
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org

Toshiyuki Kobayashi & Michael Pevzner
Inversion of Rankin–Cohen operators via Holographic
Transform
Tome 70, no 5 (2020), p. 2131-2190.
<http://aif.centre-mersenne.org/item/AIF_2020__70_5_2131_0>

© Association des Annales de l’institut Fourier, 2020,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2020__70_5_2131_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
70, 5 (2020) 2131-2190

INVERSION OF RANKIN–COHEN OPERATORS VIA
HOLOGRAPHIC TRANSFORM

by Toshiyuki KOBAYASHI & Michael PEVZNER (*)

Abstract. — The analysis of branching problems for restriction of representa-
tions brings the concept of symmetry breaking transform and holographic trans-
form. Symmetry breaking operators decrease the number of variables in geometric
models, whereas holographic operators increase it. Various expansions in classical
analysis can be interpreted as particular occurrences of these transforms. From
this perspective we investigate two remarkable families of differential operators:
the Rankin–Cohen operators and the holomorphic Juhl conformally covariant op-
erators. Then we establish for the corresponding symmetry breaking transforms
the Parseval–Plancherel type theorems and find explicit inversion formulæ with
integral expression of holographic operators.

The proof uses the F-method which provides a duality between symmetry break-
ing operators in the holomorphic model and holographic operators in the L2-model,
leading us to deep links between special orthogonal polynomials and branching laws
for infinite-dimensional representations of real reductive Lie groups.
Résumé. — L’analyse des problèmes de branchement des restrictions des repré-

sentations fait émerger le concept de transformation de brisure de symétrie et celui
de transformation holographique. Les opérateurs de brisure de symétrie diminuent
le nombre de variables dans les modèles géométriques tandis que les opérateurs
holographiques l’augmentent. Plusieurs développements en série ou intégrale de
l’analyse classique sont des cas particuliers de telles transformations.

Dans cette perspective, nous étudions deux familles remarquables d’opérateurs
différentiels: les opérateurs de Rankin–Cohen et les opérateurs conformément co-
variants de Juhl. Nous établissons alors des théorèmes de type Parseval–Plancherel
pour les transformations de brisure de symétrie associées et trouvons des formules
intégrales explicites pour les opérateurs holographiques correspondants.
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1. Introduction

Let π be an irreducible representation of a group G on a vector space
V , and G′ a subgroup. The G-module (π, V ) may be seen as a G′-module
by restriction, for which we write π|G′ . For an irreducible representation
(ρ,W ) of the subgroup G′, a symmetry breaking operator is a (continuous)
linear map V → W which intertwines π|G′ and ρ. In recent years individ-
ual symmetry breaking operators have been studied intensively in different
settings ranging from automorphic form theory to conformal geometry,
see [2, 3, 6, 9, 16, 19, 20, 25] and references therein.

In this article, we investigate a collection of symmetry breaking opera-
tors,

R` : V −→W`, ` ∈ Λ,
referred to as a symmetry breaking transform, for a family of irreducible
representations ρ` of the subgroup G′ on vector spaces W` with parameter
` ∈ Λ.

Various expansions in classical analysis can be interpreted through this
paradigm:

Example 1.1 (GLn ↓ GLn−1). — Arranging homogeneous polynomials
of x = (x1, · · · , xn) in descending order with respect to the power of xn is
an example of symmetry breaking transform for (G,G′) = (GLn, GLn−1).
In fact, taking the `th component in the expansion

f(x) =
k∑
`=0

f`(x′)xk−`n , for x′ = (x1, · · · , xn−1)

defines a G′-homomorphism from V := Polk[x] to W` := Pol`[x′] on which
G and G′, respectively, act irreducibly.

Traditional representation-theoretic viewpoint tells that the Fourier se-
ries expansion or Fourier transform is the irreducible decomposition of the
regular representation of the abelian group G′ = S1 or R, whereas we make
use of a hidden symmetry of the noncommutative group G = SL(2,R) in
the sense that G contains G′ as a subgroup and that G acts on the space of
functions on S1 or R. The latter viewpoint brings us a new interpretation
of the (classical) Fourier series or Fourier transform in the framework of
“symmetry breaking” as follows.

Example 1.2. — A spherical principal series representation πλ of G =
SL(2,R) is realized on the vector space of homogeneous functions

Vλ :=
{
f ∈ C∞

(
R2 \ {(0, 0)}

)
: f(ax, ay) = |a|λf(x, y) for all a ∈ R×

}
.

ANNALES DE L’INSTITUT FOURIER
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This representation is irreducible for all λ ∈ C \ Z.
• (Fourier series) The representation πλ of SL(2,R) can be realized
in C∞(S1) via the identification

Vλ
∼→ C∞(S1) , f(x, y) 7→ h(θ) := f(cos θ, sin θ) ,

because any homogeneous function is determined by its restriction
to the unit circle S1. Since S1 is preserved by the subgroup G′

:= SO(2), the collection of the Fourier coefficients

Vλ
∼−→ C∞

(
S1) −→ Map(Z,C),

f 7→ h 7→ ĥ(`) := 1
2π

∫ 2π

0
h(θ)e−i`θdθ, ` ∈ Z

gives a symmetry breaking transform from the infinite-dimensional
representation (πλ, Vλ) of G = SL(2,R) to the collection of one-
dimensional representations χ` of the abelian subgroup G′ = SO(2)
' S1 indexed by ` ∈ Z.

• (Fourier transform) Similarly, any function f(x, y) ∈ Vλ is deter-
mined by its restriction to the real line y = 1, which is preserved
by the unipotent subgroup

G′′ :=
{(

1 ξ

0 1

)
: ξ ∈ R

}
(' R) .

Thus the Fourier transform

L1(R) −→ C(R), F 7→ (FF )(ξ) :=
∫
R
F (x)e−ixξdx,

induces another symmetry breaking transform for the pair (G,G′′) =
(SL(2,R),R).

Example 1.3 (spherical harmonics). — Expansion of functions on Sn by
eigenfunctions of the Laplacian ∆Sn corresponds to a symmetry breaking
transform from a spherical principal series representation π of G = SO(n+
1, 1) to a collection of irreducible finite-dimensional representations of the
compact subgroup G′ = O(n+ 1).

Reversing the arrows in the definition of a symmetry breaking operator
R` : V → W`, we consider a G′-homomorphism Ψ` : W` → V , going from
smaller to larger representation space, and thus referred to as a holographic
operator. As in the case of symmetry breaking, the collection of holographic
operators {Ψ`} is said to be a holographic transform.

Gy V
R` // W`
Ψ`
oo x G′.

TOME 70 (2020), FASCICULE 5
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To illustrate a holographic transform by an example with both V and W`

being infinite-dimensional, we recall that the classical Poisson integral (see
e.g. [10, Section 0])

Pν : Cc(R) −→ C∞(Π)

h(t) 7→ (Pνh)(x, y) =
∫ ∞
−∞

yν

((x− t)2 + y2)ν h(t)dt

constructs eigenfunctions of the Laplace–Beltrami differential operator
∆ = y2( ∂2

∂x2 + ∂2

∂y2 ) for the eigenvalue ν(ν − 2) on the upper-half plane
Π endowed with Poincaré metric. The group SL(2,R) acts isometrically on
Π and conformally on its boundary. Traditionally, the Poisson integral was
treated in the context of representations of SL(2,R), however, we high-
light the fact that the totality of functions on Π admits a larger symmetry
because the group SL(2,C) acts on the conformal compactification of Π.
Thus the Poisson integral can be interpreted as a particular occurrence of a
holographic operator for the pair (G,G′) = (SL(2,C), SL(2,R)) as below.

Example 1.4 (Poisson integral). — A generic symmetry breaking opera-
tor Aλ,ν from the spherical principal series representation πλ of G

= SL(2,C) on C∞(S2) to the one $ν of the subgroup G′ = SL(2,R)
on C∞(S1) takes the following form (see [20, (7.2)]):

Aλ, ν : C∞c (R2) −→ C∞(R),

f(x, y) 7→ (Aλ, νf)(x) =
∫
R2
f(t, y)Kλ, ν(x− t, y)dtdy

in the flat coordinates where Kλ,ν is a distributional kernel given by

(1.1) Kλ, ν(x, y) =
(
x2 + y2)−ν |y|λ+ν−2.

Then the dual map of Aλ,ν yields a holographic operator Ψλ,ν with the
formula

g(t) 7→ (Ψλ, νg) (x, y) :=
∫
R
g(t)Kλ, ν(x− t, y)dt.

Thus the (classical) Poisson integral Pν can be viewed as the restriction of
the holographic operator Ψλ, ν with λ = 2, namely, Pν = RestΠ ◦Ψ2,ν .

With these interpretations of classical examples in mind, we raise the
following two general problems for a symmetry breaking transform R(v)
= {R`(v)}`∈Λ, where R` : V −→ W`(` ∈ Λ), are symmetry breaking oper-
ators:

Problem A. — Can we recover an element v of V from its symmetry
breaking transform R(v) = {R`(v)}`∈Λ?

ANNALES DE L’INSTITUT FOURIER
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Problem A includes the following subproblems:

(A.0.) Tell a priori if Λ is sufficiently large for R to be injective.
(A.1.) Construct a “holographic transform”.
(A.2.) Find an explicit inversion of the symmetry breaking transform R.

When V is a Hilbert space on which G acts unitarily, we also ask for a
Parseval–Plancherel type theorem for the symmetry breaking transform:

Problem B. — Find a closed formula for the norm of an element v in
V in terms of its symmetry breaking transform {R`(v)}`∈Λ.

In this article, we investigate Problems A and B in the following two
cases:

• Rankin–Cohen transform (Section 2);
• Holomorphic Juhl transform (Section 3).

In both cases, the transform is a collection of holomorphic differential op-
erators between complex manifolds: the first case is associated with the
family of the Rankin–Cohen operators that appeared in the theory of holo-
morphic modular forms [3], whereas the second case originated from Juhl’s
conformally covariant operators [9].
These transforms can be analyzed in the framework of infinite dimen-

sional representations of Lie groups, namely, the decomposition of the ten-
sor product of two holomorphic discrete series representations of SL(2,R)
in the first case, and the branching laws of holomorphic discrete series rep-
resentations of the conformal Lie group G = SOo(2, n) when restricted to
a subgroup G′ = SOo(2, n− 1), in the second case.
The main goal here is to give a solution to Problems A and B for the

above two transforms. We provide two types of integral expressions as a
solution to Problem A.1., see Theorems 2.2 and 3.10. The main results are
summarized as below.

The key idea of our approach is to introduce “special orthogonal polyno-
mials” {P`} associated to symmetry breaking operators. This can be done
via the F-method, which we developed in [18, 19], that analyzes the rep-
resentations through the Fourier transform of their geometric realizations.
In this article, we show for the Rankin–Cohen bidifferential operators {R`}
that the polynomials {P`} are the Jacobi polynomials and that the holo-
graphic operators are given by the Jacobi transforms along the transversal
direction to a codimension-one foliation of the symmetric cone (Section 2);
for the holomorphic Juhl operators {R`}, the holographic operators are as-
sociated to the Gegenbauer polynomials {P`} (Section 3). Thus Problems A

TOME 70 (2020), FASCICULE 5
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G ⊃ G′ SL2 × SL2 ⊃ SL2 SOo(2, n) ⊃ SOo(2, n− 1)

Problem A1
construction of Theorem 2.2 Theorem 3.10

holographic transform
Problem A2

inversion of symmetry Theorem 2.5 Theorem 3.2
breaking transform

Problem B
L2-theory for Theorem 2.7 Theorem 3.2

and B for symmetry breaking transforms can be studied as questions on
special orthogonal polynomials via the F-method.
The table below shows some new links which the F-method provides

between representations and special functions in this setting.

Symmetry breaking operators {R`} Special orthogonal polynomials {P`}

G′-intertwining property hypergeometric differential equations

operator norm of R` L2-norm of P`

branching law π|G′ L2-completeness of {P`}

holographic transform
(
L2 −model

)
integral transform associated to {P`}

Analogously to the classical Poisson transform (Example 1.4), the holo-
graphic transform provides an integral expression of eigenfunctions of cer-
tain holomorphic differential operator. We illustrate this idea with the ex-
ample of the Rankin–Cohen operators, see Theorem 2.30 which is proved
as a byproduct of the main results.

In Section 4 we discuss the background of Problems A and B from a
viewpoint of the representation theory of real reductive Lie groups.

Notation. — N = {0, 1, 2, · · · }, i =
√
−1 (imaginary unit), (x)k

= x(x + 1)(x + 2) · · · (x + k − 1) for k ∈ N (Pochhammer symbol), and
[x] is the largest integer that does not exceed x ∈ R.

ANNALES DE L’INSTITUT FOURIER
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2. Rankin–Cohen transform and its holographic transform

The Rankin–Cohen bidifferential operators map functions of two vari-
ables to those of one variable, respecting twisted actions of SL(2,R). In
this section, we solve Problems A and B stated in Section 1 for the Rankin–
Cohen transform (Definition 2.4), a collection of such operators.

2.1. Rankin–Cohen bidifferential operators

We begin with a quick review of the Rankin–Cohen bidifferential opera-
tors.

2.1.1. Holomorphic discrete series representations of SL(2,R)˜
Let Π = {z = x + iy ∈ C : x ∈ R, y > 0} be the upper half-plane,

and O(Π) the space of holomorphic functions on Π. For λ ∈ Z we define a
representation πλ of SL(2,R) on O(Π) by

πλ(g)f(z) = (cz + d)−λf
(
az + b

cz + d

)
for g−1 =

(
a b

c d

)
.

Viewed as a representation of the universal covering group SL(2,R) ,̃ the
representation πλ is well-defined for all λ ∈ C. There is a canonical perfect
pairing between (πλ,O(Π)) and the Verma module

M−λ := U(gC)⊗U(b) C−λ,

where U(gC) denotes the universal enveloping algebra of gC = sl(2,C) and
b is a Borel subalgebra containing kC = so(2,C). Therefore, (πλ,O(Π)) is
irreducible if and only if λ ∈ C\(−N) because the g-moduleMν is reducible
if and only if ν ∈ N.

Let p : SL(2,R)˜→ SL(2,R) be the covering homomorphism, and set
SO(2)˜= p−1(SO(2)). For every λ ∈ C, we can form a homogeneous holo-
morphic line bundle Lλ over Π ' SL(2,R) /̃SO(2)˜associated to a charac-
ter Cλ of SO(2) ,̃ and the multiplier representation (πλ,O(Π)) is equivalent
to the natural action of SL(2,R)˜ on the space O(Π,Lλ) of holomorphic
sections of Lλ.

TOME 70 (2020), FASCICULE 5
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2.1.2. Holomorphic model H2(Π)λ

For λ > 1 the weighted Bergman spaceH2(Π)λ := (O∩L2)(Π, yλ−2dxdy)
is nonzero, and the Hilbert space H2(Π)λ admits a reproducing kernel
Kλ(z, w) = λ−1

4π
(
z−w̄

2i
)−λ, see [5, Proposition XIII.1.2]. The representation

(πλ,O(Π)) yields an irreducible unitary representation of SL(2,R)˜ on
H2(Π)λ, which descends to SL(2,R) when λ ∈ Z. The set of equivalence
classes of irreducible unitary representations (unitary dual) of SL(2,R)
contains a family of those with continuous parameter (e.g. principal se-
ries representations, complementary series representations), whereas πλ
(λ = 2, 3, · · · ) form a countable family of irreducible unitary represen-
tations realized in the kernel of the Cauchy–Riemann operator. Thus πλ
(λ = 2, 3, · · · ) is referred to as a holomorphic discrete series representations
of SL(2,R), and πλ (λ > 1) as a relative holomorphic discrete series repre-
sentation of the covering group SL(2,R) .̃ We call the realization onH2(Π)λ
holomorphic model of the representation πλ. Similarly, the direct product
group SL(2,R) ×̃SL(2,R)˜ acts on H2(Π×Π)(λ′,λ′′) ' H2(Π)λ′⊗̂H2(Π)λ′′
as an irreducible unitary representation if λ′, λ′′ > 1, where ⊗̂ stands for
the completion of the algebraic tensor product.
We shall deal with another realization (L2-model) of the same represen-

tation πλ in Section 2.6.2.

2.1.3. Rankin–Cohen bidifferential operators

Consider λ′, λ′′, λ′′′ ∈ C such that ` := 1
2 (λ′′′ − λ′ − λ′′) ∈ N and define

a differential operator Rλ′′′λ′,λ′′ : O(Π×Π) −→ O(Π×Π) by

(2.1) Rλ
′′′

λ′,λ′′(f)(ζ1, ζ2)

:=
∑̀
j=0

(−1)j
(λ′ + `− j)j (λ′′ + j)`−j

j!(`− j)!
∂`f

∂ζ`−j1 ∂ζj2
(ζ1, ζ2).

The Rankin–Cohen bidifferential operator is a linear map

RCλ
′′′

λ′,λ′′ : O(Π×Π) −→ O(Π),

defined by RCλ′′′
λ′,λ′′ := Rest ◦Rλ′′′

λ′,λ′′ , where Rest stands for the restriction
map f(ζ1, ζ2) 7→ f(ζ, ζ) to the diagonal.
The Rankin–Cohen bidifferential operator RCλ′′′

λ′,λ′′ is a symmetry break-
ing operator from the tensor product representation πλ′⊗̂πλ′′ to πλ′′′ with
respect to the diagonal embedding SL(2,R)˜↪→ SL(2,R) ×̃SL(2,R) ,̃ and

ANNALES DE L’INSTITUT FOURIER
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such a symmetry breaking operator is unique up to scalar multiplication
for generic parameters (see [19, Corollary 9.3] for the precise condition).
Moreover, RCλ′′′

λ′,λ′′ induces a continuous map from the weighted Bergman
space H2(Π × Π)(λ′,λ′′) to H2(Π)λ′′′ if λ′, λ′′ > 1 ([18, Theorem 5.13], see
also Proposition 2.27 below for an explicit formula of its operator norm).

2.2. Notations and two constants c`(λ′, λ′′) and r`(λ′, λ′′)

The parameter set in Section 2 is (λ′, λ′′, λ′′′) ∈ C3 with λ′′′ − λ′ − λ′′
∈ 2N. Throughout this section, we use the following notation:

(2.2) α = λ′ − 1, β = λ′′ − 1, 2` = λ′′′ − λ′ − λ′′.

The main results involve the following two constants

(2.3)
c ≡ c`(λ′, λ′′) := 1

2α+β+1

∫ 1

−1

∣∣∣Pα,β` (v)
∣∣∣2 (1− v)α(1 + v)βdv

= Γ(λ′ + `)Γ(λ′′ + `)
(λ′ + λ′′ + 2`− 1)Γ(λ′ + λ′′ + `− 1)`! ,

(2.4)
r ≡ r`(λ′, λ′′) := b(λ′′′)

b(λ′)b(λ′′)

= Γ(λ′ + λ′′ + 2`− 1)
22`+2πΓ(λ′ − 1)Γ(λ′′ − 1) ,

where Pα, β` (v) is the Jacobi polynomial (see (5.4) in Appendix), and b(λ)
= 22−λπΓ(λ−1) is a Plancherel density (see Fact 2.9 below). We note that
c`(λ′, λ′′) 6= 0 if Reλ′,Reλ′′ > 0 and ` ∈ N.

2.3. Integral formula for holographic operators

In this section, we introduce integral transforms Ψλ′′′

λ′,λ′′ (holographic op-
erator) that realize irreducible summands in the tensor product represen-
tations πλ′⊗̂πλ′′ .

2.3.1. Construction of holographic operators for the tensor product

TOME 70 (2020), FASCICULE 5



2140 Toshiyuki KOBAYASHI & Michael PEVZNER

Definition 2.1 (holographic operators). — For λ′, λ′′, λ′′′ ∈ C we set
` := 1

2 (λ′′′ − λ′ − λ′′). Assume that

(2.5) <(λ′ + `) > 0, <(λ′′ + `) > 0, and ` ∈ N.

For a holomorphic function g on the upper half plane Π, we define a holo-
morphic function on Π×Π by the line integral:

(2.6)
(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2) := (ζ1 − ζ2)`

2λ′+λ′′+2`−1`!

×
∫ 1

−1
g

(
(ζ2 − ζ1)v + (ζ1 + ζ2)

2

)
(1− v)λ

′+`−1(1 + v)λ
′′+`−1dv.

We note that the set { (ζ2−ζ1)v+(ζ1+ζ2)
2 : −1 6 v 6 1} is the line segment

connecting the two points ζ1 and ζ2 in Π.

2.3.2. Basic properties of Ψλ′′′

λ′,λ′′

The integral transform Ψλ′′′

λ′,λ′′ in (2.6) provides a holographic operator
in the following sense:

Theorem 2.2 (holographic operator in the upper half plane). — Sup-
pose λ′, λ′′, λ′′′ ∈ C satisfy (2.5).

(1) The map Ψλ′′′

λ′,λ′′ : O(Π) −→ O(Π × Π) intertwines the action of
SL(2,R)˜from πλ′′′ to the tensor product representation πλ′⊗̂πλ′′ .

(2) Moreover, if both λ′ and λ′′ are real and greater than 1, then the
linear map Ψλ

′′′
λ′,λ′′ induces an isometric embedding (up to rescaling)

of the weighted Bergman space:

H2(Π)λ′′′ −→ H2(Π×Π)(λ′,λ′′).

The image of the holographic operator Ψλ
′′′
λ′,λ′′ is characterized by a differ-

ential equation of second order on Π×Π associated to the Casimir element
under the diagonal action, see Theorem 2.30. For λ′, λ′′ > 1, the operator
Ψλ
′′′
λ′,λ′′ is a scalar multiple of the adjoint (RCλ

′′′
λ′,λ′′ )

∗ of the Rankin–Cohen bi-
differential operator RCλ′′′

λ′,λ′′ (see Proposition 2.22), and its operator norm
is given in Theorem 2.7(2).
Theorem 2.2 will be proved in Section 2.7.6.

Remark 2.3. — In Section 3, we introduce relative reproducing kernels
to construct irreducible summands in the holomorphic model. The integral
formula given there (see Theorem 3.10) is different from the one intro-
duced in Definition 2.1. The advantage of the definition (2.6) is that the
holographic operator Ψλ

′′′
λ′,λ′′ is defined also for the nonunitary case, see The-

orem 2.2(1).

ANNALES DE L’INSTITUT FOURIER
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2.4. The Rankin–Cohen transform and its inversion

In this section we introduce the Rankin–Cohen transform RCλ′,λ′′ as the
collection of individual operators RCλ′′′

λ′,λ′′ for fixed λ′ and λ′′. Its inversion
formula is proved in Theorem 2.5 by using the holographic operators, giving
a solution to Problem A in Section 1.

Definition 2.4 (Rankin–Cohen transform). — For λ′, λ′′ ∈ C, the Ran-
kin–Cohen transform RCλ′,λ′′ is a linear map

(2.7) RCλ′,λ′′ : O(Π×Π) −→ Map(N,O(Π)), f 7→ (` 7→ RCλ′,λ′′(f)`)

defined by
(RCλ′,λ′′(f))` := RCλ

′+λ′′+2`
λ′,λ′′ f for ` ∈ N .

The Rankin–Cohen transform RCλ′,λ′′ intertwines (πλ′⊗̂πλ′′ ,O(Π×Π))
with the formal direct sum

⊕̂
`∈N(πλ′+λ′′+2`,O(Π)), and can be inverted

by using the integral operators Ψλ
′′′
λ′,λ′′ as follows.

Theorem 2.5 (inversion of the Rankin–Cohen transform). — Suppose
λ′, λ′′ > 1. Then for any f ∈ H2(Π)λ′⊗̂H2(Π)λ′′ one has

f =
∞∑
`=0

1
c`(λ′, λ′′)

Ψλ′+λ′′+2`
λ′,λ′′ (RCλ′,λ′′(f))` .

Theorem 2.5 will be proved in Section 2.8.6.

2.5. Parseval–Plancherel type theorem for the Rankin–Cohen
transform and its holographic transform

In this section we develop an L2-theory for the Rankin–Cohen transform
(Definition 2.4) and for the holographic transform (Theorem 2.7(2)), thus
providing an answer to Problem B for these two transforms.

2.5.1. Weighted Hilbert sums

In order to formulate the Parseval–Plancherel type theorem, we fix some
notations for the Hilbert direct sum.

Definition 2.6 (weighted Hilbert sum). — Let{V`}`∈N be a family of
Hilbert spaces and {a`}`∈N a sequence of positive numbers. The Hilbert
sum

⊕∑
`∈N

V`

TOME 70 (2020), FASCICULE 5
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associated to the weights {a`}`∈N is the Hilbert completion of the algebraic
direct sum

⊕
`∈N

V` equipped with the pre-Hilbert structure given by

(v, v′) :=
∞∑
`=0

a`(v`, v′`)V` for v = (v`)`∈N and v′ = (v′`)`∈N .

2.5.2. Parseval–Plancherel type theorem

For λ′, λ′′ > 1 the bidifferential operators RCλ′′′
λ′,λ′′ extend to a continu-

ous map between Hilbert spaces. Now, we formulate a Parseval–Plancherel
type theorem for the Rankin–Cohen transform as well as the “holographic
transform”, hence answer Problem B for these transforms.

Theorem 2.7 (Parseval–Plancherel theorem). — Suppose λ′, λ′′ > 1.
(1) The Rankin–Cohen transform RCλ′,λ′′ (Definition 2.4) induces an

SL(2,R) -̃equivariant unitary operator

H2(Π)λ′⊗̂H2(Π)λ′′
∼−→
∑
`∈N

⊕
H2(Π)λ′+λ′′+2`

to the Hilbert sum associated to weights{
1

r`(λ′, λ′′)c`(λ′, λ′′)

}
`∈N

.

Thus, for every f ∈ H2(Π)λ′⊗̂H2(Π)λ′′ ,

‖f‖2H2(Π)λ′ ⊗̂H2(Π)λ′′

=
∞∑
`=0

1
r`(λ′, λ′′)c`(λ′, λ′′)

∣∣(RCλ′,λ′′(f))`
∣∣2
H2(Π)λ′+λ′′+2`

.

(2) Collecting the holographic operators Ψλ
′′′
λ′,λ′′ , we define the holo-

graphic transform

Ψλ′,λ′′ :
⊕
`∈N
H2(Π)λ′+λ′′+2`−→H2(Π)λ′⊗̂H2(Π)λ′′

by

Ψλ′,λ′′ :=
∞⊕
`=0

Ψλ′+λ′′+2`
λ′,λ′′ .

Then Ψλ′,λ′′ induces an SL(2,R) -̃equivariant unitary operator
∞∑
`=0

⊕H2(Π)λ′+λ′′+2`
∼−→ H2(Π)λ′⊗̂H2(Π)λ′′
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from the Hilbert sum associated to the weights { c`(λ
′,λ′′)

r`(λ′,λ′′)}`∈N.
Thus,

‖Ψλ′,λ′′g‖2H2(Π)λ′ ⊗̂H2(Π)λ′′
=
∞∑
`=0

c`(λ′, λ′′)
r`(λ′, λ′′)

‖g`‖2H2(Π)λ′+λ′′+2`

for g = (g`)`∈N.

Theorem 2.7 will be proved in Section 2.8.5. It gives quantitative infor-
mation on the classical branching law (fusion rule) of the tensor product
of two holomorphic discrete series representations πλ′ and πλ′′ that de-
composes into a multiplicity-free direct Hilbert sum of irreducible unitary
representations when λ′, λ′′ > 1 [22, 23]:

(2.8) πλ′⊗̂πλ′′ '
∑
`∈N

⊕
πλ′+λ′′+2`.

The projection to each irreducible summand in the decomposition (2.8)
is given as the composition of the corresponding Rankin–Cohen operator
and the holographic operator in the holomorphic model. Thus Theorem 2.5
(and Proposition 2.22 below) shows the following corollary.

Corollary 2.8 (projection operator). — Suppose λ′, λ′′, λ′′′ > 1 and
` := 1

2 (λ′′′ − λ′ − λ′′) ∈ N. Then
1

c`(λ′, λ′′)
Ψλ′′′

λ′,λ′′ ◦ RC
λ′′′

λ′,λ′′ = 1
r`(λ′, λ′′)c`(λ′, λ′′)

(RCλ
′′′

λ′,λ′′)∗ ◦ RCλ
′′′

λ′,λ′′

is the projection operator of the Hilbert space H2(Π)λ′⊗̂H2(Π)λ′′ onto the
irreducible summand which is isomorphic to H2(Π)λ′′′ , see (2.8).

2.6. Holographic transform in the L2-model

By the Fourier–Laplace transform, the weighted Bergman space H2(Π)λ
realized in the space of holomorphic functions on the upper half plane
Π is mapped into the space of functions supported on the positive axis
R+, more precisely, onto the Hilbert space L2(R+, x

1−λdx), giving thus
rise to an L2-model of the same representation of SL(2,R)˜ (Fact 2.9).
We shall find closed formulæ for the symmetry breaking transform and the
holographic transform also in this model and give an answer to Problems A
and B, see Theorems 2.11, 2.14 and 2.16. The results in the L2-model give
a new interpretation of the classical theory of the Jacobi transform, and
also play a key role in proving the theorems for the holomorphic model, see
Section 2.7.
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2.6.1. L2-model of holomorphic discrete series

For λ > 1 we consider the Hilbert space L2(R+)λ := L2(R+, x
1−λdx).

Fact 2.9. — Suppose λ > 1. The Fourier–Laplace transform

F : F 7→ FF (ζ) :=
∫ ∞

0
F (z)eiζzdz,

is an isometry from L2(R+)λ onto the weighted Bergman space H2(Π)λ up
to scalar multiplication. To be precise, we have

‖FF‖2H2(Π)λ = b(λ)‖F‖2L2(R+)λ

for all F ∈ L2(R+)λ (see [5, Theorem XIII.1.1]), where

b(λ) := 22−λπΓ(λ− 1).

For λ > 1, via the unitary (up to scaling) map F : L2(R+)λ
∼−→ H2(Π)λ,

we define an irreducible unitary representation of SL(2,R)˜on L2(R+)λ,
which is referred to as the L2-model of the holomorphic discrete series
representation πλ.
We shall write

F1 ≡ F and F2 := F ⊗ F
in order to distinguish the framework of functions of one or two variables,
respectively, and we write, by abuse of notations,

(2.9) L2(R2
+)λ′,λ′′

:= L2
(
R+ × R+, x

1−λ′y1−λ′′dx dy
)
' L2(R+)λ′⊗̂L2(R+)λ′′ .

2.6.2. Construction of discrete summands in the L2-model

Via the Fourier–Laplace transform, we can define the counterpart for
the L2-model of the Rankin–Cohen bidifferential operator RCλ′′′

λ′,λ′′ and the
holographic integral operator Ψλ

′′′
λ′,λ′′ (2.6) by

R̂C
λ′′′

λ′,λ′′ :=F−1
1 ◦ RCλ

′′′

λ′,λ′′ ◦ F2.(2.10)

Ψ̂λ′′′

λ′,λ′′ :=F−1
2 ◦Ψλ′′′

λ′,λ′′ ◦ F1.(2.11)

We know from [18] that RCλ′′′
λ′,λ′′ is continuous between the weighted Berg-

man spaces, and so is R̂Cλ
′′′

λ′,λ′′ . In turn, Ψ̂λ
′′′
λ′,λ′′ is continuous between the

Hilbert spaces by (2.12) below, hence so is Ψλ
′′′
λ′,λ′′ . Alternatively, the conti-

nuity of Ψλ′′′

λ′,λ′′ is also given by that of another holographic operator Φλ
′′′
λ′,λ′′

introduced in Definition 2.10 (Proposition 2.25). The following commuta-
tive diagrams summarize these definitions:
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L2
(
R2

+, x
1−λ′y1−λ′′dxdy

)

R̂C
λ′′′

λ′,λ′′

&&

F2 //

�

��

H2
λ′(Π)⊗̂H2

λ′′(Π)

Rλ
′′′
λ′,λ′′

��
RCλ

′′′
λ′,λ′′

ww

L2
(
R2

+, x
1−λ′y1−λ′′dxdy

) F2 //

�

��

H2
λ′(Π)⊗̂H2

λ′′(Π)

Rest

��
L2
(
R+, z

1−λ′′′dz
)

F1

// H2
λ′′′(Π)

Figure 2.1. Symmetry breaking operators πλ′⊗̂πλ′′ � πλ′′′ for holo-
morphic and L2-models.

L2
(
R2

+, x
1−λ′y1−λ′′dxdy

) F2 //

�

H2
λ′(Π)⊗̂H2

λ′′(Π)

L2
(
R+, z

1−λ′′′dz
) F1 //

Ψ̂λ
′′′
λ′,λ′′=

(
c′Φλ

′′′
λ′,λ′′

) OO
H2
λ′′′(Π)

Ψλ
′′′
λ′,λ′′

(
=c′′
(
RCλ

′′′
λ′,λ′′

)∗)OO

Figure 2.2. Holographic operators πλ′′′ ↪→ πλ′⊗̂πλ′′ for holomorphic
and L2-models.

We shall give an explicit integral formula of the symmetry breaking op-
erator R̂Cλ

′′′

λ′,λ′′ in the L2-model in Proposition 2.13. On the other hand, we
observe the holographic operator in the L2-model has the following three
important characteristics:

(1) the Fourier transform Ψ̂λ′′′

λ′,λ′′ of the holographic operator Ψλ′′′

λ′,λ′′ ,
see (2.11);

(2) the adjoint of R̂Cλ
′′′

λ′,λ′′ (Proposition 2.19);
(3) the multiplication operator Φλ′′′λ′,λ′′ , see (2.13) below for definition.
These three approaches may be summarized as the following identities:

(2.12) Ψ̂λ′′′

λ′,λ′′ =
(
R̂C

λ′′′

λ′,λ′′

)∗
= i`Φλ

′′′

λ′,λ′′ ,

see Propositions 2.19 and 2.20. The third characteristic is remarkable as
it does not involve any integration or differentiation. For this reason, we

TOME 70 (2020), FASCICULE 5



2146 Toshiyuki KOBAYASHI & Michael PEVZNER

adopt it as our definition of holographic transform in the L2-model, see
Definition 2.10 below.
For α, β ∈ C and ` ∈ N, let Pα, β` (x) be the Jacobi polynomial of degree

`, see (5.3) in Appendix 5.

Definition 2.10. — Retain the setting that λ′, λ′′, λ′′′ ∈ C with `

:= 1
2 (λ′′′ − λ′ − λ′′) ∈ N. For a function h(z) of one variable z (z > 0), we

define a function of two variables x, y (x, y > 0) by

(2.13)
(

Φλ
′′′

λ′,λ′′h
)

(x, y)

:= xλ
′−1yλ

′′−1

(x+ y)λ′+λ′′+`−1P
λ′−1,λ′′−1
`

(
y − x
x+ y

)
· h(x+ y).

Theorem 2.11 (holographic operator in the L2-model). — Suppose
λ′, λ′′, λ′′′ > 1 such that ` := 1

2 (λ′′′ − λ′ − λ′′) ∈ N. Then, Φλ
′′′
λ′,λ′′ induces

an SL(2,R) -̃equivariant continuous homomorphism between the Hilbert
spaces:

Φλ
′′′

λ′,λ′′ : L2
(
R+, z

1−λ′′′dz
)
−→

(
R+, x

1−λ′dx
)
⊗̂L2

(
R+, y

1−λ′′dy
)
.

Theorem 2.11 will be proved in Section 2.7.5.

Remark 2.12. — Using the notation (2.18) below, we may also write:(
Φλ
′′′

λ′,λ′′h
)

(x, y) = (−1)` x
λ′−1yλ

′′−1

(x+ y)λ′′′−1 P̃
λ′−1,λ′′−1
` (x, y) · h(x+ y).

2.6.3. Symmetry breaking transform in the L2-model and its inversion

In this subsection, we give an inversion formula of the symmetry break-
ing operator R̂Cλ

′′′

λ′,λ′′ in the L2-model by using the holographic operators
Φλ
′′′
λ′,λ′′ (Definition 2.10). The symmetry breaking operator R̂Cλ

′′′

λ′,λ′′ was de-
fined originally as the Fourier transform of the Rankin–Cohen bidifferential
operator RCλ′′′

λ′,λ′′ (see (2.10)) but we give a simpler expression as an integral
operator (Jacobi transform).

Proposition 2.13. — Suppose λ′, λ′′ > 1 and ` ∈ N. Then for any
F ∈ Cc(R+ × R+), the following identity holds:(
R̂C

λ′+λ′′+2`
λ′,λ′′ F

)
(z) = z`+1

2i`

∫ 1

−1
Pλ
′−1,λ′′−1

` (v)F
(z

2(1− v), z2(1 + v)
)
dv.

See Section 2.7.3 for a proof.
Collecting the operators R̂Cλ

′′′

λ′,λ′′ , we define a symmetry breaking trans-
form
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(2.14) R̂Cλ′,λ′′ : L2(R+)λ′⊗̂L2(R+)λ′′ −→
∑
`∈N

⊕L2(R+)λ′+λ′′+2`

by (
R̂Cλ′,λ′′(F )

)
`

:= R̂C
λ′+λ′′+2`
λ′,λ′′ (F ) for ` ∈ N .

Then it can be inverted by using the holographic operators Φλ
′′′
λ′,λ′′ (Defini-

tion 2.10) as follows.

Theorem 2.14. — Suppose λ′, λ′′ > 1. Then for any element

F ∈ L2(R+)λ′⊗̂L2(R+)λ′′ ,

one has

F =
∞∑
`=0

i`

c`(λ′, λ′′)
Φλ
′+λ′′+2`
λ′,λ′′

(
R̂Cλ′,λ′′(F )

)
`
,

and

‖F‖2
L2(R+)λ′ ⊗̂L2(R+)λ′′

=
∞∑
`=0

1
c`(λ′, λ′′)

∥∥∥(R̂Cλ′,λ′′(F )
)
`

∥∥∥2

L2(R+)λ′+λ′′+2`

.

Theorem 2.14 will be proved in Section 2.8.7. It gives an answer to Prob-
lem A.2. and Problem B in the L2-model.

Remark 2.15. — The Jacobi transform (see e.g. [4, Chapter 15]) defined
by

H(v) 7→
(
Jα,β(H)

)
`

:=
∫ 1

−1
H(v)Pα,β` (v)(1− v)α(1 + v)βdv

is inverted by the following formula:

(2.15) H(v) =
∞∑
`=0

d`(α, β)
(
Jα,β(H)

)
`
Pα,β` (v),

where we set

d`(α, β) := `!(α+ β + 2`+ 1)Γ(α+ β + `+ 1)
2α+β+1Γ(α+ `+ 1)Γ(β + `+ 1)

= 1
2α+β+1c`(α+ 1, β + 1) .

By change of variables, we can see that Theorem 2.14 is equivalent to (2.15)
applied to

H(v) = (1− v)−α(1 + v)−βF
(z

2(1− v), z2(1 + v)
)

with α = λ′ − 1 and β = λ′′ − 1.
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2.6.4. Parseval–Plancherel type theorem for the holographic transform in
the L2-model

Collecting the holographic operators Φλ′′′λ′,λ′′ , we define the holographic
transform

(2.16) Φλ′,λ′′ :
⊕
`∈N

L2(R+)λ′+λ′′+2` −→ L2(R+)λ′⊗̂L2(R+)λ′′

by

Φλ′,λ′′ :=
∞⊕
`=0

Φλ
′+λ′′+2`
λ′,λ′′ .

This transform is the counterpart in the L2-model of the holographic
transform Ψλ′,λ′′ (Theorem 2.7(2)) defined in the holomorphic model.

Theorem 2.16. — Suppose λ′, λ′′ > 1 and ` ∈ N. Then, the holographic
transform Φλ′,λ′′ induces an SL(2,R) -̃equivariant unitary operator

∞∑
`=0

⊕L2(R+)λ′+λ′′+2`
∼−→ L2(R+)λ′⊗̂L2(R+)λ′′

subject to the following Parseval–Plancherel type formula:

‖Φλ′,λ′′h‖2L2(R2
+)λ′,λ′′

=
∞∑
`=0

c`(λ′, λ′′)‖h`‖2L2(R+)λ′+λ′′+2`
,

for h = (h`)`∈N with h` ∈ L2(R+)λ′+λ′′+2`.

Theorem 2.16 will be proved in Section 2.8.2.

2.6.5. Representation theoretic interpretation of the Plancherel density

The weights c`(λ′, λ′′) in the Plancherel formula (Theorem 2.16) are ob-
viously positive when λ′, λ′′ > 1. We discuss the zeros of the meromorphic
continuation of c`(λ′, λ′′) when we allow λ′ and λ′′ to wander outside the
region λ′, λ′′ > 1, so that πλ′ and πλ′′ may not be (relative) holomorphic
discrete series representations.
Assume furthermore that λ′, λ′′, λ′′′ ∈ Z such that ` := 1

2 (λ′′′ − λ′ − λ′′)
∈ N. Then the following four conditions on (λ′, λ′′, λ′′′) are equivalent
(see [19, Theorem 9.1]):

(i) c`(λ′, λ′′) = 0;
(ii) 2 > λ′ + λ′′ + λ′′′ and λ′′′ > |λ′ − λ′′|+ 2;
(iii) the Rankin–Cohen bilinear operator RCλ′′′

λ′,λ′′ vanishes;
(iv) dim Hom

SL(2,R)̃ (O(Π×Π,Lλ′ � Lλ′′),O(Π,Lλ′′′)) = 2.
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2.7. Proof of Theorems 2.2 and 2.11

In this section, we derive from the Rankin–Cohen bidifferential operators
RCλ

′′′

λ′,λ′′ the integral intertwining operators that embed irreducible repre-
sentations of SL(2,R)˜into the tensor product representations, and give a
proof of Theorems 2.2 and 2.11.
The key idea is to use symmetry breaking operators R̂Cλ

′′′

λ′,λ′′ in the L2-
model, which fits well into the F-method connecting the Rankin–Cohen
operators with the Jacobi polynomials. The scheme of the proof is summa-
rized in the following diagram:

(2.17) RCλ
′′′

λ′,λ′′

Proposition 2.13
��

Ψλ′′′

λ′,λ′′
Proposition 2.22oo (Theorem 2.2)

R̂C
λ′′′

λ′,λ′′Proposition 2.19
// Φλ′′′λ′,λ′′

Proposition 2.20

OO

(Theorem 2.11)

2.7.1. Jacobi polynomials and Rankin–Cohen bidifferential operators

We retain the notation and assumption that ` := 1
2 (λ′′′ − λ′ − λ′′) ∈ N.

The nature of the bidifferential symmetry breaking operator RCλ′′′
λ′,λ′′ is

explained in [19, Theorem 8.1] by the F-method, which we recall now.
We inflate the Jacobi polynomial Pα, β` (t) (see (5.3)) into a homogeneous
polynomial of degree ` by

(2.18) P̃α,β` (x, y) := (−1)`(x+ y)`Pα,β`

(
y − x
x+ y

)
=
∑̀
j=0

(−1)`−j(α+ β + `+ 1)j(α+ j + 1)`−j
(`− j)!j! (x+ y)`−jxj .

Then we have the following

Proposition 2.17. — Suppose ` := 1
2 (λ′′′ − λ′ − λ′′) ∈ N. Then the

Rankin–Cohen bidifferential operator RCλ′′′
λ′,λ′′ (see (2.1)) is given by

RCλ
′′′

λ′,λ′′ = Rest ◦Rλ
′′′

λ′,λ′′

with

(2.19) Rλ
′′′

λ′,λ′′ = P̃λ
′−1,λ′′−1

`

(
∂

∂ζ1
,
∂

∂ζ2

)
.
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Remark 2.18. — In [19, (9.9)], we gave a similar formula

(2.20) Rλ
′′′

λ′,λ′′ = Pλ
′−1,1−λ′′′

`

(
∂

∂ζ1
,
∂

∂ζ2

)
by using another two-variable function

Pα,β` (x, y) := y`Pα,β`

(
1 + 2x

y

)
.

Our expression (2.19) is symmetric with respect to the first and second
variables.

Proof of Proposition 2.17. — According to the first Kummer’s relation
for the hypergeometric function we get (see for instance [7, 8.962]):

Pα,β` (x) =
(

1 + x

2

)`
Pα,−α−β−2`−1
`

(
3− x
1 + x

)
,

and therefore

Pλ
′−1,1−λ′′′

` (1− 2s) = (1− s)`Pλ
′−1,λ′′−1

`

(
1 + s

1− s

)
.

Hence the right-hand sides of (2.19) and (2.20) are equal to each other. �

2.7.2. Coordinate change in the L2-model

For the study of symmetry breaking in the L2-model, we introduce the
following coordinates:

(2.21) ι : R+× (−1, 1) ∼−→ R2
+, (z, v) 7→ (x, y) :=

(z
2(1− v), z2(1 + v)

)
.

Then, ι is a diffeomorphism with dxdy = z
2dzdv. With the conven-

tion (2.2) in Section 2.2, we set

(2.22) M(z, v) ≡Mλ′,λ′′,λ′′′(z, v) := 2α+βz`+1(1− v)−α(1 + v)−β .

If (x, y) = ι(z, v), then we have

(2.23) z1−λ′′′

x1−λ′y1−λ′′M(z, v) = z−`,

(2.24) x1−λ′y1−λ′′dxdy = M(z, v)2z−α−β−λ
′′′

(1− v)α(1 + v)βdzdv,

whereas the holographic operator Φλ′′′λ′,λ′′ (see (2.13)) takes the form

(2.25)
(

Φλ
′′′

λ′, λ′′h
)
◦ ι(z, v) = M(z, v)−1Pα, β` (v)h(z).
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2.7.3. Fourier transform of the Rankin–Cohen bidifferential operators

We are ready to prove Proposition 2.13 for an integral expression of the
symmetry breaking operator R̂Cλ

′′′

λ′,λ′′ (see (2.10)).

Proof of Proposition 2.13. — For a function F ∈ L2(R2
+)λ′,λ′′ we set

G(x, y) := P̃λ
′−1,λ′′−1

` (x, y)F (x, y).

By Proposition 2.17 the F-method shows that the Rankin–Cohen bidif-
ferential operator is induced from the multiplication by the polynomial
P̃λ
′−1,λ′′−1

` (x, y), namely,

(2.26)
(
RCλ

′′′

λ′,λ′′F2F
)

(ζ) = i`(Rest ◦F2G)(ζ).

The left-hand side of (2.26) equals(
F1R̂C

λ′′′

λ′,λ′′F

)
(ζ)

by the definition (2.10). We compute the right-hand side of (2.26). Via the
diffeomorphism (2.21), we have

P̃α,β` ◦ ι(z, v) = (−1)`z`Pα,β` (v) .

Thus we get

(Rest ◦F2)G(ζ) =
∫ ∞

0

∫ ∞
0

G(x, y)ei(x+y)ζdxdy

=1
2

∫ ∞
0

∫ 1

−1
G ◦ ι(z, v)eizζzdzdv

=1
2F1(JF )(ζ),

where

JF (z) :=z
∫ 1

−1
G ◦ ι(z, v)dv

=(−1)`z`+1
∫ 1

−1
Pλ
′−1,λ′′−1

` (v)F ◦ ι(z, v)dv.

Hence Proposition 2.13 is proved. �
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2.7.4. Three characteristics of holographic operators in the L2-model

In Section 2.6.2, we discussed the three characteristics (1), (2), and (3)
of holographic operators in the L2-model. These three characteristics play
a key role in the proof of main theorems. In this subsection we explicate
the relationship between

(2) and (3) in Proposition 2.19, and
(1) and (3) in Proposition 2.20,

and prove the formula (2.12).

Proposition 2.19. — The adjoint of the holographic operator Φλ
′′′
λ′,λ′′

(Definition 2.10) is proportional to the Fourier transform of the Rankin–
Cohen operator RCλ′′′

λ′,λ′′ : (
Φλ
′′′

λ′,λ′′

)∗
= i`R̂C

λ′′′

λ′,λ′′ .

Proof. — We have already seen in Section 2.6.2 that R̂Cλ
′′′

λ′,λ′′ is a con-
tinuous map between the Hilbert spaces. Hence we shall work with dense
subspaces Cc(R+) and Cc(R2

+) in L2(R+)λ′′′ and L2(R2
+)λ′,λ′′ , respectively.

Take h ∈ Cc(R+) and F ∈ Cc(R2
+). By the integral expression of R̂Cλ

′′′

λ′,λ′′

given in Proposition 2.13, we have(
h, R̂C

λ′′′

λ′,λ′′F

)
L2(R+,z1−λ′′′dz)

= i`

2

∫ ∞
0

h(z)z`+1
∫ 1

−1
Pλ
′−1,λ′′−1

` (v)F ◦ ι(z, v)dvz1−λ′′′dz

= i`
∫ ∞

0

∫ ∞
0

(
Φλ
′′′

λ′,λ′′h
)

(x, y)F (x, y)x1−λ′y1−λ′′dxdy

= i`
(

Φλ
′′′

λ′,λ′′h, F
)
L2(R2

+,x
1−λ′y1−λ′′dxdy)

.

Here, in the second equality we have used (2.24) and (2.25). Thus Propo-
sition 2.19 is proved. �

Proposition 2.20. — With the notation (2.11), we have

Ψ̂λ′′′

λ′,λ′′ = i`Φλ
′′′

λ′,λ′′ .

Before giving a proof of Proposition 2.20, we need the following.

Lemma 2.21. — For any g ∈ H2(Π)λ, we have(
d

dt

)` ∫ ∞
0

z−`(F−1
1 g)(z)eiztdz = i`g(t).
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Proof. — The statement follows from the (classical) Fourier inversion
formula and the Paley–Wiener theorem for g. �

Proof of Proposition 2.20. — It suffices to show

F2 ◦ Φλ
′′′

λ′,λ′′ ◦ F−1
1 =(−i)`Ψλ′′′

λ′,λ′′ .

We set

t(v) :=1
2 ((ζ2 − ζ1)v + (ζ1 + ζ2)) .

By the definitions (2.22) and (2.25) of M and Φλ′′′λ′,λ′′ , we have,

2α+β+1
(
F2 ◦ Φλ

′′′

λ′,λ′′h
)

(ζ1, ζ2)

=
∫ ∞

0

∫ 1

−1
z−`(1− v)α(1 + v)βPα,β` (v)h(z)eizt(v)dvdz

= (−1)`

2``!

∫ ∞
0

∫ 1

−1
z−`h(z)eizt(v)

(
d

dv

)` (
(1− v)α+`(1 + v)β+`) dvdz

= i`

2``!

∫ 1

−1
(1− v)α+`(1 + v)β+`

(
dt(v)
dv

)`
(F1h) (t(v))dv,

where the second equality follows from the Rodrigues formula (5.2) for
the Jacobi polynomials, and the third one from integration by parts and
Lemma 2.21. Putting g = F1h, we obtain(
F2 ◦ Φλ

′′′

λ′,λ′′ ◦ F−1
1 g

)
(ζ1, ζ2)

= (ζ1 − ζ2)`(−i)`

2α+β+2`+1`!

∫ 1

−1
g(t(v))(1− v)α+`(1 + v)β+`dv

= (−i)`
(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2).

Hence Proposition 2.20 is proved. �

2.7.5. Proof of Theorem 2.11

In this subsection we give a proof of Theorem 2.11.
Proof of Theorem 2.11. — As the Rankin–Cohen bidifferential operator

RCλ
′′′
λ′,λ′′ intertwines the tensor product πλ′⊗̂πλ′′ and πλ′′′ , so does its Fourier

transform R̂C
λ′′′

λ′,λ′′ (see (2.10)), and in turn its adjoint operator (R̂C
λ′′′

λ′,λ′′ )
∗

because πλ′ , πλ′′ , and πλ′′′ are unitary representations. Hence Theorem 2.11
follows from Proposition 2.19. �

TOME 70 (2020), FASCICULE 5



2154 Toshiyuki KOBAYASHI & Michael PEVZNER

2.7.6. Proof of Theorem 2.2

Theorem 2.11 together with an argument of holomorphic continuation
on parameters completes the proof of Theorem 2.2 as follows.

Proof of Theorem 2.2. — The second assertion follows from Proposi-
tion 2.20 because Φλ′′′λ′,λ′′ is an intertwining operator as it was shown in
Theorem 2.11.
Let ` ∈ N and λ′′′ = λ′ + λ′′ + 2`. If (λ′, λ′′) ∈ C2 satisfies (2.5) then the

integral (2.6) converges for all g ∈ O(Π), and Ψλ
′′′
λ′,λ′′ is continuous viewed

as a map from the Montel space O(Π) to the one O(Π×Π).
On the other hand, if furthermore λ′,λ′′ are real and λ′, λ′′ > 1, then

Ψλ
′′′
λ′,λ′′ is a G-homomorphism on H2(Π)λ′′′ by the second statement. Since
H2(Π)λ′′′ is dense in the Montel spaceO(Π) as its subspace ofK-finite func-
tions is already dense in O(Π), the continuous map Ψλ

′′′
λ′,λ′′ : O(Π)−→O(Π×Π)

intertwines πλ′′′ and the tensor product representation πλ′⊗̂πλ′′ if λ′, λ′′
> 1. Since Ψλ′′′

λ′,λ′′g ∈ O(Π × Π) depends holomorphically on (λ′, λ′′) ∈ C2

subject to (2.5) and since the actions πλ′ , πλ′′ and πλ′+λ′′+2` of SL(2,R)˜
also depend holomorphically on (λ′, λ′′) ∈ C2, the first statement is shown.

�

2.7.7. Adjoint of the Rankin–Cohen operator

As the last part of the diagram (2.17), we show that Ψλ
′′′
λ′,λ′′ is the adjoint

of the Rankin–Cohen operator RCλ′′′
λ′,λ′′ up to scalar multiplication.

Suppose λ′, λ′′, λ′′′ > 1 and λ′′′ − λ′ − λ′′ ∈ 2N. We regard the Rankin–
Cohen operator RCλ′′′

λ′,λ′′ as a continuous map between Hilbert spaces

RCλ
′′′

λ′,λ′′ : H2(Π)λ′⊗̂H2(Π)λ′′ −→ H2(Π)λ′′′ .

By (2.12) and Lemma 2.24 below, we obtain

Proposition 2.22. — Let ` := 1
2 (λ′′′ − λ′ − λ′′) ∈ N. The adjoint of

RCλ
′′′
λ′,λ′′ is given by (

RCλ
′′′

λ′,λ′′

)∗
= r`(λ′, λ′′)Ψλ′′′

λ′,λ′′ .

2.8. Proof of the Parseval–Plancherel type theorem for the
symmetry breaking transform and the holographic

transform

In this section we complete the proof of Theorems 2.5 and 2.7 in the
holomorphic model and Theorems 2.14 and 2.16 in the L2-model for the
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Parseval–Plancherel type results for the symmetry breaking and holograp-
hic transforms. Our strategy consists in applying the F -method, and then
in reducing the proof of these theorems to the fact that the Jacobi polyno-
mials {Pα, β` }`∈N form an orthogonal basis of the Hilbert space L2([−1, 1],
(1− v)α(1 + v)βdv).

2.8.1. Some properties of operators on Hilbert spaces

We review a general fact on operators on Hilbert spaces. Suppose a
Hilbert space V is decomposed into a Hilbert direct sum of closed sub-
spaces {V`}`∈N, that is, V '

∑⊕
`∈N V`, where the inner product on V`

is induced from that of V . Let prV→V` : V −→ V` be the projection op-
erator. Let {W`}`∈N be another family of Hilbert spaces. Suppose that
we are given a continuous map R` : V −→ W` such that the restriction
R`|V` : V` −→ W` is a unitary operator up to scalar multiplication and
R`|V ⊥

`
≡ 0 for every ` ∈ N. Then the adjoint operator R∗` : W` −→ V is an

isometry (up to scalar) onto V`. We write ‖R`‖op for the operator norm of
R` and set

C` := ‖R`‖2op.

The following two Lemmas 2.23 and 2.24 are elementary.

Lemma 2.23.
(1) The linear map

R :=
⊕
`∈N

R` : V →
⊕
`∈N

W`

satisfies

R∗`R` = C` prV→V` ,(2.27)

‖F‖2V =
∑
`∈N

1
C`
‖R`F‖2W`

for all F ∈ V.(2.28)

In particular, we have the following inversion formula and the uni-
tarity of the map R:

(inversion) F =
∑
`∈N

1
C`
R∗` (R`F ),

(unitarity) R extends to a unitary operator

V
∼−→
∑
`∈N

⊕
W` , where

⊕∑
`∈N

W`

is the Hilbert sum associated to the weights {C−1
` }`∈N (see

Definition 2.6).
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(2) The linear map R∗ :=
⊕
`∈N

R∗` :
⊕
`∈N

W` → V satisfies

(2.29)
R`R

∗
` = C` idW`

,

‖R∗`w`‖
2
V = C`‖w`‖2W`

for all w` ∈W`.

In particular R∗ extends to a unitary operator
⊕∑
`∈N

W`
∼−→ V ,where

⊕∑
`∈N

W`

is the Hilbert sum associated to the weights {C`}`∈N.

Lemma 2.24. — Suppose that Hj and Lj (j = 1, 2) are Hilbert spaces
and that Fj : Lj −→ Hj are unitary operators up to scalar multiple. Let bj
be positive numbers such that

‖Fj(F )‖2Hj = bj‖F‖2Lj for all F ∈ Lj .

Let Ψ: H1 −→ H2 and D : H2 −→ H1 be continuous linear maps, and we
define Ψ̂ : L1 −→ L2 and D̂ : L2 −→ L1 by

Ψ̂ := F−1
2 ◦Ψ ◦ F1, D̂ := F−1

1 ◦D ◦ F2.

We set r := b1
b2
. Then,

(1) the operator norms of these operators satisfy∥∥∥D̂∥∥∥2

op
= 1
r
‖D‖2op,

∥∥∥Ψ̂
∥∥∥2

op
= r‖Ψ‖2op;

(2) the adjoint operators of D and D̂ are related as

D̂∗ = r
(
D̂
)∗
.

2.8.2. Parseval–Plancherel type theorem for Φλ′′′λ′,λ′′

In this subsection, we prove Theorem 2.16. By the (abstract) branching
law (2.8), Theorem 2.16 is deduced from the following proposition.

Proposition 2.25. — Suppose λ′, λ′′, λ′′′ > 1 satisfy ` := 1
2 (λ′′′ − λ′ −

λ′′) ∈ N. Then,∥∥∥Φλ
′′′

λ′,λ′′h
∥∥∥2

L2(R2
+)λ′,λ′′

= c`(λ′, λ′′)‖h‖2L2(R+)λ′′′ ,

for all h ∈ L2(R+)λ′′′ . Here we recall (2.3) for the definition of c`(λ′, λ′′).

We reduce Proposition 2.25 to the fact that the Jacobi polynomials are
orthogonal polynomials, see (5.4) in Appendix.
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Proof of Proposition 2.25. — Via the diffeomorphism (2.21), we get from
the formulæ (2.24) for the measure and (2.25) for the holographic operator
Φλ
′′′
λ′,λ′′ :∥∥∥Φλ

′′′

λ′,λ′′h
∥∥∥2

L2(R2
+)λ′,λ′′

= 1
2λ′+λ′′−1

×
∫ ∞

0

∫ 1

−1
|h(z)|2

∣∣∣Pλ′−1,λ′′−1
` (v)

∣∣∣2 z1−λ′′′ (1− v)λ
′−1 (1 + v)λ

′′−1
dvdz.

By the L2-norm (5.4) of the Jacobi polynomials, we conclude the proposi-
tion. �

2.8.3. Operator norm of the holographic operator Ψλ′′′

λ′,λ′′ in the
holomorphic model

Proposition 2.26. — Suppose λ′, λ′′, λ′′′ > 1 and ` := 1
2 (λ′′′ − λ′

− λ′′) ∈ N. Then∥∥∥Ψλ′′′

λ′,λ′′g
∥∥∥2

H2(Π)λ′ ⊗̂H2(Π)λ′′
= c`(λ′, λ′′)
r`(λ′, λ′′)

‖g‖2H2(Π)λ′′′ for all g ∈ H
2(Π)λ′′′ .

Proof. — By Proposition 2.20 and Fact 2.9, we have∥∥∥Ψλ′′′

λ′,λ′′g
∥∥∥2

H2(Π)λ′ ⊗̂H2(Π)λ′′
= b(λ′)b(λ′′)

∥∥∥Φλ
′′′

λ′,λ′′F−1
1 g

∥∥∥2

L2(R2
+)λ′,λ′′

.

By Proposition 2.25 and Fact 2.9 again, the right-hand side of the above
equality amounts to

b(λ′)b(λ′′)
b(λ′′′) c`(λ′, λ′′)‖g‖2H2(Π)λ′′′ .

Now the proposition follows from the definition (2.4) of r`(λ′, λ′′). �

2.8.4. Norm of the Rankin–Cohen bidifferential operators

We find the operator norm of RCλ′′′
λ′,λ′′ as below.

Proposition 2.27. — Suppose that λ′, λ′′ > 1 and λ′′′ = λ′ + λ′′ +
2` (` ∈ N). Then the operator norm of the Rankin–Cohen bidifferential
operator RCλ′′′

λ′,λ′′ seen as a map from the weighted Bergman space

H2(Π)λ′⊗̂H2(Π)λ′′ to H2(Π)λ′′′

is given by ∥∥∥RCλ′′′λ′,λ′′

∥∥∥2

op
= r`(λ′, λ′′)c`(λ′, λ′′).
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Proof. — By Lemma 2.24(1), we have

∥∥∥RCλ′′′λ′,λ′′

∥∥∥2

op
= r`(λ′, λ′′)

∥∥∥∥R̂Cλ′′′λ′,λ′′

∥∥∥∥2

op
,

which equals r`(λ′, λ′′)c`(λ′, λ′′) by Propositions 2.19 and 2.25. �

2.8.5. Proof of Theorem 2.7

Let us complete the proof of the Parseval–Plancherel type theorem for
the Rankin–Cohen transform RCλ′,λ′′ and the holographic transform Ψλ′,λ′′ .

Proof of Theorem 2.7.
(1) We apply Lemma 2.23 with R` = RCλ

′+λ′′+2`
λ′,λ′′

. By Proposition 2.27,
we have

‖R`‖2op = r` (λ′, λ′′) c` (λ′, λ′′) ,

hence the first statement follows from Lemma 2.23(1).
(2) We apply Lemma 2.23 with R` = 1

r`(λ′,λ′′)RC
λ′+λ′′+2`
λ′,λ′′

. By Proposi-
tion 2.27, we have

‖R`‖2op = c` (λ′, λ′′)
r` (λ′, λ′′) .

Since Ψλ
′+λ′′+2`
λ′,λ′′

= R∗` (see Proposition 2.22), we get the second statement
by Lemma 2.23(2). �

2.8.6. Proof of Theorem 2.5

We are ready to complete the proof of Theorem 2.5.

Proof of Theorem 2.5. — By Lemma 2.23(1) applied to R` = RCλ′+λ′′+2`
λ′,λ′′

,
the above proof of Theorem 2.7(1) implies

f =
∞∑
`=0

1
r`(λ′, λ′′)c`(λ′, λ′′)

R∗`R`f

for any f ∈ H2(Π)λ′⊗̂H2(Π)λ′′ . Now Theorem 2.5 follows from the equation
R∗` = r`(λ′, λ′′)Ψλ

′+λ′′+2`
λ′,λ′′

(see Proposition 2.22). �
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2.8.7. Proof of Theorem 2.14

Finally, we show Theorem 2.14.
Proof of Theorem 2.14. — We apply Lemma 2.23(1) with

R` = R̂C
λ′+λ′′+2`
λ′,λ′′ .

By Lemma 2.24 and Proposition 2.27, we obtain

‖R`‖2op = 1
r`(λ′, λ′′)

∥∥∥RCλ′+λ′′+2`
λ′,λ′′

∥∥∥2

op
= c` (λ′, λ′′) .

Since R∗` = i` Φλ
′+λ′′+2`
λ′,λ′′

by Proposition 2.19, Theorem 2.14 follows from
Lemma 2.23(1). �

2.9. Some applications of symmetry breaking and holographic
transforms

We point out two applications of the symmetry breaking and holographic
transforms introduced in the previous section. First, we provide explicit
description of the minimal K-types of the SL(2,R) -̃module (πλ,O(Π)) in
both holomorphic model πλ′⊗̂πλ′′ and L2-model L2(R2

+)λ′,λ′′ (see Propo-
sitions 2.28 and 2.29). Second, we find in Theorem 2.30 an integral expres-
sion of any eigenfunction for a specific second-order holomorphic partial
differential operator arising from the diagonal action of the Casimir in the
enveloping algebra.

2.9.1. Minimal K-types

The minimal K-type of the SL(2,R) -̃module (πλ,O(Π)) is given by
C(ζ + i)−λ, see (2.32) for the whole set of K-types. As an application of
the integral formula (2.6) we find an explicit expression for the minimal
K-types of submodules in the tensor product πλ′⊗̂πλ′′ as follows.

Proposition 2.28. — Suppose < λ′,< λ′′ > 0 and λ′′′ = λ′ + λ′′ +
2` (` ∈ N). Then the holomorphic function

(ζ1, ζ2) 7→ (ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−`

is a minimal K-type in the submodule Ψλ
′′′
λ′,λ′′(O(Π)) in πλ′⊗̂πλ′′ .
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Proof. — We set g(ζ) := (ζ + i)−λ′′′ . By the change of variables t

= 1
2 (1 + v), the definition (2.6) shows(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2) = 1
`! (ζ1−ζ2)`(ζ1+i)−λ

′′′
∫ 1

0
ta−1(1−t)c−a−1(1−tz)−bdt,

where a = λ′′ + `, b = c = λ′′′, and z = ζ1−ζ2
ζ1+i .

By the Euler integral representation of the hypergeometric function 2F1,
and by the fact that 2F1(a, b; b; z) = (1− z)−a, we obtain

(2.30)
(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2)

= 1
`!B (λ′ + `, λ′′ + `) (ζ1 − ζ2)`(ζ1 + i)−λ

′−`(ζ2 + i)−λ
′′−`,

where B(·, ·) stands for the Euler beta function. �

Proposition 2.29. — Suppose λ′, λ′′ > 1 and ` ∈ N. Then the function

(x, y) 7→
(
xλ
′−1e−x

)(
yλ
′′−1e−y

)
(x+ y)`Pλ

′−1,λ′′−1
`

(
y − x
x+ y

)
belongs to L2(R2

+)λ′,λ′′ , and gives a minimal K-type in the image of the
holographic operator Φλ

′+λ′′+2`
λ′,λ′′

.

Proof. — Since zλ′′′−1e−z belongs to the minimal K-type in the irre-
ducible representation L2(R+)λ′′′ , so does Φλ

′′′
λ′,λ′′(zλ

′′′−1e−z) in the irre-
ducible representation Φλ

′′′
λ′,λ′′(L2(R2

+)λ′,λ′′). Then the formula (2.13) of the
holographic operator Φλ

′′′
λ′,λ′′ with λ′′′ = λ′+λ′′+2` shows Proposition 2.29.

�

2.9.2. An application of the integral formula

Fix λ′, λ′′ ∈ C and consider eigenfunctions of the following holomorphic
differential operator on Π×Π:

(2.31) Pλ′,λ′′

:= (ζ1 − ζ2)2 ∂2

∂ζ1∂ζ2
+ (λ′′ζ2 + λ′ − λ′′)ζ1

∂

∂ζ1
+ (λ′ζ1 − λ′ + λ′′)ζ2

∂

∂ζ2
,

and define for µ ∈ C

So` (Π×Π,Mλ′,λ′′, µ) := {f ∈ O(Π×Π): Pλ′,λ′′f = µf} .

The integral transform (2.6) constructs all eigenfunctions of Pλ′,λ′′ as fol-
lows.
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Theorem 2.30. — Suppose λ′, λ′′ ∈ C. Then, the following hold.
(1) So`(Π×Π,Mλ′,λ′′, µ) 6= {0} if and only if µ is of the form

µ = −`(λ′ + λ′′ + `− 1) for some ` ∈ N.

(2) For any λ′, λ′′ ∈ C and ` ∈ N,

(ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−` ∈ So`
(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
.

(3) If < λ′,< λ′′ > 0 and ` ∈ N, then the integral transform (2.6) gives
a bijection

Ψλ′+λ′′+2`
λ′,λ′′ : O(Π) ∼−→ So`

(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
.

The inverse map is proportional to the Rankin–Cohen bidifferential
operator, namely,

RCλ
′+λ′′+2`
λ′,λ′′ ◦Ψλ′+λ′′+2`

λ′,λ′′ = c`(λ′, λ′′) id on O(Π),

where c`(λ′, λ′′) is defined as in (2.3).

2.9.3. Quick review of representations of the universal covering
group SL(2,R)˜

In order to prove Theorem 2.30 we recall some properties of represen-
tations of SL(2,R) .̃ The universal covering group SO(2)˜of the maximal
compact subgroup K = SO(2) is isomorphic to R. We parametrize its char-
acters χλ by λ ∈ C as an extension of the following group homomorphisms
originally defined for λ ∈ Z:

R ' SO(2)˜−→ SO(2) −→ C×, θ 7→
(

cos θ − sin θ
sin θ cos θ

)
7→ eiλθ.

The representation πλ on O(Π) given in Section 2.1.1 is a highest weight
module with highest weight −λ because it has the following K-types:

(2.32) − λ,−λ− 2,−λ− 4, . . . .

Choose the standard basis of the Lie algebra sl(2,R):

H :=
(

1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
.

Then the Casimir element C is expressed as C = 1
8 (H2 + 2XY + 2Y X).

The infinitesimal action dπλ is given by holomorphic differential opera-
tors:

(2.33) dπλ(H) = −λ− 2z d
dz
, dπλ(X) = − d

dz
, dπλ(Y ) = λz + z2 d

2

dz2 ,
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and the Casimir element C acts on (dπλ,O(Π)) as dπλ(C) = 1
8λ(λ− 2) id.

In general, if π is a highest weight module of SL(2,R)˜ with highest weight
ν (ν ∈ C), then the Casimir element is given via dπ as the scalar multipli-
cation 1

8ν(ν + 2) id.

2.9.4. Proof of Theorem 2.30

Lemma 2.31. — The Casimir element C of sl(2,R) acts on O(Π × Π)
via dπλ′ ⊗ dπλ′′ by

(dπλ′ ⊗ dπλ′′) (diag(C)) = −1
2Pλ

′,λ′′ + 1
8(λ′ + λ′′)(λ′ + λ′′ − 2),

where the holomorphic differential operator Pλ′,λ′′ is defined in (2.31).

Proof. — By (2.33) and the Leibniz rule, we have

(dπλ′ ⊗ dπλ′′) (diag(H)) = −λ′ − λ′′ − 2
(
ζ1

∂

∂ζ1
+ ζ2

∂

∂ζ2

)
,

(dπλ′ ⊗ dπλ′′) (diag(X)) = − ∂

∂ζ1
− ∂

∂ζ2
,

(dπλ′ ⊗ dπλ′′) (diag(Y)) = λ′ζ1 + λ′′ζ2 +
(
ζ2
1
∂2

∂ζ2
1

+ ζ2
2
∂2

∂ζ2
2

)
.

Now the Lemma 2.31 follows by a direct computation. �

The tensor product representation πλ′⊗̂πλ′′ does not always split into
a direct sum of irreducible representations in the nonunitary case when
λ′, λ′′ ∈ C, see [19] for instance. We determine the set of possible infini-
tesimal characters of subrepresentations of the tensor product πλ′⊗̂πλ′′ in
this case.

Lemma 2.32. — Let λ′, λ′′ ∈ C. Suppose π is a subrepresentation of
πλ′⊗̂πλ′′ such that the Casimir element C acts as scalar multiplication via
dπ. Then this scalar must be of the form

1
8(λ′ + λ′′ + 2`)(λ′ + λ′′ + 2`− 2) for some ` ∈ N.

Proof. — We use the general theory of discretely decomposable restric-
tions of (nonunitary) representations [11]. First we observe from (2.32) that
the K-types of the tensor product representation πλ′⊗̂πλ′′ are of the form

−λ′ − λ′′ − 2(`′ + `′′) for some `′, `′′ ∈ N.

Thus the tensor product representation πλ′⊗̂πλ′′ on O(Π×Π) contains the
direct sum of K-isotypic spaces

(2.34)
⊕
`∈N

(`+ 1)χ−λ′−λ′′−2`
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as a dense subset, where (`+ 1) stands for the multiplicity.
In particular, each K-type occurs in πλ′⊗̂πλ′′ with at most finite mul-

tiplicities. Hence, any subrepresentation π is admissible, and of highest
weight −λ′−λ′′−2` for some ` ∈ N. Therefore, if the Casimir element acts
as a scalar via dπ, then this scalar must coincide with 1

8 (λ′+λ′′+ 2`)(λ′+
λ′′ + 2`− 2). �

Proof of Theorem 2.30.
(1) By Lemma 2.31, So`(Π×Π,Mλ′,λ′′,µ) is characterized as the eigen-

space of the Casimir operator C as follows:

(2.35) So` (Π×Π,Mλ′,λ′′,µ)
= {f ∈ O(Π×Π): (dπλ′ ⊗ dπλ′′) (diag(C)) = e(λ′, λ′′, µ)f} ,

where we set e(λ′, λ′′, µ) = − 1
2µ+ 1

8 (λ′ + λ′′)(λ′ + λ′′ − 2).
On the other hand, Lemma 2.32 tells that e(λ′, λ′′, µ) = 1

8 (λ′ + λ′′ +
2`)(λ′ + λ′′ + 2`− 2) for some ` ∈ N. This gives the desired formula for µ,
showing the “if” part of the first statement. The “only if” part follows from
the second statement.
(2) By the assumption Reλ′,Reλ′′ > 0, the integral (2.6) converges

for any ` ∈ N. Since the Casimir element C acts on O(Π) as the scalar
1
8λ
′′′(λ′′′ − 2) via dπλ′′′ , and since Ψλ

′′′
λ′,λ′′ is an intertwining operator, the

Casimir element C acts on the image of Ψλ
′′′
λ′,λ′′ by the same scalar. Therefore

Ψλ′+λ′′+2`
λ′,λ′′ (O(Π)) ⊂ So`

(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
by (2.35). In turn, Proposition 2.28 and Lemma 2.31 imply that

(Pλ′,λ′′ + `(λ′ + λ′′ + `− 1))
(

(ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−`
)

= 0

as far as <λ′,<λ′′ > 0. By the analytic continuation, the equation holds
for all λ′, λ′′ ∈ C.

(3) We begin with the case where λ′ and λ′′ are real and λ′, λ′′ > 1. Then
it follows from Proposition 2.27, Lemma 2.23(2) and Proposition 2.22 that

RCλ
′′′

λ′,λ′′ ◦Ψλ′′′

λ′,λ′′ = c`(λ′, λ′′) id on H2(Π)λ′′′ .

Since H2(Π)λ′′′ is dense in O(Π), the equality holds on the whole O(Π) by
continuity.
Moreover, since the operators RCλ′′′

λ′,λ′′ and Ψλ
′′′
λ′,λ′′ depend holomorphically

on (λ′, λ′′) ∈ C2 satisfying (2.5), we conclude that

(2.36) RCλ
′′′

λ′,λ′′ ◦Ψλ′′′

λ′,λ′′ = c` (λ′, λ′′) id on O(Π)
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for any (λ′, λ′′, λ′′′) subject to (2.5) by analytic continuation. In particular,
Ψλ
′′′
λ′,λ′′ is injective and RCλ′′′

λ′,λ′′ is surjective because c`(λ′, λ′′) 6= 0 in this
case.
Let us prove that

Ψλ′′′

λ′,λ′′ : O(Π) −→ So`
(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
is surjective. We let SL(2,R)˜act on O(Π×Π) via πλ′⊗̂πλ′′ . Since the map
N −→ C, ` 7→ −`(λ′ + λ′′ + ` − 1) is injective if Reλ′,Reλ′′ > 0, we have
the following inclusion of SL(2,R)˜-submodules of O(Π×Π):⊕

`∈N
Ψλ′+λ′′+2`
λ′,λ′′ (O(Π)) ⊂

⊕
`∈N
So`

(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
.

We observe that K-multiplicities coincide by (2.34) because the holo-
graphic operator Ψλ′+λ′′+2`

λ′,λ′′ is injective for any ` ∈ N. Therefore,

Ψλ′+λ′′+2`
λ′,λ′′ : O(Π) −→ So`

(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
is surjective on the level of (g,K)-modules.
Since c`(λ′, λ′′) 6= 0, the symmetry breaking operator RCλ′′′

λ′,λ′′ is injective
on Ψλ

′+λ′′+2`
λ′,λ′′

(O(Π)) by (2.36), and therefore the underlying (g,K)-module of

Ker
(
RCλ

′′′

λ′,λ′′

)
∩ So`

(
Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)

)
must be zero for any λ′′′ = λ′ + λ′′ + 2` (` ∈ N). Hence RCλ′′′

λ′,λ′′ is injective
when restricted to So`(Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)). Now we conclude that
Ψλ
′′′
λ′,λ′′ is surjective. Thus the Theorem 2.30 is proved. �

3. Holomorphic Juhl transform and its holographic
transform

Another remarkable family of differential operators is provided by con-
formally covariant differential operators for the pair Sn ⊃ Sn−1 of Rie-
mannian manifolds, introduced by Juhl [9]. These operators are symmetry
breaking operators from spherical principal series representations of the
Lorentz group O(1, n+ 1) to those of the subgroup O(1, n). This setting is
intimately related to the holographic or AdS/CFT correspondence in string
theory (see e.g. [21, 24]).
The holomorphic Juhl operators are the holomorphic continuation of

Juhl’s operators, which map holomorphic functions on the n-dimensional
Lie ball to those on the (n−1)-dimensional Lie ball, intertwining (relative)
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discrete series representations of G = SOo(2, n) with those of the subgroup
G′ = SOo(2, n− 1), see [19].

In this section we solve Problems A and B stated in Section 1 for the sym-
metry breaking transform associated with the holomorphic Juhl operators.
We assume n > 3 throughout this section. The case n = 2 can be recovered
from the previous section with an appropriate change of parameters.

3.1. Holomorphic Juhl operators

3.1.1. Holomorphic discrete series of SOo(2, n)

Let Qp,q be the standard quadratic form of signature (p, q) on Rp+q. The
indefinite orthogonal group

O(p, q) :=
{
g ∈ GL(p+ q,R) : Qp, q(gx) = Qp, q(x) for all, x ∈ Rp+q

}
has four connected components when p, q > 0. Let G = SOo(2, n) be the
identity component of O(2, n) and K a maximal compact subgroup of G.
We write c(k) for the first factor of the Lie algebra k ' R ⊕ so(n), and fix
a characteristic element H0 ∈ c(k) such that ad(H0) gives the eigenspace
decomposition of gC = Lie(G)⊗R C as

(3.1) gC = kC + n+ + n−

for eigenvalues 0,−i and i, respectively. The complex structure of the
homogeneous space G/K is given by the G-translation of exp(ad(π2H0))
∈ GLR(To(G/K)), or equivalently, it is induced from the Borel embedding
G/K ⊂ GC/KC exp n+.
Let G̃ be the universal covering of G = SOo(2, n), p : G̃ −→ G the

covering homomorphism, and set K̃ := p−1(K). For λ ∈ C, we define a
character of c(k) by tH0 7→ λt, which lifts to a character Cλ of K̃.

Then one can define a G̃-equivariant holomorphic line bundle

Lλ = G̃×
K̃
CλoverX := G̃/K̃ ' G/K

for all λ ∈ C, and obtain representations π(n)
λ of G̃ on the space O(X,Lλ)

of holomorphic sections. The representation π(n)
λ descends to G if λ ∈ Z.

If λ ∈ R, then the line bundle Lλ −→ X carries a G̃-invariant Hermit-
ian metric, and therefore we can define a Hilbert space (O ∩ L2)(X,Lλ).
This Hilbert space is nonzero if and only if λ > n − 1, and the resulting
unitary representation of G̃, to be denoted by the same symbol π(n)

λ , is
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called a (relative) holomorphic discrete series representation of G̃. For ac-
tual computations we use its realization in the weighted Bergman space as
below.
We define the tube domain

TΩ ≡ TΩ(n) := Rn + iΩ(n)

by taking Ω(n) to be the time-like cone in the Minkowski space R1,n−1,
namely,

Ω(n) := {η ∈ Rn : Q1, n−1(η) > 0, η1 > 0} .
Then the tube domain TΩ is biholomorphic to the bounded symmetric

domain of type IVn, sometimes referred to as the Lie ball. From a group-
theoretic viewpoint, TΩ is isomorphic to the Hermitian symmetric space
X = G/K, which is realized as an open subset of n−(' Cn) via the following
maps

(3.2) n− ↪→
open

GC/KC exp(n+) ⊃
open

G/K.

The homogeneous holomorphic line bundle Lλ −→ X is trivialized via
the Bruhat decomposition, and the Hilbert space (O ∩ L2)(X,Lλ) is then
identified with the weighted Bergman space

H2(TΩ(n))λ := O(TΩ(n)) ∩ L2 (TΩ(n), Q1,n−1(η)λ−ndξdη
)
,

on which G acts as a multiplier representation by

f(ζ) 7→ bλ(g, ζ)f(g−1.ζ)

for g ∈ G and f(ζ) ∈ O(TΩ(n)). Here the multiplier

bλ : G× TΩ(n) −→ C×

is a 1-cocycle defined by bλ(g, ζ) := χ−λ(k(g, ζ)), where χλ : KC −→ C×
is the holomorphic extension of the character Cλ of K and k(g, ζ) is an
element of KC determined by

g−1 exp(ζ) ∈ exp
(
g−1.ζ

)
k(g, ζ) exp(n+),

see (3.2).
For λ > n − 1 this Hilbert space admits a reproducing kernel Kλ(ζ, τ)

given by:

(3.3) Kλ(ζ, τ) = kλ, nQ1, n−1 (ζ − τ)−λ ,

where Q1,n−1(ζ) stands for the holomorphic extension of Q1,n−1, and we
set

kλ,n := (2i)2λ

(4π)n

(
λ− n

2
)

Γ(λ)
Γ(λ− n+ 1) ,
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see [5, Proposition XIII.1.2]. We note that kλ,n 6= 0 if λ > n− 1.
We realize O(2, n−1) as the subgroup of O(2, n) which fixes the (n+2)th

coordinate, and set G′ = SOo(2, n−1) as its identity component. By abuse
of notation, we write G̃′ for the connected subgroup of G̃ = SOo(2, n)˜
corresponding to G′ ⊂ G. The subgroup G̃′ is simply connected if n 6= 4.
Similarly, a (relative) holomorphic discrete series representation π(n−1)

ν of
G̃′ is defined for ν > n− 2, as an irreducible unitary representation on the
weighted Bergman space H2(TΩ(n−1))ν . By abuse of notation, the same
symbol π(n−1)

ν will be used to denote a (nonunitary) representation on
O(TΩ(n−1),Lν) for ν ∈ C.

3.1.2. Holomorphic Juhl operators

Let
∆C1,n−2 := ∂2

∂ζ2
1
− ∂2

∂ζ2
2
− · · · − ∂2

∂ζ2
n−1

be the holomorphic Laplacian on Cn−1 associated to the complexified qua-
dratic form Q1,n−2. For α ∈ C and `, k ∈ N with ` > 2k, we define a
polynomial of α of degree `− k by

(3.4) ak(`, α) := (−1)k2`−2k · Γ (α+ `− k)
Γ (α) k!(`− 2k)! .

The coefficients ak(`, α) appear in the definition (5.5) of the Gegenbauer
polynomials Cα` (x), see Appendix 5. We define a holomorphic differential
operator Dα` on Cn by

(3.5) Dα` :=
[ `2 ]∑
k=0

ak (`, α)
(

∂

∂ζn

)`−2k
∆k

C1,n−2 .

For λ, ν ∈ C with ` := ν − λ ∈ N, the holomorphic Juhl operator
Dλ→ν : O(TΩ(n)) −→ O(TΩ(n−1)) is defined as the composition

(3.6) Dλ→ν := Restζn=0 ◦ D
λ−n−1

2
` .

The operator Dλ→ν may be viewed as the holomorphic extension of the
original Juhl operator [9], which is a conformally covariant differential op-
erator C∞(Sn) → C∞(Sn−1). In our setting, the hyperbolic space Hn is
realized as a totally real submanifold of the tube domain TΩ(n), and like-
wise, Hn−1 is that of TΩ(n−1). The restriction of the holomorphic Juhl
operator to these real manifolds also yields a conformally covariant opera-
tor C∞(Hn) −→ C∞(Hn−1), see [16, Theorem E].
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The holomorphic Juhl operatorDλ→ν gives yet another symmetry break-
ing operator, intertwining the (relative) holomorphic discrete series repre-
sentation π(n)

λ of G̃ and the one π(n−1)
ν of the subgroup G̃′ [19, Theorem 6.3].

Moreover, the differential operator Dλ→ν induces a continuous map be-
tween the Bergman spaces by the general theory [18, Theorem 5.13]. Its
adjoint is denoted by D∗λ→ν . We determine the operator norm of Dλ→ν in
Proposition 3.6.

3.2. Two constants c`(λ) and r`(λ)

Throughout Section 3 the parameter set is (λ, ν) ∈ C2 with ν − λ ∈ N
and n > 3. We use the following notation:

(3.7) α = λ− n− 1
2 , ` = ν − λ.

As in Section 2.2 devoted to the tensor product case, the main results in
this section involve the following two constants:

(3.8)
c ≡ c`(λ) :=

∫ 1

−1
|Cα` (v)|2

(
1− v2)α− 1

2 dv

= π2n−2λΓ(2λ+ `− n+ 1)
`!
(
λ+ `− n−1

2
)

Γ
(
λ− n−1

2
)2 ,

(3.9)
r ≡ r`(λ) :=bn−1(ν)

bn(λ)

=
Γ
(
λ+ `− n−1

2
)

Γ (λ+ `− n+ 2)
(2π) 3

2 22`+1Γ
(
λ− n

2
)

Γ (λ− n+ 1)
,

where bn(λ) is a Plancherel density (see (3.13) below).

3.3. Holomorphic Juhl transforms

Definition 3.1 (holomorphic Juhl transform). — For λ ∈ C, the holo-
morphic Juhl transformDλ is a collection of the holomorphic Juhl operators

Dλ : O(TΩ(n)) −→ Map(N,O(TΩ(n−1))), f 7→ {(Dλf)`}`∈N,

where (Dλf)` := Dλ→λ+`f .
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The holomorphic Juhl transform Dλ intertwines (π(n)
λ ,O(TΩ(n))) with

the formal direct sum⊕̂
`∈N

(
π

(n−1)
λ+` ,O(TΩ(n−1))

)
;

its inversion formula and the corresponding Parseval–Plancherel type the-
orems are given as follows.

Theorem 3.2. — Suppose λ > n− 1.
(1) (inversion formula). Any f ∈ H2(TΩ(n))λ is recovered from Dλf by

f =
∞∑
`=0

1
r`(λ)c`(λ)D

∗
λ→λ+` (Dλf)` .

(2) (Parseval–Plancherel type theorem). For every f ∈ H2(TΩ(n))λ, we
have

(3.10) ‖f‖2H2
λ

(TΩ(n)) =
∞∑
`=0

1
r`(λ)c`(λ) ‖(Dλf)`‖

2
H2
λ+`(TΩ(n−1))

.

Theorem 3.2 is proved in Section 3.5.4. It gives an answer to Prob-
lems A.2. and B raised in Section 1 for the holomorphic Juhl transform
Dλ. An answer to Problem A.1. (explicit integral formula for holographic
transform) will be given in Theorem 3.10.
From a representation-theoretic viewpoint, Theorem 3.2 gives quantita-

tive information on the corresponding branching law for the restriction of
the (relative) holomorphic discrete series representation π

(n)
λ of G̃ to the

subgroup G̃′, which decomposes the restriction π(n)
λ

∣∣
G̃′

into a multiplicity-
free direct Hilbert sum of irreducible representations of the subgroup G̃′,
see [13, Theorem 8.3]:

(3.11) π
(n)
λ

∣∣∣
G̃′
'
∑
`∈N

⊕
π

(n−1)
λ+` .

Corollary 3.3 (projection operator). — Suppose λ > n − 1 and
` := ν − λ ∈ N. Then

1
r`(λ)c`(λ)D

∗
λ→νDλ→ν

is the projection operator from the Hilbert space H2(TΩ(n))λ onto the sum-
mand which is unitarily equivalent to the irreducible representation (π(n−1)

ν ,

H2(TΩ(n−1))ν), see (3.11).
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3.4. Key operators in the proof of Theorem 3.2

Analogously to the case of the tensor product representations (Section 2),
we introduce the following continuous operators for the proof of Theo-
rem 3.2:

D∗λ→ν : H2(TΩ(n−1))ν −→ H2(TΩ(n))λ adjoint of Dλ→ν ,

D̂λ→ν : L2(Ω(n))λ −→ L2(Ω(n− 1))ν Fourier transform of Dλ→ν ,

Φνλ : L2(Ω(n− 1))ν −→ L2(Ω(n))λ holographic operator.

See (3.23) and (3.17) below for the definitions of D̂λ→ν and Φνλ, respectively.
The link between these operators may be summarized in the following

diagram:

(3.12) Dλ→ν

Proposition 3.7
��

Theorem 3.10 // D∗λ→ν

D̂λ→ν Proposition 3.5
// Φνλ

Proposition 3.8

OO

Among them, the holographic operator Φνλ in the L2-model will play a
crucial role in the proof of Theorem 3.2.

3.5. Holographic transform in the L2-model on the time-like
cone Ω(n)

3.5.1. L2-model of holomorphic discrete series

For λ > n − 1, we denote by L2(Ω)λ ≡ L2(Ω,mλ(y)dy) the Hilbert
space of square integrable functions on the time-like cone Ω ≡ Ω(n) with
respect to the measure mλ(y)dy, where mλ is a positive-valued function on
Ω given by

mλ(y) := Q1,n−1(y)n2−λ.
Let 〈y, ζ〉 =

∑n
j=1 yjζj . Since the cone Ω is self-dual in Rn, the Fourier–

Laplace transform

(FnF ) (ζ) :=
∫

Ω
F (y)ei〈y, ζ〉dy

is a holomorphic function of ζ ∈ TΩ if F ∈ Cc(Ω).
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Fact 3.4 (Faraut–Koranyi [5, Theorem XIII.1.1]). — For λ > n − 1,
we set

(3.13) bn(λ) := (2π)
3n
2 −1 2−2λ+nΓ

(
λ− n

2

)
Γ(λ− n+ 1).

Then the Fourier–Laplace transform Fn : Cc(Ω) −→ O(TΩ) extends to a
linear bijection:

(3.14) Fn : L2(Ω)λ
∼→H2

λ(TΩ(n)).

with

‖FnF‖2H2
λ

(TΩ(n)) = bn(λ)‖F‖2L2(Ω(n))λ for all F ∈ L2(Ω)λ .

Via the isomorphism (3.14), an irreducible unitary representation of G̃
is defined on L2(Ω)λ for λ > n − 1, to which we refer as the L2-model of
the (relative) holomorphic discrete series representation π(n)

λ .
Similarly, we define a positive-valued function

m′ν(y′) := Q1,n−2(y′)
n−1

2 −ν

on the time-like cone Ω′ ≡ Ω(n−1) in R1, n−2, and we set L2(Ω′)ν := L2(Ω′,
m′ν(y′)dy′) on which the L2-model of the (relative) holomorphic discrete
series representation π(n−1)

ν of G̃′ is defined via the unitary map

Fn−1 : L2(Ω′)ν
∼→H2

ν

(
TΩ(n−1)

)
for ν > n− 2

up to rescaling bn−1(ν)− 1
2 .

3.5.2. Gegenbauer polynomial and Juhl’s conformally covariant operator

Let ak(`, α) be as in (3.4). We define a polynomial of two variables by

(3.15) (I`Cα` )(u, v) :=
[ `2 ]∑
k=0

ak(`, α)ukv`−2k.

For instance, for ` = 0, 1 and 2 we have (I0Cα0 )(u, v) = 1, (I1Cα1 )(u, v)
= 2αv, and (I2Cα2 )(u, v) = α(2(α+ 1)v2 − u). By definition, (I`Cα` )(w2, v)
is a homogeneous polynomial of degree `, and (I`Cα` )(1, v) coincides with
the Gegenbauer polynomial Cα` (v), see (5.5) in Appendix 5. (This is the
reason why we adopted the notation I`Cα` .)

The F-method [19, Theorem 6.3] shows that the differential operator Dα`
(see (3.5)) is expressed as

(3.16) Dα` = i−` (I`Cα` )
(
−∆C1, n−2 , i

∂

∂ζn

)
.
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3.5.3. Construction of discrete summands in the L2-model

Following the idea of the F-method [15], we introduce the holographic
operator Φνλ as a multiplication operator like in the tensor product case
(cf. Definition 2.10). By the simplicity of its formula, the holographic op-
erator Φνλ in the L2-model plays a crucial role in the proof of Theorem 3.2.
Retain the basic setting (3.7) where ` = ν−λ ∈ N and α = λ− n−1

2 . For
a function h(y′) on Ω(n− 1), we define (Φνλh) (y) on Ω(n) by

(3.17) (Φνλh) (y)

:= Q1,n−2(y′)−(`+ 1
2 ) (1− y2

n

)λ−n2 (I`Cα` ) (Q1,n−2(y′),−yn)h(y′).

Then Φνλ gives rise to a holographic operator in the L2-model in the
following sense:

Proposition 3.5. — Suppose that λ > n − 1 and ν = λ + ` for some
` ∈ N.

(1) The linear map Φνλ : L2(Ω(n − 1))ν −→ L2(Ω(n))λ is an isometry
up to scalar:

‖Φνλ(h)‖2L2(Ω(n))λ = c`(λ)‖h‖2L2(Ω(n−1))ν for all h ∈ L2(Ω(n− 1))ν ,

where we recall that the constant c`(λ) is given in (3.8).
(2) Φνλ intertwines the irreducible unitary representation π(n−1)

ν of the
subgroup G̃′ with the restriction π(n)

λ

∣∣
G̃′
.

We also discuss some further basic properties of the holographic operators
Φνλ in Proposition 3.8.

3.5.4. Proof of Theorem 3.2

Postponing the proof of Proposition 3.5 until Section 3.5.7 and Proposi-
tion 3.8 below until Section 3.5.8 we complete the proof of Theorem 3.2.

Proposition 3.6. — Suppose λ > n − 1 and ν = λ + ` with ` ∈ N.
Then the differential operator Dλ→ν extends to a continuous linear map
Dλ→ν : H2(TΩ(n))λ −→ H2(TΩ(n−1))ν with the following operator norm:

‖Dλ→ν‖2op = r`(λ)c`(λ).

Proof. — It follows from Lemma 2.24(1) and Propositions 3.5 and 3.8
that

‖Dλ→ν‖2op = r`(λ)
∥∥∥D̂λ→ν

∥∥∥2

op
= r`(λ)‖Φνλ‖2op = r`(λ)c`(λ).

�
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Proof of Theorem 3.2. — By Lemma 2.23 and by the (abstract) branch-
ing law (3.11) for the restriction G̃ ↓ G̃′, the theorem follows from the
expression of the operator norm of the differential operator Dλ→ν given in
Proposition 3.6. �

The rest of this section is devoted to the proof of Proposition 3.5.

3.5.5. Coordinate change in the L2-model.

As in Section 2.7.2 for the tensor product case, we introduce the following
coordinates of the time-like cone Ω(n) in R1,n−1:

(3.18) ι : Ω(n− 1)× (−1, 1) ∼−→ Ω(n), (y′, v) 7→
(
y′,−

√
Q1,n−2(y′)v

)
,

which is a bijection because (y′, yn) ∈ Ω(n) if and only if y′ ∈ Ω(n−1) and
y2
n < Q1,n−2(y′).
We define a function on Ω(n− 1)× (−1, 1) by

(3.19) M(y′, v) ≡Mλ,ν(y′, v) := Q1,n−2(y′)
`+1

2
(
1− v2)n2−λ .

Via the isomorphism ι, the ratio of the densities mλ(y) and mν(y′), and
the holographic operator Φνλ are expressed as follows:

m′ν(y′)
mλ(y) = M(y′, v)−1 Q1,n−2(y′)− `2 ,(3.20)

mλ(y)dy = M(y′, v)2 m′ν(y′)dy′
(
1− v2)λ−n2 dv,(3.21)

(Φνλh) ◦ ι(y′, v) = M(y′, v)−1 Cα` (v)h(y′).(3.22)

3.5.6. Fourier transform of the holomorphic Juhl operators

For λ > n − 1 and ν = λ + ` (` ∈ N), the holomorphic Juhl operator
Dλ→ν gives rise to a continuous operator H2(TΩ(n))λ −→ H2(TΩ(n−1))ν
between the weighted Bergman spaces [18, Theorem 5.13].
We define a linear map D̂λ→ν : L2(Ω)λ −→ L2(Ω′)ν by

(3.23) D̂λ→ν := F−1
n−1 ◦Dλ→ν ◦ Fn.

Then the idea of the F-method [18] implies that the “Fourier transform”
D̂λ→ν of the holomorphic Juhl operator Dλ→ν is given by a Gegenbauer
transform (cf. [4, Chapter 15]) along the trajectory in (3.18) where the
parameter v moves:
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Proposition 3.7. — The operator D̂λ→ν is given by the following in-
tegral transform:(
D̂λ→νF

)
(y′) = i−`Q1,n−2(y′)

`+1
2

∫ 1

−1
F ◦ ι(y′, v)Cα` (v)dv for y′ ∈ Ω′,

where we set α = λ− n−1
2 .

Proof. — Let α = λ− n−1
2 . Then it follows from (3.5) and (3.16) that

(3.24)

(
i`Dλ→ν ◦ Fn

)
F = Restζn=0 ◦ (I`Cα` )

(
−∆C1,n−2 , i

∂

∂ζn

)
FnF

= Restζn=0 ◦Fn
(
I`C

α
` (Q1,n−2(y′),−yn)F

)
,

for F ∈ L2(Ω(n))λ. Since (I`Cα` )(u2, w) = u`Cα`
(
w
u

)
, the right-hand side

amounts to∫
Ω(n−1)

∫ 1

−1
F ◦ ι(y′, v)Q1,n−2(y′)

`+1
2 Cα` (v)ei〈y

′, ζ′〉dy′dv

= Fn−1

(
Q1,n−1(y′)

`+1
2

∫ 1

−1
F ◦ ι(y′, v)Cα` (v)dv

)
via the diffeomorphism (3.18). Since the left-hand side of (3.24) is equal
to i`Fn−1 ◦ D̂λ→νF by the definition (3.23) of D̂λ→ν , we proved Proposi-
tion 3.7. �

3.5.7. Proof of Proposition 3.5

Proof of Proposition 3.5. — Let α = λ − n−1
2 as before. By (3.21)

and (3.22) we have

‖Φνλh‖
2
L2(Ω(n))λ = ‖h‖2L2(Ω(n−1))λ+`

∫ 1

−1
|Cα` (v)|2

(
1− v2)α− 1

2 dv.

Thus the first assertion holds by the definition (3.8) of c`(λ).
The second assertion follows readily from Proposition 3.8 below. �

3.5.8. Holographic operators and the adjoint of symmetry breaking
operators

We have constructed operators Φνλ in the L2-model and Φ̂νλ in the holo-
morphic model using the F-method. On the other hand, the adjoint of
symmetry breaking operators between unitary representations yield holo-
graphic operators in general (Theorem 4.4(1) below). In our setting, these
operators are proportional to each other because the branching law (3.11)
is multiplicity-free. We determine the proportionality constants:
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Proposition 3.8. — Suppose λ > n − 1 and ` = ν − λ ∈ N. Then we
have (

D̂λ→ν
)∗ = i`Φνλ,

D∗λ→ν = i`r`(λ)Φ̂νλ.

Proof. — Take any h ∈ L2(Ω(n − 1))ν and F ∈ L2(Ω(n))λ with ν − λ
= ` ∈ N. Since α = λ − n−1

2 is real, Cα` (v) is real-valued for −1 < v < 1,
hence we have from Proposition 3.7(

h, D̂λ→νF
)
L2(Ω(n−1))ν

= i`
∫

Ω(n−1)
h(y′)

(∫ 1

−1
Q1,n−2(y′)

`+1
2 F ◦ ι(y′, v)Cα` (v)dv

)
m′ν(y′)dy′

= i`
∫

Ω(n)
h(y′)F (y)(I`Cα` )(Q1,n−2(y′),−yn)m′ν(y′)dy

= i`
∫

Ω(n)
(Φνλh) (y)F (y)mλ(y)dy

= i` (Φνλh, F )L2(Ω(n))λ .

Here we have used (3.20) and (3.22) in the third identity. Hence the first
equality is shown. By Lemma 2.24, the second equality follows from the
first one. �

3.6. Explicit integral formula for the holographic operator

In this section, we give an integral formula for the holographic operator
D∗λ→ν in the holomorphic model, giving thus an answer to Problem A.1. in
Section 1, see Theorem 3.10 below.

3.6.1. Construction of discrete summands in the holomorphic model

In contrast to the holographic operators Ψλ
′′′
λ′,λ′′ (Definition 2.1) in the

tensor product case in Section 2, we do not have a simple integral expression
for a holographic operator like (2.6) in the present setting. Instead, we adopt
an alternative approach to construct a holographic operator by introducing
a relative reproducing kernel Kλ, ν(ζ, τ ′) as below.
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For λ, ν ∈ C with ` := ν − λ ∈ N, we set

(3.25) Kλ, ν(ζ, τ ′)

:=
(
(ζ1 − τ1)2 − (ζ2 − τ2)2 − · · · − (ζn−1 − τn−1)2 − ζ2

n

)−ν
ζλ−νn

,

where ζ = (ζ1, · · · , ζn) ∈ TΩ(n) and τ ′ = (τ1, · · · , τn−1) ∈ TΩ(n−1).

Remark 3.9. — Kλ,ν(ζ, τ ′) may be viewed as the holomorphic counter-
part of the distribution kernel of a conformally covariant integral symmetry
breaking operator for the pair of Riemannian manifolds (Sn, Sn−1), see [20].
See also (1.1) for the case n = 2.

Let dµν be a measure on TΩ(n−1) given by

dµν(τ ′) :=
(
i

2

)n−1
Q1,n−2(Im τ ′)ν−n+1dτ ′dτ ′.

Theorem 3.10 (holographic operator). — Let n > 3. Suppose λ > n−1
and ν = λ+ ` with ` ∈ N. Then the integral∫

TΩ(n−1)

Kλ,ν(ζ, τ ′)g(τ ′)dµν(τ ′)

converges for all g ∈ H2(TΩ(n−1))ν and ζ ∈ TΩ(n). Moreover, it gives the
adjoint operator D∗λ→ν up to scalar multiplication:

(D∗λ→νg) (ζ) = C

∫
TΩ(n−1)

Kλ,ν(ζ, τ ′)g(τ ′)dµν(τ ′),

where the constant C is given by

(3.26) C = 22λ−2n+`−1(λ− n+ 1)n+`−1(2λ− n)`+1

i2λ+2`πn`! .

In particular, it yields an injective continuous G̃′-intertwining operator be-
tween weighted Bergman spaces, H2(TΩ(n−1))ν ↪→ H2(TΩ(n))λ.

We first show that Theorem 3.10 is derived from the following Bernstein–
Sato type identity for the holomorphic Juhl operator.

Theorem 3.11. — Let Dα` be the differential operator as in (3.16).
We set

(3.27) q(n, `;λ) := 2`

`! (2λ− n+ 1)`(λ)`.

Then,
ζ−`n D

λ−n−1
2

` Q1, n−1(ζ)−λ = q(n, `;λ)Q1, n−1(ζ)−λ−`.
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Remark 3.12. — Theorem 3.11 shows that the complex power of the
quadratic form Q1,n−1 satisfies the Bernstein–Sato type identity not only
for the power of the Laplacian (see (3.32) below) but also for another
operator closely related to the holomorphic Juhl operator.

Postponing the proof of Theorem 3.11, we complete the proof of Theo-
rem 3.10. For this, we also use the following Lemma 3.13.

Lemma 3.13. — LetDj (j = 1, 2) be complex manifolds, andHj Hilbert
spaces contained in O(Dj) with reproducing kernelsK(j)(·, ·). Suppose that
R : H1 → H2 is a continuous linear map, and R∗ : H2 → H1 is its adjoint
operator. Then,

(1) RK(1)( ·, ζ)(τ ′) =
(
R∗K(2)( ·, τ ′)

)
(ζ) for ζ ∈ D1, τ

′ ∈ D2;
(2) (R∗g) (ζ) =

(
g,RK(1)( ·, ζ)

)
H2

for g ∈ H2 and ζ ∈ D1.

Proof of Lemma 3.13.
(1) The first assertion results from the reproducing property of K(j)(·, ·)

applied to the following identity:(
R∗K(2)( ·, τ ′),K(1)( ·, ζ)

)
H1

=
(
K(2)( ·, τ ′),RK(1)( ·, ζ)

)
H2
.

(2) The statement is immediate from the following:

(R∗g) (ζ) =
(
R∗g,K(1)( ·, ζ)

)
H1

=
(
g,RK(1)( ·, ζ)

)
H2
. �

Proof of Theorem 3.10. — Applying Lemma 3.13 to the triple

(R,H1,H2) =
(
Dλ→ν ,H2(TΩ(n))λ,H2(TΩ(n−1))ν

)
,

we obtain the following integral expression of the adjoint operator D∗λ→ν :

(3.28) (D∗λ→νg) (ζ) =
∫
TΩ(n−1)

g(τ ′)Dλ→νKλ( ·, ζ)(τ ′)dµν(τ ′).

Here, we have viewed the reproducing kernel Kλ(τ, ζ) = kλ, nQ1, n−1
(τ − ζ)−λ defined in (3.3) as a function of τ ∈ TΩ(n) with parameter
ζ ∈ TΩ(n) and applied the holomorphic Juhl operator Dλ→ν . Writing τ

as τ = (τ ′, τn), we get from Theorem 3.11:

Dλ→νKλ(τ, ζ)

= kλ,n q(n, `;λ) Restτn=0 ◦
(
τn − ζn

)`
Q1, n−1

(
τ − ζ

)−λ−`
= (−1)`kλ, n q(n, `;λ)Kλ, ν(ζ, τ ′)

for τ ′ ∈ TΩ(n−1), by the definition (3.25) of the relative reproducing ker-
nel Kλ, ν(ζ, τ ′). Since q(n, `;λ) ∈ R when λ ∈ R, the integral formula of
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Theorem 3.10 is shown with the constant C = (−1)`kλ, n q(n, `;λ). A short
computation shows the formula (3.26). �

The rest of this section is devoted to the proof of Theorem 3.11.

3.6.2. Proof of Theorem 3.11

Lemma 3.14. — Suppose ` ∈ N. Then there exist qj ≡ qj(n, `;λ)
(0 6 2j 6 `) such that

Dα` Q1, n−1(ζ)−λ =
[ `2 ]∑
j=0

qjζ
`−2j
n Q1, n−1(ζ)−λ−`+j .

Proof. — It is easy to see that an analogous statement holds for
(

∂
∂ζn

)`
instead of Dα` , namely, there exist q′j ≡ q′j(n, `;λ) (0 6 2j 6 `) such that

(3.29)
(

∂

∂ζn

)`
Q1, n−1(ζ)−λ =

[ `2 ]∑
j=0

q′jζ
`−2j
n Q1, n−1(ζ)−λ−`+j .

We rewrite Dα` as a polynomial of ∆C1, n−1 = ∂2

∂ζ2
1
− ∂2

∂ζ2
2
− · · · − ∂2

∂ζ2
n
and

∂
∂ζn

by substituting ∆C1, n−2 = ∆C1,n−1 + ∂2

∂ζ2
n
into (3.5):

(3.30) Dα` =
[ `2 ]∑
k=0

pk(n, `;α)
(

∂

∂ζn

)`−2k
(∆C1, n−1)k ,

where the first coefficient is given by

(3.31) p0(n, `;α) =
[ `2 ]∑
k=0

ak(`, α) = Cα` (1) = (2α)`
`! .

An iterated use of the formula

∆C1, n−1Q1, n−1(ζ)−λ = 2λ(2λ− n+ 2)Q1, n−1(ζ)−λ−1,

leads us to

(3.32) (∆C1, n−1)kQ1, n−1(ζ)−λ = sk(n, λ)Q1, n−1(ζ)−λ−k,

for some polynomials sk(n, λ) of λ of degree 2k. We note that s0(n, λ) = 1.
Now the Lemma 3.14 follows from (3.29). �

Clearly the coefficients qj = qj(n, `;λ) in Lemma 3.14 are unique. The
proof of Theorem 3.11 is reduced to the following proposition on these
coefficients qj(n, `;λ).
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Proposition 3.15.
(1) (the first term). Recall that q(n, `;λ) is defined in (3.27). Then,

q0 (n, `;λ) = q(n, `;λ).

(2) (vanishing of higher terms).

qj (n, `;λ) = 0 for all j > 1.

Proof of Proposition 3.15(1). — In the expression(
∂

∂ζn

)`−2k
(∆C1, n−1)kQ1, n−1(ζ)−λ = sk(n, λ)

(
∂

∂ζn

)`−2k
Q1, n−1(ζ)−λ−k,

the term ζ`n Q1, n−1(ζ)−λ−` occurs only when k = 0, and its coefficient is
given by s0(n, λ)2`(λ)` = 2`(λ)`. By (3.30), we get

q0(n, `;λ) = p0(n, `;α) · 2`(λ)`.

Now the first assertion of Proposition 3.15 follows from (3.31). �

In order to prove the second assertion of Proposition 3.15, we discuss the
kernel of the holomorphic Juhl operator Dλ→ν : O(TΩ(n)) −→ O(TΩ(n−1)).

Proposition 3.16. — Suppose λ − n−1
2 6∈ {0,−1,−2, · · · }. Then for

any N ∈ N we have

(3.33)
N⋂
j=0

Ker (Dλ→λ+j)

=
{
f ∈ O(TΩ(n)) : Restζn=0 ◦

(
∂

∂ζn

)j
f = 0 for all 0 6 j 6 N

}
.

Proof. — By the definition (3.6) of Dλ→ν , the right-hand side is clearly
contained in the left-hand side. To see the opposite inclusion, we recall
from the definition (3.6) that the symmetry breaking operator Dλ→λ+j is
of the form

Dλ→λ+j = Restζn=0 ◦

a0

(
∂

∂ζn

)j
+

[ j2 ]∑
k=1

ak

(
∂

∂ζn

)j−2k
∆k

C1, n−2

 ,

where the first coefficient a0 ≡ a0 (j, α) is given by

a0 (j, α) = 2j

j! (α)` with α = λ− n− 1
2 .

We now prove the proposition by induction on N . The statement is clear
for N = 0 and 1 because Dλ→λ = Restζn=0 and Dλ→λ+1 = Restζn=0 ◦ ∂

∂ζn
.

TOME 70 (2020), FASCICULE 5



2180 Toshiyuki KOBAYASHI & Michael PEVZNER

Suppose that f ∈ O(TΩ(n)) satisfies Dλ→λ+jf = 0 for 0 6 j 6 N + 1.
By the inductive assumption, we get

Restζn=0 ◦
(

∂

∂ζn

)j
f = 0 (0 6 j 6 N) .

Since a0 ≡ a0(j, α) is nonzero for any j by the assumption on λ, Dλ→λ+N+1
f = 0 implies

Restζn=0 ◦
(

∂

∂ζn

)N+1
f = 0 .

Thus the proposition is proved by induction. �

Proof of Proposition 3.15(2). — Let ν = λ + `. By (3.28) and Lem-
ma 3.14, we obtain

(3.34) (D∗λ→νg) (ζ)

= (−1)`kλ, n
[ `2 ]∑
j=0

qjζ
`−2j
n

∫
TΩ(n−1)

g(τ ′)Q1, n−1(ζ − τ)−λ−`+jdµν(τ ′),

where we write τ = (τ ′, 0) = (τ ′1, · · · , τ ′n−1, 0) by abuse of notations.
On the other hand, the composition map

Dλ→λ+j ◦D∗λ→λ+` : H2(TΩ(n−1))λ+` −→ H2(TΩ(n−1))λ+j

is a G′-intertwining operator for any j. Since the G′-modules

H2(TΩ(n−1))λ+j(j ∈ N)

are irreducible and mutually inequivalent if λ > n−1, such an intertwining
operator must be zero unless j = `. Therefore

Image
(
D∗λ→λ+`

)
⊂

`−1⋂
j=0

Ker (Dλ→λ+j) .

We now prove that qj ≡ qj(n, `;λ) vanishes for all 1 6 j 6
[
`
2
]
by downward

induction on j. For simplicity, we treat the case where ` is even, say ` = 2m.
The case where ` is odd can be dealt with similarly.
By Proposition 3.16, we have

Restζn=0 ◦D∗λ→νg = 0 for all g ∈ H2(TΩ(n−1))ν .

Then it follows from (3.34) that

(−1)` kλ, nqm
∫
TΩ(n−1)

g(τ ′)Q1, n−2(ζ ′ − τ)−λ−mdµν(τ ′) = 0.

Thus we conclude that qm = 0 because kλ,n 6= 0.
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Suppose that we have shown qj = 0 for j = m,m− 1, · · · ,m+ 1− s for
some s > 1. If s 6 m− 1, then 2s 6 `− 1(= 2m− 1) and we can proceed
by applying Proposition 3.16 with N = `− 1, hence

Restζn=0 ◦
(

∂

∂ζn

)2s
◦D∗λ→νg = 0.

By the inductive assumption, we obtain

(−1)`kλ, nqm−s
∫
TΩ(n−1)

g(τ ′)Q1, n−2(ζ ′ − τ)−λ−m−sdµν(τ ′) = 0

for all g ∈ H2(TΩ(n−1))ν . Thus we conclude that qm−s = 0 as far as
s 6 m− 1. Hence we have shown qj = 0 for all j > 1. �

Thus the proof of Theorem 3.11 (hence, also the one of Theorem 3.10)
is completed.

4. Perspectives of symmetry breaking and holographic
transforms

We end this article with discussion on a representation-theoretic back-
ground of Problems A and B in a broader framework.

In Section 4.1, we consider these problems from the viewpoint of the
branching laws of unitary representations of locally compact groups. In
Section 4.2, we investigate Problems A and B for triples (G,G′, π) such
that

• (G,G′) is a reductive symmetric pair of holomorphic type;
• π is a unitary highest weight module of G of scalar type,

generalizing the settings for the main results in Sections 2 and 3. The role
of special orthogonal polynomials in these cases is clarified in Section 4.3.

4.1. Branching laws, symmetry breaking transform and
holographic transform

Let G ⊃ G′ be a pair of groups, π an irreducible G-module, and ρ

an irreducible G′-module. We recall from Section 1 that an element in
HomG′ (π|G′ , ρ) (resp. in HomG′ (ρ, π|G′)) is said to be a symmetry break-
ing operator (resp.a holographic operator). We also recall that a symmetry
breaking transform (resp. a holographic transform) is a collection of sym-
metry breaking operators (resp. holographic operators) where (ρ,W ) runs
over a certain set Λ of irreducible representations of the subgroup G′.
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If π is a unitary representation of a locally compact group G on a Hilbert
space V , then Mautner’s theorem guarantees that the restriction (π|G′ , V )
is unitarily equivalent to the direct integral of irreducible unitary represen-
tations of the subgroup G′:

(4.1) π|G′ '
∫ ⊕
Ĝ′
mπ(ρ)ρ dµ(ρ),

where Ĝ′ is the set of equivalence classes of irreducible unitary representa-
tions of G′ (unitary dual), µ is a Borel measure on Ĝ′ endowed with the
Fell topology, and mπ : Ĝ′ −→ N ∪ {∞} is a measurable function (mul-
tiplicity). The irreducible decomposition (4.1) is called branching law of
the restriction π|G′ , which is unique up to isomorphism if G′ is a type I
group, in particular, if G′ is a real reductive group by a theorem of Harish–
Chandra [8].
The (abstract) branching law (4.1) would be enriched through Prob-

lems A and B by geometric realizations of irreducible representations and
explicit intertwining operators:

from (LHS) to (RHS) symmetry breaking transform;
from (RHS) to (LHS) holographic transform.

In the unitary case, it is natural to take Λ to be the support of the
measure µ in (4.1). If Λ is a countable set, then the branching law (4.1) is
discretely decomposable without continuous spectrum. A criterion for the
triple (G,G′, π) to admit a discretely decomposable restriction π|G′ was
studied in [11, 12] when G ⊃ G′ is a pair of real reductive groups.
On the other hand, the multiplicity mπ(ρ) in (4.1) is not always fi-

nite when π and ρ are infinite-dimensional. A geometric criterion for the
pair (G,G′) to assure that HomG′(π∞|G′ , ρ∞) is finite-dimensional for all
smooth irreducible G-modules π∞ and G′-modules ρ∞ was established
in [17].

If the branching law (4.1) is discretely decomposable and multiplicity
free, then we could expect a simple and detailed study of symmetry break-
ing transform and holographic transform. In this case, since the vector
space HomG′(π|G′ , ρ) is one-dimensional, symmetry breaking operator is
unique up to scaling for every ρ, and the symmetry breaking transform is
defined as the collection of countably many such operators.
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4.2. Symmetric pairs of holomorphic type

In this section, we provide a geometric condition (see Setting 4.1 below)
that assures the branching law π|G′ to be discretely decomposable and
multiplicity free. In this case, we see that every symmetry breaking operator
is a differential operator (e.g. the Rankin–Cohen transforms studied in
Section 2 and the holomorphic Juhl transforms in Section 3), and that our
symmetry breaking transform D is injective, hence giving an affirmative
answer to Problem A.0. in Section 1. The main results in Sections 2 and 3
are built on special cases of this general setting.
Let us fix some notations. Let G be a connected reductive Lie group, θ

a Cartan involution, K = {g ∈ G : θg = g}, g = k + p the corresponding
Cartan decomposition, and gC = kC + pC its complexification. Assume that
there exists a central element Z of kC such that

gC = kC + n+ + n−

is the eigenspace decomposition of ad(Z) with eigenvalues 0, 1, and −1, re-
spectively. This assumption is satisfied if and only if G is locally isomorphic
to a direct product of compact Lie groups (with Z = 0) and noncompact
Lie groups of Hermitian type. Then the associated Riemannian symmet-
ric space X = G/K becomes a Hermitian symmetric space with complex
structure induced from the Borel embedding G/K ⊂ GC/KC exp(n+). Take
a Cartan subalgebra t of k, and write ρ(n+) for half the sum of roots in
∆(n+, tC).

Setting 4.1. — Let (G,G′) be a reductive symmetric pair of holomor-
phic type, that is, X = G/K and Y = G′/K ′ are both Hermitian sym-
metric spaces and the natural embedding ι : Y ↪→ X is holomorphic. Let
L = G×KCλ be a G-equivariant holomorphic line bundle overX associated
to a unitary character Cλ of K, and we set H2(X,L) :=

(
O ∩ L2) (X,L).

Assume λ satisfies the following condition:

(4.2)
{
〈λ, α〉 = 0 ∀ α ∈ ∆(kC, tC),
〈λ− ρ(n+), α〉 > 0 ∀ α ∈ ∆(n+, tC).

The Hilbert space H2(X,L) is naturally identified with a weighted
Bergman space, which is nonzero if λ satisfies the condition (4.2). We de-
note by π the representation of G on the Hilbert space H2(X,L), which is
irreducible and unitary, and is called a holomorphic discrete series represen-
tation of G. The list of irreducible symmetric pairs (G,G′) of holomorphic
type may be found in [13, Table 3.4.1].
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Fact 4.2 (see [13, Theorem B]). — In Setting 4.1, the restriction π|G′
is discretely decomposable and multiplicity free.

Any irreducible G′-module that occurs in the branching law (4.1) for
the unitary representation (π,H2(X,L)) is of the form H2(Y,W) for some
G′-equivariant holomorphic vector bundle W over Y associated to an irre-
ducible finite-dimensional unitary representation W of K ′, and such bun-
dles W are classified. Thus Λ is parametrized by a subset of K̂ ′, or by a
subset of dominant integral weights which can be described in terms of the
root data (see [13, Theorem 8.3]). We write ρ` for the irreducible unitary
representation of G′ corresponding to ` ∈ Λ, and identify Λ as a subset
of Ĝ′ by ` 7→ ρ`. Here is a summary on general results about symmetry
breaking operators in this setting:

Fact 4.3. — In Setting 4.1, let W be the G′-equivariant holomorphic
vector bundle corresponding to ` ∈ Λ.

(1) Any continuous G′-homomorphism O(X,L) −→ O(Y,W) is given
as a holomorphic differential operator, and induces a continuous
G′-homomorphism between the Hilbert spaces H2(X,L) −→ H2

(Y,W).
(2) Any continuous G′-homomorphism H2(X,L) −→ H2(Y,W) ex-

tends to a continuous G′-homomorphism O(X,L) −→ O(Y,W).

Proof of Fact 4.3.
(1) The first statement is proved in [18, Theorem 5.3] (localness theorem),

and the second one is in [18, Theorem 5.13].
(2) By (1) there is a natural injective map

(4.3) HomG′ (O(X,L)|G′ ,O(Y,W))

↪→ HomG′
(
H2(X,L)

∣∣_G′,H2(Y,W)
)
.

To prove that (4.3) is surjective, we observe that the left-hand side of (4.3)
is understood by the branching law for the generalized Verma module [14,
Theorem 5.2] via the duality theorem [18, Theorem A], whereas the right-
hand side of (4.3) is given by the branching law of the unitary represen-
tation H2(X,L)|G′ ([13, Theorem 8.3]), and that they coincide under the
condition (4.2). Hence (4.3) is bijective. �

In order to clarify the dependence of the parameter `, we write W` for
the G′-equivariant vector bundle corresponding to ` ∈ Λ from now. Then
Fact 4.3 tells that the one-dimensional vector space

HomG′ (O(X,L)|G′ ,O(Y,W`)) ' HomG′
(
H2(X,L)

∣∣
G′ ,H2(Y,W`)

)
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is spanned by a differential symmetry breaking operator. We fix such a
generator D` for every ` ∈ Λ.

Since D` : H2(X,L) → H2(Y,W`) is a continuous operator between the
Hilbert spaces, its operator norm ‖D`‖op is finite and its adjoint D∗` is a
continuous linear operator. Set

C` := ‖D`‖2op, Ψ` := 1
C`
D∗` .

Let D = (D`)`∈Λ be the symmetry breaking transform. Then we have the
following:

Theorem 4.4. — Suppose we are in Setting 4.1.
(1) Ψ` : H2(Y,W`) −→ H2(X,L) is a holographic operator. Moreover,

it is an isometry up to renormalization.
(2) The symmetry breaking transform D is injective on H2(X,L).
(3) Any f ∈ H2(X,L) is recovered from its symmetry breaking trans-

form Df by
f =

∑
`∈Λ

Ψ` (Df)` .

(4) The norm ‖f‖H2(X,L) is recovered from the sequence of norms

‖(Df)`‖H2(Y,W`)

by

‖f‖2H2(X,L) =
∑
`∈Λ

1
C`
‖(Df)`‖

2
H2(Y,W`) .

Proof. — The unitary representation of G on the Hilbert space H2(X,L)
is decomposed discretely and multiplicity freely into the Hilbert direct sum:

(4.4) H2(X,L)|G′ '
∑
`∈Λ

⊕H2(Y,W`)

as unitary representations of the subgroup G′ by Fact 4.3.
(1) The adjoint operator D∗` is a G′-homomorphism because H2(X,L)

and both H2(Y,W`) are unitary representations. The second assertion fol-
lows from Schur’s lemma because HomG′(H2(Y,W`),H2(X,L)

∣∣
G′

) is one-
dimensional.
(2) Expand f ∈ H2(X,L) as f =

∑
`∈Λ f` according to the decomposi-

tion (4.4). Then (Df)` is a nonzero multiple of f` by Schur’s lemma since
the decomposition (4.4) is multiplicity free. Hence, if Df = 0, then f` = 0
for all ` ∈ Λ, and therefore f = 0.
Statements (3) and (4) are direct consequences of Lemma 2.23. �
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4.3. Role of orthogonal polynomials

In this section we investigate Problems A and B in Setting 4.1, and
clarify the role of the F-method and special orthogonal polynomials for
the L2-theory of symmetry breaking transforms consisting of holomorphic
differential operators.
Suppose we are in Setting 4.1. As we have seen in Section 4.2, Theo-

rem 4.4(2) solves Problem A.0., whereas Theorem 4.4(1), (3), and (4) give
a framework for Problems A.1., A.2., and B, respectively, for the symmetry
breaking transform D = (D`)`∈Λ. Thus the solution to Problems A and B
is reduced to the following four questions of finding explicit description and
closed formulæ of

• the support of Λ;
• holomorphic differential operators D`;
• the operator norm ‖D`‖op;
• the adjoint operator D∗` .

Let us summarize briefly what was known, what has been proved in this
article, and what looks promising.

As we mentioned in Section 4.2, the explicit description of Λ, equivalently,
the branching law (4.4) for the restriction π|G′ in Section 4.1 was proved
in [13, Theorem 8.3], which gives a generalization of the Hua–Kostant–
Schmid formula in the case when G′ = K. Denote by rankRG/G

′ the split
rank of the reductive symmetric space G/G′. Then it turns out that Λ is a
free abelian semigroup generated by rankRG/G

′ elements, see [13].
It is more involved to construct symmetry breaking operators D` explic-

itly than determining Λ, namely, the branching law of the restriction π|G′ .
As of now, an explicit construction of D` for all ` ∈ Λ with exhaustion theo-
rem is known when rankRG/G

′ = 1, see [19]. There are six families of such
symmetric pairs (G,G′), and the resulting symmetry breaking operators
include the Rankin–Cohen operators and the holomorphic Juhl operators.
In order to obtain the operator norm ‖D`‖op of such holomorphic differ-

ential operators D`, we have developed the idea of the F-method to connect
‖D`‖op with the L2-norm of special polynomials P` in the following two
cases in this article.

D` P`

Rankin–Cohen operators Jacobi polynomials

Juhl operators Gegenbauer polynomials
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The relationship between D` and P` follows from the fact that the G′-
equivariance condition on the operator D` is transformed into a certain
differential equation (e.g. Jacobi differential equation (5.1)) for the poly-
nomial P`. It is plausible that this idea would work in the full generality of
Setting 4.1.
Concerning the adjoint operator D∗` , this article has provided two kinds

of integral formulæ, that is, by the line integral (Definition 2.1), see Propo-
sition 2.22, and by the integral over the tube domain (Theorem 3.10). The
former has an advantage that the formula is simple and does not require
the unitarity of representations, whilst the latter uses a natural idea of the
“relative reproducing kernel” Kλ,ν(ζ, τ ′), see (3.25).

5. Appendix: Jacobi polynomials and Gegenbauer
polynomials

5.1. The Jacobi polynomials

Suppose α, β ∈ C and ` ∈ N. The Jacobi polynomial Pα,β` (t) is a poly-
nomial solution to the Jacobi differential equation

(5.1)
((

1− t2
) d2

dt2
+ (β − α− (α+ β + 2)t) d

dt
+ `(`+ α+ β + 1)

)
y

= 0,

which is normalized by Pα,β` (1) = Γ(α+`+1)
Γ(α+1)`! = (α+1)`

`! . Then it satisfies the
Rodrigues formula

(5.2) (1− t)α(1 + t)βPα, β` (t) = (−1)`

2``!

(
d

dt

)` (
(1− t)`+α(1 + t)`+β

)
.

The Jacobi polynomial Pα, β` (t) is nonzero and is a polynomial of degree
` for generic parameters (see [19, Theorem 11.2] for the precise condition).
Explicitly, one has

(5.3)

Pα, β` (t) = (α+ 1)`
`! 2F1

(
−`, α+ β + `+ 1;α+ 1; 1− t

2

)
=
∑̀
j=0

(α+ β + `+ 1)j(α+ j + 1)`−j
(`− j)!j!

(
t− 1

2

)j
.
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The first Jacobi polynomials are
• Pα,β0 (t) = 1,
• Pα,β1 (t) = 1

2 (α− β + (2 + α+ β)t).
For real α, β with α, β > −1, the Jacobi polynomials {Pα, β` }`∈N form an
orthogonal basis in the Hilbert space L2((−1, 1), (1− x)α(1 + x)βdx) with
the following norm (see [1, page 301] for example):

(5.4)
∫ 1

−1

∣∣∣Pα, β` (x)
∣∣∣2 (1− x)α(1 + x)βdx

= 2α+β+1Γ(`+ α+ 1)Γ(`+ β + 1)
(2`+ α+ β + 1)Γ(`+ α+ β + 1)`! .

When α = β these polynomials yield Gegenbauer polynomials (see (5.6)
below), and they further reduce to Legendre polynomials in the case when
α = β = 0.

5.2. The Gegenbauer polynomials

For α ∈ C and ` ∈ N, the Gegenbauer polynomial (or ultraspherical
polynomial) Cα` (t) is defined by

(5.5) Cα` (t) =
[ `2 ]∑
k=0

ak(`, α)t`−2k,

where ak(`, α) is given in (3.4). The Gegenbauer polynomials are special
cases of the Jacobi polynomials by

(5.6) (2α+ 1)`
(α+ 1)`

Pα,α` (x) = C
α+ 1

2
` (x),

and have the generating function:(
1− 2tr + r2)−α =

∑
`∈N

Cα` (t)r`.

We note that Cα` (1) = (2α)`
`! . If α > − 1

2 , then the Gegenbauer polynomials
{Cα` (v)}`∈N form an orthonormal basis in the Hilbert space

L2
(

(−1, 1),
(
1− v2)α− 1

2 dv
)

with the following L2-norm (see [7, 7.313]):

(5.7)
∫ 1

−1
|Cα` (v)|2

(
1− v2)α− 1

2 dv = π21−2αΓ(`+ 2α)
`!(`+ α)Γ (α)2 .
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