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FIXED POINTS IN SMOOTH CALOGERO–MOSER
SPACES

by Cédric BONNAFÉ & Ruslan MAKSIMAU (*)

Abstract. — We prove that every irreducible component of the fixed point
variety under the action of µd in a smooth Calogero–Moser space is isomorphic to
a Calogero–Moser space associated with another reflection group.
Résumé. — Nous montrons que toute composante irréductible de la variété des

points fixes sous l’action de µd dans un espace de Calogero–Moser lisse est iso-
morphe à un espace de Calogero–Moser associé à un autre groupe de réflexions.

Introduction

Consider a finite subgroup W ⊂ GLC(V ) of automorphisms of a finite
dimensional complex vector space V , generated by reflections and let c be
a complex valued function on the set of conjugacy classes of reflections of
W . To the triple (V,W, c), Etingof and Ginzburg [11] have associated an
affine variety Zc(V,W ), the Calogero–Moser space, which is defined as the
spectrum of the center of the rational Cherednik algebra Hc “at t = 0”
(see Section 1 for a precise definition). The algebra Hc carries a Z-grading
(i.e., a C×-action), which induces a C×-action on the Calogero–Moser space
Zc(V,W ).
We define a reflection subquotient of (V,W ) to be a pair (V ′,W ′) where

V ′ is a subspace of V , W ′ ⊂ GLC(V ′) is generated by reflections and there
exists a subgroup H ofW which stabilizes V ′ and whose image in GLC(V ′)
is exactly W ′.
Note that any element in GLC(V ) normalizing W acts on Zc(V,W ).

In [4, Conjecture FIX], Rouquier and the first author proposed the following
conjecture:
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Conjecture F. — Let σ ∈ GLC(V ) be an element of finite order
and normalizing W and let X be an irreducible component of Zc(V,W )σ
(endowed with its reduced scheme structure). Then there exists a reflec-
tion subquotient (V ′,W ′) of W and a complex valued function c′ on the
set of conjugacy classes of reflections in W ′ such that X ' Zc′(V ′,W ′), as
varieties endowed with a C×-action.

Note that the conjecture stated in [4, Conjecture FIX] does not give an
explicit description of c′ in terms of c: it is just mentioned that the map
c 7→ c′ should be linear. Note also that, as stated, it might be a little
bit optimistic: maybe one should replace X by its normalization (as it is
not clear whether X is normal or not). A special case of an element σ
normalizing W is when σ is a root of unity, viewed as the corresponding
homothety on V . The aim of this paper is to prove the following result:

Theorem. — Conjecture F holds if Zc(V,W ) is smooth and σ is a root
of unity.

The proof is by case-by-case analysis, as the triples (V,W, c) such that
Zc(V,W ) is smooth are classified (see the works of Etingof–Ginzburg [11],
Gordon [12], Bellamy [1]). The classification and the conjecture can be
easily reduced to the case where W acts irreducibly on V/VW and in this
case, the smoothness of Zc(V,W ) implies that W is of type G(l, 1, n) or
G4 in Shephard–Todd classification. The case of G4 can be handled by
computer calculations (see Section 5), while the infinite family case will be
handled by using an isomorphism between Zc(V,W ) and a quiver variety.

Commentary

The motivation for Conjecture F comes from the modular representation
theory of finite reductive groups and conjectures of Broué–Malle–Michel
about the endomorphism algebra of some Deligne–Lusztig variety (see [8,
Section 1.A] and [9, Conjecture 5.7]). Experimentally, there is an aston-
ishing analogy between the combinatorics involved in Broué–Malle–Michel
conjectures and the one involved in the geometry of Zc(V,W )µd .

The results of this paper confirm this analogy in the particular case of the
general linear group G = GLn(Fq) (whose Weyl group W is the symmetric
group Sn). Let us be more precise. Let ` be a prime number not dividing
q and let d denote the order of q modulo `. Then (see Section 5):
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• The `-blocks of unipotent characters of G are parametrized by the
possible d-cores of partitions of n, as well as the irreducible compo-
nents of Z1(Cn,Sn)µd .

• Unipotent characters lying in the block Bγ parametrized by the d-
core γ are in bijection with the irreducible characters of G(d, 1, r)
(where r = (n − |γ|)/d). On the other side, the irreducible com-
ponent Xγ of Z1(Cn,Sn)µd parametrized by γ is isomorphic to
Zc′(Cr, G(d, 1, r)) and so its C×-fixed points are also parametrized
by IrrG(d, 1, r).

• The conjectures of Broué–Malle–Michel say that the unipotent char-
acters lying in Bγ are exactly the ones appearing in the cohomology
of some Deligne–Lusztig variety Xγ , and that the endomorphism
algebra of the cohomology of Xγ is isomorphic to some Hecke alge-
bra H(G(d, 1, r), c′′) for some explicitly given parameter c′′. Exam-
ple 4.19 show that c′′ = c′ (!).

1. Notation and main result

All along this note, we will abbreviate ⊗C as ⊗. By an algebraic variety,
we mean a reduced scheme of finite type over C.

Set-up. — We fix in this paper a C-vector space V of finite dimension
n and a finite subgroup W of GLC(V ). We set

Ref(W ) = {s ∈W | dimC V
s = n− 1}

and we assume that
W = 〈Ref(W )〉.

We also fix an element σ ∈ GLC(V ) of finite order normalizing W .

We set ε : W → C×, w 7→ det(w). If s ∈ Ref(W ), we denote by α∨s and
αs two elements of V and V ∗ respectively such that V s = Ker(αs) and
V ∗s = Ker(α∨s ), where α∨s is viewed as a linear form on V ∗.

1.1. Rational Cherednik algebra at t = 0

All along this note, we fix a function c : Ref(W )→ C which is invariant
under conjugacy. We define the C-algebra Hc to be the quotient of the
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646 Cédric BONNAFÉ & Ruslan MAKSIMAU

algebra T(V ⊕ V ∗) o W (the semi-direct product of the tensor algebra
T(V ⊕ V ∗) with the group W ) by the relations

(Hc)
{

[x, x′] = [y, y′] = 0,
[y, x] =

∑
s∈Ref(W )(ε(s)− 1)cs 〈y,αs〉〈α

∨
s ,x〉

〈α∨s ,αs〉
s,

for all x,x′ ∈ V ∗, y, y′ ∈ V . The algebra Hc is called the rational Cherednik
algebra at t = 0.

The first commutation relations imply that we have morphisms of alge-
bras C[V ]→ Hc and C[V ∗]→ Hc. Recall [11, Corollary 4.4] that we have
an isomorphism of C-vector spaces

(1.1) C[V ]⊗ CW ⊗ C[V ∗] ∼−→ Hc

induced by multiplication (this is the so-called PBW-decomposition).
We denote by Zc the center of Hc: it is well-known [11, Lemma 3.5] that

Zc is an integral domain, which is integrally closed and contains C[V ]W and
C[V ∗]W as subalgebras (so it contains P = C[V ]W ⊗C[V ∗]W ), and which is
a free P-module of rank |W |. We denote by Zc the algebraic variety whose
ring of regular functions C[Zc] is Zc: this is the Calogero–Moser space
associated with the datum (V,W, c). If necessary, we will write Zc(V,W )
for Zc.

Example 1.2. — Let l > 1, let ζ be a primitive l-th root of unity and let
µl = 〈ζ〉. We assume in this example that n = 1 and W = 〈t〉 ' µl, where
t(v) = ζv for all v ∈ V . Then Ref(W ) = {t, t2, . . . , tl−1} and we set for
simplification

kj = 1
l

l−1∑
i=1

ζ−i(j−1)cti

(0 6 j 6 l − 1). Note that k0 + k1 + · · ·+ kl−1 = 0. Then

Zc '

{
(x, y, e) ∈ C3

∣∣∣∣∣
l−1∏
i=0

(e− lki) = xy

}

(see for instance [4, Theorem 18.2.4]). In particular, Zc is smooth if and
only if ∏

06i<j6l−1
(ki − kj) 6= 0.

Note also that the inclusion P ⊂ Zc corresponds to the morphism of alge-
braic varieties Zc → C2, (x, y, e) 7→ (x, y).
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The C×-action is given by the formula

ξ · (x, y, e) = (ξdx, ξ−dy, e),

where ξ ∈ C× and (x, y, e) ∈ Zc.

1.2. Action of the normalizer

The normalizer NGLC(V )(W ) of W in GLC(V ) acts on V naturally, on
V ∗ by the contragredient action and on W by conjugation. This endows
T(V ⊕ V ∗) oW with an action of NGLC(V )(W ) and it is easily checked
that the bunch of relations (Hc) is stable under this action. So Hc inherits
an action of NGLC(V )(W ). In particular, its centre Zc also inherits such an
action, and this defines an action of NGLC(V )(W ) on the Calogero–Moser
space Zc.

Theorem 1.3. — Assume that Zc is smooth and that σ is a root of
unity, and let X be an irreducible component of Zσ

c . Then there exists a
reflection subquotient (V ′,W ′) of (V,W ) and a complex-valued map c′ on
the set of conjugacy classes of reflections of W ′ such that

X ' Zc′(V ′,W ′),

as varieties endowed with a C×-action.

Remark 1.4. — Note that if X is reduced to a point, then the theorem
is easy because in this case, X ' Z0(0, 1).

This Theorem will be proved in Sections 3 and 5.

1.3. Filtration of the group algebra

If w ∈W , we set cod(w) = codimC(V w). We define a filtration F•(CW )
of the group algebra of W as follows: let

Fi(CW ) =
⊕

cod(w)6i

Cw.

Then

C IdV = F0(CW ) ⊂ F1(CW ) ⊂ · · · ⊂ Fn(CW ) = CW = Fn+1(CW ) = · · ·

is a filtration of CW . For any subalgebra A of CW , we set Fi(A) = A ∩
Fi(CW ), so that

C IdV = F0(A) ⊂ F1(A) ⊂ · · · ⊂ Fn(A) = A = Fn+1(A) = · · ·

TOME 71 (2021), FASCICULE 2



648 Cédric BONNAFÉ & Ruslan MAKSIMAU

is also a filtration of A.
Now, assume that Zc(V,W ) is smooth, let σ be a root of unity and let

X be an irreducible component of Zc(V,W )σ. According to Theorem 1.3,
there exists a reflection subquotient (V ′,W ′) of (V,W ), a complex-valued
map c′ on the set of conjugacy classes of reflections of W ′ and a C×-
equivariant isomorphism i : Zc′(V ′,W ′)

∼−→ X . We will view i as a closed
immersion i : Zc′(V ′,W ′) ↪→ Zc(V,W ). By [12, Corollary 5.8], the smooth-
ness of Zc(V,W ) implies that there exists a bijection between Irr(W ) and
Zc(V,W )C× . As the fixed point variety of a finite group in a smooth com-
plex algebraic variety is still smooth, this means that X is smooth, and so
Zc′(V ′,W ′) is smooth. Applying again [12, Corollary 5.8], we get another
bijection between Irr(W ′) and Zc′(V ′,W ′)C

× . As XC× ⊂ Zc(V,W )C× , this
gives an injective map iX : Irr(W ′) ↪→ Irr(W ), depending on X and the
choice of i. This allows to define a surjective morphism of algebras

i∗X : Z(CW ) −� Z(CW ′)

as follows: if χ ∈ Irr(W ), let eWχ denote the corresponding primitive central
idempotent of CW and set

i∗X (eWχ ) =
{
eW
′

χ′ if χ′ ∈ Irr(W ′) is such that iX (χ′) = χ,

0 if χ does not belong to the image of iX .

Using results of Shan and the first author [5], Theorem 1.3 has the following
consequence:

Corollary 1.5. — If i > 0, then i∗X (Fi(Z(CW ))) ⊂ Fi(Z(CW ′)).

Proof. — If Y is a complex algebraic variety endowed with a C×-action,
we denote by Hi

C×(Y) the i-th group of equivariant cohomology, with co-
efficients in C. Let ~ be an indeterminate and identify HC×(pt) with C[~]
as usual, with ~ homogeneous of degree 2. Since Zc(V,W ) is smooth, it
follows from [5, Theorem A] that{

H2i+1
C× (Zc(V,W )) = 0 if i > 0,

H2•
C× ' ReesF (Z(CW )) as C[~]− algebras,

where ReesF (Z(CW )) =
⊕

i>0 ~iFi(Z(CW )) ⊂ C[~]⊗C Z(CW ) is the Rees
algebra associated with the filtration F•(Z(CW )). Using the analogous
result for Zc′(V ′,W ′) and the functoriality of equivariant cohomology, we
get a morphism of algebras i∗ : ReesF (Z(CW )) −→ ReesF (Z(CW ′)).

Now, we will use not only [5, Theorem A] but also its proof: the proof
goes by restriction to the fixed point subvariety Zc(V,W )C× and identifying
H2•

C×(Zc(V,W )C×) with C[~]⊗Z(CW ) using [12, Corollary 5.8]. As the same
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strategy holds for Zc′(V ′,W ′), the functoriality of equivariant cohomology
implies that the map i∗ fits into a commutative diagram

ReesF (Z(CW )) i∗ //
� _

��

ReesF (Z(CW ′))� _

��
C[~]⊗C Z(CW )

IdC[~]⊗Ci
∗
X // C[~]⊗C Z(CW ′).

This shows the Corollary 1.5. �

In Remark 4.18 and Theorem 4.21, we will describe combinatorially the
injective map iX : Irr(W ′) ↪→ Irr(W ) whenever W is of type G(l, 1, n).

2. Preliminaries on quiver varieties

2.1. Quiver varieties

Let Ql denote the cyclic quiver with l vertices, defined as follows:
• Vertices: i ∈ Z/lZ;
• Arrows: yi : i −→ i+ 1, i ∈ Z/lZ.

We denote by Ql the double quiver of Ql that is, the quiver obtained from
Ql by adding an arrow xi : i+ 1→ i for all i ∈ Z/lZ (see Figure 2.1).

6 C. BONNAFÉ & R. MAKSIMAU

0

1
2

−1

y−1

y0

y1

x1

x0

x−1

Fig. 1. The quiver Q l

Now, if d = (di )i∈Z/lZ is a family of elements ofN, we denote by GL(d ) the direct product

GL(d ) =
∏

i∈Z/lZ
GLdi

(C),

by ∆C× the image of C× in GL(d ) through the diagonal embedding ∆ : C× ,→ GL(d ) and
we set

PGL(d ) =GL(d )/∆C×.

The group PGL(d ) acts on the variety Rep(Q l , d ) of representations of Q l in the family of
vector spaces (Cdi )i∈Z/lZ. The orbits are the isomorphism classes of representations of Q l
of dimension vector d . We denote by

µd : Rep(Q l , d ) −→ ⊕i∈Z/lZMatdi
(C)

(X i , Yi )i∈Z/lZ 7−→ (X i Yi − Yi−1X i−1)i∈Z/lZ

the corresponding moment map. Finally, if θ = (θi )i∈Z/lZ is a family of complex num-
bers, we denote by Iθ (d ) the family (θi IdCdi )i∈Z/lZ and by Oθ (d ) the closed subvariety of
Matd0

(C) consisting of matrices of rank ¶ 1 and trace −∑i∈Z/lZ θi di . Finally, we set

Yθ (d ) =µ−1
d (Iθ (d ) +Oθ (d )) and Xθ (d ) =Yθ (d )//PGL(d ).

We will usually denote an element (X i , Yi )i∈Z/lZ of Yθ (d ) by (X , Y ), where X = (X i )i∈Z/lZ
and Y = (Yi )i∈Z/lZ. Note that Yθ (d ) is endowed with a C×-action: if ξ ∈C×, we set

ξ · (X , Y ) = (ξ−1X ,ξY ).

This action commutes with the action of GL(d ) and the moment map is constant on C×-
orbits, so it induces a C×-action onXθ (d ).

Remark 2.1. — We extend the definition of Xθ (d ) to the case where d ∈ ZZ/lZ by the
convention thatXθ (d ) =∅whenever at least one of the di ’s is negative. �

Figure 2.1. The quiver Ql

Now, if d = (di)i∈Z/lZ is a family of elements of N, we denote by GL(d)
the direct product

GL(d) =
∏

i∈Z/lZ

GLdi(C),
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by ∆C× the image of C× in GL(d) through the diagonal embedding ∆ :
C× ↪→ GL(d) and we set

PGL(d) = GL(d)/∆C×.

The group PGL(d) acts on the variety Rep(Ql, d) of representations of Ql
in the family of vector spaces (Cdi)i∈Z/lZ. The orbits are the isomorphism
classes of representations of Ql of dimension vector d. We denote by

µd : Rep(Ql, d) −→
⊕

i∈Z/lZ Matdi(C)
(Xi, Yi)i∈Z/lZ 7−→ (XiYi − Yi−1Xi−1)i∈Z/lZ

the corresponding moment map. Finally, if θ = (θi)i∈Z/lZ is a family of
complex numbers, we denote by Iθ(d) the family (θi IdCdi )i∈Z/lZ and by
Oθ(d) the closed subvariety of Matd0(C) consisting of matrices of rank 6 1
and trace −

∑
i∈Z/lZ θidi. Finally, we set

Yθ(d) = µ−1
d (Iθ(d) +Oθ(d)) and Xθ(d) = Yθ(d)//PGL(d).

We will usually denote an element (Xi, Yi)i∈Z/lZ of Yθ(d) by (X,Y ), where
X = (Xi)i∈Z/lZ and Y = (Yi)i∈Z/lZ. Note that Yθ(d) is endowed with a
C×-action: if ξ ∈ C×, we set

ξ · (X,Y ) = (ξ−1X, ξY ).

This action commutes with the action of GL(d) and the moment map is
constant on C×-orbits, so it induces a C×-action on Xθ(d).

Remark 2.1. — We extend the definition of Xθ(d) to the case where d ∈
ZZ/lZ by the convention that Xθ(d) = ∅ whenever at least one of the di’s
is negative.

2.2. Action of the affine Weyl group

If l > 2, let W aff
l denote the affine Weyl group of type Ãl−1. It is the

Coxeter group with associated Coxeter system (W aff
l , Saff

l ), where Saff
l =

{si | i ∈ Z/lZ} and the Coxeter graph is given by Figure 2.2.
We extend this notation to the case where l = 1 by setting W aff

1 = 1.
Consider the Lie algebra gl = sll(C) and its affine version ĝl = ŝll(C) =

sll(C)[t, t−1] ⊕ C1 ⊕ C∂. Let h ⊂ gl be the Cartan subalgebra formed by
the diagonal matrices and set ĥ = h⊕ C1⊕ C∂.

The C-vector space ĥ∗ has a basis (α0, α1, . . . , αl−1,Λ0), where α0, α1,

. . . , αl−1 are the simple roots of ĝl and Λ0 is such that Λ0 annihilates h and
∂ and Λ0(1) = 1. Denote by Raff

l and Rl the affine and the non-affine root
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2.B. Action of the affine Weyl group. — If l ¾ 2, let W aff
l denote the affine Weyl group

of type Ãl−1. It is the Coxeter group with associated Coxeter system (W aff
l ,S aff

l ), where
S aff

l = {si | i ∈Z/lZ} and the Coxeter graph is given by

s0

s1

s2

s−1

Fig. 2. Coxeter graph of (W aff
l ,S aff

l )

We extend this notation to the case where l = 1 by setting W aff
1 = 1.

Consider the Lie algebra gl = sll (C) and its affine version bgl = bsll (C) = sll (C)[t , t −1]⊕
C1⊕C∂ . Let h ⊂ g be the Cartan subalgebra formed by the diagonal matrices and set
bh= h⊕C1⊕C∂ .

The C-vector space bh∗ has a basis (α0, α1, . . . , αl−1,Λ0), where α0, α1, . . . , αl−1 are the
simple roots of bgl and Λ0 is such that Λ0 annihilates h and ∂ and Λ0(1) = 1. Denote by
R aff

l and Rl the affine and the non-affine root lattices respectively (i.e., R aff
l is the Z-lattice

generated by α0, α1, . . . , αl−1 and Rl is the sublattice generated by α1, . . . , αl−1.)
Following [19], we define two actions of W aff

l : a non-linear one on ZZ/lZ, and a linear
one on CZ/lZ. If l = 1, there is nothing to define so we may assume that l ¾ 2. If d =
(di )i∈Z/lZ ∈ZZ/lZ and if j ∈Z/lZ, we set s j (d ) = (d ′i )i∈Z/lZ, where

d ′i =

¨
di if i 6= j ,
δ j 0+di+1 +di−1−di if i = j .

Remark 2.2. — We can identify ZZ/lZ with the root lattice R aff
l by

d 7→
∑

i∈Z/lZ
diαi .

Beware, the action considered here is not the usual action of W aff
l on the root lattice.

When we have w (d ) = d ′ with respect to the action defined above, this corresponds to
w (Λ0−d ) =Λ0−d ′ for the usual action of W aff

l on bh∗. �

If θ = (θi )i∈Z/lZ ∈CZ/lZ, we set s j (θ ) = (θ ′i )i∈Z/lZ, where

θ ′i =




θi if i 6∈ { j −1, j , j +1},
θ j +θi if i ∈ { j −1, j +1},
−θi if i = j .

Figure 2.2. Coxeter graph of (W aff
l , Saff

l )

lattices respectively (i.e., Raff
l is the Z-lattice generated by α0, α1, . . . , αl−1

and Rl is the sublattice generated by α1, . . . , αl−1.)
Following [17], we define two actions of W aff

l : a non-linear one on ZZ/lZ,
and a linear one on CZ/lZ. If l = 1, there is nothing to define so we may
assume that l > 2. If d = (di)i∈Z/lZ ∈ ZZ/lZ and if j ∈ Z/lZ, we set
sj(d) = (d′i)i∈Z/lZ, where

d′i =
{
di if i 6= j,

δj0 + di+1 + di−1 − di if i = j.

Remark 2.2. — We can identify ZZ/lZ with the root lattice Raff
l by

d 7→
∑
i∈Z/lZ

diαi.

Beware, the action considered here is not the usual action of W aff
l on the

root lattice. When we have w(d) = d′ with respect to the action defined
above, this corresponds to w(Λ0−d) = Λ0−d′ for the usual action of W aff

l

on ĥ∗.

If θ = (θi)i∈Z/lZ ∈ CZ/lZ, we set sj(θ) = (θ′i)i∈Z/lZ, where

θ′i =


θi if i 6∈ {j − 1, j, j + 1},
θj + θi if i ∈ {j − 1, j + 1},
−θi if i = j.

It is readily seen that these definitions on generators extend to an action
of the whole group W aff

l . We also define a pairing ZZ/lZ × CZ/lZ → C,

TOME 71 (2021), FASCICULE 2
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(d, θ) 7→ d · θ, where
d · θ =

∑
i∈Z/lZ

diθi.

Then

(2.1) sj(d) · sj(θ) = (d · θ)− δj0θ0.

It is proved in [17, Corollary 3.6] that

(2.2) Xsj(θ)(sj(d)) ' Xθ(d) if θj 6= 0.

Note that this isomorphism takes into account the convention of
Remark 2.1.

The isomorphism above motivates to consider the following equivalence
relation on the set ZZ/lZ × CZ/lZ. Let ∼ be the transitive closure of

(d, θ) ∼ (si(d), si(θ)), θi 6= 0.

The isomorphism (2.2) implies that if (d, θ) ∼ (d′, θ′), then we have an
isomorphism of algebraic varieties Xθ(d) ' Xθ′(d′).
Recall that the affine Weyl group has another presentation. We have

W aff
l = Wl n Rl, where Wl = Sl is the non-affine Weyl group, that is,

the subgroup generated by s1, . . . , sl−1. For each α ∈ Rl, denote by tα the
image of α in W aff

l . Each element of W aff
l can be written in a unique way

in the form w · tα, where w ∈ Wl and α ∈ Rl. Let δl denote the constant
family δl = (1)i∈Z/lZ ∈ ZZ/lZ.

Recall also from [11, Section 11] the following result, which follows from
the fact that Xθ(nδl) is isomorphic to some Calogero–Moser space (we will
use this fact later, and make this statement more precise):

Lemma 2.3. — If n > 0, then Xθ(nδl) is normal and irreducible of
dimension 2n.

Definition 2.4. — We say that the pair (d, θ) is smooth if it is equiva-
lent to a pair of the form (nδl, θ′) such that n > 0 and Xθ′(nδl) is smooth.
In particular, in this case, the variety Xθ(d) is smooth and non-empty.

In the following lemma we identify ZZ/lZ with Raff
l .

Lemma 2.5. — Assume α ∈ Rl and d ∈ ZZ/lZ. Then we have tα(d) ≡
d− α mod Zδl.

Proof. — This statement is a partial case of [14, (6.5.2)] (see also
Remark 2.2). �

Lemma 2.6. — For each d ∈ ZZ/lZ, there exists a unique n ∈ Z such
that d and nδl are in the same W aff

l -orbit.
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Proof. — Let us prove the existence of n. Set α = d − d0δl. Then α is
clearly an element of Rl. Then by Lemma 2.5, the element tα(d) is of the
form nδl.
Let us prove the uniqueness of n. Assume that n1δl and n2δl are in the

same W aff
l -orbit. Since n1δl is Wl-stable, the W aff

l -orbit of n1δl coincides
with the Rl-orbit of n1δl. So there exists α ∈ Rl such that tα(n1δl) = n2δl.
By Lemma 2.5, this forces α = 0 and n1 = n2. �

Consider the Z-linear map

Raff
l → CZ/lZ, d 7→ d,

given by
(αr)i = 2δi,r − δi,r+1 − δi,r−1.

The kernel of this map is Zδl. Set

Σ(θ) =
∑
i∈Z/lZ

θi.

Lemma 2.7. — For each α ∈ Rl and θ ∈ CZ/lZ, we have tα(θ) = θ +
Σ(θ)α.

Proof. — The W aff
l -action on CZ/lZ defined above coincides with the

(usual) action of W aff
l on the dual of the span of α0, α1, . . . , αl−1 in ĥ∗.

The statement follows from [14, (6.5.2)]. �

We denote by (ZZ/lZ)+ the set of d ∈ ZZ/lZ which belong to the orbit of
some nδl, with n > 0. This set has a more precise combinatorial description.
For example, it will follow from Proposition 4.4 that an element d ∈ ZZ/lZ

is in (ZZ/lZ)+ if and only if d is a residue of some Young diagram. In
particular, the set (ZZ/lZ)+ is contained in NZ/lZ.

Lemma 2.8. — Assume that d ∈ ZZ/lZ is such that there exists a simple
representation in Yθ(d). Then

(a) the variety Xθ(d) is normal and irreducible,
(b) we have d ∈ (ZZ/lZ)+.

Proof. — Let n ∈ Z and w ∈ W aff
l be such that nδl = w(d). Let us

show that (2.2) implies an isomorphism Xθ(d) ' Xw(θ)(nδl). (In particular,
we must have n > 0.) The only difficulty that we have is caused by the
condition θi 6= 0 in (2.2). But [10, Lemma 7.2] implies that we can find a
sequence of reflections such that si1si2 . . . sir (d) = nδl and such that we
can apply a sequence of isomorphisms (2.2) with no danger to get θij = 0
while applying sij . �
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2.3. Smoothness

The following result is proved in [13, Lemma 4.3 and its proof] (which is
based on [15, Theorem 1.2] and [10, Theorem 1.2]):

Theorem 2.9. — Let n > 0. Then the following are equivalent:
(1) The variety Xθ(nδl) is smooth.
(2) Every element of Yθ(nδl) defines a simple representation of the

quiver Ql.
(3) The family θ satisfies

Σ(θ)
∏

16i6j6l−1
−(n−1)6k6n−1

(
(θi + θi+1 + · · ·+ θj) + kΣ(θ)

)
6= 0.

If these equivalent conditions hold, then PGL(nδl) acts freely on Yθ(nδl),
and so, as a set, Xθ(nδl) identifies with GL(nδl)-orbits in Yθ(nδl).

2.4. Fixed points

For every m > 1, the group of m-th roots of unity µm acts on Xθ(nδl)
(this is the restriction of the C×-action defined in Section 2.1). We aim
to compute the fixed point variety Xθ(nδl)µm whenever Xθ(nδl) is smooth.
Note first that µl acts trivially on Xθ(nδl): indeed, if ζ ∈ µl and if (X,Y ) ∈
Yθ(nδl), then ζ · (X,Y ) = g0(X,Y ), where g0 = (ζi IdCn)i∈Z/lZ ∈ GL(nδl).
This means that, in order to describe Xθ(nδl)µm , we may replace µm by
〈µm,µl〉 or, in other words, we may assume that l divides m.

Hypothesis. — We fix in this subsection a non-zero natural number k
and we set m = kl.

If θ = (θi)i∈Z/lZ ∈ CZ/lZ, we define θ[k] to be the element (θ[k]j)j∈Z/mZ
such that

θ[k]j = θi

if j ≡ i mod l. Roughly speaking, θ[k] is the concatenation of k copies of θ.
We denote by ZZ/mZ[nδl] the set of d = (dj)j∈Z/mZ ∈ ZZ/mZ such that

n =
∑

j∈Z/mZ
j≡i mod l

dj

for all i ∈ Z/lZ. Set also E(k, l, n) = ZZ/mZ[nδl]∩(ZZ/mZ)+. If d ∈ E(k, l, n)
and (X,Y ) ∈ Rep(Qm, d), we set

i
(d)
k (X,Y ) = (X ′, Y ′),
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where

X ′i =
⊕

j∈Z/mZ
j≡i mod l

Xj and Y ′i =
⊕

j∈Z/mZ
j≡i mod l

Yj .

By the definition of E(k, l, n), we have X ′i, Y ′i ∈ Matn(C). In other words,
(X ′, Y ′) ∈ Rep(Ql, nδl): it is clear that i(d)

k : Rep(Qm, d) ↪→ Rep(Ql, nδl)
is a closed immersion.

Lemma 2.10. — If d ∈ E(k, l, n) and (X,Y ) ∈ Yθ[k](d), then i(d)
k (X,Y ) ∈

Yθ(nδl).

Proof. — Write i(d)
k (X,Y ) = (X ′, Y ′) and let i ∈ Z/lZ. Write p0 for the

rank one matrix X0Y0 − Y−1X−1 − θ[k]0 IdCd0 . Then

(2.3)

X ′iY
′
i − Y ′i−1X

′
i−1 =

⊕
j∈Z/mZ
j≡i mod l

(XjYj − Yj−1Xj−1)

=
⊕

j∈Z/mZ
j≡i mod l

θ[k]j IdCdj + δ0ip0

= θi IdCn +δ0ip0,

as desired. �

It is also clear that, if (X,Y ) and (X̃, Ỹ ) are two elements of Yθ[k](d)
which are conjugate under GL(d), then i(d)

k (X,Y ) and i(d)
k (X̃, Ỹ ) are conju-

gate under GL(nδl). This means that i(d)
k induces a morphism of algebraic

varieties still denoted by

i
(d)
k : Xθ[k](d) −→ Xθ(nδl).

For d ∈ E(k, l, n), set

Xd = i
(d)
k (Xθ[k](d)) ⊂ Xθ(nδl).

For the moment, we allow the possibility that the varieties Xθ[k](d) and
Xd are empty. Set

E(k, l, n)6=∅ = {d ∈ E(k, l, n); Xd 6= ∅}.

We will show in Corollary 4.13 that we have E(k, l, n) 6=∅ = E(k, l, n).
The next result describes the fixed point variety Xθ(nδl)µm : it is the

main step towards the proof of Theorem 1.3.
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Theorem 2.11. — Assume that Xθ(nδl) is smooth. Then:
(a) Xθ(nδl)µm is smooth.
(b) We have

Xθ(nδl)µm =
∐

d∈E(k,l,n) 6=∅

Xd

and Xd are exactly the irreducible components of Xθ(nδl)µm .
(c) If d ∈ E(k, l, n) 6=∅, then i(d)

k : Xθ[k](d)→ Xd is an isomorphism.

Proof. — (a) follows from the fact already mentioned in the proof of
Corollary 1.5 that the fixed point variety under the action of a finite group
on a smooth variety is again smooth.

We will now prove (b). Let ξ be a primitive m-th root of unity and let
ζ = ξk (it is a primitive l-th root of unity). Let g0 denote the element
(ζi IdCn)i∈Z/lZ in GL(nδl). This element satisfies

(∗) g0(X,Y ) = (ζ−1X, ζY )

for all (X,Y ) ∈ Yθ(nδl). We will use the following variety:

Z =
{

(X,Y, g) ∈ Yθ(nδl)×GL(nδl)
∣∣∣∣ g(X,Y ) = (ξ−1X, ξY )

and gpX,Y = pX,Y

}
,

where pX,Y = ([Xi, Yi] − θi)i∈Z/lZ: it is 0 except on the 0-th component,
where it is equal to a rank one matrix of trace −nΣ(θ) (recall from Theo-
rem 2.9 that Σ(θ) 6= 0 because Xθ(nδl) is assumed to be smooth).
We denote by p′ : Z → Yθ(nδl) the projection on the first two factors,

by p : Z → Xθ(nδl) the map induced by p′ and by q : Z → GL(nδl) the
projection on the third factor. Note that PGL(nδl) acts on Z by conjugacy
on the three factors, and so the maps p′ and q are equivariant for this action.
First, it is clear that p(Z) ⊂ Xθ(nδl)µm . Conversely, if (X,Y ) ∈ Yθ(nδl)

is a representative of an element of Xθ(nδl)µm , then there exists g ∈
PGL(nδl) such that g(X,Y ) = (ξ−1X, ξY ). In particular, gpX,Y = pX,Y .
So g stabilizes the image of pX,Y , which is of dimension 1: this means that
g acts by a non-zero scalar ω on Im(pX,Y ). Setting g′ = ω−1g, we see that
(X,Y, g) ∈ Z. So we have proved the following fact:

Fact 1. — p(Z) = Xθ(nδl)µm .

The next fact follows from the freeness of the action of PGL(nδl) on
Yθ(nδl) (see Theorem 2.9).

Fact 2. — If (X,Y, g) and (X,Y, g′) belong to Z, then g = g′ and gk = g0.
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Indeed, the hypothesis implies that g(X,Y ) = g′(X,Y ) and gk(X,Y ) =
g0(X,Y ). So there exists two non-zero complex numbers α and β such that
g′ = αg and gk = βg0. But the condition gpX,Y = g′pX,Y = g0pX,Y forces
α = β = 1 because pX,Y 6= 0.

Now, let C denote the set of elements g ∈ GL(nδl) such that gk =
g0. Since g0 is central in GL(nδl), C is a disjoint union of finitely many
semisimple conjugacy classes (which are the irreducible components of C).
We fix g ∈ C such that q−1(g) 6= ∅ and we denote by Cg its conjugacy class
in GL(nδl). We will describe q−1(g). For this, let E =

⊕
i∈Z/lZ Cn and let

Ej = Eξ
−jg (for j ∈ Z/mZ). In other words, Ej is the ξj-eigenspace of g

in E: it is contained in the i-th component of E, where i is the element of
Z/lZ such that j ≡ i mod l. Let dj = dimC(Ej) and let d = (dj)j∈Z/mZ.

If (X,Y, g) ∈ Z, then X sends Ej to Ej−1 (we denote by Xj : Ej →
Ej−1 the induced map) while Y sends Ej to Ej+1 (we denote by Yj :
Ej → Ej+1 the induced map). By choosing a basis of every Ej , the family
(Xj , Yj)j∈Z/mZ defines a representation of the quiver Qm, of dimension
vector d. This means that we have defined a map q−1(g) −→ Rep(Qm, d),
which is clearly a closed immersion, and whose image is Yθ[k](d) (because
Im(pX,Y ) is contained in E0).

Note that by construction we have d ∈ ZZ/mZ[nδl]. Moreover, by
Lemma 2.8(b) and Theorem 2.9 we also have d ∈ (ZZ/mZ)+. This means
that d is an element of E(k, l, n) = ZZ/mZ[nδl] ∩ (ZZ/mZ)+. Moreover, it is
clear that the set of elements d that can appear as above (from some g ∈ C
such that q−1(g) 6= ∅) is E(k, l, n) 6=∅.
This shows the following fact.

Fact 3. — With the above notation, q−1(g) ' Yθ[k](d). In particular,
q−1(g) is irreducible.

Fact 3 and its proof imply the following.

Fact 4. — We have p(q−1(Cg)) = Xd.

Denote by π the projection π : Yθ(nδl)→ Xθ(nδl). Fact 2 implies that the
map p′ : Z → π−1(Xθ(nδl)µm) is bijective. Moreover, since π−1(Xθ(nδl)µm)
is smooth (the group PGL(nδl) acts freely on Yθ(nδl)), this bijection is an
isomorphism of algebraic varieties. Let

(p′)−1 : π−1(Xθ(nδl)µm)→ Z

be its inverse.
Consider the morphism τ̃ : π−1(Xθ(nδl)µm) → GL(nδl) given by τ̃ =

q ◦ (p′)−1. Since we have π−1(Xθ(nδl)µm)//GL(nδl) = Xθ(nδl)µm , we get a
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morphism τ : Xθ(nδl)µm → GL(nδl)//GL(nδl), where the group GL(nδl)
acts on itself by conjugation.
Moreover, since we clearly have τ−1(Cg) = p(q−1(Cg)), Fact 4 implies the

following.

Fact 5. — We have τ−1(Cg) = Xd. In particular Xd is closed.

This completes the proof of (b). Now we prove (c). The group GL(nδl)
acts transitively on Cg. So we get an isomorphism of varieties

q−1(g)//CGL(nδl)(g) ∼−→ q−1(Cg)//GL(nδl).

Now, if d = (dimC(Eξ−jg))j∈Z/mZ, q−1(g) identifies with Yθ[k](d) and
CGL(nδl)(g) identifies with GL(d). Glueing this with Facts 3 and 4, we
get an isomorphism of varieties

Xθ[k](d) ∼−→ Xd,

which is the map i(d)
k . This proves (c). �

Corollary 2.12. — If k > n, then we have Xθ(nδl)µm = Xθ(nδl)C
× .

Proof. — Take d ∈ E(k, l, n) 6=∅. Since k > n, some component of d must
be zero. This implies that C× acts trivially on Xθ[k](d) because the action
of C× is induced by elements of GL(d).
Since i(d)

k is C×-equivariant and

Xθ(nδl)µm =
∐

d∈E(k,l,n) 6=∅

i
(d)
k (Xθ[k](d))

(by Theorem 2.11(b)), the C×-action on the variety Xθ(nδl)µm is also
trivial. �

3. Proof of Theorem 1.3

First, the explicit description of Zc whenever n = 1 (see Example 1.2)
allows to prove easily Theorem 1.3 in this case. Also, let us decompose V as

V = VW ⊕ V1 ⊕ · · · ⊕ Vr,

where the Vi are the non-trivial irreducible components of V as a CW -
module. ThenW decomposes asW = W1×· · ·×Wr, where (Vi,Wi) is then
a reflection subquotient (subgroup) of W . Let ci denote the restriction of
c to Wi. Then

Zc(V,W ) ' VW × V ∗W ×Zc1(V1,W1)× · · · ×Zcr (Vr,Wr)
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so that the proof of Theorem 1.3 is easily reduced to the case where W
acts irreducibly on V/VW .

In this case, the smoothness of Zc(V,W ) implies that W is of type G4 or
G(l, 1, n) for some l > 1. The case of type G4 will be handled by computer
calculations: see Section 5 for details. This means that we can work under
the following hypothesis:

Hypothesis. — From now on, and until the end of this section, we
assume that n > 2, that V = Cn and that W = G(l, 1, n). We also assume
that σ is an m-th root of unity, where m = kl for some k > 1.

Recall that G(l, 1, n) is the group of monomial matrices with coefficients
in µl (the group of l-th root of unity in C×) and recall that n > 2.

3.1. Quiver varieties vs Calogero-Moser spaces

We fix a primitive l-th root of unity ζ. We denote by s the permutation
matrix corresponding to the transposition (1, 2) and we set

t = diag(ζ, 1, . . . , 1) ∈W.

Then s, t, t2,. . . , tl−1 is a set of representatives of conjugacy classes of
reflections of W . We set for simplification

a = cs and kj = 1
l

l−1∑
i=1

ζ−i(j−1)cti

for j ∈ Z/lZ. Then

(3.1) k0 + · · ·+ kl−1 = 0 and cti =
∑

j∈Z/lZ

ζi(j−1)kj

for 1 6 i 6 l − 1. Finally, if i ∈ Z/lZ, we set

(3.2) θi =
{
k−i − k1−i if i 6= 0,
−a+ k0 − k1 if i = 0,

and θ = (θi)i∈Z/lZ.
The following result is proved in [13, Theorem 3.10]. (Note that our ki

is related with Gordon’s Hi via Hi = k−i − k1−i.)

Theorem 3.1. — With the above notation, there is a C×-equivariant
isomorphism of varieties

Zc
∼−→ Xθ(nδl).

TOME 71 (2021), FASCICULE 2



660 Cédric BONNAFÉ & Ruslan MAKSIMAU

The Theorem 3.1 above is also true for n = 1. But in this case, the
variety Zc has no parameter a. On the other hand, the variety Xθ(δl) is
independent of θ0.
Putting Theorems 2.9 and 3.1 together, one gets:

Corollary 3.2. — The variety Zc is smooth if and only if

a
∏

06i 6=j6l−1
06r6n−1

(ki − kj − ra) 6= 0.

Proof of Theorem 1.3. — Assume now that Zc is smooth and let X be
an irreducible component of Zµm

c . Using the isomorphism of Theorem 3.1,
we see that

Zµm
c

∼−→ Xθ(nδl)µm .

So, by Theorem 2.11, there exists d ∈ E(k, l, n)6=∅ such that X ' Xθ[k](d).
By Lemma 2.6, there exists r > 0 and w ∈W aff

m such that w(d) = rδm. So
it follows from the isomorphism (2.2) that

X ' Xw(θ[k])(rδm)

(see also Lemma 2.8 and its proof). Using Theorem 3.1 in the other way, we
see that there exists a complex valued function c′ on the set of conjugacy
classes of reflections ofW ′ = G(m, 1, r) such that Xw(θ[k])(rδm) ' Zc′(W ′).
Moreover, as the action of W aff

m on CZ/mZ is linear, this implies that the
map c 7→ c′ is linear.
This proves almost every statement of Theorem 1.3, except that W ′ can

be realized as a reflection subquotient of (V,W ). For this, we need the
following fact.

Fact 6. — We have kr 6 n.

Indeed, the element d−rδm is in theW aff
m -orbit of 0. Then Proposition 4.4

implies that d− rδm is a residue of some m-core. In particular, each coor-
dinates of d− rδm must be positive. Since the sum of the coordinates of d
is nl, this gives nl − rkl > 0. This implies kr 6 n.
Now, using the fact proved above, let x denotes the matrix

x = diag(ζ, 1, . . . , 1︸ ︷︷ ︸
k terms

) ·M(1,2,...,k) ∈ GLk(C),

where M(1,2,...,k) is the permutation matrix associated with the cycle
(1, 2, . . . , k). Now, let g be the matrix

g = diag(x, . . . , x︸ ︷︷ ︸
r terms

, IdCn−rk) ∈ G(l, 1, n).
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Let V ′ denote the ξ-eigenspace of g, where ξ is a primitive m-th root of
unity such that ξk = ζ. Then CW (g) acts on V ′, V ′ is of dimension r and,
if we denote by K the kernel of this action, then CW (g)/K ' G(m, 1, r).
So (V ′, G(m, 1, r)) is a reflection subquotient of (V,W ). �

Remark 3.3. — The Formula (3.2) above yields a bijection between CZ/lZ

and the set of (l+ 1)-tuples of complex numbers (a, k0, . . . , kl−1) such that
k0+k1+. . .+kl−1 = 0. Moreover, theW aff

l -action on CZ/lZ (see Section 2.2)
translates to the action on the (l + 1)-tuples in the following way

sr(a, k0, . . . , kl−r, kl−r+1, . . . , kl−1)
= (a, k0, . . . , kl−r+1, kl−r, . . . , kl−1), for r = 1, 2, . . . , l − 1

and

s0(a, k0, k1, k2, . . . , kl−1) = (a, k1 + a, k0 − a, k2, . . . , kl−1).

In particular, we see that the subgroup Wl of W aff
l acts by permutation of

the parameters k0, k1,. . . , kl−1.

The next result follows from [2], but we provide here a different proof
(which works only in type G(d, 1, n)).

Corollary 3.4. — A permutation of parameters k0, k1, . . . , kl−1 does
not change the Calogero–Moser space Zc (up to an isomorphism of algebraic
varieties).

Proof. — The subgroup Wl of W aff
l stabilizes δl. Then by (2.2), for each

w ∈Wl, n ∈ Z>0 and θ ∈ CZ/lZ, we have Xθ(nδl) ' Xw(θ)(nδl). This proves
the statement by Theorem 3.1 and Remark 3.3. �

4. Combinatorics

In this subsection, we aim to make the statement of Theorem 1.3 more
precise in the case where W = G(l, 1, n): we wish to describe precisely the
map c 7→ c′ as well as the map i∗X : Irr(W ′) ↪→ Irr(W ) in terms of the
combinatorics of partitions, cores, l-quotients, etc.

4.1. Partitions and cores

Let l and n be positive integers. A partition is a tuple λ = (λ1, λ2, . . . , λr)
of positive integers (with no fixed length) such that λ1 > λ2 > · · · > λr.
Set |λ| =

∑r
i=1 λi. If |λ| = n, we say that λ is a partition of n.
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Denote by P (resp. P[n]) be the set of all partitions (resp. the set of all
partitions of n). By convention, P[0] contains one (empty) partition. We
will identify partitions with Young diagrams. The partition λ corresponds
to a Young diagram with r lines such that the ith line contains λi boxes.
For example the partition (4, 2, 1) corresponds to the Young diagram

Let b be a box of a Young diagram in the line r and column s. The
l-residue of the box b is the number s− r modulo l. (We also say that the
integer s− r is the ∞-residue of the box b). Then we obtain a map

Resl : P → ZZ/lZ, λ 7→ Resl(λ),

such that for each i ∈ Z/lZ the number of boxes with residue i in λ is
(Resl(λ))i. (Similarly, we obtain a map Res∞ : P → ZZ.)

Example 4.1. — For the partition λ = (4, 2, 1) and l = 3 the residues of
the boxes are

0 1 2 0
2 0
1

In this case we have Resl(λ) = (3, 2, 2) because there are three boxes with
residue 0, two boxes with residue 1 and two boxes with residue 2.

We say that a box of a Young diagram is removable if it has no box on
the right and on the bottom. For λ, µ ∈ P, we write µ 6 λ if the Young
diagram of µ can be obtained from the Young diagram of λ by removing a
sequence of removable boxes.

Definition 4.2. — We say that the partition λ is an l-core if there is no
partition µ 6 λ such that the Young diagram of µ differs from the Young
diagram of λ by l boxes with l different l-residues.

See [3] for more details about the combinatorics of l-cores. Let Cl ⊂ P
be the set of l-cores. Set Cl[n] = P[n] ∩ Cl.
If a partition λ is not an l-core, then we can get a smaller Young diagram

from its Young diagram by removing l boxes with different l-residues. We
can repeat this operation again and again until we get an l-core. It is well-
known that the l-core that we get is independent of the choice of the boxes
that we remove. Then we get an application

Corel : P → Cl.
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If µ = Corel(λ), we will say that the partition µ is the l-core of the parti-
tion λ.

Example 4.3. — The partition (4, 2, 1) from the previous example is not
a 3-core because it is possible to remove three bottom boxes. We get

0 1 2 0

But this is still not a 3-core because we can remove three more boxes and
we get

0
This shows that the partition (1) is the 3-core of the partition (4, 2, 1).

As mentioned in Lemma 2.6, for each d ∈ ZZ/lZ, the W aff
l -orbit of d

contains an element of the form nδl for a unique n ∈ Z.

Proposition 4.4. — Let d be an element of ZZ/lZ. The following state-
ments are equivalent.

(a) d is of the form d = Resl(λ) for some l-core λ,
(b) d is in the W aff

l -orbit of 0.

Proof. — Consider theW aff
l -action on Cl as in [3, Section 3]. By construc-

tion, the map Resl : Cl → ZZ/lZ is W aff
l -invariant. Moreover, the residue of

the empty partition is zero. The stabilizer of the empty partition in W aff
l is

Wl and the stabilizer of 0 ∈ ZZ/lZ in W aff
l is also Wl. This shows that the

map Resl yields a bijection between the set of l-cores and the W aff
l -orbit

of 0 in ZZ/lZ. �

Denote by π the obvious surjection π : ZZ/lZ → ZZ/lZ/Zδl.

Proposition 4.5. — The chain of maps

Cl
Resl // ZZ/lZ π // ZZ/lZ/Zδl

yields a bijection between Cl and ZZ/lZ/Zδl.

Proof. — We have seen in the proof of Proposition 4.4 that Resl yields
a bijection between Cl and the W aff

l -orbit of 0 ∈ ZZ/lZ. This proves the
statement because the restriction of π to the W aff

l -orbit of 0 ∈ ZZ/lZ is
bijective by Lemma 2.6. �

For d = (di)i∈Z/lZ ∈ ZZ/lZ we set |d| =
∑
i∈Z/lZ di. Set ZZ/lZ[n] =

{d ∈ ZZ/lZ; |d| = n}. Denote by Cl[≡ n] the subset of Cl that contains only
l-cores with the number of boxes congruent to n modulo l. Proposition 4.5
yields the following bijection ε : ZZ/lZ[n] ∼↔ Cl[≡ n].
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Lemma 4.6. — Assume d ∈ ZZ/lZ[n]. Then d is in (ZZ/lZ)+ if and only
if |ε(d)| 6 n.

Proof. — By construction, ε(d) is the unique l-core λ ∈ Cl[≡ n] such
that Resl(λ) is congruent to d modulo δl. Write d = Resl(λ) + rδl. Since
by Proposition 4.4, the element Resl(λ) is in the W aff

l -orbit of 0, then d is
in the W aff

l -orbit of rδl. Then, by definition, the element d is in (ZZ/lZ)+
if and only if r > 0. Now, let us count the sum of the coordinates in the
sides of the equality d = Resl(λ) + rδl. We obtain n = |λ|+ rl. This shows
that we have r > 0 if and only if |λ| 6 n. �

Let ν be an l-core. Denote by Pl,ν the set of partitions with the l-core
ν. In particular we denote by Pl,∅ the set of partitions with trivial l-core.
Let P l be the set of l-partitions (i.e., the set of l-tuples of partitions). If
λ is a partition, we denote by βl(λ) its l-quotient (see for example [16,
Section 2.2]).

Lemma 4.7. — If ν is an l-core, then βl restricts to a bijection
βl,ν : Pl,ν

∼↔ P l.

4.2. Description of E(k, l, n) in terms of cores

Let k be a positive integer. Set m = kl. Set also (Cm)l,ν = Pl,ν ∩ Cm.
Recall that we have a bijection ε : ZZ/mZ[nl] ∼↔ Cm[≡ nl]. Assume d ∈

ZZ/mZ[nl].

Lemma 4.8. — We have d ∈ ZZ/mZ[nδl] if and only if the l-core of ε(d)
is trivial, where the set ZZ/mZ[nδl] is as in Section 2.4.

Proof. — By definition, ε(d) is the uniquem-core λ ∈ Cm[≡ nl] such that
Resm(λ) is equal to d modulo δm. On the other hand, by Proposition 4.4,
the partition λ is an l-core if and only if Resl(λ) is a multiple of δl. By
commutativity of the following diagram,

P
Resm

||

Resl

""
ZZ/mZ // ZZ/lZ

this condition is clearly equivalent to d ∈ ZZ/mZ[nδl]. �

Recall that the set E(k, l, n) was defined as the intersection E(k, l, n) =
ZZ/mZ[nδl] ∩ (ZZ/mZ)+. Combining Lemmas 4.6 and 4.8, we obtain the
following.
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Lemma 4.9. — The bijection ε : ZZ/mZ[nl] ' Cm[≡ nl] restricts to a
bijection

ε′ : E(k, l, n)→ Cm[≡ nl] ∩ Cm[6 nl] ∩ (Cm)l,∅.

For λ = (λ0, . . . , λl−1) ∈ P l we set |λ| = |λ0| + · · · + |λl−1|. Set also
P l[n] = {λ ∈ P l; |λ| = n}. We say that an element of P l[n] is an l-partition
of n.

Now recall the bijection βl,ν : Pl,ν
∼↔ P l obtained by restriction from βl

as in Lemma 4.7. By construction, it has the following properties.

Lemma 4.10.
(a) For each λ ∈ Pl,∅, we have λ ∈ Cm if and only if βl,∅(λ) ∈ (Ck)l.
(b) For each λ ∈ Pl,ν , we have |λ| = l · |βl,ν(λ)|+ |ν|.

Part (a) of the lemma above shows that βl,∅ can be restricted to a
bijection (Cm)l,∅ ' (Ck)l. Moreover, Part (b) shows that new bijection
restricts to a bijection

Cm[≡ nl] ∩ Cm[6 nl] ∩ (Cm)l,∅ ' (Ck)l[≡ n,6 n],

where

(Ck)l[≡ n,6 n] = {λ ∈ (Ck)l; |λ| 6 n and |λ| ≡ n mod k}.

Combining this with Lemma 4.9, we get a bijection

δ : E(k, l, n)→ (Ck)l[≡ n,6 n].

4.3. Parametrization of the µm-fixed points

We have proved in Theorem 2.11 that the subset E(k, l, n) 6=∅ of E(k, l, n)
parametrizes the irreducible components of Xθ(nδl)µm . (But we will show
in Corollary 4.13 that we have E(k, l, n) 6=∅ = E(k, l, n).) Then the bijection
δ above gives another parametrization of the irreducible components of
Xθ(nδl)µm in terms of (Ck)l[≡ n,6 n]. For each λ ∈ (Ck)l[≡ n,6 n], we set
Xλ = Xδ−1(λ).
Recall the map Corek : P → Ck. It yields a map Corek : P l → (Ck)l

(component by component). Note that the set (Ck)l[≡ n,6 n] considered
above is nothing else but the image of P l[n] by Corek. In other words, the
set (Ck)l[≡ n,6 n] is the same thing as the set of k-cores of l-partitions
of n.

This new parametrization has the following nice property.
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Lemma 4.11. — Fix positive integers k1 and k2 such that k1 divides k2.
Set m1 = k1l and m2 = k2l. Fix λ1 ∈ (Ck1)l[≡ n,6 n] and λ2 ∈ (Ck2)l[≡ n,
6 n]. Then we have Xλ2 ⊂ Xλ1 if and only if Corek1(λ2) = λ1.

Proof. — Consider the map

p : ZZ/m2Z → ZZ/m1Z, p(d)i =
∑

j≡i mod m1

dj .

Let d1 ∈ E(k1, l, n) and d2 ∈ E(k2, l, n) be such that δ(d1) = λ1 and
δ(d2) = λ2. We have Xd1 = Xλ1 and Xd2 = Xλ2 . It is clear from the
definition that we have Xd2 ⊂ Xd1 if and only if p(d2) = d1. Then the
statement follows from the commutativity of the following diagram

E(k2, l, n)
p //

��

E(k1, l, n)

��
Cm2 [≡ nl] ∩ Cm2 [6 nl] ∩ (Cm2)l,∅

��

Corem1 // Cm1 [≡ nl] ∩ Cm1 [6 nl] ∩ (Cm1)l,∅

��
(Ck2)l[≡ n,6 n]

Corek1 // (Ck1)l[≡ n,6 n],

where the vertical maps are the bijections discussed above. �

Proposition 4.12. — The C×-fixed points in Xθ(nδl) are parametrized
by the set P l[n]. This parametrization Xθ(nδl)C

× = {pµ; µ ∈ P l[n]} can
be chosen in such a way that for each k ∈ Z, each λ ∈ (Ck)l[≡ n,6 n] and
each µ ∈ P l[n] we have pµ ∈ Xλ if and only if λ is the k-core of µ.

Proof. — Assume k > n. Then by Corollary 2.12, we have Xθ(nδl)µm =
Xθ(nδl)C

× . Moreover, the set Xθ(nδl)C
× is finite. We already know that

Xθ(nδl)µm is in bijection with a subset of (Ck)l[≡ n,6 n]. Moreover,
k > n also implies that we have (Ck)l[≡ n,6 n] = P l[n]. This shows that
Xθ(nδl)µm = Xθ(nδl)C

× is in bijection with a subset of P l[n]. Moreover,
by Lemma 4.11, this bijection is independent of the choice of k. But it is
well-known (see [12]) that Xθ(nδl)µm and P l[n] have the same cardinalities.
This shows that the bijection above is a bijection between Xθ(nδl)µm and
P l[n] (not just a subset of P l[n]).
The second statement follows from Lemma 4.11. �

Corollary 4.13. — For each λ ∈ (Ck)l[≡ n,6 n], we have Xλ 6= ∅. In
particular, we have E(k, l, n) = E(k, l, n)6=∅.
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Proof. — Assume λ ∈ (Ck)l[≡ n,6 n]. Then there exists µ ∈ P l[n] such
that Corek(µ) = λ. Then Xλ is not empty because we have pµ ∈ Xλ by
Proposition 4.12. �

4.4. C×-fixed points

In the previous section we have constructed a parametrization of the
C×-fixed points in Xθ(nδl) by P l[n]. Another parametrization of the C×-
fixed points in Xθ(nδl) by the same set is done by Gordon [12]. This
parametrization is given in terms of baby Verma modules.
It is not obvious at all how to compare these two parametrizations. But

this can be deduced from the main theorem in [18].
For λ = (λ0, . . . , λl−1) ∈ P l we set λ[ = (λl−1, . . . , λ0).

Proposition 4.14. — The parametrization of the C×-fixed points in
Xθ(nδl) given in Proposition 4.12 differs from Gordon’s parametrization by
the twist

P l[n]→ P l[n], λ 7→ λ[.

Proof. — We have constructed in Lemma 4.9 a parametrization of the
irreducible components of Xθ(nδl)µm by the set Cm[≡ nl] ∩ Cm[6 nl] ∩
(Cm)l,∅. Similarly to the proof of Proposition 4.12, this yields a bijection
between Xθ(nδl)C

× and P[nl] ∩ Pl,∅.
Indeed, if k > n, then we have Xθ(nδl)C

× = Xθ(nδl)µm by Corollary 2.12
and

Cm[≡ nl] ∩ Cm[6 nl] ∩ (Cm)l,∅ = P[nl] ∩ Pl,∅.
Moreover, an argument similar to the proof of Proposition 4.12 shows that
the obtained bijection Xθ(nδl)C

× ' P[nl] ∩ Pl,∅ is independent of k.
On the other hand, [18, Theorem 1.1(a)] also constructs a bijection be-

tween Xθ(nδl)C
× and P[nl] ∩ Pl,∅. It is clear from the construction that

this bijection coincides with ours.
Theorem [18, Theorem 1.2] claims that the bijection

P[nl] ∩ Pl,∅ → P l[n], λ 7→ (βl,∅(λ))[

identifies the parametrization of the C×-fixed points by the set P[nl]∩Pl,∅
with Gordon’s parametrization of the C×-fixed points by the set P l[n].

On the other hand, the parametrization of the C×-fixed points by P[nl]∩
Pl,∅ composed with the l-quotient bijection βl,∅ is nothing else but the
parametrization of the C×-fixed points by P l[n] from Proposition 4.12. �
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Remark 4.15. — The parametrization of the points of Xθ(nδl)C
× given

in Proposition 4.12 is constructed as a parametrization of the irreducible
components of Xθ(nδl)µm for a very big m. This parametrization can be
seen in an “m-independent way” if we replace the quiver Qm with a very
big m by an infinite quiver. This can be done in the following way.
Let Q∞ be the quiver defined in the same way as Ql with respect to the

vertex set Z instead of Z/lZ. The dimension vectors of the quiver Q∞ are
in ZZ. Set

ZZ
fin = {d̂ ∈ ZZ | d̂ has finitely many non-zero components}.

Consider the map

p : ZZ
fin → ZZ/lZ, (p(d̂))i =

∑
j≡i mod l

d̂j .

For each d̂ ∈ ZZ
fin, we have a linear map i

(d̂)
∞ : Rep(Q∞, d̂) → Rep(Ql,

p(d̂)), defined in the same way is in Section 2.4. Now, for each θ ∈ CZ/lZ we
consider the element θ[∞] ∈ CZ given by θ[∞]i = θi mod l. Then we obtain
a C×-invariant morphism of algebraic varieties i(d̂)

∞ : Xθ[∞](d̂) → Xθ(p(d̂)).
But the variety Xθ[∞](d̂) is obviously C×-stable because the C× action is
induced by elements of GL(d̂). Since Xθ[∞](d̂) is connected, it is a singleton
(if it is not empty). Set

E(∞, l, d) = {d̂ ∈ ZZ
fin | p(d̂) = d,Xθ[∞](d̂) 6= ∅}.

If d̂ ∈ E(∞, l, d), the image of i(d̂)
∞ is a C×-fixed point in Xθ(d). Let us call

this point p
d̂
.

Now, we assume d = nδl, n > 0 and that Xθ(d) is smooth. The con-
struction of the parametrization of the C×-fixed points in Xθ(nδl) given in
Proposition 4.12 implies that each C×-fixed point pµ, µ ∈ P l[n], in Xθ(nδl)
is of the form p

d̂
for a unique d̂ ∈ E(∞, l, nδl). Moreover, this d̂ is given by

d̂ = Res∞(β−1
l,∅(µ)).

Lemma 4.16. — Let d ∈ ZZ/lZ be such that the pair (d, θ) is smooth (see
Definition 2.4). Then by (2.2), the variety Xθ(d) is smooth and non-empty.
Let ν be the l-core such that we have d = nδl+Resl(ν) (see Proposition 4.4).
Then we have the following.

(a) The C×-fixed points in Xθ(d) are exactly p
d̂
, d̂ ∈ E(∞, l, d) (without

repetition).
(b) We have E(∞, l, d) = {Res∞(λ); λ ∈ Pl,ν [|d|]}.
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Proof. — The case d = nδl follows from Remark 4.15. But that proof
in the general case is completely the same. It is just important to know
that under the given assumption on (d, θ), each representation in Xθ(d) is
simple. �

The lemma above yields parametrizations of Xθ(d)C× by E(∞, l, d) and
by Pl,ν [|d|]. Then the l-quotient bijection βl,ν : Pl,ν [|d|]→ P l[n] (see Lem-
ma 4.10(b)) yields also a parametrization of Xθ(d)C× by P l[n]. For µ ∈
P l[n] we denote by pµ the corresponding C×-fixed point of Xθ(d) (i.e., we
have pµ = p

d̂
if d̂ = Res∞(β−1

l,ν (µ)). We can write pdµ instead of pµ to stress
that it is a point in Xθ(d)C× .

The group W aff
l acts on P l[n] by permutation of components. More pre-

cisely, for each i ∈ Z/lZ, the element si exchanges the components µi
and µi+1 of µ = (µ0, . . . , µl−1). It is clear that the kernel of the canonical
surjection W aff

l →Wl acts trivially.

Lemma 4.17. — Let (d, θ) be a smooth pair (see Definition 2.4) in
ZZ/lZ × CZ/lZ. Assume that θi 6= 0. Then for every µ ∈ P l[n], the bi-
jection Xθ(d) ' Xsi(θ)(si(d)) given by (2.2) sends the C×-point pdµ ∈ Xθ(d)
to psi(d)

si(µ) ∈ Xsi(θ)(si(d)).

Proof. — There is an action of W aff
l on ZZ

fin given by

(si(d̂))j =
{
δj0 + d̂j+1 + d̂j−1 − d̂j if i ≡ j mod l,

d̂j if i 6≡ j mod l.

It is clear that this action lifts the W aff
l -actions on ZZ/lZ with respect to

the map p : ZZ
fin → ZZ/lZ.

Let ν and ν′ be the l-cores such that we have d = Resl(ν) + nδl and
si(d) = Resl(ν′) + nδl. For each d̂ ∈ E(∞, l, d), the following diagram is
commutative

Xθ[∞](d̂) //

i(d̂)
∞
��

Xsi(θ)[∞](si(d̂))

i
(si(d̂))
∞
��

Xθ(d) // Xsi(θ)(si(d)).

where the horizontal maps are the isomorphisms given by (2.2). This implies
that the isomorphism (2.2) identifies the C×-fixed point p

d̂
with the C×-

fixed point p
si(d̂). Moreover, it follows from [16, Proposition 4.1.3] that the
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following diagram is commutative

P l
β−1
l,ν //

si

��

Pl,ν
Res∞ // ZZ

fin

si

��
P l

β−1
l,ν′ // Pl,ν′

Res∞ // ZZ
fin

This implies that (2.2) identifies the C×-fixed point pdµ with the C×-fixes
point psi(d)

si(µ). �

Remark 4.18. — Fix d ∈ E(k, l, n). Let r be such that d is in the W aff
m -

orbit of rδm. Let ν be the m-core such that d = rδm + Resm(ν). Consider
the irreducible component Xd of X (nδl)µm . By Theorem 2.11 and the proof
of Theorem 1.3, we have an isomorphism

Xd ' Xθ′(rδm)

for some θ′. This isomorphism depends on a choice of an element w ∈W aff
m

such that w(d) = rδm (see the proof of Theorem 1.3) and of a choice
of a reduced expression of w that allows to apply a sequence of isomor-
phisms (2.2). We will assume that the element w is chosen as in the proof
of Lemma 2.6. In particuler w is in the kernel of the canonical surjection
W aff
m →Wm. This choice implies that the bijection Xθ[k](d) ' Xw(θ[k])(rδm)

yields the following bijection on the C×-fixed points (see Lemma 4.17):

XC×
θ[k](d)→ XC×

w(θ[k])(rδm), pdµ 7→ prδmµ .

The inclusion Xθ′(rδm)C× ⊂ Xθ(nδl)C
× yields a map

(4.1) Pm[r]→ P l[n].

Let us describe this map.
We have the following bijections obtained from the l-quotient (or

m-quotient) map (see also Lemma 4.10(b))

Pm[r] ' Pm,ν [mr + |ν|], P l[n] ' Pl,∅[nl].

Note that we have mr+ |ν| = |d| = nl. Moreover, we have Pm,ν [mr+ |ν|] ⊂
Pl,∅[nl] because every partition with m-core ν has a trivial l-core (since the
l-core of ν is trivial). Then under the isomorphisms above, the inclusion
Pm,ν [mr+ |ν|] ⊂ Pl,∅[nl] is exactly the map (4.1). Indeed, this follows from
Lemma 4.17 (and the choice of w above) and from the commutativity of
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the following diagram

Xθ[∞](d̂)
i(d̂)
∞

yy

i(d̂)
∞

%%
Xθ[k](d)

i
(d)
k // Xθ(nδl)

for each d̂ ∈ E(∞,m, d).
Now, let us describe the inclusion map Pm,ν [mr + |ν|] → Pl,∅[nl] as

a map Pm[r] → P l[n]. Set γ = βl,∅(ν). Then, by Lemma 4.10, we have
γ = (γ0, . . . , γl−1) ∈ (Ck)l. For each λ ∈ P l[n] such that Corek(λ) = γ, we
define βk,γ(λ) to be the m-partition µ = (µ0, µ1, . . . , µm−1) defined by

βk,γi(λi) = (µi, µi+l, . . . , µi+(k−1)l)

for all i ∈ {0, 1, . . . , l−1}. The map βk,γ is an isomorphism between P lk,γ [n]
and Pm[r], where P lk,γ [n] = {λ ∈ P l[n]; Corek(λ) = γ}. The following
diagram is commutative

Pm,ν [mr + |ν|] //

βm,ν

��

Pl,∅[nl]

βl,∅

��
Pm[r]

β−1
k,γ // P l[n]

This implies that the map Pm[r] → P l[n] obtained from the inclusion
Xθ′(rδm)C× ⊂ Xθ(nδl)C

× is given by β−1
k,γ .

4.5. Explicit construction of c′

We know from Theorem 2.11 that each irreducible component X of
Xθ(nδl)µm is of the form X = Xd. Moreover, by Theorem 1.3 there
exists a reflection subquotient (V ′,W ′) of (V,W ) and a complex-valued
map c′ : W ′ → C such that X ' Zc′(V ′,W ′). The reflection subquotient
was constructed in the proof (see Section 3) of Theorem 1.3. Now we give
an explicit construction of c′.
Recall from Section 1.1 that the parameter c is determined by the se-

quence of parameters (a, k0, k1, . . . , kl−1). Similarly, the parameter c′ is de-
termined by (a′, k′0, k′1, . . . , k′m−1). We are going to give explicit expressions
for (a′, k′0, k′1, . . . , k′m−1) in terms of d ∈ E(k, l,m) and (a, k0, k1, . . . , kl−1).

First, we recall the construction of c′ in the proof of Theorem 1.3. There
is an element w ∈ W aff

m such that w(d) is a multiple of δm. Then we put
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θ′ = w(θ[k]). Finally, we can obtain (a′, k′0, . . . , k′m−1) from θ′ using (3.1)
and (3.2).
This construction of c′ is not canonical because there is no preferable

choice of an element w. Note that δm is stable by the subgroup Wm of
W aff
m . So the element w can be replaced by any elements of Wmw. (By

Remark 3.3, a different choice of w yields just a permutation of the param-
eters k′0, k′1, . . . , k′m−1.) The affine Weyl groupW aff

m is of the formWmnRm,
where Rm is the root lattice for slm. In particular, there is an element
of w′ ∈ Wmw that is in Rm. More precisely, we have w′ = tα, where
α = d− d0δm (see the proof of Lemma 2.6).
Then, by Lemma 2.7, we have w′(θ[k]) = tα(θ[k]) = θ[k] + Σ(θ[k]) · α =

θ[k] + kΣ(θ) · d. (Where the notation α and d is as in Section 2.2.) This
means that we have

θ′i = (θ[k])i + kΣ(θ)(2di − di−1 + di+1) = θ(i mod l) − ka(2di − di−1 + di+1)

Passing back to the ki-notations, we get a′ = ka and

k′i = k(i mod l) + a

(⌊
i− 1
l

⌋
− k − 1

2 + k(d1−i − d−i)
)

for i = 1, . . . ,m− 1,m. (Here k′0 = k′m.)

Example 4.19. — Let us make the above formula explicit in the case
l = 1. In this case we have m = k. Then we get θ = θ0 = −a and θ[k] =
(−a,−a, . . .− a) (k times). This gives

θ′i = −a− ak(2di − di−1 − di+1),

for i ∈ Z/kZ.

k′i = a

(
i− k + 1

2 + k(d1−i − d−i)
)

for i = 1, . . . , k − 1, k. (Here k0 = kk.)

Example 4.20. — Assume l = 2, k = 2 and d = (0, 0). In this case c
is determined by (a, k0, k1) such that k0 + k1 = 0. Put k1 = b (and then
k0 = −b). Let us make the formulas for k′i explicit in this case. We have

k′0 = −b+ a/2,
k′1 = b− a/2,
k′2 = −b− a/2,
k′3 = b+ a/2.
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4.6. Recollection

We will rewrite here the statement of Theorem 2.11 with the help of the
combinatorics developed in this section. First, we will denote by Zc(l, 1, n)
the Calogero–Moser space associated with the complex reflection group
G(l, 1, n) and with the parameter c. Here, we label C×-fixed points using
Gordon’s convention, which differs from our usual convention by a twist
(see Proposition 4.14). Recall that (Ck)l[≡ n,6 n] is the set of l-tuples
γ = (γ0, . . . , γl−1) of k-cores such that

|γ| 6 n and |γ| ≡ n mod k.

If λ = (λ0, . . . , λl−1) ∈ P l[n] and Corek(λ) = γ = (γ0, . . . , γl−1), then we
define β[k,γ(λ) to be the m-partition µ = (µ0, µ1, . . . , µm−1) defined by

βk,γi(λi) = (µi+(k−1)l, . . . µi+l, µi)

for all i ∈ {0, 1, . . . , l− 1}. (In other words, we have β[k,γ(λ) = (βk,γ(λ[))[.)
Also, if λ ∈ P l[n], we denote by χ(l)

λ the associated irreducible character of
G(l, 1, n) and by z(l)

λ the C×-fixed point in Zc(l, 1, n) associated with χ(l)
λ

by [12, Corollary 5.8].

Theorem 4.21. — Assume that Zc(l, 1, n) is smooth and let (a, k0, k1,

. . . , kl−1) be the family of parameters associated with c as in Section 3.1.
Then Zc(l, 1, n)µkl is smooth (so its irreducible components coincide with
its connected components) and:

(a) There is a bijection γ 7→ Z(γ) between the set (Ck)l[≡ n,6 n]
and the set of irreducible components of Zc(l, 1, n)µkl such that
z

(l)
λ ∈ Z(γ) if and only if Corek(λ) = γ (for any λ ∈ P l[n]).

(b) Let γ ∈ (Ck)l[≡ n,6 n] and let r = (n − |γ|)/k. Then there is an
isomorphism of varieties

iγ : Zc′(lk, 1, r)
∼−→ Z(γ),

where c′ : Ref(G(lk, 1, r)) → C is the parameter associated with
the family (a′, k′0, k′1, . . . , k′kl−1) such that
a′ = ka,

k′j = k(j mod l)+a
(⌊
j−1
l

⌋
− k−1

2 +k(d1−j−d−j)
)
,

16j6m and k′0 =k′m,

which satisfies z(l)
(β[
k,γ

)−1(µ) = iγ
(
z

(kl)
µ

)
for all µ ∈ Pkl[r]. Here, d =

(di)i∈Z/klZ is defined by d = resm(ν) + rδm,where ν = (βl,∅)−1(γ)
is an m-core.

TOME 71 (2021), FASCICULE 2



674 Cédric BONNAFÉ & Ruslan MAKSIMAU

Corollary 4.22. — Let γ ∈ (Ck)l[≡ n,6 n] and let r = (n− |γ|)/k.

i∗γ : Z(CG(l, 1, n)) −→ Z(CG(kl, 1, r))

be the (surjective) morphism of algebras defined by

i∗γ(eχλ) =

eχβ[k,γ (λ)
if Corek(λ) = γ,

0 otherwise.

Then i∗γ(Fi(Z(CG(l, 1, n)))) ⊂ Fi(Z(CG(kl, 1, r))) for all i.

Remark 4.23. — Note that the statement of Corollary 4.22 involves only
the character theory of groups of type G(l, 1, n) and the combinatorics of
partitions. However, our proof relies on the geometric results on quiver vari-
eties proved here as well as the computation of the equivariant cohomology
of smooth Calogero–Moser spaces done in [5].
It is a natural question to ask whether such a result can be proved directly

by combinatorial methods.

5. Type G4

Hypothesis. — In this section, and only in this section, we assume that
V = C2, we identify GLC(V ) with GL2(C), we fix a primitive third root
of unity ω, we set

s =
(
ω 0
ω2 1

)
and t =

(
1 −ω2

0 ω

)
and we assume that W = 〈s, t〉, so that W is of type G4 in Shephard–Todd
classification. We denote by (y1, y2) the canonical basis of V and by (x1, x2)
its dual basis. We also set ρ = 1 + 2ω, so that ρ2 = −3.

In this case, we will check Conjecture F even if Zc is not smooth (and
for all elements σ ∈ GLC(V ) normalizing W , as any such elements belong
to C× ·W , as we will see in the proof below).

Theorem 5.1. — If W is of type G4, then Conjecture F holds.

Proof. — Let σ ∈ GL2(C) be of finite order and normalizing W . The
conjugacy class of s is

{s, t, sts−1, tst−1},
and is the unique conjugacy class of reflections of determinant ω. Since
σsσ−1 is a reflection of W of determinant ω, there exists w ∈W such that
wσ commutes with s. Since W acts trivially on Zc, we may, and we will,
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assume that σsσ−1 = s. Now, σtσ−1 belongs to this conjugacy class and is
different from s, so there exists i ∈ Z such that siσ commutes with t. So,
replacing σ by siσ, we may, and we will, assume that σ commutes with s
and t. In other words, σ is a root of unity.
Since Z(W ) ' µ2, we may also assume that the order of σ is even, equal

to 2d for some d > 2 (because the case d = 1 is obvious). Let Id denote the
ideal of Zc generated by the σ(z)− z, where z runs over a set of generators
of Zc. Then

(5.1) C[Zσ
c ] = Zc/

√
Id.

Let ζ denote the root of unity by which σ acts: then σ(z) − z = (ζl − 1)z
if z is homogeneous of Z-degree l. This shows that Id is generated by the
generators of Zc of degree not divisible by 2d. As we will see below, there
is a set of generators of Zc whose Z-degrees belong to the interval [−6, 6].
So, if d > 4, then Zσ

c = ZC×
c , so it is a finite set and then Conjecture F is

checked in this case. So we may assume that d ∈ {2, 3}.
Note that there is only one W -orbit of reflecting hyperplanes. So, as in

Example 1.2, we set

kj = 1
l

2∑
i=1

ω−i(j−1)csi ,

so that k0 + k1 + k2 = 0.
In [6], Thiel and the first author have provided algorithms for computing

presentations of the algebra Zc, and such algorithms have been included
in the MAGMA package CHAMP developed by Thiel [19] (about the MAGMA
software, see [7]). These algorithms provide an explicit presentation of the
center Zc given as follows:

• Generators:
Y1, Y2, X1, X2, eu, A,B,D;

• Relations:

eu4 +4ρY1X1 −AB + 3ρ euD + 18(k2
1 + k1k2 + k2

2) eu2(Z1)

+ 756(k2
1k2 + k1k

2
2) eu = 0

ρ eu3A− 4X1 euB −DA− ρY1X2 − 30ρ(k2
1 + k1k2 + k2

2) euA(Z2)

− 108ρ(k2
1k2 + k1k

2
2)A = 0

Y2A− euB2 + ρY1D + 54(k2
1 + k1k2 + k2

2)Y1 eu(Z3)

− 324(k2
1k2 + k1k

2
2)Y1 = 0
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ρ eu3B − 4X1Y2 − ρY1 euA−BD − 30ρ(k2
1 + k1k2 + k2

2) euB(Z4)

− 108ρ(k2
1k2 + k1k

2
2)B = 0

euA2 − 4X1D −X2B + 72ρ(k2
1 + k1k2 + k2

2)X1 eu(Z5)

− 432ρ(k2
1k2 + k1k

2
2)X1 = 0

Y2 eu3 +3Y 2
1 A− 3Y1 eu2B −B3 + 3ρY2D(Z6)

+ 144(k2
1 + k1k2 + k2

2)Y1B + 18(k2
1 + k1k2 + k2

2)Y2 eu

+ 756(k2
1k2 + k1k

2
2)Y2 = 0

4ρX1 eu2A−A3 − 16X2
1B +X2 eu3 +3ρX2D(Z7)

+ 18(k2
1 + k1k2 + k2

2)X2 eu−192ρ(k2
1 + k1k2 + k2

2)X1A

+ 756(k2
1k2 + k1k

2
2)X2 = 0

eu6 +4ρY1X1 eu2 +2ρD eu3−Y2X2 +D2 − 36(k2
1 + k1k2 + k2

2) eu4(Z8)

+ 12ρ(k2
1 + k1k2 + k2

2) euD + 216ρ(k2
1k2 + k1k

2
2)D

+ 1080(k2
1k2 + k1k

2
2) eu3 +1620(k2

1 + k1k2 + k2
2)2 eu2

− 3888(k2
1k2 + k1k

2
2)(k2

1 + k1k2 + k2
2) eu−34992(k2

1k2 + k1k
2
2)2 = 0

ρY1A
2 +4X1B

2 +4 eu3D−ρY2X2 +4ρD2−24ρ(k2
1 +k1k2 +k2

2) eu4(Z9)

− 288(k2
1 + k1k2 + k2

2) euD − 576(k2
1 + k1k2 + k2

2)Y1X1

+ 2160ρ(k2
1 + k1k2 + k2

2)2 eu2 +432ρ(k2
1k2 + k1k

2
2) eu3

− 864(k2
1k2 + k1k

2
2)D + 20736ρ(k2

1k2 + k1k
2
2)(k2

1 + k1k2 + k2
2) eu

+ 46656ρ(k2
1k2 + k1k

2
2)2 =0

The generators have Z-degrees given by the following map

(Y1, Y2, X1, X2, eu, A,B,D) 7−→ (−4,−6, 4, 6, 0, 2,−2, 0).

Moreover, in this presentation,C[V ]W =C[X1, X2] and C[V ∗]W =C[Y1,Y2].
We can deduce from this that Zc is smooth if and only if

(5.2) k0k1k2(k0 − k1)(k0 − k2)(k1 − k2) 6= 0.

First case: assume that d = 2. — In this case, the above presentation
shows that, whenever (5.2) holds, then Zσ

c has four irreducible components
X , p, q and r where X has dimension 2 and is isomorphic to

(5.3) X ' {(x, y, e) ∈ C3 | e(e− 12k0)(e− 12k1)(e− 12k2) = xy},

and p, q and r are three points (which belong to ZC×
c ). If (5.2) does not

hold, then Zσ
c still contains an irreducible component of dimension 2 with

ANNALES DE L’INSTITUT FOURIER



FIXED POINTS IN SMOOTH CALOGERO–MOSER SPACES 677

the same description as above, and a few other isolated points (the number
depends on the exact values of the ki). By Remark 1.4, we only need to
consider the irreducible component X . But it follows from (5.3) and Exam-
ple 1.2 that then X is isomorphic to the Calogero–Moser associated with
a cyclic group of order 4 acting on a one-dimensional space: as there is an
element w of order 4 in W , one can choose for V ′ an eigenspace of w and
for W ′ the cyclic group 〈w〉 and Conjecture F is checked in this case (note
also that the map c 7→ c′ is linear).
Second case: assume that d = 3. — In this case, the above presentation

shows that, whenever (5.2) holds, then Zσ
c has two irreducible components

X and p where X has dimension 2 and is isomorphic to

(5.4) X '
{

(x, y, e) ∈ C3
∣∣∣∣(e+ 6k0)(e+ 6k1)(e+ 6k2)
× (e− 12k0)(e− 12k1)(e− 12k2) = xy

}
,

and p is a point (which belongs to ZC×
c ). If (5.2) does not hold, then

Zσ
c still contains an irreducible component of dimension 2 with the same

description as above, and maybe one extra point according to the values of
the ki. By Remark 1.4, we only need to consider the irreducible component
X . But it follows from (5.4) and Example 1.2 that then X is isomorphic
to the Calogero–Moser associated with a cyclic group of order 6 acting on
a one-dimensional space: as −s ∈ W is of order 6, one can choose for V ′
the ω-eigenspace of s and for W ′ the cyclic group 〈−s〉 and Conjecture F
is checked in this case (note also that the map c 7→ c′ is linear). �
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