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THE LEMNISCATE TREE OF A RANDOM
POLYNOMIAL

by Michael EPSTEIN, Boris HANIN & Erik LUNDBERG

ABSTRACT. — To each generic complex polynomial p(z) is associated a labeled
binary tree (here referred to as a “lemniscate tree”) that encodes the topologi-
cal type of the graph of |p(z)|. The branching structure of the lemniscate tree is
determined by the configuration (i.e., arrangement in the plane) of the singular
components of those level sets |p(z)| = ¢ passing through a critical point.

In this paper, we ask: how many branches appear in a typical lemniscate tree?
We answer this question first for a lemniscate tree sampled uniformly from the
combinatorial class of all such trees associated to a generic polynomial of fixed
degree and second for the lemniscate tree arising from a random polynomial with
i.i.d. zeros. From a more general perspective, these results take a first step toward
a probabilistic treatment (within a specialized setting) of Arnold’s program of
enumerating algebraic Morse functions.

RissUME. — A chaque polynéme complexe générique p(z) est associé un arbre
binaire étiqueté (appelé dans cet aticle, “arbre de lemniscate”) qui code le type
topologique du graphe de |p(z)|. La structure de ramification de ’arbre de lemnis-
cate est déterminée par la configuration (c’est-a-dire la disposition dans le plan)
des composants singuliers de ces ensembles de niveaux |p(z)| = ¢ passant par un
point critique.

Dans cet article, nous nous intéressons a la question suivante: combien de
branches apparaissent typiquement dans un arbre de lemniscate ? Nous répondons
d’abord a cette question pour un arbre de lemniscate échantillonné uniformément
dans la classe combinatoire de tous ces arbres associés & un polynéme générique de
degré fixé, et ensuite pour un arbre de lemniscate résultant d’un polynome aléa-
toire avec des zéros indépendants et identiquement distribués. D’un point de vue
plus général, ces résultats constituent un premier pas vers un traitement probabi-
liste (dans un cadre spécialisé) du programme d’Arnold consistant & énumérer les
fonctions algébriques de Morse.

Keywords: random polynomial, binary tree, lemniscate, analytic combinatorics.
2020 Mathematics Subject Classification: 30C15, 60G60, 31A15, 14P25, 05A15, 60C05,
60F05.
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1. Introduction

Hilbert’s sixteenth problem asks for an investigation of the topology of
real algebraic curves and hypersurfaces. An extension of this program, pro-
moted by V.I. Arnold [1], is to study the possible equivalence classes of
graphs of generic polynomials up to diffeomorphism of the domain and
range. Thus, rather than considering a single level set of a polynomial,
Arnold’s problem is concerned with the whole landscape given by its graph.

The special case of classifying graphs arising from the modulus |p(z)]| of a
generic complex polynomial p was solved by F. Catanese and M. Paluszny
in [9].(1) They enumerated all possible equivalence classes by establishing a
one-to-one correspondence with the combinatorial class of labeled, increas-
ing, nonplane, binary trees.

Motivated by recent studies on the topology of random real algebraic
varieties [14, 15, 17, 16, 21, 22, 24, 25, 26, 29|, we investigate a proba-
bilistic version of Arnold’s problem by studying the topological properties
of the landscape generated by the modulus of a random polynomial. We
focus specifically on the statistical properties of a certain binary tree, the
lemniscate tree defined below, of a random polynomial with independent
identically distributed (i.i.d.) zeros drawn from a fixed probability measure
on the Riemann sphere.

In this setting, the typical binary trees do not resemble the “combinato-
rial baseline” provided by sampling uniformly from the combinatorial class
of all such trees (see Theorem 1.2 and compare with Theorem 1.1). Namely,
the random tree associated to a random polynomial with i.i.d. zeros typ-
ically has very little branching (with probability converging to one in the
limit of large degree, a shrinking portion of the nodes have two children).

1.1. Lemniscate trees

As in [9], we will call a polynomial p € C[z] of degree n + 1 lemniscate
generic (or simply generic) if p’ has n distinct zeros wy,...,w, such that
for each 1 <4 < n, p(w;) # 0 and such that |p(w;)| = |p(w,)| if and only if
i = j.®® To such a polynomial one can associate a rooted, nonplane, binary

(1) This problem fits into Arnold’s setting of real polynomials if we equivalently consider

the square of the modulus and notice that p(z)p(z) has real coefficients as a polynomial
in x and y.

(2 The complement of the set of lemniscate generic polynomials forms a set of codimen-
sion one in the parameter space; as a result, in many models of random polynomials
(including the ones studied in Section 3 of this paper) the condition of being lemniscate
generic holds with probability one.
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tree LT (p) with n vertices, whose vertices are bijectively labeled with the
integers from 1 to n such that the labels increase along any path oriented
away from the root. We call LT (p) the lemniscate tree associated to p.
LT(p) encodes the topology of the graph of |p(z)| (or equivalently |p(2)|?
which can be viewed as a Morse function). Its vertices correspond to the n
generically distinct critical points of p. To construct its edges consider for
each critical point w of p the connected component

Iy € {z € C|p(2)| = [p(w)[}

of the level set of |p| that contains w. The curve T, referred to as a
small lemniscate in [9], is generically a bouquet of two circles with the self-
crossing occurring precisely at w. The root vertex of LT (p) corresponds to
the critical point with the largest value of |p|, which is generically unique.
The descendants of the root are defined inductively as follows. Fix a vertex
in LT (p) corresponding to a critical point w of p. Its children are the vertices
in LT (p) corresponding critical points w’ of p for which |[p(w’)| is the largest
among all critical points whose singular lemniscates I, are surrounded by
the same petal of T',,. Generically, I',, has two petals and each one gives
rise to at most one descendent since the values of |p| at distinct critical
points are generically distinct. Each vertex in LT (p) therefore generically
has zero, one, or two children. We refer the reader to [9] for more details.

A simple example illustrating a polynomial and its corresponding lemn-
sicate tree is provided in Figure 1.1. The left panel in Figure 1.1 displays
all the singular level sets (each of which may include smooth components
in addition to the singular component) for the modulus of a degree five
polynomial, and the right panel shows the its lemniscate tree. To get a
sense of what high-degree lemniscates can look like, consider Figure 1.3,
where polynomials are generated by sampling zeros i.i.d. uniformly from
the unit disk. A highly non-generic lemniscate, the so-called Erdés lemnis-
cate {z € C: |2V — 1| = 1} with N = 8, is shown in Figure 1.2. Figure 1.4
shows the singular lemniscates of a random polynomial generated by a lin-
ear combination of Chebyshev polynomials with Gaussian coefficients (see
Section 4 for further discussion of this model).

While the lemniscate trees defined above are undirected, it will be con-
venient for us to adopt a term associated with directed graphs. We may
impose an implicit direction on the edges of the trees so that each edge is
oriented away from the root (such an oriented tree is properly called an
out-arborescence but there will be no confusion here). In this context the
number of children a vertex has is its outdegree, defined to be the number
of directed edges emanating from it.

TOME 70 (2020), FASCICULE 4
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Figure 1.1. Left: an example of a landscape (artist’s rendition) gener-
ated by a polynomial with five zeros, along with the projection of the
singular component of each critical level. Right: the associated lemnis-
cate tree (each node corresponds to a singular component). The tree
can be constructed using the nesting structure of the singular compo-
nents along with the ordering of heights of critical values.

Figure 1.2. The non-generic lemniscate {z € C : 2% — 1] = 1}.
1.2. Random lemniscate trees

In this section we state our main results on the branching in random
lemniscate trees. For each n > 1 we define LT}, to be the set of all lemniscate
trees on n vertices. That is, LT, is the set of all rooted, nonplane, binary
trees, with vertices bijectively labeled with the integers from 1 to n such
that the labels increase along every path oriented away from the root.
As mentioned above, LT, was shown in [9] to be the space of possible
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lemniscate trees for generic polynomials of degree n + 1 in one complex
variable. For every n > 1, the space LT, is finite, and our first result

concerns the branching structure of a tree sampled uniformly at random
from LT,,.

THEOREM 1.1. — Let T,, € LT,, be a lemniscate tree of size n sampled
uniformly at random, and let X,, denote the number of vertices of outdegree
two in T,,. Write u,, for its mean and o, for its standard deviation. Then
asn — oo

fin = (1 - i) n+0(1),

and

Moreover, the rescaled random variable o1 (X, — u,,) converges in distri-
bution to a standard Gaussian random variable as n — oo.

We note that the asymptotic for the mean follows from the asymptotic for
the mean number of leaves which was computed recently in [5] (cf. [4, 7, 6]),
where the same class of trees was referred to as 1-2 trees. By a standard
application of Chebyshev’s inequality, we see that Theorem 1.1 implies
that the number of nodes of outdegree two is concentrated about its mean.
Indeed, choosing 0 < aw < 1/2 we have

2

nainl/2 =0 Y2%) =0(1), asn — .

P(| Xy, — pin] > not1/2) <

Therefore, for a uniformly randomly sampled 7;, € LT, one expects a
constant proportion of its vertices to have two children. Our next result
concerns the number of outdegree 2 nodes in the lemniscate tree of a ran-
dom polynomial. Formally, we equip the space of polynomials of degree N
with a measure under which zeros are chosen i.i.d. on the Riemann sphere,
and push forward this measure to LTy _1 under the map that associates to
a generic polynomial its lemniscate tree.

THEOREM 1.2. — Let py be a random polynomial of degree N whose
zeros are drawn ii.d. from a fixed probability measure y on S? that has
a bounded density with respect to the uniform (Haar) measure. Then for
every € > 0 there exists C¢ so that the number Yy of nodes of outdegree
two in the lemniscate tree associated to py satisfies

EYy < C.Nz+e,

TOME 70 (2020), FASCICULE 4
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Although Theorem 1.2 does not give variance estimates and asymptotic
normality as in Theorem 1.1, it does show that in contrast to sampling
uniformly from LT the lemniscate tree of a random polynomial has almost
all nodes with outdegree at most one. It also provides a weak concentration
inequality for the random variables Y. Namely, for any ¢y > 0

1,c EYN
P(YN >N 0) S N3+eo

=o(l), as N — oo.

(a) Degree 10 (b) Degree 20 (c) Degree 30

Figure 1.3. Lemniscates associated to random polynomials generated
by sampling i.i.d. zeros distributed uniformly on the unit disk. For each
of the three polynomials sampled, we have plotted (using Mathemat-
ica) each of the lemniscates that passes through a critical point. One
observes a trend: most of the singular components have one large petal
(surrounding additional singular components) and one small petal that
does not surround any singular components. Note that only one of the
connected components in each singular level set is singular (the rest of
the components at that same level are smooth ovals).

This sparse branching for the lemniscate tree of a random polynomial
is closely related to the pairing of zeros and critical points for random
polynomials studied by the second author [18, 19, 20] and taken up in [28]
as well. These articles roughly show that for the random polynomials we
consider, each zero of p has, with high probability, a paired critical point in
its 1/N neighborhood. As we show in the proof of Theorem 1.2, when such
a pairing occurs, the singular lemniscate I',, passing through the critical
point w of p that is paired to a zero z is likely to have a small petal of
diameter on the order of 1/N surrounding z and no other zeros (and hence
no other singular lemniscates), causing the corresponding vertex to have
outdegree at most 1.

A useful heuristic for understanding the critical point pairing (which we
combined with a topological argument in order to prove Theorem 1.2) is

ANNALES DE L’INSTITUT FOURIER
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Figure 1.4. Lemniscates associated to a random linear combination of
Chebyshev polynomials with Gaussian coefficients. Degree N = 20.
This example is not lemniscate generic (since we see multiple critical
points on a single level set). However, this model has the interesting
feature that it seems to generate trees typically having many branches.
See Section 4.

in terms of electrostatics on 52, where critical points of p are viewed as
equilibria of the field generated by a logarithmic potential with positively
charged point particles at the zeros and negatively charged particles at the
poles, counted with multiplicity.

The contribution to the electric field from the high-order pole at infin-
ity (which is best understood after changing coordinates by z = 1/w) is
balanced by the electric field from an individual zero in a neighborhood
with radius of order 1/N. In this neighborhood, the additional influence of
other zeros of p is typically of lower order, causing an almost deterministic
pairing of zeros and critical points. We refer the reader to Section 3 below
and to [20, §1] for more details.

Remark 1.3. — There is a fair amount of “universality” expressed in
Theorem 1.2 in that the distribution p is rather arbitrary. What if the
polynomial is instead sampled using random coefficients in front of some
choice of basis? Based on simulations, the lemniscate trees again seem to
have a shrinking portion of nodes with two children in a wide variety of such
models including most of the well-studied Gaussian models (the Kostlan
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model, the Weyl model, the Kac model). In fact, the only exception we ob-
served was a model based on Chebyshev polynomials (see the empirical ev-
idence presented below in the last section). In another direction, one might
consider randomizing the construction of polynomial “fireworks” described
in [13, §4] in order to produce polynomials whose trees have many branches.

Remark 1.4. — As a future direction of study it seems natural to inves-
tigate random rational functions on the Riemann sphere. A combinatorial
scheme for classifying associated topological types was developed in [2].
What positive statements can one make on the typical topological type?
The results in [22], investigating a fixed level set of a random rational func-
tion (defined as the ratio of two random polynomials from the Kostlan
ensemble), may lead to some insight in this direction. However, we gener-
ally anticipate the case of rational functions to have a much different flavor
than the case of polynomials; not only is the underlying combinatorial class
more complicated, but there is no longer a “polarization” caused by having
a high-order pole at infinity.

Remark 1.5. — Another natural direction of study, returning to Arnold’s
problem mentioned at the beginning of the introduction, would be to in-
vestigate the topological type of a random homogeneous polynomial in
projective space. The underlying classification problem in this case is still
unsolved; L. Nicolaescu classified generic Morse functions on the 2-sphe-
re [27] and enumerated them in terms of their number of critical points, but
it is not known which types can be realized within each space of polynomi-
als of given degree (and even less is known in more than two variables) [1].
At this stage, we suggest investigating a coarser structure, such as the so-
called “merge tree” [11, §VIL.1], associated to the graph of a random real
homogeneous polynomial of degree d in n + 1 variables (while pursuing
asymptotic estimates as d — oo for statistics defined on the merge tree).

1.3. Outline of the paper

The Gaussian limit law stated in Theorem 1.1 will be established us-
ing perturbed singularity analysis, a method from analytic combinatorics.
Specifically, in Section 2, we will apply a result from [12] to a bivariate
generating function that was derived in [8]. We prove Theorem 1.2 in Sec-
tion 3 by establishing a prevalence of small lemniscate petals adapting the
method from [20] for studying pairing between zeros and critical points of

ANNALES DE L’INSTITUT FOURIER
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random polynomials. In Section 4, we present some empirical results con-
cerning a certain model of random polynomials for which the lemniscate
trees appear to have on average asymptotically one third of their nodes
being of outdegree two.
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2. Sampling uniformly from the combinatorial class: proof
of Theorem 1.1

Let ay, ;, denote the number of lemniscate trees of size n with k£ nodes of
outdegree two, and consider the bivariate generating function
F(z,u) = Z %ukz"
n,k>0
In [8], an explicit formula for the function F(z,u) is derived by showing
that F satisfies a first-order PDE that can be solved explicitly using the

method of characteristics. This results in the following analytic description
in terms of elementary functions

(2.1) F(z,u) = [cosh (gm> - W} ) .

VI-2u

There is a well-established theory for deriving probabilistic results from
bivariate generating functions such as F'(z,u). For a detailed overview, see
the authoritative text [12, Ch. IX] by Ph. Flajolet and R. Sedgewick; here
we briefly review the connection in the current context. The basic link is
that we arrive at the so-called probability generating function by consid-
ering a normalized coefficient extraction involving F(z,u). Namely, using
[2"] to denote the operation of extracting the z™-coefficient, the univariate
polynomial in w, given by
[z"]F(z, u)
pn(u) = 7| F(z,1) )

TOME 70 (2020), FASCICULE 4
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is the probability generating function for the random variable X,, defined
(as in the statement of Theorem 1.1) as the number of nodes of outdegree
two in a random lemniscate tree of size n. That is, if a lemniscate tree
of size n is sampled uniformly at random, the probability that it has k
nodes of outdegree two is given by the coefficient of u* in p,, (u). From this,
one can easily compute the mean and variance using simple operations.
Furthermore, a more detailed complex analysis of the singularity structure
of bivariate generating functions such as F'(z,u) can be used to establish
probabilistic limit laws.

Concerning the case at hand, viewing u as a complex parameter, the
function F'(z,u) is amenable to perturbed singularity analysis and falls
under the “movable singularities schema” described in [12]; as u varies in a
neighborhood of u = 1, the location of the (nearest to the origin) singularity
of F(z,u) moves while the nature of this singularity is preserved. This
allows us to establish a Gaussian limit law by apply the following result
restated from [12, Thm. IX.12].

THEOREM 2.1. — Let F(z,u) be a function that is bivariate analytic
at (z,u) = (0,1) and has non-negative coefficients. Assume the following
conditions hold:

(i) Analytic perturbation: there exist three functions A, B, C, analytic
in a domain D = {|z| < r} x {|u — 1| < €}, such that the following
representation holds in some neighborhood of (0,1), with o ¢ Zy,

F(z,u) = A(z,u) + B(z,u)C(z,u)"“.
Furthermore, in |z| < r, there exists a unique root py of the equation
C(z,1) = 0, this root is simple, and B(p1,1) # 0.

(ii) Non-degeneracy: one has 0,C(p1,1) - 0,C(p1,1) # 0, ensuring the
existence of a non-constant analytic function p(u) near u = 1, such
that C(p(u),u) =0 and p(1) = p;.

(iii) Variability: one has

B"(1 B(1 B(1 2
s B0 LB POV
pn) B \BA)
where A(u) = p(1)p(u)~".
Then, the random variable with probability generating function
_ FMF(G )
pn(u) - [Zn]F(Z, 1)

converges in distribution (after standardization) to a Gaussian random vari-

able with a speed of convergence O(n~1/2).
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Verifying condition (i). — Let G(z,u) = cosh (/1 — 2u)fw

so that we have F(z,u) = G(z,u)"2. Note that G(z,u) is an entire func-

tion of z for each fixed u € C, and is non-constant for u # % Thus, for

u # %, F(z,u) is meromorphic with poles at the zeros of G(z,u) and no

other singularities. First setting v = 1, we find that the zeros of G(z,1)
s

are at z = § + 2mik,k € Z. Among these, p1 = 7 is nearest to the ori-

gin. We compute 9,G(p1,1) = ’Tﬂ # 0, which shows that p; is a simple
root. This completes the verification of condition (i) in Theorem 2.1, where
A =1,B =1 are taken to be constant, a = 2, and C(z,u) = G(z,u).

Verifying condition (ii). — Having shown above that 9,G(p1,1) # 0, we
only need to check that d,G(p1,1) # 0. We find 0,G(p1,1) = % (2 —m).
This verifies condition (ii), where the desired function p(u) is guaranteed to
exist by the implicit function theorem. Furthermore, we can describe p(u)
explicitly by solving for z in G(z,u) = 0:

2 _ 1 1+ +v1—2u
1) = ————tanh ! (V1 = 2u) = lo ,
plu) v1—2u ( ) 1—-2u g(l—\/1—2u>
where we choose the principal branch for the logarithm so that p(1) = p; =
/2. For |u — 1| sufficiently small, v/1 — 2u is near ¢, ensuring analyticity
of the function p(u).

Verifying condition (iii). — Let S(u) = p(1)/p(w). Then

™

B'(u) = =5 p(w) %0 (),

and B () =~ (~2p(u) (5 ())? + pla) 20" ()
Thus,
v(B) = /;/((11)) + 55/((11)) - (%((11))>2
() (2
_ % + % —1#0.

We conclude that Theorem 2.1 applies, and the random variable No(T},)
after rescaling converges in distribution to a Gaussian variable with a speed
of convergence O(n~1/2),

TOME 70 (2020), FASCICULE 4
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Mean and variance. — As pointed out in [12] in the remarks after the

proof of Theorem IX.12, the mean i, and variance o2
p'(1) 2

pn=——=n+0(1)=(1—-—])n+0(1),

S oW =) n+oq)

are given by

and
o2 =v(B) - n+0(1) = <:2+il>n+0(1).

3. Proof of Theorem 1.2

For a polynomial p of one variable we define
Zeros(p) := {€ € §% s.t. p(¢) =0}, Crits(p) := {w € S? s.t. dp(w) = 0}.

Instead of working the “usual” holomorphic coordinate S?\{oo} — C, it
will be more convenient to perform our computations in the coordinate
S2\{0} — C centered at the point at infinity (cf. [20, §1]). That is, we
first choose &1,...,&y € S? ii.d. from the probability measure p. Up to
multiplication by a non-zero complex number, this determines a unique
meromorphic map py from S? to C U {oo} with a pole of order N at
infinity and zeros at the &;’s. Since multiplication by a non-zero constant
does not affect zeros, critical points, and relative sizes |pn(21)|/|pn(22)] of
the modulus of p for any 21,23 € 52, the zeros &1,...,&n € S? uniquely
determine the lemniscate tree of py. We investigate the structure of this
lemniscate tree using the coordinate w : S2\{0} — C centered at infinity,
in which py takes the form

1 N
pn(w) = N H (w—¢&),

where the i.i.d. zeros &; are now written in the coordinate w (we abuse
notation slightly and continue to denote them by &; in this coordinate).
Let us emphasize that whenever a condition like |¢| < N appears below
for some ¢ € S?, the quantity || is computed in this system of coordinates.
In particular, denoting by ¢ = 1/£ the image of £ in the usual coordinates
centered at 0, our condition [¢] < N2 is the same as |¢| > N 2. Associated
to each w € Crits(py) is the singular component T',, of the lemniscate

Ay i={z€ 8% s.t. [pn(2)| = [py(w)]},

that passes through w. That is, among the connected components of A,
we define I',, to be the one that contains w. For a generic polynomial (a
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condition that holds with probability one in our model), there are N — 1
distinct singular lemniscates (one passing through each critical point), each
having a unique singular component that is topologically a bouquet of two
circles. We call these two circles the petals of I',,. For the arguments below
we fix an auxiliary parameter r > 1 such that

1 . 1 1
1 14 =el? S o).
(3.1) arg( +re >e< 10,10>, V6 € [0,2n]

We study the behavior of the lemniscate tree of px by considering for each
¢ € Zeros(py) the event

€ —w| < % and at least one petal of T'y,
Se,n = q F'w € Crits(pn) is contained in the disk of radius 4TT|£|

centered at &
When the event S¢ n occurs, we will say that I'y, has a small petal sur-
rounding &, and we refer to w as the paired critical point of £&. We also
consider the events
R PSR
o= {le-€1> T8, ve e zampier}.

To prove Theorem 1.2, we begin with the following observation.

LEMMA 3.1. — We have
(3.2) #{vertices in LT (py) with at most one child}

> Z ]]-Sg‘Nr\IBE,Na
§E€Zeros(pn)

where 1 denotes the indicator function of the event S.

Proof. — Observe that if the events Sy ¢ N By, and Sy ¢ N By ¢ occur
for some zeros £ # £, then the corresponding paired critical points are also
distinct since the spacing of zeros ensured by B¢ x and Be/ y is larger than
the sum of the distances between the zeros to their paired critical points
given by S¢ v and Sg/ n. Moreover, when the event Sg n N Be y occurs, the
vertex in the lemniscate tree of py that corresponds to the critical point
w paired to & has outdegree at most 1. Indeed, one of its petals surrounds
only one zero, namely &. To complete the proof, we recall a theorem of
Titchmarsh ([30, §3.55]), which says that inside a connected component of
a lemniscate for an analytic function the number of critical points is one
less than the number of zeros. The petal surrounding £ has inside one zero
and therefore does not surround any critical points. Hence, the vertex in
the lemniscate tree of py that corresponds to w has at most one child. O
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The preceding Lemma shows that

(3.3) E#{vertices in LT (py) with at most one child}
>N ']P(S&N n B§,N) .

To obtain a lower bound for the probability of S¢ y N B¢ n, note that for
any A € [0,1/4) and any £ € Zeros(py) we have

P(|¢| < N®)=1+0(N?2)

since the measure y assigns to a ball of radius N~ centered at any point
on S? (in particular at 0) a mass on the order of its volume. Using that u
has a bounded density with respect to the uniform measure on S2, we have

P(Ben) =P (Ben | €] < N?) (1+0(N722))
- [1 —(N-1)

/ssNA g <{< ‘ € =¢l< 47],v|£|> } du(§)

=[1-0(N'"23)] (1+O(N22))
=14+ 9] (N—QA) + O(N_1+2A).

(1+0(N~2%))

Therefore, since for A € [0,1/4), we have —2A > —1 4 2A, we find that

P (Se.nv N Ben) =P (Se.n) + O(N722)

(3.4) _
> [ B(Sen | Odu©) + ONR),
[E]l<NA
where the notation in the last integral is that we’ve conditioned on the
position of £&. We now fix A € [0,1/4), a deterministic sequence & = &y
with |¢] < N2, and consider the random polynomials

N-1

pe(u)i= = (=) [] w-g).

Jj=1

conditioned to have a zero at { and with &; drawn i.id. from p for j =
1,...,N — 1. We slightly abuse notation and continue to write S¢ n for
the event that (the fixed zero) ¢ has a paired critical point we n with a
small petal surrounding &, so the conditional probability appearing in the
integrand in (3.4) is henceforth simply denoted as P (S¢ n). Theorem 1.2
follows from (3.4) once we show that there exists Ny > 1 and Ca > 0 so
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that for all N > Ny

(3.5) inf P(Sen)>=1—CaAN22,

lEl<Na
To show (3.5), we revisit the proof of the main theorem in [20]. To state
the precise estimate we will use, we set some notation. Critical points of
Pw,¢ are solutions to Ex(w) = 0, where

N-1
(3.6) Ey(w) = dlogpn.¢(w) = al ig + Z :
j=1

_E—’—w w—§&;

As in [20, §4], observe that

N 1 du(z)
(3.7) EEN(w) = w+w_£+(N 1)/@w—z’
and
B N1
(3.8) En(w) := Ey(w) —EEN(w) = P
j=1 J

In the computations below, the Cauchy—Stieltjes transform fc %LEZZ) ap-

pearing in (3.7) plays no significant role (it only shifts the locations of

critical points in a deterministic way so that (3.9) below has an additional
deterministic 1/N correction). Hence, we will assume that it is identically 0
(i.e. we reduce to the case when p is the uniform measure on S?). For each
A € [0,1/4) and all ¢ with |¢] < N2, the average critical point equation
EEN(w) = 0 has a unique solution

1\ !
(3.9) we N =§& (1 - N)
near £. Note that

<

lwe v — €| = N_1
We will argue in Section 3.1 below that the technique in [20] gives the

following proposition.

PROPOSITION 3.2. — Fix A € (0,1/4). For each & let Dy ¢ denote the
disk of radius 4r || /N centered at £. There exists v > 0 and a constant
Ca so that the event

Xnga = { sup ‘Ew(w)‘ < Nl_”/lﬂ}

wEDN ¢
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occurs with high probability:

(3.10) |§|i£JfVAP(XN’§’A) >1-—Ch- - N22,

Assuming Proposition 3.2 for the moment, we complete the proof of (3.5)
and hence of Theorem 1.2 by showing that the event X ¢ A (or more pre-
cisely Xn ¢, AN By ¢), whose probability is estimated in (3.10), is contained
in the event S¢ . Suppose that X ¢ A occurs. Then, as in [20], by Rouché’s
Theorem applied to Ey, there exists Ny so that for all N > Ny there is a
unique w € Crits(py) satisfying

jw— ¢ <rlgl /N

with probability at least 1 — Ca - N~22. Indeed, write I" for the boundary
of the disk of radius r|¢| /N centered at &. Since r > 1, the curve T’
winds around wy ¢ (defined in (3.9)) for all N. Moreover, by the triangle
inequality,

N 1 ‘ _ N 1
e B T e

 N(N-1 1
_|§<N—2r)'

N1
€]

Hence, on the event Xy ¢ A N By ¢ for which

inf |[EEN(w)| > inf
wel’ wel

If X A happens, we also have

sup EN(W)‘ <
wel

IP’(XN,&A n BN@) =P (XN7§7A) + O (N71+2A)

we find

inf |[EEN (w)| > sup|Ey|.

wel wer
We may therefore apply Rouché’s Theorem to conclude that Ey has exactly
one zero (and hence py ¢ has exactly one critical point) in the interior of
I'. This is precisely the first condition in the definition of Sy ¢.

To check that the small petal condition in the definition of Sy ¢ is also
satisfied when Xy ¢ A occurs, let Ay ¢ denote the annulus centered at &
with inner radius r |£| /N and outer radius 4r || /N (recall that r was fixed
by (3.1)). For simplicity, we will rotate our coordinates so that £ lies on
the positive real axis and consider the three regions in Ay ¢ (see Figure 3.1
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below):
O ={weAne | Rw <& —3r{/N},
Qo :={w € An¢ | £ —2rE/N < Rw < £+ 2ré/N},
Qs :={w e Ane | Rw > £+ 3r{/N}.

Q4 Q3

c

Figure 3.1. The lemniscate {|pn(z)|= |pn(w)|} passing through w has
with high probability empty intersection with each of 0y and Q. This
forces one of the corresponding petals to be contained in Dy ¢ which
implies that petal is empty (it contains no critical points in its interior).

We now argue that the event Xy ¢ A in (3.10) implies that the argument
of En(w) is essentially deterministic (given by the argument of EEy (w)
to leading order in N) uniformly as w ranges over Ay ¢. We parameterize
points w € Ay ¢ by writing w = £ + pexpe'? with r |¢| /N < p < 4r || /N.
Then (3.7) yields

N 1 1
3.11 EEN(w) = = | — - + - ) .
340 v = g (a7 * oo
The first term inside the parentheses in (3.11) is —1 4+ O(1/N) since

b et (L
1+ pei? /|¢] S N—4r TA\N)’

while the second term satisfies

+1

1 < 1 < 1
4r " | Npei /[¢]| = r’
which we summarize by writing
1 1 .
———— =F(p)-e '’
Npe'? /[¢] r
and taking note that
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Therefore, Proposition 3.2 (along with the estimates above) shows that
for each A € (0,1/4) there exists v > 0 so that with probability at least
1— CAN~?2 we have

En(§+pe?) =EEn(§+pe'?) + En(§+ pe'?)
N 1 .
= — <1 + F(p)-e '’ 40 (N”)) ,
¢ r
where the implied constant is independent of p,8, N,&. Thus, using the
definition (3.1) of r we conclude when X ¢ A occurs, we also have
1 1
5,7T+5), VwEAN,g
for all N sufficiently large. Let us write
0_-Qs ={we Aye | R(w) =& —2r§/NY,
040 ={w e Ay | R(w) =€+ 2rg/N}

for the left and right boundaries of €25 and set

(3.12) arg (En(w)) € <7T -

¢ =m/2 —arctan8 > 0.

Note that the angle of any line segment joining a point on d_£2s to any point
in © lies in the interval (7/2+ ¢, 37/2 — (), so that it forms an acute angle
with En(w) when Xy ¢ A happens by (3.12). Since En(w) has the same
argument as the gradient of |py ¢(w)|, this implies that the event Xy ¢ A
entails that the directional derivative of [py ¢(w)| along such a line segment
is positive, and hence the value of |py¢(w)| in @ is strictly larger than
its value on 0_Q,. Similarly, the value of |py ¢(w)| on the right boundary
0489 is strictly larger than its value throughout 5. This implies that a
level curve of |pn¢| that intersects Qo cannot intersect €25 or 3 unless it
leaves Dy ¢ through the set

S:={|lw—¢& =4r&/N}NQo,

which consists of two circular arcs symmetric with respect to the real axis.
As above, the event Xy ¢ A ensures that the argument of Ey is close to
7 and hence the restriction of |py¢| to each component of S is strictly
monotone. Thus, any level curve of |pn ¢| can only cross each component of
S once on the event Xy ¢ A. The singular component I',, (consisting of two
petals joined at w) of the lemniscate passing through the critical point w
that is paired to & therefore crosses the boundary of Dy ¢ at most twice (one
crossing for each component of S). This implies whenever X ¢ A occurs,
one of the petals is completely contained in Dy ¢, and therefore it must
be a small petal since Dy ¢ contains only one zero of py, see Figure 3.1.
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This shows that Xy ¢ a N By ¢ implies Sy ¢ and yields (3.5), completing
the proof of Theorem 1.2. O

3.1. Proof of Proposition 3.2

Fix A € (0,1/4) and a sequence ¢ = £(N) with || < N2 (we remind
the reader that || is measured in coordinates centered at oo, and hence in
terms of the original coordinates our assumption removes a disk of radius
N~2 centered at 0). In this section we explain how to modify the proof
of Theorem 1 (specifically equation (4.2)) in [20] to prove Proposition 3.2.
The argument from [20] was presented in several steps; below we explain
the modifications needed at each step.

Step 1. — With we = we n defined as in (3.9), we study En(w) by
separately considering

En(we), and  Ey(w) — Ex(we).

Step 2. — To understand

we first fix 6 € (2A,1) and estimate the contribution from zeros far away
from &:

We —w 1-0+A
(3.13) < KN ,
|§_5j>NZ1/2+5/2 (w— gj)(wé - 5])

for some K; > 0, where we’ve used that |we —w| < Ar N2 for w €
Dy ¢ and that |w—¢&;| and |we —§;| are each bounded from below by
a positive constant times |{ — &;| (in fact |w —&;|, |we —&;|, and |§ — &
are asymptotically equivalent as N — oo as can be see from the triangle
inequality). Hence, as long as 6 > 2A, we find that the expression in (3.13)
is (deterministically) bounded above by

leefA < lee/ |£‘

for some € > 0, as in the definition of the event X ¢ whose probability we
seek to estimate.
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Step 3. — Next, we control the contribution to Ey (w) — EN(wg) from
zeros near ¢ by successively subtracting and adding

(we —w)*
Z — ¢ \k+1
|6—&;|SN—1/2+6/2 (wf 5-7) *

for k =1,2,...,L — 1 and also recalling that |wg — w| < 4rN~1+5:

(3.14) 3 We— W

e—&,|<N-1/2+5/2 (we = &)(w =)

. 3 (we —w)"
h (we — &) (w — &)

|5 —€I<N-1/2+0/2

L-1

1
n kN (-1+A)E 7
> S e

k=1 [6—¢&;|KN—1/2+8/2

where c is an absolute constant and L is any positive integer.

Step 4. — We control the two terms in (3.14) separately. To control the
term containing the sum on k, we use [20, Lem. 2], which says that for
every 1 € (0,1/2) there exists K = K(n) > 0 so that

N-1 1
> —— 5 >N | <K-N""logN.
j=1 lwe — &1

Hence, taking n = A 4 ¢/2, we find
L—1 1 L—1 o
Ear(—14+A)k E nr(—1+A)k nr(2—2n) EEL
> N b (we —w)kt <D N N ’
k=1

< CEleAfe < C«elee/ |£|

k=1 |6—€;5IKN—1/2+6/2

with probability at least N~1+24+e¢,

Step 5. — To bound the other term in (3.14), we use [20, Lem. 1], which
says that for each § € (0,1/2) with probability at least 1 —CsN~° there are
no zeros with |&;| > N/2%9/2 and at most N?° zeros with [¢| > N1/279/2,
This allows use to write

L
(we —w) < N1-(1=26+L(1—-A)—(L+1)(1/2+6/2))

(we — &) (w = &)

651N -1/246/2
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Hence, taking L sufficiently large, we find that if 2A < %, then the left hand
side in the previous line can be bounded above by N=17¢/|¢| for all € > 0
sufficiently small with probability at least 1 — CAN~'*4. This completes
the proof of Proposition 3.2.

4. Random perturbation of a Chebyshev polynomial

In light of the results of the previous section, one may wonder whether
there are any natural models of random polynomials that typically have
some positive portion of the nodes in the corresponding tree having two chil-
dren (thus resembling the previously established combinatorial baseline).
As a possible candidate for such a model the authors considered random
linear combinations of Chebyshev polynomials. More specifically, the class
of polynomials considered were of the form p(z) = Y ;_, axTk(2), where
T} is the Chebyshev polynomial (of the first kind) of degree k, and the co-
efficients are chosen independently with a,, ~ N(0,1). Linear combinations
of orthogonal polynomials have been studied previously, including several
varieties of Jacobi orthogonal polynomials [23]. The important property
of Chebyshev polynomials (leading us to choose those as a basis) is that
they each have critical values all with the same modulus. Figure 1.4 shows
the family of singular level sets for such a polynomial. The lemniscates for
this type of polynomial appear to exhibit a rich nesting structure. However,
these polynomials are typically not lemniscate generic (due to complex con-
jugate pairs of critical points sharing the same critical value). Consequently,
this model seems worthy of further investigation, but this will require first
understanding an appropriate class of lemniscate trees.

We will investigate a modified (less organic, but more tractable) version
of this model where the top degree Chebyshev polynomial gets most of the
weight. Specifically, we consider randomly perturbed Chebyshev polyno-
mials of the form T,(z) + %ZZ;S biTy(z), where the coefficients by are
randomly and independently chosen to be 1 or —1 with equal probabil-
ity. These polynomials have all real roots and real critical points, which
enables us to easily determine the corresponding lemniscate tree by the
process described below.

Suppose that p is a lemniscate generic polynomial with real zeros and
critical points. We construct a permutation as follows: we label the critical
points with the integers 1 through deg(p) —1, starting with 1 for the critical
point with largest critical value in magnitude, 2 for the critical point with
second largest critical value in magnitude, and so on. Reading the labels
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from left to right gives a permutation of the numbers 1 through deg(p) — 1.
Now, it is well known that the permutations on n letters are in one-to-one
correspondence with the increasing binary trees of size n (see [12, p. 143]
for example). These are plane, labeled, rooted trees in which every vertex
has at most two children, where each child has a left or right orientation
(even when it is the unique child of its parent), such that the labels along
any path directed away from the root are increasing. We then construct
the increasing binary tree corresponding to the permutation obtained from
the polynomial. By “forgetting” its embedding in the plane we obtain the
lemniscate tree associated to the singular level sets of the polynomial. One
can even determine the number of nodes of outdegree 2 directly from the
permutation by counting the number of descents which are immediately
followed by ascents.

We apply this procedure to a number of polynomials in the following
computer experiment: Table 4.1 gives the average value of Ny computed
for a sample of 100 randomly perturbed Chebyshev polynomials of the same
degree n for a number of different values of n ranging from 10 to 200. Linear
regression yields a best fit line with equation Ny = 0.3338n — 0.90803 with
R? = 0.9999, indicating that one should expect approximately a third of
the vertices in the lemniscate tree for a perturbed Chebyshev polynomial to
have outdegree two. This agrees with a heuristic of ignoring correlations in
the randomly perturbed heights of critical values in the perturbed Cheby-
shev polynomial, which corresponds to the induced random permutation
being sampled uniformly from the combinatorial class of permutations (it is
known [3] that the average number of nodes of outdegree two in a random
permutation tree is asymptotically a third of the nodes). Figure 4.1 shows
the lemniscate trees corresponding to two randomly perturbed Chebyshev
polynomials of degree 30.

Table 4.1. Average value of Ny vs. degree

n 10 20 30 40 50 60 70 80 90 100
mean No| 2.55 5.79 9.23 12.53 15.47 19.01 22.27 25.63 29.1 32.64

n 110 120 130 140 150 160 170 180 190 200
mean Ny |35.77 39.39 42.42 46.09 49.06 52.73 55.86 59.08 62.44 65.72
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Figure 4.1. Lemniscate trees for randomly perturbed Chebyshev poly-
nomials of degree 30.

Remark 4.1. — Random matrix theory gives rise to a more natural model
of random polynomials that may yet exhibit a similar outcome as the per-
turbed Chebyshev model. Namely, consider the characteristic polynomial
p(z) = det(M — zI) of a random matrix M sampled from the so-called Ja-
cobi ensemble [10] (with parameters chosen in order that the associated Ja-
cobi orthogonal polynomials are Chebyshev polynomials). We expect that
p(z) has a lemniscate tree with, on average, approximately one third of its
nodes of outdegree two.
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