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A GENERAL THEORY OF ANDRE’S SOLUTION
ALGEBRAS

by Levente NAGY & Tamias SZAMUELY (*)

ABSTRACT. — We extend Yves André’s theory of solution algebras in differential
Galois theory to a general Tannakian context. As applications, we establish ana-
logues of his correspondence between solution fields and observable subgroups of
the Galois group for iterated differential equations in positive characteristic and for
difference equations. The use of solution algebras in the difference algebraic con-
text also allows a new approach to recent results of Philippon and Adamczewski—
Faverjon in transcendence theory.

RESUME. — Nous étendons la théorie des algebres de solutions d’Yves André en
théorie de Galois différentielle & un contexte général tannakien. Comme applica-
tion nous obtenons des analogues de sa correspondance entre corps de solutions et
sous-groupes observables du groupe de Galois différentiel pour les équations dif-
férentielles itérées en caractéristique positive et pour les équations aux différences.
L’utilisation des algebres de solutions dans le cadre de l’algébre aux différences
permet également un nouveau point de vue sur des résultats récents de Philippon
et d’Adamczewski—Faverjon en théorie de la transcendance.

1. Introduction

In classical differential Galois theory one considers a linear differential
equation over a field K equipped with a nontrivial derivation 0 such that
k := ker(0) is algebraically closed of characteristic 0. Following Kolchin,
one constructs a differential field extension L| K, called the Picard—Vessiot
extension, which is generated over K by all solutions of the equation and
their derivatives. The group G of relative automorphisms of L|K respect-
ing the derivation has a natural structure of a linear algebraic group over
the constant field k¥ C K, and there is a Galois correspondence between
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intermediate differential fields of L|K and closed subgroups of G. For these
classical results we refer to the book of van der Put and Singer [27].

In his recent paper [5], Yves André introduced a refinement of the differ-
ential Galois correspondence by considering intermediate extensions gener-
ated by some but not necessarily all solutions of the differential equations.
He called these subfields solution fields and showed that they correspond
to observable subgroups of the differential Galois group, i.e. closed sub-
groups H C G with quasi-affine quotient G/H. Using the more refined
Tannakian approach to differential Galois theory, André also showed that
solution fields arise as fraction fields of so-called solution algebras which
are generalizations of the classical Picard—Vessiot algebras, and established
a correspondence between solution algebras and affine quasi-homogeneous
varieties under the differential Galois group.

At the end of his paper [5, Remark 6.5 (3)], André writes that he expects
a similar theory of solution algebras in characteristic p > 0 using iterated
derivations as well as a similar theory for difference equations. In this paper
we confirm his expectations.

For the characteristic p theory, we work with the iterative differential
modules (or ID-modules) of Matzat and van der Put [18] (see the beginning
of Section 5 for a brief summary of the basic definitions). To an ID-module
M defined over an ID-field K they associate a Picard—Vessiot extension
JIK in the ID-setting and an associated Galois group scheme G. This group
scheme satisfies an iterated differential Galois correspondence, extended to
possibly inseparable Picard—Vessiot extensions by Maurischat [19]. Mim-
icking André’s definition, we say that an extension of ID-fields L|K is a
solution field for M if the constant field of £ is k£ and there exists a mor-
phism of ID-modules M — £ whose image generates the underlying field
extension L|K. One of our main results is then the following generalization
of a theorem of André’s:

THEOREM 1.1 (= Theorem 5.13). — An intermediate ID-extension
L of JIK is a solution field for M if and only if the corresponding subgroup
scheme H is an observable subgroup scheme of the Galois group scheme G.

Here a closed subgroup scheme H C G is called observable if the quotient
G/H is a quasi-affine scheme. Note that, in contrast to André’s setting, we
allow our group schemes to be non-reduced. In fact, in Section 6 we shall
exhibit an example of a solution field corresponding to a non-reduced closed
subgroup scheme of a reduced iterative differential Galois group which is
moreover not a Picard—Vessiot extension.
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The proof of the above result has two main inputs: the iterative differ-
ential Galois correspondence quoted above and a generalization of André’s
theory of solution algebras. We show that it is possible to develop the lat-
ter in a general Tannakian setting without reference to differential algebra.
First, in Sections 2 and 3 we describe a general theory of Picard—Vessiot
objects in k-linear tensor categories satisfying certain natural conditions,
including the existence of a non-neutral fibre functor playing the role of
the forgetful functor for differential modules. In Theorem 3.4 we show that
Picard—Vessiot objects correspond to neutral fibre functors on rigid abelian
tensor subcategories (X)g generated by a single object X. This generalizes
the correspondence of Deligne and Bertrand in the last section of [10].(*)
Afterwards, we give a general definition of solution algebras associated with
objects X in the tensor categorical setting (Definition 4.1), and prove:

THEOREM 1.2. — Let (X)g be a full rigid abelian tensor subcategory in
a k-linear tensor category as above, equipped with a neutral fibre functor w.
Given a solution algebra S associated with X, its image w(S) is a finitely
generated k-algebra whose spectrum carries an action of the Tannakian
fundamental group G of w. It is moreover a quasi-homogeneous G-scheme,
i.e. it has a schematically dense G-orbit.

The assignment S — Spec(w(S)) induces an anti-equivalence between
the category of solution algebras and that of affine quasi-homogeneous
G-schemes of finite type over k.

This will be proven in a somewhat stronger form in Theorem 4.5, thereby
giving an abstract form of another theorem of André [5].

Our abstract formulation applies in other situations as well. For instance,
in the last section we briefly sketch how to apply it to difference modules
to obtain a refinement of the Galois correspondence for difference equa-
tions. This context is particularly interesting because of applications in
transcendence theory: as Yves André pointed out to us, solution algebras
for difference modules can be used to reprove results of Adamczewski—
Faverjon [1] and Philippon [25] on the specialization of algebraic relations
among Mahler functions (see Corollary 7.7).

(1) Note that such a theory was also developed in [20] (in fact, independently, of our
work). Although there are some unavoidable similarities, we feel that our approach is
simpler.
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2. Solvable objects in tensor categories

In this section and the next one we develop an abstract version of the
Tannakian approach to the theory of Picard—Vessiot extensions that will
be applied in the concrete situation of iterative differential modules and
difference modules in subsequent sections.

We begin by some generalities concerning tensor categories; see e.g. [11]
as a basic reference. In this text by a tensor category C we shall mean a
k-linear abelian symmetric monoidal category over a field k. We assume
that S admits small colimits that commute with the tensor product in both
variables. Tensor functors will be assumed to be k-linear and preserving
small colimits.

The unit object 1 is a ring object in the tensor category C. We shall
assume throughout that this ring object is simple, i.e. every nontrivial
morphism from 1 to a module object over it is a monomorphism. (Note that
in Mod(R) the unit object R is simple if and only if R is a simple ring.)
In this case a Schur Lemma type argument yields that the endomorphism
ring End¢ (1) is a field k; we shall assume that C is k-linear with respect to
k= Endc(l).

We shall also consider more general ring objects A in C (always assumed
to be commutative) and module objects over them, forming a subcategory
Modc¢(A) in C. Morphisms between two objects X and Y of Mod¢(A) will
be denoted by Hom 4(X,Y); for X =Y we use the notation End 4(X). For
generalities on ring objects, see e.g. [9, Section 5].

We first give an abstract version of the notion of trivial differential mod-
ules. This is enabled by the following proposition.

PROPOSITION 2.1. — Let C be a tensor category over the field k. Up to
unique isomorphism there is a unique tensor functor

7: Mod(k) — C.

ANNALES DE L’INSTITUT FOURIER
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Proof. — According to [8, Proposition 2.2.3], given a commutative k-
algebra A and an arbitrary tensor category C (not necessarily satisfying
End¢ (1) & k) there is an equivalence of categories between the category
of k-linear tensor functors Mod(A) — C and that of k-algebra homomor-
phisms A — End¢(1). But for K = A = End¢(1) there is only one k-algebra
homomorphism k& — End¢(1), namely the identity morphism. a

Since 7 commutes with small direct limits by assumption, it has the
following “coordinatization”: given M € Mod(k), choose a basis to write it
as a direct sum @ k of copies of k. Then 7(M) = @ 1 with the same index
set. Morphisms have a similar description via infinite matrices.

An object X of C will be called trivial if X is isomorphic to an object of
the form 7(M) for a k-module M. The functor 7 will be called the trivial
object functor of C over k. The category Triv(C) of trivial objects of C is
defined as the full subcategory of C spanned by trivial objects.

PROPOSITION 2.2. — The functor T induces an equivalence of tensor
categories between Mod(k) and Triv(C), with a quasi-inverse given by the
restriction of the functor

()Y :=Home(1,—): C — Mod(k)

to Triv(C).
Thus the tensor category Triv(C) is abelian, and the restriction of the
functor V to Triv(C) is a faithful exact tensor functor.

Proof. — To check that V is a quasi-inverse to 7 we may reduce via
“coordinatization” to the full subcategories spanned by the unit objects,
where it is clear. Exactness of V on Triv(C) means by simpleness of 1 that
every epimorphism X — 1 splits in Triv(C), which follows by writing X as
a direct sum of copies of 1 and using simpleness again. |

We can use this category equivalence for detecting dualizable objects (in
the sense of tensor categories) among trivial objects.

COROLLARY 2.3. — A trivial object X is dualizable if and only if XV
is a finite dimensional k-vector space. In this case its dual is again a trivial
object.

Proof. — In view of the Proposition 2.2, the first statement follows from
the fact that the dualizable objects in Mod(k) are the finite-dimensional
vector spaces. As for the second, the dual of a trivial object X is isomorphic
to 7((XV)V), where v denotes the k-dual of a vector space. O

One drawback of the results so far is that the subcategory Triv(C) may
not be a fully abelian category of C, i.e. it is not clear that the kernel and

TOME 70 (2020), FASCICULE 5
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a cokernel of a morphism between trivial objects are the same in Triv(C)
and C. To remedy this, we impose an extra condition.

DEFINITION 2.4. — A tensor category C is pointed if there exits a faith-
ful exact tensor functor ¢ : C — Mod(R) for some ring R.

Main examples to bear in mind are categories of differential and differ-
ence modules as well as representation categories of affine group schemes.
In these examples the faithful exact tensor functor ¥ is just the forgetful
functor to the appropriate module category.

PROPOSITION 2.5. — IfC is pointed, the inclusion functor Triv(C) — C
is exact, and hence Triv(C) is a fully abelian tensor subcategory of C.

Proof. — By [8, Corollary 2.2.4], the composite functor
Yo7: Mod(k) = Mod(R)

is isomorphic to the base change functor induced by a k-morphism k — R.
But there is only one such morphism, the structure morphism which is
moreover faithfully flat as k is a field by our assumption. It follows that
the pullback functor ¢* = ¢ o 7 is faithful exact, hence 7 is also faithful
exact. U

We now come to an abstract version of the notion of solvability for dif-
ferential modules.

DEFINITION 2.6. — Let C be a tensor category, X an object of C and
A a ring object in C. We say that the object X is solvable in A if the
A-module A® X is a trivial object in Mod¢(A).

Recall that a ring A in C is flat (resp. faithfully flat) (over the unit ring 1)
if the base change functor A® —: C — Mod¢(A) is an exact (resp. a faithful
exact) functor.

COROLLARY 2.7. — Let C be a pointed tensor category, and A a faith-
fully flat simple ring in C. The full subcategory of C spanned by objects
solvable in A is a fully abelian subcategory closed under arbitrary small
colimits and tensor products. The unit object of C is solvable in A.

Proof. — This follows from Propositions 2.2 and 2.5 since base change
by A is an exact faithful functor by assumption. O

As for dualizable objects, we have:

PROPOSITION 2.8. — In the situation of the previous Corollary 2.7 an

A-solvable object X is dualizable in C if and only if A® X is dualizable in
MOdc (A)

ANNALES DE L’INSTITUT FOURIER
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If moreover A is a simple ring, then an A-solvable object X is dualiz-
able if and only if the End 4(A)-vector space Hom4(A, A ® X) is finite
dimensional. In this case the dual of X is also A-solvable.

Note that if A is simple, the ring End 4(A) is a field (it is commutative
as A is the unit object of Mod¢(A), and a skew field by a Schur Lemma
type argument).

Proof. — This is an application of faithfully flat descent in tensor cat-
egories (see [10, 4.1-4.2], and [9, Section 5]). Recall that a descent da-
tum on an A-module M is an isomorphism A @ M = M ® A of A® A-
modules that satisfies the cocycle condition. As in the classical case, any M
obtained via base change by A carries a descent datum and conversely, the
descent datum is effective for faithfully flat A.

Assume now X is an object such that M := A® X is dualizable with dual
N'N. We construct a descent datum on A as follows. The A ® A-module
A® M is isomorphic to (A® .A) ® 4 M, hence it has a dual in the category
of A® A-modules, namely AQN = (A® A) ® 4 N. The same can be said
of M ® A. Since the dual in a tensor category is uniquely determined, we
can dualize the isomorphism giving the descent datum on M and obtain
an isomorphism

AN Z(AQA) QAN ZN @4 (ARA) ZN R A

By a similar argument we deduce a cocycle condition for A/ from that on
M and conclude by faithfully flat descent that N is of the form A® Y
for an object Y, where Y satisfies the axioms for a dual of X in the tensor
category C. This proves the first statement, and the second one follows from
Corollary 2.3, again via descent. O

3. Abstract Picard—Vessiot theory

We now come to the first key definition in this paper. In the case of
differential modules over a differential ring it specializes to the notion of
Picard—Vessiot rings as defined in [3, Section 3.4] and [5, Section 2.4].

DEFINITION 3.1. — Let C be a tensor category, and X a dualizable
object of C. A ring P in C is called a Picard—Vessiot ring for X in C if it
satisfies the following properties:

(1) P is a faithfully flat simple ring in C,
(2) the homomorphism k = End¢ (1) — Endp(P), induced by the mor-
phism 1 — P, is an isomorphism,

TOME 70 (2020), FASCICULE 5
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(3) the object X is solvable in P,

(4) the ring P is minimal with these properties, i.e. if P' is another
ring in C satisfying the previous properties and P’ — P is a ring
homomorphism, then it is an isomorphism.

For a dualizable object X of C we shall denote by (X)g the full essential
subcategory of C consisting of subquotients of finite direct sums of objects
of the form X®® (XV)®7. The category of finite dimensional vector spaces
over a field k will be denoted by Vecf(k).

PROPOSITION 3.2. — Assume that the tensor category C is pointed, and
there exists a Picard-Vessiot ring ‘P for the dualizable object X in C. Then

wp = Homp(P,P® —): (X)g — Vect(k)

is a k-linear faithful exact tensor functor, and (X)g, equipped with wp is a
neutral Tannakian category over k.

Proof. — Firstly, by Corollary 2.7 and Proposition 2.8 every object of
(X)g is solvable. Base change by P is fully faithful and maps objects of
(X)g to the subcategory of trivial objects of Mod¢(P). On the latter cate-
gory the functor Homp (P, —) is none but the functor V, hence by Propo-
sition 2.2 the composite wp = Homp(P,—) o (P ® —) is a faithful exact
tensor functor. Finally, wp has values in Vecf(k) by Proposition 2.8. O

The Tannakian fundamental group scheme G' = Aut® (wp) will be called
the Galois group scheme of X (pointed in wp).

Remark 3.3. — In the situation of the proposition we have isomorphisms
of k-vector spaces

w'p(Y) = Homp(P,P®Y) = Home(1,P ® Y) = Home (YV,P) .

for every Y € (X)g. In other words, the vector space wp(Y") can be viewed
as the vector space of “solutions” of the dual YV of Y in P.

We state now the converse of Proposition 3.2.

THEOREM 3.4. — Let X be a dualizable object of the pointed tensor
category C such that (X)g is a rigid k-linear abelian tensor subcategory
of C. The map P — wp induces a bijective correspondence between iso-
morphism classes of Picard—Vessiot rings for X in C and of k-valued fibre
functors on (X)g.

For the proof of the Theorem 3.4 we first examine the case of represen-
tation categories.

ANNALES DE L’INSTITUT FOURIER



A GENERAL THEORY OF ANDRE’S SOLUTION ALGEBRAS 2111

ProrosITION 3.5. — Let G be an affine group scheme of finite type
over a field k. Consider the tensor category Rep;,(G) of k-representations
of G viewed as a pointed tensor category via the forgetful functor w.

The regular representation O(G) is a Picard—Vessiot ring for the full
subcategory Repf,(G) of finite-dimensional representations in Rep,(G),
and the associated fibre functor is isomorphic to the restriction of w to
Repf,(G).

Conversely, every Picard—Vessiot ring for Repf, (G) in Rep,,(G) with this
property is isomorphic to the regular representation O(QG).

Proof. — The regular representation O(G) is a faithfully flat ring in
Rep,(G) since so is its image under the forgetful functor in Vec(k). It is
moreover a simple ring (indeed, the scheme G equipped with its canonical
G-action has no nontrivial proper closed G-subsets). The elements of the
endomorphism ring of the regular G-representation O(G) can be identified
with the G-invariant regular functions on G and hence they are just the
constants. This shows properties (1)-(2) of a Picard—Vessiot ring.

Let now V be a finite dimensional representation, and denote by V;
the underlying vector space of V' viewed as a trivial G-representation.
Consider the associated vector bundles V = Spec(Sym*(VV)) and V.,
= Spec(Sym™(V,Y)). Solvability of V in O(G) is equivalent to the existence
of a G-equivariant isomorphism of G-schemes

(3.1) aG XV, = gG x1, Vo,

where ¢G is the affine G-scheme associated with O(G). Such an isomor-
phism is given on scheme-theoretic points by (g,v) + (g, ¢~ 'v), whence
property (3).

Lastly, we have to show that the regular representation satisfies prop-
erty (4). Let P be a ring in Rep,(G) having the necessary properties and
let A : P — O(G) be a ring homomorphism in Rep;, (G). Since P is a simple
ring, this homomorphism is injective, hence we only have to show that it
is surjective. To see this, note that A induces a morphism

A wp HOH]G(IC, P R 7) — Homg(k, O(G) Sk 7) S w

between the associated fibre functors. But Repf; (G) is a rigid tensor cat-
egory, hence this morphism is in fact an isomorphism of tensor functors
(see [11, Proposition 1.13]). Consider a finite dimensional subrepresenta-
tion W C Og, and substitute its dual WV in A\*. As in Remark 3.3, we
may rewrite the result as an isomorphism

Homg (W, P) = Homg(W, O(G)).

TOME 70 (2020), FASCICULE 5
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Consequently, the embedding W — O(G) factors through the embedding
P — O(G). As this holds for every W, we are done.

To see that the associated fibre functor of O(G) is the forgetful functor w,
it suffices by construction to take G-invariant elements in the isomorphism

V,2,0G) = V,20(G)

deduced from (3.1). Conversely, let P be a Picard—Vessiot ring for Repf,
(G) in Rep,(G) whose associated fibre functor is w. We show that there
exists a homomorphism O(G) — P; by property (4) of Picard—Vessiot
rings it must then be an isomorphism. As in the proof of property (4) for
O(G) above, we can write O(G) as a colimit lim W; of finite-dimensional
subrepresentations W;, and deduce from the isomorphism of tensor functors

wp = w a compatible system of morphisms W; — P. These assemble to
the required homomorphism O(G) — P. O

For the proof of Theorem 3.4 we also need a lemma concerning Ind-
categories of tensor categories; we use [16, Chapter 6] as our basic reference
on this topic. Recall first from [16, Corollary 6.3.2] that given a category
C admitting small filtered colimits and a functor F': 7 — C from another
category T, the functor F' has a unique extension JF' : Ind(7) — C.

LEMMA 3.6. — Let T be an abelian tensor category.

(1) The category Ind(T) is again an abelian tensor category.

(2) Assume given a fully faithful exact tensor functor F : T — C,
where C is an abelian tensor category in which small filtered colimits
are exact. If for all objects P of T the functor Home(F(P), )
commutes with small filtered colimits of objects of the form F(T)
withT € T, then the extension J F is again a fully faithful and exact
tensor functor. Consequently, it realizes Ind(T) as a fully abelian

tensor subcategory of C.

Proof. — For statement (1), recall that by [16, Theorem 8.6.5] the cat-
egory Ind(7) is abelian and admits small colimits. The tensor structure
extends naturally to the Ind-category, and the extension JF' of the functor
F in (2) is again a tensor functor which is moreover exact by exactness of
small filtered colimits in C. Its fully faithfulness results from [16, Proposi-
tion 6.3.4] and its proof, or [6, Exposé I, Proposition 8.7.5a]. O

Proof of Theorem 3.4. — By Proposition 3.2 a Picard—Vessiot ring for
(X)g induces a neutral fibre functor. Conversely, assume there exists such
a neutral fibre functor w on (X)g. By the main theorem of neutral Tan-
nakian categories [11, Theorem 2.11] we have an equivalence of tensor cat-
egories (X)g = Repf, (G) for the associated Tannakian fundamental group

ANNALES DE L’INSTITUT FOURIER
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scheme G, with w inducing the forgetful functor on Repf, (G). Moreover, by
Lemma 3.6 (1) the Ind-category Ind(X)g is again an abelian tensor cate-
gory, and the above equivalence extends to an equivalence of abelian tensor
categories Ind(X)g = Rep(G). Under this equivalence the unique exten-
sion of w to Ind(X)g corresponds to the forgetful functor on Rep, (G) and
is therefore a faithful exact tensor functor.

We now show that Ind(X)g embeds in C as a fully abelian tensor sub-
category. For this we check that the assumptions of Lemma 3.6(2) are
satisfied by the inclusion functor (X)g — C. Firstly, small filtered col-
imits are exact in C as C is pointed by a faithful exact tensor functor
¥ : C — Modpr and they are exact in Modp (recall that we assumed that
tensor functors commute with small colimits). Next, we verify that the map
liﬂHomc(P, Xi) — Homc(P,lingi) is an isomorphism for P and X; in
(X)g. For injectivity, we adapt the proof of [9, Lemma 4.2.1 (ii)]. For fixed
i the subobjects Ker(X; — X;) for j > ¢ form an increasing system which
must stabilize as X; € (X)g is noetherian. If K; is the common value,
then the X;/K; form an inductive system of subobjects of X := lingi
whose colimit is still X. If a morphism P — X; gives 0 when composed
with X; — X, it must thus give 0 when composed with X; — X;/K;. But
X;/K; injects in X for j large enough, and we are done. For surjectivity,
let ¢ : P — X be a morphism, and denote by Z its image. As in the proof
of [9, Lemma 4.2.2] we see that Z C X, /K, for i large enough, so as before
¢ comes from a morphism P — X for j large enough.

We may thus apply the lemma and embed Ind(X)g in C as claimed. Using
Proposition 3.5 we then find a Picard—Vessiot ring P,, in C corresponding to
w. By construction, it satisfies all the required properties of Definition 3.1.
Of these, only faithful flatness in C requires further justification. It suffices
to show that ¢(P) is faithfully flat in Mod g, which in turn follows from [11,
Theorem 3.2 (and its proof)]. O

COROLLARY 3.7. — The functor of automorphisms Aut(P|1) of a Picard
~Vessiot ring P is representable by the Galois group scheme G = Aut® (wp).

In the case when the base field k is algebraically closed, there is always a
k-valued fibre functor on (X)g by [10, Corollaire 6.20]. Thus the theorem

implies:

COROLLARY 3.8. — If k is algebraically closed, there exists a Picard—
Vessiot ring for the subcategory (X)g in C.

TOME 70 (2020), FASCICULE 5
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Remark 3.9.

(1) The general Tannakian theory (see e.g. [11, Theorem 3.2]) tells us
that the functor of isomorphisms Isom®(wp ®; R, V) is an affine
G-torsor over Spec(R) and is represented by the spectrum of the
faithfully flat R-algebra 9(P). The identity of J(P) thus yields a
canonical point of the torsor Isom® (wp ®i R, ).

(2) As Yves André points out, one of the simplest situations where the
above theory can be applied is the following. Consider the category
Co of triples (V,W,w), where V and W are finite-dimensional Q-
vector spaces of the same dimension, and @ is an isomorphism V ®g
C = W®qC. This is a neutral Tannakian category over Q with fibre
functor w : (V,W,w) — W. Its Ind-category C is equipped with a
non-neutral fibre functor ¥ induced by (V, W,@) — V. We thus have
a Picard—Vessiot theory for the restrictions of w to subcategories of
the form ((V, W,w))g which in turn gives rise to a ‘motivic’ theory
in the following sense.

The category Cy is the target of the de Rham—Betti realization of motives
modulo homological equivalence over Q (see [4, 7.1.6] — as explained there,
one has to modify the commutativity constraint for the product on motives
which involves a standard conjecture). The conjectured full faithfulness of
the realization would imply that the motivic Galois group of a motive equals
the Galois group scheme of its realization in Cy.

4. Solution algebras

As in the previous section, let X be a dualizable object of the pointed
tensor category C. We assume that there exists a Picard—Vessiot ring P for
(X)g in C, and denote by w := wp the associated fibre functor.

Inspired by André’s definition of solution algebras for differential modules
in [5], we put:

DEFINITION 4.1. — A solution algebra for (X)g is a ring S in C such
that

(1) there exists an injective ring homomorphism t: & — P (i.e. this
morphism is a monomorphism in C),

(2) there exists an object Y of (X)g and a morphism o: Y — S in C
such that the induced ring homomorphism Sym*(Y) — S is surjec-
tive.
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The equivalence of this definition with André’s in the case of differential
modules in characteristic 0 will be proven in the more general context of
ID-modules in Proposition 5.6.

LEMMA 4.2.

(1) Solution algebras are Ind-objects of (X)g.

(2) The extension of w to the Ind-category Ind((X)g) sends solution
algebras to finitely generated k-algebras.

(3) Given an embedding ¢ : S — P as in the definition, the induced
morphism Specw(P) — Specw(S) has schematically dense image.

Proof. — Property (2) of the Definition 4.1 of solution algebras gives
statement (1); indeed, the symmetric algebra Sym™*(Y) is an ind-object of
(X)g, and the Ind-category Ind({X)g) is closed under subquotients in C.
If S and Y are as in the definition, the k-vector space w(Y") is finite di-
mensional and the morphism Sym*(w(Y)) — w(S) in the tensor category
Mod(k) is surjective by exactness of w, whence statement (2). Finally, the
injectivity of ¢ and the exactness of w imply that the k-algebra homomor-
phism w(S) — w(P) is injective, whence (3). O

Note that Specw(P) is nothing but the Tannakian fundamental group
G associated with P. It is an affine group scheme of finite type over k
by [11, Proposition 2.20 (b)]. Moreover, both Spec w(S) and Spec w(P) come
equipped with a canonical G-action; the latter is just the usual (left) action
of G on itself.

We isolate these properties in a definition:

DEFINITION 4.3. — Let k be a field, and G a group scheme of finite type
over k. A quasi-homogeneous G-scheme over k is a G-scheme X of finite
type over k such that there exists a schematically dominant G-morphism
G — X, where G is considered with its usual G-action.

Remark 4.4. — The image of the unit section of G in X gives a k-point of
X whose G-orbit U is schematically dense in X. Since G and X are of finite
type over k, the morphism U — X is an open immersion with schematically
dense image by [12, Section III.3, Proposition 5.2] and [14, Remark 10.31].
It is necessarily the unique G-orbit on X with these properties. When
k is of characteristic 0, both G and X are reduced (the latter by [14,
Remark 10.32]), and we recover the classical notion of quasi-homogeneous
varieties used in [5]. However, in the applications we shall also consider
non-reduced G.
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Consider now the category of pairs (S,¢), where S is a solution algebra
and ¢ : § — P is the embedding specified in the Definition 4.3. Mor-
phisms of pairs are defined in the obvious way. By the preceding Lemma 4.2
and discussion, the functor Specow sends such a pair to an affine quasi-
homogeneous G-scheme together with a distinguished k-point z which is
the image of the unit section of G by the morphism G — Specw(P). In
fact, we have the following direct generalization of [5, Theorem 3.2.1]:

THEOREM 4.5. — The assignment (S,t) — (Spec(w(S)),z) gives an
anti-equivalence between the above category of solution algebras and the
category of affine quasi-homogeneous G-schemes of finite type over k with
a given k-point of the schematically dominant orbit.

Proof. — The composite functor Spec o w is fully faithful as it is the com-
position of fully faithful functors. For essential surjectivity let Z be an affine
quasi-homogeneous G-scheme of finite type over k with a given k-point z
as above. By definition, we have a schematically dominant G-morphism
G — Z sending the unit section to z. It corresponds to an injection of
G-algebras O(Z) — O(G). As O(Z) is of finite type over k, we find a
finite-dimensional G-invariant subspace V' C O(Z) containing a system of
k-algebra generators of O(Z). Since w induces an equivalence of tensor
categories between Ind((X)g) and Rep,(G), this morphism comes from a
morphism V' — § in Ind({X)g), with V actually lying in (X)g. As more-
over V contains a system of generators of O(Z), it gives rise to a surjection
of G-algebras Sym* (V) — O(Z) which translates back to property (2) of
the definition of solution algebras via w. As for property (1), it corresponds
to the injection O(Z) — O(G) via w. O

5. Iterative differential rings and modules

In this section we apply the results of the previous one to the iterative
differential modules of Matzat and van der Put [18]. This theory has its
origins in the concept of iterated differentials of Hasse—-Schmidt, and is
equivalent (in positive characteristic) to the theory of infinitely Frobenius-
divisible modules of Katz.

Recall that an iterative differential ring (ID-ring for short) is a pair
R = (R,{0:}i>0), where R is a commutative ring and 9;: R — R are
additive maps for all ¢ > 0 such that

(1) g = idg,
(2) Gi(rira) = 3254 51— 05(r1)9y (r2),
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(3) 81' [¢] 8]' - (ZTJ)aH_]
The set {0;};>0 of maps is called an iterative derivation on R. The

intersection k of the kernels ker(d;) is called the constant ring of R.

Remark 5.1. — When R is a ring containing the field Q of rational num-
bers, every derivation § on R can be uniquely extended to an iterative
derivation on R by setting 0; = %5’ In particular, this is the case if R is
a simple differential ring of characteristic 0. Thus in characteristic 0 the
theory of ID-rings is equivalent to that of usual differential rings.

Let R be an ID-ring and I be an ideal in R. We say that I is an iterative
differential ideal (ID-ideal) if for all i > 0 we have 9;(I) C I. An iterative
differential ring R is called simple if the only iterative differential ideals of
R are 0 and R.

PROPOSITION 5.2.

(1) If R is a simple ID-ring, then R is an integral domain.

(2) If R is a simple ID-ring with constant ring k and K is the fraction
field of R, then there is a unique iterative derivation on K extending
the iterative derivation on R. Moreover, the ring of constants of the
iterative differential field IC is k; in particular, k is a field.

Proof. — See [18, Lemma 3.2]. O

We now recall the definition of iterative connections. Let R be an
ID-ring. An iterative differential module (or ID-module) M over R is a
pair (M, {V;}i>0), where M is an R-module and V,;: M — M are additive
maps for ¢ > 0 such that

(1) Vo = idyp,
(2) Vi(rm) = Zj{rj’:i 9;(r)V;:(m),
(3) Vi o Vj = (ﬁj)viﬂ-.

The set of maps {V;};>0 is called an iterative connection on M over R.

ID-modules over a fixed ID-ring R form a tensor category with the
tensor product and inner Hom operations defined as in [18, Section 2.2]. It
becomes a pointed tensor category via the natural forgetful functor with
values in R-modules. If the underlying module M of an ID-module M
is finitely generated and projective over R, then the inner Hom MMV
= Homp(M, R) defines a dual for M in the sense of symmetric monoidal
categories.

The following Proposition 5.3 is a direct generalization of [5, Theo-
rem 2.2.1] to the iterative differential setup. It is proven by exactly the
same argument.

TOME 70 (2020), FASCICULE 5



2118 Levente NAGY & Tamas SZAMUELY

ProPOSITION 5.3. — Let R a simple iterative differential ring and de-
note by K the quotient field of R with its canonical ID-structure. Let M
be a finitely generated ID-module over R, and set My := M ®r K. We
have the following:

(1) The underlying module of M and its ID-subquotients are all pro-
Jjective modules.

(2) The category consisting of objects that are ID-subquotients of finite
direct sums of tensor products of the form M®* @ (MV)J form a
rigid k-linear tensor category (M)g over the constant field k of R.

(3) The base change functor (M)g — (M) is an equivalence of
k-linear tensor abelian categories.

We can now define Picard—Vessiot rings for ID-modules by specializing
Definition 3.1 to the category of ID-modules over R. In view of part (2) of
the above Proposition 5.3, Theorem 3.4 applies to the subcategory (M)
and gives:

COROLLARY 5.4. — In the situation of the proposition there is an equiv-
alence of categories between Picard—Vessiot rings for the subcategory (M) g
and neutral fibre functors on it. In particular, Picard—Vessiot rings exist if
k is algebraically closed.

Consider now the localization M. Combining Theorem 3.4 with Propo-
sition 5.3(3), we obtain:

COROLLARY 5.5. — The assignment P — Px gives a bijective corre-
spondence between Picard—Vessiot rings for (M)g and (My)g. Moreover,
the associated Galois group schemes are naturally isomorphic.

Next we turn to solution algebras, defined as in Definition 4.1 in the
special context of ID-modules. The following proposition shows that this
notion is the exact analogue of André’s solution algebras [5, Definition 3.1.1]
for ID-modules.

PRrROPOSITION 5.6. — An ID-ring S over R is a solution algebra for
(M) g if and only if it satisfies the following properties.
(1) The underlying ring S is an integral domain.
(2) The constant field of the quotient field of S is k.
(3) There exists an object N in (M)g and a morphism N — S of
ID-modules over R whose image generates S as an R-algebra.

Proof. — Let first S be a solution algebra in the sense of Definition 4.1.
We only have to check the first two conditions (1) and (2), as the third
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one (3) is satisfied by Definition 4.1. Property (1) follows as S can be
embedded into a Picard—Vessiot ring P which is a simple ID-ring and hence
an integral domain by Proposition 5.2. Moreover, since R is a simple ID-
ring, the natural map R — S is injective, whence a chain R C § C P of
ID-rings which are integral domains. Since the constant field of the quotient
fields of R and P is k, the same is true for S.

In the other direction, we only need to show that S embeds in a Picard—
Vessiot ring of (M)g. This is proven by exactly the same argument as the
characteristic zero case in [5, Proposition 3.1.6 (1)]. O

The general theory of solution algebras (Theorem 4.5) gives:

COROLLARY 5.7. — There is an anti-equivalence between the category
of solution algebras for (M), and the category of affine quasi-homogeneous
G-schemes over k.

Now consider again the category equivalence (M)g — (My)g given by
Proposition 5.3(3).

COROLLARY 5.8. — The above equivalence restricts to an equivalence
between the full subcategories of solution algebras for (M)g and (My)s.
The quasi-inverse assigns the intersection 8’ NP to a solution algebra
S’ for (Mk)g.

Proof. — Given a Picard—Vessiot ring P for (M)g, a solution algebra
S’ for (M )g is by definition a subring of P, and so is P. A quasi-inverse
to the base change functor S — Sx is thus given by &' — S’ N P. a

Consider now the ID-module M over the ID-field . We have the fol-
lowing generalization of André’s notion of solution fields for differential
modules.

DEFINITION 5.9. — Let L|K be an extension of ID-fields. We say that L
is a solution field for (M)g if the constant field of L is k and there exists
an ID-module Nx in (My)g and a morphism of ID-modules Nx — L
whose image generates the field extension L|K.

PROPOSITION 5.10.
(1) An ID-field extension L|K is a solution field for (My)g if and only
if it is the quotient field of a solution algebra S for (M)g.
(2) Every solution field L for (Mx)g embeds as an intermediate ID-
extension of J|KC, where [J is the quotient field of a Picard—Vessiot
algebra for (Mx)g.

In accordance with the terminology of [18], we call an ID-field 7 as above
a Picard—Vessiot field.
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Proof. — Statement (1) follows from the Proposition 5.6 and the pre-
vious corollary. Statement (2) is a consequence of the Definition 4.1 of
solution algebras. g

We next develop the Galois theory of solution fields. Given an ID-module
M over R, Corollaries 3.7 and 5.5 tell us that the Galois group scheme
G associated with a Picard—Vessiot ring P for M represents the k-group
functor of ID-automorphisms of Py over K. Using this representation we
can naturally extend the action of G to the fraction field J of Px. An
element p/q € J is called invariant under a closed subgroup scheme H of
G if for all k-algebras k' and all h € H(k") we have an equality

hp@1l)-(g@l)=(p®1) hig®1)

in Px ® k’. The set of invariant elements of 7 under H is denoted by
JH . Recall now that there is the following iterative differential Galois cor-
respondence:

THEOREM 5.11 ([19, Theorem 11.5]). — The map H — JJH gives
an order-reversing bijection between closed subgroup schemes H of G and
intermediate ID-fields of J|K.

The above Theorem 5.11 is stated more generally for fields equipped with
an iterable higher derivation in the reference, but in particular it applies to
ID-modules as defined above. Note the important point that (in contrast
to what is implicitly assumed in [18]) in [19] no separability assumption is
made on Picard—Vessiot extensions.

In characteristic zero André proved that solution fields correspond to ob-
servable subgroups of the Galois group. Here we need a slightly more gen-
eral notion allowing non-reduced group schemes. Namely, we call a closed
subgroup scheme H of an affine group scheme G of finite type over a field
k observable if the quotient G/H is quasi-affine over k.

We have the following equivalent characterizations of observable sub-
groups.

PROPOSITION 5.12. — Let G be an affine group scheme of finite type
over a field k, and let H be a closed subgroup scheme of G. Then the
following are equivalent:

(1) The subgroup scheme H is observable.
(2) Every finite-dimensional H-representation is an H-subrepresentat-
ion of a finite dimensional G-representation.
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(3) There exists a finite dimensional G-representation V and a vector
v € V such that H is the stabilizer subgroup scheme of the vector
v in G.

Proof. — The proof of equivalence (1) < (2) is [2, Theorem 1.3], and the
proof of (2) =(3) goes in the same way as the proof of implication (7) = (2)
in [15, Theorem 2.1]. For the proof of (3)= (1), we can use condition (3)
together with [12, Section I11.3, Proposition 5.2] to construct an immersion ¢
of the quotient G/H in the affine bundle V := Spec(Sym*(V)). By [12,
Section 1.2, Proposition 5.2], the image ¢(G/H) is open in its closure, hence
quasi-affine. O

We can now state the following generalization of [5, Theorem 4.2.3 (3)]
to iterative differential fields.

THEOREM 5.13. — In the situation of Theorem 5.11 an intermediate
ID-extension L of J|K is a solution field for (My)g if and only if the
corresponding subgroup scheme H is an observable subgroup scheme of
the Galois group scheme G.

Proof. — Let H be an observable subgroup scheme of G. By Propo-
sition 5.12(3) there exists a finite-dimensional G-representation V and a
vector v € V such that H is the isotropy subgroup scheme of v in V. Recall
that J was defined as the quotient field of some Picard—Vessiot algebra
Pi for (Mk)g, and denote by w the associated fibre functor. Using the
Tannakian equivalence induced by w, we can write V' as w(N{) for some
ID-module N in (My)g. By Remark 3.3 the vector v determines an ID-
homomorphism v: Nxg — Px — J. Let £ be the subfield of J generated
by the image of this ID-homomorphism. By construction, H is exactly the
closed subgroup scheme of G fixing L in its action on 7.

Conversely, if £ is a solution field generated by a solution v : N'Nx —
L, then the subgroup scheme H attached to £LL by Theorem 5.11 is the
isotropy subgroup scheme of the solution v in w(N}Y), and hence H is
observable. O

6. An example

In this section we show that there are Picard—Vessiot extension of ID-
fields giving rise to solution fields corresponding to non-reduced and non-
normal subgroup schemes of the Galois group scheme.

Let k£ be an algebraically closed field of prime characteristic p # 2.
We define an iterative derivation on the polynomial ring k[t] by setting
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0;(tF) = (’;)tk’i and extending it linearly to the whole polynomial ring.
Since 9y (t*) = 1, we get that k[t] is a simple ID-ring with this iterative
derivation. Furthermore, the field of constants is precisely k& C k[t]. The
iterative derivation can be extended to the quotient field k(¢) of the poly-
nomial ring k[t].

Note that iterative derivations (resp. connections) are determined by the
™ power maps Opn (resp. Vpn): if we write n as the sum ap +a1p+ ... +
amp™, where a; € {0,1, ..., p— 1}, then

(01)% 0 (9p)* o ... 0 (Opm)*™ = - Oy,
where c is a non-zero element of F,. We now consider the following example.

Example 6.1. — Let M be the ID-module corresponding to the sequence

of equations
O U1 — 0 1 Y1
P \w2 0 a,t™? ya)’

where a,, € {1, ..., p—1}. Let s = (s1,52)” be a non-trivial solution of
this iterative differential equation. First, we see that s, is a solution of the
iterative differential equation

ap" (y) = ant_pn Y,

hence by [17, Theorem 3.13] or [18, Section 4] after a suitable choice of
the coeflicients a,, we get that s, is transcendental over k(¢) and that
Aut™ (k[t][s2]|k[t]) = G,n. The multiplicative group G,, is thus a quotient
of the differential Galois group

G = Aut™ (k[t][s1, s2] [k[t]).

Moreover, for every element h of the differential Galois group that fixes
S, the element h(s1) — s1 is a constant, since

Opn (h(s1) — 51) = h (Opn (s1)) — Opn(s1) = h(s2) — s2 = 0.

This implies that Aut™ (k[t][sy, so]|k[t][s2]) is a subgroup of the additive
group G,. In conclusion, the differential Galois group is a closed subgroup
scheme of G,,, X G,. The only subgroups of G, that are stable under the
action of the multiplicative group are the Frobenius kernels, but the dif-
ferential Galois group must be reduced by [19, Corollary 11.7], thus G is
either G,, or G,, X G,.

We now show that for a suitable choice of the a; the element s; is
transcendental over k(t)(s2), which will imply that the differential Galois
group is indeed the whole G,, X G,. Assume this is not the case, and let
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51 = bo+b153+bas3+. .. be a polynomial with coefficients in k(t). Applying
01, we get that

s =01(s1) = O1(bo + b1sa + bas3 +...) =

= 01(bo) + 01 (b1)s2 + bragt™ s + second or higher order terms in ss.
Therefore the element by € k(t) must satisfy the equation
01(b1) =1 —agt by .

Write by as f/g, where f,g € k[t] are relatively prime polynomials. The
previous equation can now be rewritten as

(6.1) t01(f)g —tfi(g) = tg® — aofyg.

Since f and g are relatively prime, the equation can hold only if g divides
t01(g). This can happen either if g = t01(g) or 01(g) = 0. We shall obtain
a contradiction by showing that neither case can happen for suitable a;.

Let g = td1(g): substituting back this identity to Equation (6.1) and
dividing by g, we get that

to(f) — f=tg—aof.

If we assume that ag # 1, then we see that ¢ divides f, but it also divides
g, which is a contradiction as f and g are relatively prime.

Let 01(g) = 0: this implies that g(t) = g1(¢?) for some polynomial g;
€ k[t]. Again after substituting and dividing by ¢, equation (6.1) becomes
to(f) =tg—aof.

It follows that we may write f = ¢ - fi woth some f; € k[t]. Substituting
and dividing by ¢ we obtain

fi+to(f1) —g=—aofr.
We now apply 9; and use 9;(g) = 0 to obtain

0= (14 ag)0:(f1) + 01(f1) + 2t02(f1) = (2 + ag)01(f1) + 2t02(f1).

Since we assumed p # 2, the previous identity implies that the coefficients
¢; of f1 must satisfy

ici-(ap+2+i—1)=0.

If we set ag := p — 1, then we see that the ¢; can only be nonzero for p|i,

so that f1(t) = fo(t?) with some fo € k[t]. In summary, b; is of the form
f2(P)
oy
required

but the first iterative derivative of such an element is 5 ?E::; , hot the

L), L)

14+ (p— 1)t~ tgl @) (i)
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a contradiction.

In conclusion: if ag = p — 1 and the other a;-s are chosen suitably, then
the differential Galois group scheme is G,,, X G,. In this case we get solu-
tion fields corresponding to non-normal, non-reduced observable subgroup
schemes, namely the p™* roots of unity ppn in Gy, C Gy, X Gy

7. Difference rings

In this section we briefly explain how to apply the general theory of
solution algebras in the context of difference Galois theory. In characteristic
zero it would also be possible to treat difference modules as generalized
(noncommutative) differential modules as in [3] and then invoke the results
of [5] more or less directly, but the general theory of the present paper
allows a quicker approach.

Let us first recall some basics. A difference ring A is a pair (A, o) where A
is a commutative ring and o: A — A is a ring endomorphism. A difference
ideal of A is an ideal I such that o(I) C I. A simple difference ring is
a difference ring with only the trivial difference ideals. Simple difference
rings are always reduced, and their constant ring (i.e. the subring of fixed
elements of o) is a field [26, Lemma 1.7].

A difference module M over A is a pair (M, 3) where M is an R-module
over R and ¥: M — M is a o-semilinear additive map. These form an
abelian category with a natural tensor structure. However, inner Hom’s
do not exist in general, so one has to make some restrictions in order to
dispose of them.

Assume moreover that A is noetherian. Under this assumption a differ-
ence module M = (M, ¥) is called étale if M is finitely generated and the
endomorphism A, ®4 M — M induced by A ® m — X - X(m) is bijective.
(Here A, denotes A regarded as a module over itself via ¢.) In case the
endomorphism o : A — A is flat, étale difference modules over A form an
abelian tensor category having inner Hom’s (see [13, A.1.15 and A.1.17]).
Thus, as in the case of differential modules, if moreover M is projective
over A, then MY = Hom (M, A) defines a dual for M.

We then have the following analogue of Proposition 5.3, which is again
proven by the same argument as [5, Theorem 2.2.1].

PROPOSITION 7.1. — Let A = (A, o) be a simple difference ring such
that A is a noetherian ring and o is flat, and let M be an étale difference
module over A. Denote by k the constant field of A, and by T'(A) its total
ring of fractions. We have the following:
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(1) The underlying module of M and its difference subquotients are
projective modules.

(2) The category consisting of objects that are difference subquotients
of finite direct sums of tensor products of the form M®* @ (MY)®J
form a rigid k-linear tensor category (M)g over the constant field
k of A.

(3) The natural base change functor

(M)e = (Mr))g
is an equivalence of categories.

From now on we assume we are in the situation of the proposition and
moreover k is algebraically closed. As before, we consider the tensor cate-
gory of étale difference modules over A as pointed via the natural forgetful
functor ¥. By Theorem 3.4 there exists a Picard—Vessiot ring P for M and
the category (M)g is equivalent to the category Repf,(G), where G is the
Galois group scheme of M pointed at the Picard—Vessiot ring. We will de-
note by w the fibre functor given by the Picard—Vessiot ring. Furthermore,
Proposition 7.1(3) implies that the base change of the Picard—Vessiot ring
to the total ring of fractions is the Picard—Vessiot ring of the difference
module M4y, and the associated Galois group schemes are isomorphic.

We also note that the Picard—Vessiot ring P has the properties satisfied
by the base ring A: it is a noetherian ring (as P is faithfully flat over A)
and the endomorphism of P is the base change of o via A — P (as P is a
colimit of étale difference modules), hence flat.

The general definition of solution algebras applies in this context as well,
and by Theorem 4.5 we obtain a correspondence between solution algebras
and quasi-homogeneous schemes over the Galois group scheme.

We even have the following analogue of Proposition 5.6 for difference
rings (proven in the same way):

ProOPOSITION 7.2. — A difference ring S with flat endomorphism over
A is a solution algebra for (M)g if and only if the S is contained in a
noetherian simple difference ring with flat endomorphism whose constant
field is k and there exists a morphism N — S of étale difference modules
over A whose image generates S as an A-algebra.

Remark 7.3. — Plainly, the theory sketched above is not the most gen-
eral possible. In particular, we imposed the condition that k is algebraically
closed only to ensure the existence of Picard—Vessiot rings (and also be-
cause we'll need this condition below). In situations where k is non-closed
but the existence of a neutral fibre functor is known, the above arguments
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work equally well. This is the case with the various categories of ¢t-motives
considered by Papanikolas in [24]. It would also be interesting to extend
the abstract theory of solution algebras so that it covers the very gen-
eral setting in which Ovchinnikov and Wibmer [23] define Picard—Vessiot
rings for linear difference equations; it seems to us that this requires more
substantial work.

We now consider solution fields. Consider a difference field K (i.e. a
field equipped with an endomorphism o). We assume throughout that o
is bijective. In this case an étale difference module M over KK is just a
difference module with bijective endomorphism ¥. The Picard—Vessiot ring
P for M carries an endomorphism that is also bijective (being a direct limit
of étale difference modules over ). It extends to an automorphism of the
total ring of fractions T'(P) which is a semisimple commutative ring, i.e.
a finite product of fields. The resulting difference ring T'(P) is called the
total Picard—Vessiot ring of M. We now define:

DEFINITION 7.4. — Let L|K be an extension of difference rings. We say
that L is a total solution ring for (M)g if
(1) every non-zerodivisor of L is a unit in L,
(2) the constant ring of L is k,
(3) there exists a difference module N in (M)g and a morphism of
difference modules N' — L such that the total fraction ring of the
image of this homomorphism is L.

It follows from the definitions that total solution rings for (M) are
exactly the total fraction rings of solution algebras. As the latter embed in
the Picard-Vessiot algebra P, total solution rings embed in T'(P).

We now quote the following Galois correspondence for total Picard—
Vessiot rings in characteristic 0 from [26, Theorem 1.29]:

PROPOSITION 7.5. — Let K be a difference field of characteristic 0 with
bijective endomorphisn and algebraically closed constant field k, and let
M be an étale difference module over K. Denote by T(P) the total Picard—
Vessiot ring of M over K and by G the Galois group scheme. The maps
H +— T(P)H and £ + Aut(T(P)|L) define an order-reversing bijection be-
tween the set of closed subgroups of G(k) and those intermediate difference
rings of Aut(T'(P)|K) where every non-zerodivisor is a unit.

Note that since k is assumed to be algebraically closed of characteristic
0, one can work here with closed subgroups of G(k) as in classical differ-
ential Galois theory. Having this correspondence at our disposal, the same
argument that proved Theorem 5.13 also gives:
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THEOREM 7.6. — Let £ be an intermediate difference ring of T(P)|K
in which every non-zerodivisor is a unit.

The ring L is a total solution ring for (M)g if and only if the corre-
sponding subgroup H is an observable subgroup of the Galois group G(k).

Finally, we discuss an application to transcendence theory pointed out
to us by Yves André. In [5, Corollary 1.7.1] he explains how his results on
solution algebras for differential modules imply a theorem of Beukers [7]
concerning the specialization of algebraic relations between E-functions.
The theory of solution algebras for difference equations sketched above im-
plies the analogous results of Adamczewski-Faverjon [1] and Philippon [25]
for Mahler functions.

Recall that a g—Mahler system for an integer ¢ > 2 is a system of func-
tional equations

fi(2) fi1(z7)
(7.1) ol =aw |

ful2) Fulz)

with A(z) € GL,(Q(2)) and fi(2) € Q{z} for i = 1, ..., n. A function
f(2) € Q{z} is a g¢-Mahler function if it is a component of a solution vector
of a g-Mahler system. A complex number a in the open unit disk is a
singularity of the above Mahler system if a?" is a pole of an entry of A(z)
or A(z)~! for some 7 > 0. [25, Theorem 1.3] states:

COROLLARY 7.7. — Assume « is a point of the pointed complex unit
disk which is not a singularity of the system (7.1). Then every polynomial
relation among the values fi(a), ..., fn(a) with Q-coefficients is the spe-
cialization at z = « of a suitable polynomial relation among the functions
f1(2), ..., fn(2) with Q(2)-coefficients.

The article [1] contains another proof and a homogeneous version of this
statement.

Let us indicate how to prove the corollary along the lines of [5, Corol-
lary 1.7.1]. Consider the localization of Q[2] by all linear polynomials (z—a),
where a is a singularity of the system (7.1), a ¢"*" root of 1 or else 0, and
equip it with the difference structure induced by z — z9. The resulting
difference ring R is noetherian and simple. To the system (7.1) one asso-
ciates a difference module over R which is étale under our assumptions on
the numbers a. The functions fi(z), ..., fn(z) generate a solution alge-
bra S. Since algebraic Mahler functions are known to be rational, the field
Q(2) is algebraically closed in the fraction field of S. In other words, the
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morphism Spec(S) — Spec(R) has geometrically integral generic fibre. On
the other hand, by Remark 3.9 (1) the R-algebra S becomes isomorphic to
w(S) ®k R after faithfully flat base change. This implies that all fibres of
Spec(S) — Spec(R) are integral, in particular the one over . But they are
of the same dimension by the analogue of the Siegel-Shidlovsky theorem
proven by Nishioka [22]. This proves the Corollary 7.7.
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