if
D is a torus, then M0

D ' Pic0(X)dim(D). If D has some finite component
then M0

D is a product of an abelian variety and a finite group scheme
which is a finite subgroup of an abelian variety. For example, for D = µn we
haveM0

D(X) = Pic0(X)[n]. Remark that in positive characteristicM0
D(X)

might not be reduced.
Here is a basic general lemma:

Lemma 4.1. — Let H ⊂ L be reductive groups such that [H,H]
= [L,L]. Let FH ,F ′H be two H-bundles on a proper scheme Y . Then if
the induced L-bundles are isomorphic, the H-bundles are also.

Proof. — We will see F ′H as a reduction to H of the L-bundle FHH
×L

(see Definition 2.2 and the remark following). So we have a section s : Y
→ FH

H
×L/H. We need to show that by an automorphism of the L-bundle

FH
H
×L we can translate it into the trivial section

s0 : Y = FH
H
× H/H ↪→ FH

H
× L .

From the assumptions we have HZ(L) = L hence H acts trivially on L/H.
Therefore the section s can be seen as a section s : Y → Y × L/H, i.e.
as a map Y → L/H. As H,L are reductive the quotient L/H is an affine
variety so s must be constant, say equal to z, because Y is proper.

The assumptions imply the surjectivity Z(L) � L/H so we can take
z ∈ Z(L) a lift of z. The element z being in the center of L gives an
automorphism, call it θz, of FH

H

×L such that θ−1
z (s) = s0. In other words,

the section s gives an H-bundle isomorphic to FH . �

Remark 4.2. — The above Lemma 4.1 is false if Y is not proper (think
of modules over a Dedeking ring) and it is also false if L/H is not affine
(two filtrations of the same vector bundle need not be isomorphic).
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4.2. Diagonalizable groups

We collect here some technical lemmas on diagonalizable groups and
bundles over a smooth projective curve X. We advise the reader to skip
this section and come back to it when it is referred to.
Some notation: if C is a normal subgroup ofG1 andG2 then C ↪→ G1×G2

given by c 7→ (c, c−1) is a normal subgroup. We denote by G1
C
×G2 the

quotient group (G1 ×G2)/C.

Lemma 4.3. — Let L be a reductive group such that Lad '
∏
i PGLni .

Assume that [L,L] is simply connected. Then there exists a torus T ′ such
that L ↪→

∏
i GLni ×T ′.

Proof. — The proof is essentially linear algebra.
We have L =

∏
i SLni

C
×Z(L), where C =

∏
i µni . We put

can : C ↪→
∏
i

Gm

the canonical inclusion.
There is a torus T ′ and a map φ : Z(L) ↪→

∏
iGm × T ′ such that the

following diagram commutes:

C Z(L)

∏
iGm × T ′
can

Indeed, using the equivalence of diagonalizable groups with finitely gen-
erated abelian groups, we need to show that it exists φ :

∏
i Z × Zr � M

such that the following diagram commutes∏
i Z/ni M

u
oooo

∏
i Z× Zr

can
OOOO

φ

:: ::

where M is the abelian group of characters of Z(L).
This can be done easily as follows: first take r = 0 and use that

∏
i Z

is free and u is surjective. Then, for a convenient r > 0 add Zr mapping
surjectively onto ker(u). �

Lemma 4.4. — Let L be an arbitrary reductive group. Then there exists
a central extension

1→ T ′ → L̂→ L→ 1
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with [L̂, L̂] simply connected and T ′ a torus. In particular, since T ′ is
connected, we have π1(L̂)� π1(L).

Proof. — We write L = [L,L]C×Z = [L,L]scC̃×Z where C̃ = Z([L,L]sc)
and [L,L]sc is the simply connected cover of [L,L]. Let us choose a torus
T ′ and an inclusion C̃ ↪→ T ′. We define the following group

L̂ := [L,L]sc
C̃
× (Z × T ′)

where C̃ → Z × T ′ is the diagonal homomorphism (injective!). Clearly
[L̂, L̂] = [L,L]sc. The natural homomorphism L̂→ L, forgetting the factor
T ′, is surjective and its kernel is exactly T ′. �

Lemma 4.5. — Let Z ↪→ Z ′ be an injective morphism of diagonalizable
groups. Then

Bun0
Z(X)→ Bun0

Z′(X) is injective on objects.

Proof. — Let F ,F ′ be two Z-bundles such that there exists

θ : F
Z
× Z ′ ' F ′

Z
× Z ′ isomorphism of Z ′-bundles.

This is equivalent to having

θ : F → F ′
Z
× Z ′ a Z-equivariant bundle map.

Taking the quotient by Z we obtain

θ : X → F ′
Z
× Z ′/Z = X × Z ′/Z a morphism over X.

Since Z ′/Z is affine (diagonalizable groups) and X is proper, the map θ

must be constant, say equal to z0Z. Due to the commutativity of the groups
we have that z−1

0 θ : F → F ′Z×Z ′ is a Z-equivariant morphism whose image
is in F ′Z×Z = F ′. In other words z−1

0 θ restricts to an isomorphism F ' F ′
of Z-bundles.
In a similar way one can show the injectivity at the level of automor-

phisms although we will not need it. �

Lemma 4.6. — Let Γ′ � Γ be a surjective map of diagonalizable groups.
Then

Bun0
Γ′(X)→ Bun0

Γ(X)
is surjective on objects.

Proof.
(a) First we suppose Γ′,Γ to be tori. Since Bun0

Gm
(X) ' Pic0(X) ×

BGm and that abelian varieties are divisible groups we get the desired
surjectivity.
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(b) For the general case, let Γ′ ↪→ T ′ be an embedding into a torus.
Define T := (T ′ × Γ)/Γ′, i.e. the pushout of T ′ and Γ along Γ′:

(4.1)
Γ′ Γ

T ′ T
q

Since the category of diagonalizable groups is abelian (being anti-equival-
ent to the category of finitely generated abelian groups) this square is also
cartesian(6) , i.e. Γ′ = q−1(Γ).
From (4.1) we get a commutative diagram

(4.2)
Bun0

Γ′(X) Bun0
Γ(X)

Bun0
T ′(X) Bun0

T (X)q

where the vertical maps are injective due to Lemma 4.5. The surjectivity
of q follows from (a) above.
Let F ′ ∈ Bun0

T ′(X) be such that q(F ′) has a reduction to Γ, i.e. the
bundle q(F ′)/Γ has a section. However, since the diagram (4.1) is cartesian
we have q(F ′)/Γ = F ′/Γ′. But having a section of F ′/Γ′ is equivalent to
giving a reduction of F ′ to Γ′. The surjectivity of q implies the desired
surjectivity. �

4.3. The action of the center

In this subsection we work over an elliptic curve. We’ll analyze in detail
the stabilizer ofM0

Z(L) acting onMλ̌L

L for L, λ̌L such that there exist stable
bundles on the elliptic curve (see Theorem 1.2(1)).

Lemma 4.7. — Let L, λ̌L be as in Theorem 2.11(5). Then the stabilizer
ofM0

Z(L)(k) acting onMλ̌L

L (k) is preciselyMZ([L,L])(k).

Proof. — Let us put Z := Z(L) and Zc := L/[L,L] the center and the
cocenter of L.

(6)One could also just check it by hand easily.

TOME 71 (2021), FASCICULE 2



636 Dragoş FRĂŢILĂ

First we show that if L ∈ M0
Z(L)(k) stabilises some F ∈ Mλ̌L

L (k) then
L ∈ MZ([L,L])(k). This is actually quite simple and follows from the com-
mutativity of the diagram

L× Z(L) Zc × Zc Zc

L× Z(L) L Zc.

=

det× det m

=

m det

Indeed, from the diagram we infer that det(L⊗F) ' det(L)⊗ det(F) and
hence if L ⊗ F ' F we obtain det(L) ' O, in other words L admits a
reduction to Z([L,L]).

Notice that here we haven’t used the semistability or genus one.
The converse is a bit more technical and uses stability and genus one.

Let L be a Z([L,L])-bundle on E and F a stable L-bundle on E of degree
λ̌L. We need to show that L ⊗ FL ' FL.

Let us split the argument depending on whether [L,L] is simply con-
nected or not.

(a) [L,L] simply connected. Lemma 4.3 provides an embedding

L ⊂
∏
i

GLni ×T ′ =: H

where T ′ is a torus and such that [L,L] = [H,H]. Using Lemma 4.1
we can suppose L = H in which case the statement is equivalent to
Theorem 2.14(2).

(b) [L,L] arbitrary. From Lemma 4.4 there is a central extension

1→ T ′ → L′ → L→ 1

with T ′ a torus and [L′, L′] simply connected.

Pick λ̌L′ ∈ π1(L′) a lift of λ̌L. From Theorem 2.15 we have that the map

Bunλ̌L′ , stL′ → Bunλ̌L, stL

is a Bun0
T ′ -torsor, in particular there exists a stable L′-bundle F ′ which

lifts F .
Since Z([L′, L′]) surjects onto Z([L,L]), Lemma 4.6 shows that there

exists a Z([L′, L′])-bundle L′ which lifts L.
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Applying (a) to L′ we get F ′⊗L′ ' F ′ and pushing forward to L-bundles
and using the commutativity of the following diagram

L′ × Z(L′) L′

L× Z(L) L

m′

m

we eventually get F ⊗L ' F which concludes the proof of Lemma 4.7. �

4.4. The determinant map

Lemma 4.8. — Let V be a stable vector bundle over a smooth projective
curve X. Then End(V) = k · Id.

Proof. — This is well-known and is a version of Schur’s Lemma. Let
φ ∈ End(V) and let lam ∈ k be an eigenvalue of φ at some point. Then the
endomorphism φ − lam Id of V has a non-trivial kernel which must be of
degree zero. The stability of V implies at once that the kernel must be V,
in other words φ = λId. �

Corollary 4.9. — Let L be a reductive group isomorphic to a product
of groups of type A and let F be a stable L-bundle on E. Then H0(E, lF )
= z(l).

Proof. — We have an exact sequence

0→ z(l) = H0 (E, z(l)F )→ H0 (E, lF )→ H0 (E, lad
F
)

and it is enough to show the vanishing H0(E, lad
F) = 0.

If L =
∏
i GLni then Lemma 4.8 proves z(l) = H0(E, z(l)F ) ' H0(E, lF ).

Moreover, Corollary 2.17 implies

(4.3) H0 (E, lad
F
)

= 0

In general, the group Lad '
∏
i PGLni is also the adjoint group of

L′ :=
∏
i GLni and the Lad-bundle F/Z(L) lifts to an L′-bundle. Since

the bundles lad
F and l′ad

F′ are isomorphic, from 4.3 applied to L′ we deduce
H0(X, lad

F) = 0 which is what we needed. �
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Remark 4.10. — The statement of the Corollary 4.9 is true for any re-
ductive group G and any stable G-bundle on a smooth projective curve
X in characteristic zero. However, the proof is more involved (see for ex-
ample [17, Proposition 3.2]). I don’t know whether it is true in positive
characteristic for any smooth projective curve and any group.

Lemma 4.11. — Let G � H be a surjective map of algebraic groups.
Then the map BunG(X)→ BunH(X) is smooth.

Proof. — Denote by π : G � H the morphism and let us consider the
exact triangle of tangent complexes for the induced map π : BunG → BunH

Tπ → TBunG → π∗TBunH
+→ .

We obtain a long exact sequence in cohomology whose end terms are

H1(X, gF )→ H1(X, hF )→ H2(X, kF ) = 0,

where we put k = Lie(ker(π)). It follows that π is smooth. �

Lemma 4.12. — Let L, λ̌L be as in Theorem 2.11(5). Then det : Mλ̌L

L

→Mdet(λ̌L)
L/[L,L] is étale.

Proof. — We need to show that for every stable L-bundle F the tangent
map

dF det : H1(E, lF )→ H1 (E, (l/[l, l])det(F)
)

is an isomorphism. Surjectivity is immediate from Lemma 4.11, in other
words det is smooth.
Let us now compute the dimensions. Since L/[L,L] is a torus we know

that Mλ̌
L/[L,L] is a product of dim(L/[L,L]) connected components of

Pic(E), in particular it is smooth of dimension equal to dim(L/[L,L]).
On the other hand, let F ∈ Mλ̌L

L . Recall that over an elliptic curve we
have dim H0(E, lF ) = dim H1(E, lF ) by Riemann–Roch. From Corollary 4.9
we obtain dim(H1(E, lF )) = dim(z(l)). Since dim(z(l)) = dim(l/[l, l]) for
any reductive Lie algebra l, we’re done. �

4.5. Proof of Theorem 1.4

Now we can finish the proof of Theorem 1.4.
We show that

det :Mλ̌L
L →M

det(λ̌L)
L/[L,L]

is finite and bijective on k-points. We conclude that it is an isomorphism
since a finite, étale map of degree one is an isomorphism.

ANNALES DE L’INSTITUT FOURIER



G-BUNDLES ON ELLIPTIC CURVES 639

The moduli spaceMλ̌L

L is a proper variety, in particular det is a proper
map. Since it is also étale (from Lemma 4.12) we deduce it is finite.
Now the surjectivity of det :Mλ̌L

L (k)→Mdet(λ̌L)
L/[L,L](k) follows at once. For

the injectivity, let F ,F ′ ∈ Mλ̌
L(k) be such that det(F) ' det(F ′). The

action of M0
Z(L)(k) on Mλ̌

L(k) is transitive by Corollary 3.1, hence there
exists L ∈ M0

Z(L)(k) such that F ′ ' F ⊗ L. By taking determinants we
have (see proof of Lemma 4.7

det(F ′) ' det(F)⊗ det(L).

From the assumption on F and F ′ we obtain det(L) = O, or in other
words L admits a reduction to Z([L,L]). Lemma 4.7 implies F ⊗ L ' F
and hence F ' F ′, or in other words det is injective on k-points.

Remark 4.13. — Given this simple description ofMλ̌L

L one might be led
to think that the existence of a universal bundle on it is automatic from the
classical Poincaré bundle on the Picard variety. This is not the case. For
example, if Z(L) is not connected then [4, Theorem 6.8] says thatMλ̌L

L does
not admit a universal bundle (called Poincaré bundle in loc.cit.). On the
other hand, the same theorem tells us that if [L,L] is simply connected and
Z(L) is connected then there is a universal bundle. I haven’t determined
precisely what happens if [L,L] is not simply connected, one of the issues
being that the automorphism group of a stable L-bundle is bigger than
Z(L) in this situation.

Appendix A.

In this Appendix we provide a table (taken from [6]) with the Levi sub-
groups Lλ̌G

appearing in Theorem 1.2, as well as their relative Weyl groups
WL,G. We omit λ̌G = 0 since in this case the Levi subgroup is always equal
to the maximal torus.
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G α̌G Type of L Diagram
of (G,L)

Type of
WL,G

An−1 d
An/e−1 × · · · × An/e−1

e = gcd(n, d) An/e−1 −◦ · · · ◦− An/e−1 Ae−1

Bn 1 A1 Cn−1

C2n 1 A1 × A1 · · · × A1︸ ︷︷ ︸
n

Cn

C2n+1 1 A1 × A1 · · · × A1︸ ︷︷ ︸
n+1

Cn

D2n+1

1 A1 × · · · × A1 × A3 Cn−1

2 A1 × A1 Cn−1

D2n

(1,0) A1 × · · · × A1 Bn

(0,1) A1 × A1 C2n−2

(1,1) A1 × · · · × A1 Cn

E6 1 A2 × A2 G2

E7 1 A1 × A1 × A1 F4
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