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ON THE JOINT SPECTRAL RADIUS FOR
ISOMETRIES OF NON-POSITIVELY CURVED SPACES

AND UNIFORM GROWTH

by Emmanuel BREUILLARD & Koji FUJIWARA (*)

Abstract. — We recast the notion of joint spectral radius in the setting of
groups acting by isometries on non-positively curved spaces and give geometric
versions of results of Berger–Wang and Bochi valid for δ-hyperbolic spaces and
for symmetric spaces of non-compact type. This method produces nice hyperbolic
elements in many classical geometric settings. Applications to uniform growth are
given, in particular a new proof and a generalization of a theorem of Besson–
Courtois–Gallot.
Résumé. — Nous généralisons la notion de rayon spectral joint dans le cadre des

actions de groupes par isométries sur les espaces à courbure négative ou nulle et
nous donnons des versions géométriques des résultats de Berger–Wang et de Bochi
valables dans tout espace δ-hyperbolique ainsi que dans les espaces symétriques
de type non-compact. Cette méthode permet de produire des éléments hyperbo-
liques dans de nombreuses situations géométriques classiques. Nous donnons par
ailleurs des applications à la croissance uniforme ainsi qu’une nouvelle preuve et
une généralisation d’un théorème de Besson–Courtois–Gallot.

1. Introduction

This paper is concerned with the following general problem. We are given
a group G generated by a finite set S. Suppose that G contains elements
with a certain property P. Can we estimate the shortest length of an el-
ement g ∈ G which has the property P? Here the length of an element
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g ∈ G is the smallest length of a word with letters in S and S−1, which
represents g.

For example the property P could be “being of infinite order”, or “having
an eigenvalue of modulus different from 1”, say when G is a matrix group.
Or else when G is a subgroup of isometries of a non-positively curved space
P could be : “having positive translation length”. This type of question is
ubiquitous in problems dealing with uniform exponential growth. In this
paper we give a method to find nice short words in a variety of situations
when the group acts on a space with non-positive curvature. As an applica-
tion we will give several uniform exponential growth results, in particular
for groups acting on products of δ-hyperbolic spaces.
This method consists in studying the growth of the joint minimal dis-

placement of the generating set S. To fix ideas say (X, d) is a metric space
and S ⊂ Isom(X) is a finite set of isometries of X. Let G := 〈S〉 be the
group generated by S and x ∈ X is a point. We define the joint displace-
ment at x by

L(S, x) := max
s∈S

d(x, sx)

and the joint minimal displacement of S by

L(S) := inf
x∈X

L(S, x).

This quantity appears in many places in geometric group theory, for
example in the construction of harmonic maps as in the work of Gromov–
Schoen [39] and Korevaar–Schoen [48], or in Kleiner’s proof of Gromov’s
polynomial growth theorem [47], and, when X is a Hilbert space, in rela-
tion to reduced first cohomology and Hilbert compression as in [28]; it is
ubiquitous in the study of free group automorphisms and it is key to con-
structing limits of representations, e.g. see [9], and in recent work about
surface group representations in higher rank Lie groups, e.g. [22].
In fact a more common quantity is the `2 version of L(S), sometimes

called the energy of S and defined as the infimum of the averaged squared
displacement 1

|S|
∑
s∈S d(sx, x)2. In this paper however we will exclusively

consider L(S), which is the `∞ version of the energy. One advantage of
working with L(S) is that it behaves well under set theoretic powers Sn
of S (while the energy is better suited to random walks as expounded for
example in Gromov’s paper [38]).
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It is natural to also consider the quantities

Lk(S) := min
16j6k

1
j
L(Sj),

L∞(S) := inf
k>1

Lk(S) = lim
n→+∞

L(Sn)/n.

This limit exists by subadditivity (see Section 2 below) and coincides with
the limit of L(Sn, x)/n for any point x. We call L∞(S) the asymptotic
joint displacement of S. This quantity is the right geometric analogue of
the notion of joint spectral radius (see below).
When S = {g} is a singleton, L({g}) is usually called the minimal dis-

placement of g and we call

λ(g) := L∞({g})

the stable length of the element g. We may also consider the joint stable
length

λ(S) := max
s∈S

λ(s)

and the corresponding notion for products

λk(S) := max
16j6k

1
j
λ(Sj),

λ∞(S) := sup
j∈N

1
j
λ(Sj)

and compare these quantites to those defined above. The choice of normal-
ization in the definition of λk(S) is made so as to guarantee the following
straightforward inequalities (see Section 2).

Lemma 1.1 (general nonsense lemma). — If (X, d) is any metric space
and S ⊂ Isom(X) a finite set of isometries, then for all k ∈ N

λ(S) 6 λk(S) 6 λ∞(S) 6 L∞(S) 6 Lk(S) 6 L(S).

Moreover L∞(Sk) = kL∞(S) and λ∞(Sk) = kλ∞(S). Finally

λ∞(S) = lim sup
n→+∞

1
n
λ(Sn).

We will be interested in the following questions: To what extent are
these inequalities sharp? What is the growth of L(Sn) as n grows? For
which spaces do we always have λ∞(S) = L∞(S)?

These quantities are interesting when X is an unbounded metric space,
especially in presence of some form of non-positive curvature, for example
a CAT(0)-space or a δ-hyperbolic space.
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When X = SLd(R)/ SOd(R) and the metric d is given by

(1.1) d(g, h) := log ‖g−1h‖,

where the norm is the operator norm associated to a Euclidean scalar prod-
uct on Rd, then any S ⊂ SLd(R) acts by isometries on X and the quan-
tity L∞(S) is the (log of the) well-known joint spectral radius of the set
of matrices S. This quantity has been first studied by Rota and Strang in
1960 [62] and further by Daubechies–Lagarias [29] in the context of wavelets
and iterated function systems and by Berger–Wang [6]. The main result of
Berger–Wang [6, Theorem IV] says that

(1.2) λ∞(S) = L∞(S).

This means that the rate of growth of ‖Sn‖ is identical to that of the
maximal eigenvalue of an element in Sn, where

‖Sn‖ := max
g∈Sn

‖g‖,

and a posteriori justifies the terminology “joint spectral radius” for
exp(L∞(S)) in that it generalizes the classical Gelfand formula express-
ing the spectral radius (i.e. the modulus of the maximal eigenvalue) as the
rate of exponential growth of the norm of powers of a single matrix.
In the literature on the joint spectral radius authors usually consider

arbitrary finite sets of matrices S ⊂ Md(R) which are not necessarily in-
vertible. In this paper however, because of our geometric point of view, we
will focus on the invertible case.

1.1. Geometric Berger–Wang identity and geometric Bochi
inequality

One of the leitmotivs of this paper will be to extend the Berger–Wang
identity (1.2) and its refinements to geometric actions on non-positively
curved spaces X. We will mainly focus on fairly classical spaces such as
Euclidean spaces, Hilbert spaces, or non-positively curved spaces such as
symmetric spaces of non-compact type. We will also obtain satisfactory
results for arbitrary δ-hyperbolic spaces and will mention some properties
valid in arbitrary CAT(0)-spaces. We hope that our work may provide
motivation to study the joint minimal displacement and Berger–Wang type
identities in other geometries of interest, such as the Teichmuller space or
the Outer space. We begin with:
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Theorem 1.2 (geometric Berger–Wang identity). — The Berger–Wang
identity (1.2) holds for every finite set S of isometries ofX, whenX is either
a symmetric space of non-compact type, a tree, or an arbitrary δ-hyperbolic
space.

By contrast, we will show in Section 9 that the Berger–Wang identity
fails for isometries of a Euclidean space.

In the case of symmetric spaces, this result is closely related to the origi-
nal Berger–Wang identity for matrices. However in higher rank it does not
follow directly (nor does it imply it) as we stress in the following remark.
In the case of δ-hyperbolic spaces Theorem 1.2 was recently obtained by
Oregon–Reyes [56], whose paper addresses for the first time the question of
extending the classical results on the joint spectral radius to other geomet-
ric contexts. In this paper δ-hyperbolic spaces are assumed geodesic (see
Remark 5.1).

Remark 1.3. — Note that, as usual, symmetric spaces are considered
with their defining CAT(0) metric induced by a left-invariant Riemannian
metric associated to the Killing form of the group. The quantities studied
in this paper such as L(S) and λ(S) are sensitive to the choice of metric.
For example the classical Berger–Wang identity (1.2) for matrices does not
follow from the geometric Berger–Wang identity proved in the above the-
orem, nor does it imply it, say for X = SLd(R)/SOd(R). Recall that the
distance (1.1) on X = SLd(R)/ SOd(R) is not the usual CAT(0) Riemann-
ian symmetric space metric, but rather a Finsler-type norm-like distance
(as in [1] and [59]).

In [10] Bochi gave a different proof of (1.2), which yields a stronger
inequality of the form

(1.3) λk0(S) > L(S)− C,

where k0 and C are constants depending only on the dimension. The
Berger–Wang identity follows immediately by applying the Bochi inequal-
ity to Sn and letting n go to infinity. Note that a different proof of Bochi’s
inequality was given in [17, Corollary 4.6] and extended in [16] to non-
archimedean local fields. In this paper we will prove geometric analogues of
the Bochi inequality (1.3) in the geometric settings mentioned in the above
theorem. For example:

TOME 71 (2021), FASCICULE 1
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Theorem 1.4 (geometric Bochi-type inequality for hyperbolic spaces).
There is an absolute constant K > 0 such that the following holds. If (X, d)
is a geodesic δ-hyperbolic space, then

L∞(S) > λ2(S) > L(S)−Kδ

for every finite set S ⊂ Isom(X).

This answers a question raised in [56, Question 6.1].
For isometries of trees (case when δ = 0) we have λ2(S) = L∞(S) =

L(S). In follows in particular that λ2(S) = 0 implies L(S) = 0, which
is the content of a well-known lemma of Serre about tree isometries ([64,
I. Proposition 26]). The proof for δ-hyperbolic spaces is a quasification of
the corresponding proof for isometries of trees. It involves in particular
a Helly-type theorem for hyperbolic spaces, which we prove in Section 6.
See [33] and [23] for a related use of Helly-type theorems in geometric group
theory. Finally we note that in [50, Proposition 3.2] Koubi already proved
the following closely related consequence of Theorem 1.4 : for K = 100 if
L(S) > Kδ, then S or S2 contains a hyperbolic isometry of X.

As already mentioned Theorem 1.2 for δ-hyperbolic spaces follows from
Theorem 1.4. We now record one more consequence of Theorem 1.4 (see
Proposition 13.8 for the proof), which is well-known and due to Gromov [37,
8.1] (see also [56, Theorem 1.10]).

Corollary 1.5. — Let X be a geodesic δ-hyperbolic space and S ⊂
Isom(X) a finite set. Assume that L∞(S) = 0. Then 〈S〉 either has a
bounded orbit on X, or fixes a unique point in ∂X.

A similar but slightly weaker statement when X is a symmetric space is
proven in Section 7, based on the Bochi inequality applied to various linear
embeddings of X (see Theorem 7.5 and Proposition 7.7). In particular:

Proposition 1.6. — Let X be a symmetric space of non-compact type
and S ⊂ Isom(X) be a finite subset. Then :

λk0(S) > 1√
d
L(S)− C,

where d ∈ N is such that X is a convex subspace of SLd(C)/ SUd(C),
k0 6 d2, and C > 0 is a constant depending on d only.

We suspect but were unable to prove that the multiplicative constant 1√
d

in the above result can be taken to be 1. See Theorem 7.5 and Question
4 in Section 14. On the other hand we will prove in Section 10 that the
constant C cannot be taken to be zero. In fact for each n one may find an
S with L∞(S) > 0 but λn(S) = 0 (see Lemma 1.12).
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1.2. Growth of joint minimal displacement

A consequence of the geometric Berger–Wang identity is that in order to
guarantee the existence of a single element g with positive stable length in
the group generated by S, it is enough to show that L∞(S) > 0. Accordingly
this suggests that in order to find a nice hyperbolic element in a power of
S, it is important to study the growth rate of L(Sn). In a CAT(0) space
a simple geometric argument, similar to one used by V. Lafforgue in [51,
Lemma 2] for Hilbert spaces, shows the following:

Lemma 1.7. — If X is a CAT(0) metric space and S a finite set of
isometries, then

L(Sn) >
√
n

2 L(S).

The square root n growth behavior is sharp as examples of Cornulier,
Tessera and Valette [28] show (see Remark 3.8). Of course if L∞(S) > 0
then L(Sn) grows linearly, but the above sublinear growth is useful in
order for L(Sn) to go above a certain threshold after which the linear
growth can start. For example if X is δ-hyperbolic, we will show that
L(Sn) > n(L(S) − Kδ) for some absolute constant K, so that we get
linear growth provided L(S) > Kδ. While if X is a symmetric space of
non-compact type a consequence of our analysis is:

Proposition 1.8. — There is c = c(X) > 0 such that if S is a finite
set of isometries of a symmetric space X of non-compact type

c ·min{L(S), L(S)2} 6 L∞(S) 6 L(S).

Observe that a consequence of the left hand-side and of Theorem 1.2 is
the well-known fact that if a finitely generated group of isometries of X is
entirely made of elliptic elements then it fixes a point on X or on its visual
boundary (see Corollary 3.13).
When X is a symmetric space of non-compact type, the Margulis lemma

asserts the existence of a constant ε = ε(X) > 0 depending only on dimX

such that the following holds : every finite set S of isometries of X, which
generates a discrete subgroup of Isom(X), and has L(S) < ε must generate
a virtually nilpotent subgroup. Combining this with the previous proposi-
tion, one obtains:

TOME 71 (2021), FASCICULE 1



324 Emmanuel BREUILLARD & Koji FUJIWARA

Corollary 1.9. — There are constants c0, c1 > 0 depending only on
X, such that if S is a finite set of isometries of a symmetric space X of
non-compact type generating a non virtually nilpotent discrete subgroup
of Isom(X), then

c1 6 L∞(S) 6 L(S) 6 c0 · L∞(S).

In [22, Corollary 1.3] Burger and Pozzetti show that in the case of max-
imal representations of a surface group in the Siegel upper-half space, the
above inequalities hold already with λ(S) in place of L∞(S) and with an
explicit value of c1.

1.3. Euclidean spaces

When X is a finite dimensional Euclidean space, it is still true that
L(S) = 0 if and only if L∞(S) = 0, namely:

Proposition 1.10. — If S is a finite set of isometries of Euclidean Rd,
then the following are equivalent:

(1) S has a common fixed point,
(2) L(S) = 0,
(3) L∞(S) = 0.

While it is clear that L(S) = 0 implies L∞(S) = 0, the converse is slightly
more subtle, because it can happen that S has no global fixed point, and
yet every single element in the group generated by S has a fixed point (see
Example 9.1). In particular one can have L∞(S) > 0 while λ∞(S) = 0. This
means that the Berger–Wang identity (1.2) fails for isometries of Euclidean
spaces. See Section 3.3.
By contrast, when X is an infinite dimensional Hilbert space one can

have L∞(S) = 0 while L(S) > 0. A sublinear cocycle need not be trivial in
the reduced first cohomology [28, 3.9], see Section 3.2.

1.4. Large torsion balls and escape from elliptics

Schur proved in 1907 [63] that a subgroup of GLn(C) all of whose ele-
ments are of finite order must be finite. In [16] the first author proved a
uniform version of Schur’s theorem:
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Theorem 1.11 (uniform Schur theorem [16]). — There is N = N(d) ∈
N such that for every finite symmetric subset S ⊂ GLd(C) containing 1 and
generating an infinite group, there is an element g ∈ SN of infinite order.

Examples of Grigorchuk and de la Harpe [36] and of Bartholdi and Cor-
nulier [4] show that N(d) must grow to infinity with d. In Section 10 we
will show that, by contrast with the case of torsion elements, one cannot
escape elliptic elements in general:

Lemma 1.12 (no uniform escape from elliptics). — In the real Lie group
SO(4, 1), for each N ∈ N one can find a pair S = {a, b} such that for all
words w of length at mostN in a±1, b±1 the cyclic subgroup 〈w〉 is bounded,
but the subgroup 〈S〉 is unbounded and even Zariski dense (in particular it
does not fix a point on hyperbolic 4-space H4 nor on the boundary ∂H4).

The proof is based on the Tits alternative and the Borel–Larsen theo-
rem [12] on the dominance of word maps on semisimple algebraic groups.

On the other hand the geometric Bochi-type inequalities proved in this
paper give a tool to produce quickly (i.e. in Sn for n small) a non-elliptic
element. The time needed to produce this element however depends on
L(S). For example Theorem 5.7 in Section 5 shows that, when X is a δ-
hyperbolic space, there is g ∈ S ∪ S2 with L∞(g) > 0 (and in particular
of infinite order) provided L(S) > Kδ. However L(Sn) may well remain
under Kδ for large n, even though L∞(S) > 0. Examples of δ-hyperbolic
groups with large torsion balls in their Cayley graph are easy to construct,
see Remark 1.15 below.
Lemma 1.12 also shows that even though the geometric Berger–Wang

identity λ∞(S) = L∞(S) holds in symmetric spaces by Theorem 1.2, the
additive constant C in the Bochi-type inequality λk(S) > L∞(S)/

√
d−C,

which is a consequence of Proposition 1.6, cannot be zero.

1.5. Uniform exponential growth (UEG)

If S is a finite generating subset in a group Γ, we define

h(S) = lim
n→+∞

1
n

log |Sn|,

and call h(S) the entropy of Γ for S.
The original motivation for the present paper was a theorem of Besson–

Courtois–Gallot [7]. They showed that given a > 0 and n ∈ N, there is a
constant c(n, a) > 0 such that if M is a complete Riemannian manifold of
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dimension n with pinched sectional curvature κM ∈ [−a2,−1] and Γ is a
discrete group of isometries of M generated by a finite set S, then

h(S) = lim
n→+∞

1
n

log |Sn| > c(n, a) > 0,

provided Γ is not virtually nilpotent.
We will generalize this result and give a new proof of it, seeing it as

a fairly direct consequence of the Bochi-type inequality of Theorem 1.4.
Our approach provides the additional information that generators of a free
semigroup can be found in a bounded ball (a feature the Besson–Courtois–
Gallot proof did not yield). The proof will be given in Section 13, but let us
briefly explain here how this works. Due to its negative curvature, the man-
ifold M is a δ-hyperbolic metric space for some δ > 0 which is independent
of n and a. Once a hyperbolic element in S or a bounded power Sn has
been found, a simple ping-pong argument gives generators of a free semi-
group (cf. Section 11 below). Thanks to the geometric Bochi inequality for
hyperbolic spaces, i.e. Theorem 1.4, in order to find a hyperbolic element,
we only need to check that L(S) > Kδ or at least that L(Sn) > Kδ for
some controlled n (cf. Theorem 13.1).
The manifold is also CAT(0), so Lemma 1.7 applies, and we see that

we only need to rule out the possibility that L(S) is very small. But if we
assume that the group Γ is discrete, the Margulis lemma tells us that there
is a constant ε = ε(n, a) > 0 such that if L(S) < ε and 〈S〉 is discrete, then
〈S〉 is virtually nilpotent. This ends the proof.
Using instead the generalized Margulis lemma proved by Green, Tao and

the first author in [19] this argument yields the following generalization of
the Besson–Courtois–Gallot theorem.

Theorem 1.13 (UEG for hyperbolic spaces with bounded geometry).
Given P ∈ N, there is a constant N(P ) ∈ N such that the following holds.
Assume that X is a geodesic δ-hyperbolic space with the property that ev-
ery ball of radius 2δ can be covered by at most P balls of radius δ. Let S be
a finite symmetric set of isometries containing 1. Assume that the subgroup
Γ generated by S has discrete orbits. Then either Γ is virtually nilpotent, or
SN contains two elements g, h that are hyperbolic (i.e. λ∞(g), λ∞(h) > 0)
and generate of a free semigroup and in particular:

h(S) > 1
N

log 2.

The assumption that Γ has discrete orbits means that for every x, y ∈ X
and r > 0, the orbit Γx intersects the ball B(y, r) in a finite set. We stress
that the constant N depends only on P and not on δ.

ANNALES DE L’INSTITUT FOURIER
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1.6. Hyperbolic groups

It is known that a non-elementary hyperbolic group has uniform expo-
nential growth and even uniform exponential growth, that is subgroups
have uniform exponential growth. See Koubi [50] as well as [24, 30]. Uni-
form exponential growth follows immediately from our general result on
actions on hyperbolic spaces (see Theorem 13.1). The point is that when
X is the Cayley graph of a hyperbolic group, then it is straightforward that
L(Sn) > n if S generates the group so the Margulis lemma used above in
Theorem 1.13 is irrelevant.

Theorem 1.14 (Growth of hyperbolic groups). — There is an absolute
constant C1 > 0 such that if G is a group with finite generating set S
whose Cayley graph Cay(G,S) is δ-hyperbolic, with δ > 1, then either G
is finite or virtually cyclic, or SM contains two hyperbolic elements that
are generators of a free semi-group, whereM is the least integer larger than
C1δ. In particular there is an absolute constant C2 > 0 such that

h(S) > C2

δ
.

We stress thatM depends only on δ. This special feature was not explicit
in Koubi [50]. While we do not know whether the entropy lower bound is
sharp as stated (it is a well-known open problem to determine whether
or not there is an absolute constant c > 0 (independent of δ) such that
h(S) > c for every generating set S of an arbitrary hyperbolic group), the
result on the existence of a free semigroup is sharp inasmuch as M must
depend on δ (it tends to infinity as δ goes to infinity). This follows from
the following well-known observation.

Remark 1.15 (Hyperbolic groups with large torsion balls). — For every
` ∈ N, there is n(`) > 0 such that if n > n(`), the two-generated group Γn,`
with presentation

Γn,` := 〈a, b | rn = 1, r ∈ B(`)〉,

where B(`) is the set of all reduced words of length at most ` in {a±1, b±1}
satisfies the C ′(1/6) small cancellation condition (see [35]) and is therefore
a δ-hyperbolic group (with large δ = δ(`, n)). In particular no element of
infinite order, let alone generators of a free semigroup, can be found in the
ball of radius ` in Γ`,n.

We note that the conclusion given in the previous theorem about h(S)
has recently been obtained independently by Besson, Courtois, Gallot and
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Sambusetti in their recent preprint [8] without exhibiting a free semi-group,
with the following explicit lower bound h(S) > log 2/(26δ + 16).
Uniform uniform exponential growth also immediately follows from The-

orem 13.1. In this case, S may not generate the whole group, and the
constant M must depend not only on δ, but also on the size of S. See
Corollary 13.4 and Remarks 13.7, 13.6 and 13.5.

1.7. Uniform Tits alternative for groups acting on trees

In [17] Gelander and the first author proved a uniform Tits alternative
for linear groups. Namely given a non virtually solvable finitely generated
group Γ contained in GLn(k) for some field k, there is an integer N = N(Γ)
such that for every symmetric generating set S of Γ the ball SN contains a
pair of free generators of a free subgroup. The number N was later shown
in [15, 16] to be a constant depending only on the dimension n and in
particular independent of the group Γ. A natural question arises as to
whether or not a similar phenomenon occurs for subgroups of Isom(X),
where X is a tree. We will give the following counter-example:

Proposition 1.16. — Given N ∈ N there are two isometries a, b of a
trivalent tree without common fixed point on the tree nor on its boundary,
such that for every two words w1, w2 of length at most N in a, b and their
inverses, the subgroup 〈w1, w2〉 is not free non-abelian.

In other words the uniform Tits alternative does not hold for non-elem-
entary subgroups of isometries of a tree. Note that the assumptions imply
that 〈a, b〉 contains a non-abelian free subgroup. This is to be contrasted
with the fact (see Proposition 12.1) that under the same assumptions there
always is a pair of words of length at most 3, which generates a free semi-
group. Our proof is based on an explicit construction of a subgroup of tree
automorphisms with prescribed local action. Another example, based on
the Baumslag–Solitar groups, was given to us by Jack Button. See Sec-
tion 12.
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2. The joint minimal displacement

In this section we recall the geometric quantities introduced in the intro-
duction and prove the general inequalities they satisfy, i.e. Lemma 1.1. In
this section (X, d) is an arbitrary metric space.

Let S be a finite set of isometries and x a point in X. Recall that we have
defined L(S, x), L(S), L∞(S) and λk(S) for k ∈ N>1 ∪∞ at the beginning
of the introduction.

2.1. Proof of Lemma 1.1

First we make the following simple observation:

Claim 1. — If U, V are finite subsets of isometries of X and x ∈ X, then:

(2.1) L(UV, x) 6 L(V, x) + L(U, x)

Indeed by the triangle inequality:

L(UV, x) = max
u∈U,v∈V

L(uv, x) 6 max
u∈U,v∈V

L(uv, ux) + L(u, x)

6 max
u∈U,v∈V

L(v, x) + L(u, x)

6 L(V, x) + L(U, x).

From this we get that n 7→ L(Sn, x) is subadditive, and therefore by the
subadditive lemma:

Claim 2. — the following limit exists and is independent of x

(2.2) L∞(S) := lim
n

1
n
L(Sn, x) = inf

n>1

1
n
L(Sn, x).

We take the above as a definition for L∞(S). To see that this limit does
not depend on the point x simply note that for every finite set S and every
pair of points x, y

L(S, x) = max
s∈S

d(sx, x) 6 max
s∈S
{d(sx, sy) + d(sy, y) + d(y, x)}

6 2d(x, y) + L(S, y)

and hence exchanging the roles of x and y

(2.3) |L(S, x)− L(S, y)| 6 2d(x, y).
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Claim 3. — For every n ∈ N we have

(2.4) 1
n
L(Sn) 6 L(S)

Indeed applying (2.1) iteratively we have L(Sn, x) 6 nL(S, x) for all x.

Claim 4. — The sequence L(Sn)/n converges to L∞(S) and

(2.5) L∞(S) = lim 1
n
L(Sn) = inf

n>1

1
n
L(Sn)

Indeed, since L(Sn, x) > L(Sn) we get immediately from (2.2) that
L∞(S) > lim sup 1

nL(Sn). On the other hand L∞(S) 6 1
nL(Sn, x) for

all x and all n. Minimizing in x we get L∞(S) 6 1
nL(Sn) and hence

L∞(S) 6 infn>1
1
nL(Sn) 6 lim inf 1

nL(Sn).
We conclude immediately that:

Claim 5. — L∞(Sn) = nL∞(S) for every n ∈ N.

We now turn to λ(S) and λk(S), which we have defined in the introduc-
tion as:

λ(S) := max
s∈S

λ(s)

and
λk(S) := max

16j6k

1
j
λ(Sj).

We can now complete the proof of Lemma 1.1.

Claim 6. — λ(S) 6 L∞(S).

Indeed (2.2) implies that L∞(s) 6 L∞(S) for every s ∈ S. It follows that
λ(S) 6 L∞(S) and thus that λk(S) 6 L∞(S) for every k ∈ N. Finally we
have:

Claim 7. — For every k, n ∈ N we have

(2.6) λn(S) 6 1
k
λn(Sk) 6 λkn(S).

To see this note that λ(sk) = kλ(s) for every isometry s and every k ∈ N.
In particular

λ(Sk) > kλ(S).
From this the left hand side of (2.6) follows easily, while the right hand
side is formal.
Now, given j ∈ N and applying the left hand side of (2.6) to Sj in place

of S, with n = 1 and letting k tend to infinity we see that:
1
j
λ(Sj) 6 lim sup

k→+∞

1
k
λ(Sk)
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and hence
λ∞(S) = sup

j>1

1
j
λ(Sj) = lim sup

k→+∞

1
k
λ(Sk).

To complete the proof of Lemma 1.1 it only remains to verify that
λ∞(Sk) = kλ∞(S) for every k ∈ N. This is clear by letting n tend to
infinity in Claim 7.

2.2. Joint displacement and circumradius

We define the minimal circumradius r(S) of S to be the lower bound of
all positive r > 0 such that there exists some x ∈ X and a ball of radius r
which contains Sx = {sx; s ∈ S}. This quantity is closely related to L(S)
as the following lemma shows:

Lemma 2.1. — Suppose S ⊂ Isom(X) is a finite set. Then

r(S) 6 L(S) 6 2r(S).

Moreover r(gSg−1) = r(S) for every g ∈ Isom(X).

Proof. — If r > r(S), there exists x ∈ X such that Sx is contained in a
ball of radius r. In particular, d(sx, x) 6 2r for every s ∈ S. This means
that L(S) 6 L(S, x) 6 2r. Hence L(S) 6 2r(S).
Conversely, if x is such that L(S) > L(S, x)− ε, then d(sx, x) 6 L(S) + ε

for all s ∈ S, and in particular Sx belongs to the ball of radius L(S) + ε

centered at x. Hence r(S) 6 L(S) + ε. Since ε > 0 is arbitrary, we get
r(S) 6 L(S).
That r(gSg−1) = r(S) for every g ∈ Isom(X) follows immediately from

the definition of r(S). �

3. General CAT(0) spaces

The goal of this section is to recall some definitions and basic properties
of groups acting by isometries on CAT(0) spaces and describe some basic
examples, such as Euclidean and Hilbert spaces, where the Berger–Wang
(1.2) identity fails. We also relate the vanishing of L(S) to the presence of
fixed points.
We first recall the notion of CAT(0) space. A good reference book is [20].
For a geodesic segment σ, we denote by |σ| its length.
If ∆ = (σ1, σ2, σ3) is a triangle in a metric space X with σi a geodesic

segment, a triangle ∆ = (σ1, σ2, σ3) in Euclidean R2 is called a comparison
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triangle if |σi| = |σi| for i = 1, 2, 3. A comparison triangle exists if the
side-lenghts satisfy the triangle inequality.
We say that a triangle ∆ is CAT(0) if

d(x, y) 6 d(x, y)

for all points x, y on the edges of ∆ and the corresponding points x, y on
the edges of the comparison triangle ∆ in R2. A geodesic space is a CAT(0)
space if all triangles are CAT(0). Complete CAT(0) spaces are often called
Hadamard spaces.

A geodesic metric space is CAT(0) if and only if every geodesic triangle
with vertices a, b, c satisfies the following inequality:

(3.1) 2d(a,m)2 6 d(a, b)2 + d(a, c)2 − 1
2d(b, c)2,

where m is the midpoint of the side [b, c].
If X is a simply connected, Riemannian manifold whose sectional cur-

vature is non-positive, then it is a CAT(0) space. In particular symmet-
ric spaces of non-compact type are CAT(0) spaces. So are Euclidean and
Hilbert spaces.

3.1. Minimal displacement of a single isometry

This section is devoted to the proof of Proposition 3.1 below. This fact
is likely to be well-known to experts, but in lack of reference, we decided
to include a proof.

Recal that an isometry g is said to be semisimple if the infimum is at-
tained in the definition of

L(g) := inf
x∈X

d(gx, x).

When X is a CAT(0) metric space, isometries are classified into three
classes (see [20]): g is said to be

• elliptic, if g is semisimple and L(g) = 0 (⇐⇒ fixes a point in X),
• hyperbolic, if g is semisimple and L(g) > 0,
• parabolic otherwise.

It is known that g is elliptic (hyperbolic, parabolic) if and only if gn is
elliptic (hyperbolic, parabolic, resp.) for some n 6= 0, [20, II.6.7, II.6.8].
For CAT(0) spaces, it turns out that the minimal displacement coincides

with the rate of linear growth of an arbitrary orbit, namely:
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Proposition 3.1. — Let X be a CAT(0) metric space, and g be an
isometry. Then we have:

L(g) = λ(g).
In particular L(gn) = nL(g) for each n > 0 and for any point x ∈ X, we
have

L(g) = lim
n→∞

1
n
d(gnx, x).

Proof. — It is enough to prove that

L(g2) = 2L(g),

because iterating we will find that L∞(g) = limL(g2n)/2n = L(g). Since
L(g2) 6 2L(g) always (see Lemma 1.1) we only need to verify that L(g) 6
L(g2)/2. For this we have the following simple argument, which we learned
from Nicolas Monod. Given x ∈ X consider the geodesic triangle x, gx, g2x.
The mid-point y between x and gx is mapped under g to the mid-point gy
between gx and g2x. Using a Euclidean comparison triangle, we see from
the CAT(0) assumption that

d(y, gy) 6 1
2d(x, g2x).

In particular L(g) 6 1
2L(g2, x) and minimizing in x we obtain what we

wanted. �

3.2. Hilbert spaces and affine isometric actions

Affine isometric actions on Hilbert spaces have been studied by many
authors, in particular in connection to Kazhdan’s property (T ) and the
Haagerup property. We refer the reader to the work Cornulier–Tessera–
Valette [28] for background; see also the work Korevaar–Schoen [48] and
Kleiner [47] for two interesting geometric applications.
When X is a Hilbert space, one can easily relate the vanishing of the

quantities L∞(S) and L(S) to the cohomological properties of the affine
isometric action associated to the finitely generated group Γ := 〈S〉. Let
us describe briefly here this connection. The linear part of the Γ action by
isometries on X is a unitary representation π of Γ on X. The translation
part is a cocycle, i.e. a map b : Γ → X such that b(gh) = π(g)b(h) + b(g)
for all g, h ∈ Γ; we denote the linear space of cocycles from Γ to X by
Z. A cocycle is a called a co-boundary if there is x ∈ X such that b(g) =
π(g)x− x. The closure B of the space of B co-boundaries gives rise to the
reduced first cohomology group of the action H1(π,X) = Z/B.
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It is also natural to study the growth of cocycles. In [28] a cocycle b :
Γ → X is called sublinear if ‖b(g)‖ = o(|g|S), when the word length |g|S
with respect to the generating set S goes to infinity. It is straightforward
to check that b is sublinear when b ∈ B [28, Corollary 3.3].

The relationship with our quantities L∞(S) and L(S) is a follows:
(1) L(S) = 0 if and only if b vanishes in H1, i.e. b ∈ B,
(2) L∞(S) = 0 if and only if b is sublinear.
We note that there are classes of discrete groups (e.g. polycyclic groups

as shown in [28, Theorem 1.1]) for which L∞(S) = 0 if and only if L(S) = 0.
While there are others [28, Proposition 3.9], where we may have L(S) > 0
and L∞(S) = 0. We will show below (in Proposition 9.3) that the latter
examples can only happen in infinite dimension.

3.3. Euclidean spaces

In this subsection we briefly describe the case when X = Rd is a Eu-
clidean space. Proofs will be given in Section 9.

Proposition 3.2. — A subgroup G of Isom(Rd) with d = 2, 3 all of
whose elements have a fixed point must have a global fixed point. In par-
ticular λ∞(S) = 0 implies L(S) = L∞(S) = 0.

This is no longer true in dimension 4 and higher. Indeed we have:

Proposition 3.3. — When d> 4, one can find a finite set S in Isom(Rd)
such that L∞(S) > 0 but λ∞(S) = 0.

The example is given by a subgroup of Isom(R4) generated by two ro-
tations within distinct centers and whose rotation parts generate a free
subgroup of SO(4,R) whose non trivial elements never have 1 as an eigen-
value. See Example 9.1.
Consequently:

Corollary 3.4. — The Berger–Wang identity (1.2) fails on Euclidean
spaces of dimension d > 4.

In dimension d = 3 the Berger–Wang identity holds provided the linear
part of the elements of S topologically generate a compact subgroup of
O(3), which is either finite or contains SO(3). It fails otherwise and already
in dimension 2, see Proposition 9.4. However we will show that if a finite
set of isometries does not admit a global fixed point, then it always has a
positive rate of escape. Namely:
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Proposition 3.5. — If S is a finite set in Isom(Rd), then the following
are equivalent:

(1) L(S) = 0,
(2) L∞(S) = 0,
(3) S has a common fixed point.

In other words: if Γ is a group and π a finite dimensional unitary repre-
sentation, then for any cocycle b : Γ→ Hπ the following are equivalent:

(1) b is in the closure of coboundaries,
(2) b is sublinear,
(3) b is a coboundary.
This conveniently complements [28, Corollary 3.7].

3.4. A diffusive lower bound on joint displacement

With just the CAT(0) property one always gets
√
n growth for the joint

displacement L(Sn). This may not seem very surprising as already any
random walk is expected to have at least a diffusive behaviour (see Re-
mark 3.10 below). However one interesting feature of the following lower
bound is the absence of any additive constant and the linear dependence
in terms of L(SS−1).

Proposition 3.6. — Let X be a CAT(0) geodesic metric space and S
a finite subset of Isom(X). For every n ∈ N we have:

L(Sn) >
√
n

2 L(SS−1).

Proof. — Recall that r(S) denotes the infinimum over all points x, y
of the radius r of the balls centered at y which contain Sx and that
(Lemma 2.1) r(S) 6 L(S). By definition of r(Sn) if r > r(Sn), then there
exists some x, y ∈ X such that Snx ⊂ B(y, r). This means that sSn−1x

lies in B(y, r) for every s ∈ S and hence Sn−1x lies in the intersection of
all balls B(s−1y, r) for s ∈ S.

Lemma 3.7. — Let X be a CAT(0) geodesic metric space and B(y, r)
and B(z, r) two balls of radius r > 0. Let m be a mid-point of a geodesic
between y and z. Then B(y, r) ∩ B(z, r) is contained in the ball centered
at m with radius (r2 − 1

4d(y, z)2)1/2.

Proof. — This is straightforward from the CAT(0) inequality (3.1). �
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Now from this lemma s−1
1 B∩s−1

2 B is contained in the ball centered at the
mid-point between s−1

1 y and s−1
2 y and with radius (r2− 1

4d(s−1
1 y,s−1

2 y)2)1/2.
It follows that Sn−1x lies in a ball of that radius.
By definition of r(Sn−1), it follows that r(Sn−1)2 6 r2− 1

4d(s2s
−1
1 y, y)2.

This holds for all s1, s2 ∈ S and all r > r(Sn), thus: 1
4L(SS−1, y)2 6

r(Sn)2 − r(Sn−1)2. We conclude that L(SS−1)2 6 4(r(Sn)2 − r(Sn−1)2).
Finally, summing over n, we obtain the desired result. �

The above lower bound is useful to show that even if L(SS−1) is very
small, there will be some controlled n for which L(Sn) has macroscopic
size.

Remark 3.8. — The behaviour in
√
n of the lower bound is sharp for

general CAT(0) spaces. Indeed Cornulier, Tessera and Valette exhibited an
affine isometric action of the free group on a Hilbert space with a

√
n upper

bound on cocycle growth, see [28, Proposition 3.9]. When X is a product of
symmetric spaces and Euclidean spaces however, then L(Sn) grows linearly
provided L(S) > 0. This follows from the combination of Propositions 9.3
and 1.8.

Remark 3.9. — In [51] V. Lafforgue gave another proof of Shalom’s the-
orem [65] that a group without property (T ) has non-trivial first reduced
cohomology. His main lemma is essentially a version of Proposition 3.6 in
the case when X is a Hilbert space.

Remark 3.10. — In [38] Gromov investigates the growth of the energy of
a random walk on a general CAT(0) space. In particular from his harmonic
growth inequalities in [38, 3.4] one gets that the average displacement of
a random walk grows like

√
n, which is another way to recover the

√
n

growth in Proposition 3.6.

3.5. Fixed points on the boundary

Let X be a complete CAT(0) geodesic space. Note that the sublevel sets
of the function x 7→ L(S, x) are convex subsets. Note further that any
nested sequence of bounded closed convex non-empty sets has non-empty
intersection (see e.g. [55, Theorem 14]). In particular we have:

Proposition 3.11. — If x 7→ L(S, x) tends to infinity when x leaves
every bounded subset of X, then L(S, x) achieves its minimum L(S) at
some point x0 ∈ X.
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If X is locally compact one has:

Proposition 3.12. — SupposeX is a CAT(0) locally compact geodesic
space such that no sublevel sets of x 7→ L(S, x) is bounded. Then S has a
global fixed point on the visual boundary ∂X.

For this see for example [48, 2.2.1]. Recall that the visual boundary ∂X is
the set of equivalence classes of infinite geodesic rays [0,+∞)→ X, where
two rays (xt)t and (yt)t are equivalent if d(xt, yt) is uniformly bounded.
We get:

Corollary 3.13. — Suppose X is a CAT(0) locally compact geodesic
space. And S ⊂ Isom(X) a finite set of isometries such that L(S) = 0, then
S has a global fixed point in X ∪ ∂X.

3.6. CAT(0) and Gromov hyperbolic spaces

If X is only assumed to be CAT(0), then there may be parabolic isome-
tries g with L(g) > 0. For example, the product of a parabolic isometry
of the hyperbolic plane with a non trivial translation of R. A less obvious
example is given by the warped product (exp(−y) + C)dx2 + dy2 on R2,
with C > 0. This space is CAT(0) and translation (x, y) 7→ (x + 1, y) is a
parabolic isometry with positive displacement C (see [46, Remark 2.4]).
However if we assume additionally that X is Gromov hyperbolic, then

parabolic isometries must have zero displacement. More precisely, we have:

Proposition 3.14. — Let X be a complete CAT(0) space which is
Gromov hyperbolic. Let g be an isometry of X with L(g) > 0. Then g is
hyperbolic in the sense that L(g) is achieved on a geodesic, which is the
unique g-invariant geodesic.

For the definition of Gromov hyperbolic spaces we refer to Section 5
below as well as the books [13, 20, 27]. In this paper Gromov hyperbolic
spaces are assumed to be geodesic (i.e. any pair of points can be joined by
a geodesic path).

Before we start the proof, we quote some results. Let X be a complete
CAT(0) space and ∂X its visual boundary at infinity. Set X = X ∪ ∂X.
For a closed convex subset C ⊂ X, let C ⊂ X be its closure.

Theorem 3.15 ([55, Proposition 23]). — Assume that a complete
CAT(0) space X is Gromov hyperbolic. Then for any nested family F
of non-empty closed convex subsets C ⊂ X, the intersection

⋂
C∈F C is

non-empty.
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In particular we have the following.

Corollary 3.16. — Let X be a Gromov hyperbolic complete CAT(0)
space. Then a parabolic isometry g has a fixed point in X\X.

Proof. — The family of sublevel sets of x 7→ L(g, x) has empty intersec-
tion in X, for otherwise g would have a fixed point in X. By the previous
theorem, the closures in X of these sublevel sets has non-empty intersection
in X\X. Each point in the intersection is fixed by g. �

We now quote a standard fact on (Gromov) δ-hyperbolic spaces.

Theorem 3.17. — Let X be a δ-hyperbolic space and g an isometry of
X. If L(g) is sufficiently large, compared to δ, then g is “hyperbolic” in the
sense that there is an infinite quasi-geodesic γ in X which is g-invariant.
Moreover, let x ∈ X be any point and m the midpoint of a geodesic

segment from x to g(x). Form a g-invariant piecewise geodesic, γ, joining
the points {gn(m)}n∈Z in this order by geodesics. Then, there exists a
constant M , which depends only on δ, such that for any points p, q ∈ γ,
the Hausdorff distance between the part in γ from p to q and a geodesic
from p to q is at most M .

Remark 3.18. — The first claim appears in [35, Section 8, Proposition 24]
with L(g) > 26δ. The advantage to retake x to m is that we have uniform
bounds on the quasi-geodesic constants. In fact, we have 2|m − g(m)| −
|m− g2(m)| 6 4δ, namely, the three points m, g(m), g2(m) are nearly on a
geodesic. It follows that the path γ is a (K,L)-quasi geodesic with constants
K,L depending only on ε. Once we have that, the existence of M is by the
Morse lemma. A detailed argument is, for example, in [34] for L(g) > 1000δ.

For an isometry a of X and a constant C, define

FixC(a) = {x ∈ X | d(x, ax) 6 C}.

This is a closed, possibly empty, set. It is convex if X is CAT(0).
We start the proof of the Proposition 3.14.
Proof. — Since it suffices to show that gn is hyperbolic for some n > 0,

by Proposition 3.1, we may assume that L(g) is as large as we want by
replacing g by a high power. So, we assume that L(g) is large enough
compared to the hyperbolicity constant δ, so that Theorem 3.17 applies
to g.

Set C0 = L(g). We will show that FixC0(g) is not empty. For each C >

C0, the set FixC(g) is non-empty convex set which is invariant by g, and
is δ-hyperbolic.
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By Theorem 3.17, there is a g-invariant quasi-geodesic, but we may as-
sume that this path is contained in FixC(g). Indeed, if we start with a point
x ∈ FixC(g), the point m is also in FixC(g) since it is convex, and so are
all points gn(m). Therefore γ in the theorem is contained in FixC(g). Let
us denote this γ by γC .

Now, the Hausdorff distance of any two of those quasi-geodesics γC ,
C > C0, is at most 2M + 2δ = M ′. To see that, observe that the Hausdorff
distance of the two quasi-geodesics is finite since they are both g-invariant.
Since they are both bi-infinite, in fact the bound is 2M + 2δ.
In particular there is a metric ball, B ⊂ X, of radius M ′ such that for

any C > C0, B ∩ γC 6= ∅, therefore B ∩ FixC(g) is not empty.
Set F = {B ∩ FixC(g) |C > C0}. It is a nested family of bounded con-

vex closed subsets of X. Hence the family has a non-empty intersection,
in particular

⋂
C>C0

FixC(g) is not empty, and therefore FixC0(g) is not
empty. �

In view of the above propositions, in the case of a complete CAT(0) and
δ-hyperbolic space, the classification of isometries becomes:

• elliptic when g fixes a point in X,
• hyperbolic when L(g) > 0 (in this case g fixes a unique geodesic
and acts by translation by L(g) on it),

• parabolic when L(g) = 0 (in this case g does not fix a point in X
but fixes a point in ∂X).

4. Quantitative Serre’s lemma for groups acting on trees

The goal of this section is to prove Proposition 4.4 below, which is an
extension of the following well-known lemma due to Serre ([64, I. Proposi-
tion 26]). In the next section we will generalize everything to δ-hyperbolic
spaces.

Lemma 4.1 (Serre’s lemma). — If a, b are isometries of a simplicial tree,
such that a, b and ab each have some fixed point, then a and b have a
common fixed point.

We first note the following simple fact:

Lemma 4.2. — If a is an isometry of a simplicial tree, then L(a) =
L∞(a) = λ(a).

Indeed either a fixes a point on the tree, and all quantities vanish, or a is
a hyperbolic isometry translating along an axis ∆a = {x; d(ax, x) = L(a)},
so that in particular L(an) = nL(a) and thus λ(a) = L(a).
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Proposition 4.3 (A formula for the joint minimal displacement of a
pair). — Let a, b be isometries of a simplicial tree. Then

L({a, b}) = max
{
L(a), L(b), L(ab)

2

}
= λ2({a, b}).

More generally this formula extends to an arbitrary finite subset of isome-
tries:

Proposition 4.4 (A formula for the joint minimal displacement). —
Let S be a finite set of isometries of a simplicial tree. Then

L(S) = max
a,b∈S

{
L(a), L(ab)

2

}
= λ2(S).

Recall that by definition L(S) = infx∈X maxs∈S d(x, sx) and L(g) =
L({g}) for an isometry g. And L∞(S) = limL(Sn)/n.

Corollary 4.5 (Growth of joint minimal displacement). — Let S be
a finite set of isometries of a simplicial tree. Then L(S) = L∞(S) = λ2(S)
and indeed for every n ∈ N,

L(Sn) = nL(S).

We now pass to the proofs of the above statements. The proofs are quite
simple and we do not claim much originality here. Even though we were not
able to find the above statements in the existing literature, all ingredients
in their proofs are well-known and can be found, for example in [26, 3.3].

First we make the following simple observations: Let g is an isometry of a
simplicial tree X, let ∆g be the “axis” of g, ∆g := {x ∈ X; d(gx, x) = L(g)}
and let x be any point in X.

(a) we have d(gx, x) = 2d(x,∆g) + L(g),
(b) L(g) = d(gm,m), where m is the midpoint of the geodesic segment

[x, gx].
To see this, consider a point y on ∆g, which minimizes the distance

between x and ∆g and note that the geodesic between y and gy lies entirely
in ∆g, so that in particular the concatenation of the geodesic segments from
x to y and from y to gy remains a geodesic. Furthermore the midpoint
between x and gx will coincide with the midpoint between y and gy.
Proof of Proposition 4.3. — Let the point x realize the infimum of

max{d(x, ax), d(x, bx)}. Assume that L({a, b}) > max{L(a), L(b)}. This
implies that the axes ∆a and ∆b do not intersect. We claim that x must be
the midpoint of the geodesic segment [ax, bx] and that d(x, ax) = d(x, bx).
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To see this look at the triangle with vertices x, ax and bx. If it is not
flat with x the midpoint of [ax, bx], then the geodesics [x, ax] and [x, bx]
intersect on some segment near x. But y 7→ d(y, ay) decreases as the point y
moves away from x on this segment. This is a consequence of item (a) above:
it decreases strictly unless x is on the axis ∆a of a, and it decreases until
it reaches the midpoint m of the segment [x, ax], where we have L(a) =
d(m, am) by item (b) above. The same holds for b. Since L({a, b}, x) >
max{L(a), L(b)}, we conclude that unless x is on both axes ∆a and ∆b,
this contradicts the minimality of x.
For the same reason x is also the midpoint of the geodesic segments

[b−1x, ax] and [bx, a−1x]. By item (b) above applied to x viewed as a mid-
point of [b−1x, ax] (noting that ax = (ab)b−1x) we get:

d(abx, x) = L(ab).

But

(4.1) d(abx, x) = d(bx, a−1x) = 2d(ax, x) = 2d(bx, x) = 2L(a, b).

So this shows that L(a, b) = L(ab)/2 and this ends the proof of the propo-
sition. �

We may now extend our formula to an arbitrary finite set of isometries.
Recall that for an isometry a of a metric space (X, d) and a number A > 0
we denote FixA(a) := {x ∈ X; d(ax, x) 6 A}.

Proof of Proposition 4.4. — This follows easily from Proposition 4.3.
Indeed set M = maxa,b∈S{L(a), L(ab)/2}. By Proposition 4.3 we have
M > L({a, b}) for every pair a, b ∈ S. Hence FixM (a) and FixM (b) intersect
for every pair a, b ∈ S. However recall that each FixM (a) is a convex subset
(it is a subtree), and in any tree any collection of subtrees which pairwise
intersect non trivially must have a non-empty intersection. Therefore there
is a point z such that d(z, az) 6 M for all a ∈ S and we have established
L(S) 6M . The opposite inequality is obvious. �

Proof of Corollary 4.5. — This is obvious combining Lemma 3.6 and
Proposition 4.4. �

5. The joint minimal displacement in hyperbolic spaces

In this section we extend the results of Section 4 to isometries of δ-
hyperbolic spaces and prove Theorem 1.4 from the introduction, which
implies Theorem 1.2 in the case of hyperbolic spaces.
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First we recall the definition of δ-hyperbolicity and prove a general lower
bound on L(Sn) using the same circumcenter argument as in Proposi-
tion 3.6.
Gromov introduced the notion of a δ-hyperbolic metric space in [37].

Recall that a metric space (X, d) is said to be geodesic if any two points
can be joined by a geodesic (i.e. length minimizing) continuous path. A
geodesic triangle ∆ = (σ1, σ2, σ3) in a geodesic space X is said to be δ-thin
if σi is contained in the δ-neighborhood of σj ∪ σk for any permutation of
(i, j, k) of (1, 2, 3).
There is another notion that is closely related to δ-thinness. A point c is

a δ-center of a geodesic triangle ∆ = (σ1, σ2, σ3) if the distance from c to
every σi is 6 δ, [13]. It is easy to see that if a (geodesic) triangle is δ-thin,
then it has a δ-center. Conversely, if a geodesic triangle has a δ-center, then
it is 6δ-thin (see [13, Lemma 6.5].

The metric space (X, d) is said to be δ-hyperbolic if any geodesic tri-
angle is δ-thin. Good references on the geometry of δ-hyperbolic spaces
include [13, 20, 27].
Note that we can also define the δ-hyperbolicity of a geodesic space if

every geodesic triangle has a δ-center (for example [13]). As we said, those
two definitions are equivalent, but the constant δ may differ, so if we want
to stress the difference, we call it δ-center-hyperbolicity.

Remark 5.1. — We note that there is also a notion of δ-hyperbolic space
where the space is not required to be geodesic (via the so-called 4-points
condition, see [13]). However the geodesic assumption is necessary in our
theorems. For example it can be seen easily that results such as Lemma 5.5
or Theorem 5.7 fail when the space is not assumed geodesic. As pointed out
in [56, Remark 4.4] one can take for instance the usual hyperbolic disc with
a large ball (centered say at the origin) removed. This is still a δ-hyperbolic
space in the sense of the 4-points condition with the same δ, but an elliptic
isometry centered at the origin will have λ(g) = 0 while L(g) will be large.

5.1. Using the circumradius to relate joint minimal
displacement and asymptotic joint displacement

Here we show:

Proposition 5.2. — Let X be a δ-hyperbolic geodesic metric space
and S a finite subset of Isom(X). For every n ∈ N we have:

1
n
L(Sn) > L(SS−1)

2 − 2δ

ANNALES DE L’INSTITUT FOURIER



JOINT SPECTRAL RADIUS AND UNIFORM GROWTH 343

Proof. — The argument is analogous to that of Proposition 3.6 in the
CAT(0) setting. Recall that r(S) denotes the infinimum over all points x, y
of the radius r of the balls centered at y which contain Sx. Also recall
(Lemma 2.1) that

r(S) 6 L(S).
Let n > 1 and r > r(Sn). By definition of r(Sn), there exists some x, y ∈ X
such that Snx is contained in the ball B of radius r centered at y. This
means that sSn−1x lies in B for every s ∈ S and hence Sn−1x lies in the
intersection of all balls s−1B for s ∈ S. We require the following

Lemma 5.3. — Let X be a δ-hyperbolic geodesic metric space and
B(y, r) and B(z, r) two balls of radius r > 0. Let m be a mid-point of
a geodesic between y and z. Then B(y, r)∩B(z, r) is contained in the ball
centered at m with radius r − 1

2d(y, z) + 2δ.

Proof. — This is straightforward from the definition of δ-hyperbolicity.
�

Now from this lemma s−1
1 B∩s−1

2 B is contained in the ball centered at the
mid-point between s−1

1 y and s−1
2 y and with radius r− 1

2d(s−1
1 y, s−1

2 y)+2δ.
It follows that Sn−1x lies in a ball of that radius.
By definition of r(Sn−1), it follows that r(Sn−1) 6 r− 1

2d(s2s
−1
1 y, y)+2δ.

This holds for all s1, s2 ∈ S and all r > r(Sn), thus: 1
2L(SS−1, y) 6

r(Sn)−r(Sn−1)+2δ. We conclude that 1
2L(SS−1) 6 r(Sn)−r(Sn−1)+2δ.

Finally, summing over n, we obtain the desired result. �

Corollary 5.4. — Let X be a δ-hyperbolic geodesic metric space and
S a finite symmetric subset of Isom(X). We have:

L∞(S) 6 L(S2)
2 6 L∞(S) + 2δ.

Proof. — Clear from the combination of Proposition 5.2 and Lem-
ma 1.1. �

This result was obtained quite cheaply using the circumradius. Using a
more delicate analysis, based on a refinement of Serre’s lemma, we will prove
below in Proposition 5.7 a much stronger result, a Bochi-type inequality,
which yields a hyperbolic element of large stable length.

5.2. Powers of a single element

We begin by showing that the stable length of a single element is con-
troled by its minimal displacement, provided the latter is large enough.
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Lemma 5.5. — There is a universal constant C > 0 such that the fol-
lowing holds. Let g be an isometry in a δ-hyperbolic space. Then for all
m > 0, L(gm) > m(L(g)− Cδ). In particular:

L(g)− Cδ 6 L∞(g) 6 L(g).

Proof. — We first prove the lemma for m = 2. For the proof we may
assume δ > 0. Pick a point y such that L(g2, y) 6 L(g2) + δ. Consider
the three points y, gy and g2y. We will show that unless L(g) = O(δ) this
triangle is O(δ)-flat and gy is O(δ) away from a mid point of [y, g2y].
Let q be a point at distance at most δ from all three geodesics joining

these points, which is given to us by the δ-hyperbolicity assumption. Since
d(y, gy) = d(gy, g2y) we conclude that |d(y, q) − d(q, gy)| = O(δ). In a
δ-hyperbolic space any two geodesics joining two given points are at dis-
tance O(δ) of each other. Therefore d(p, q) = O(δ), where p is a mid-point
between y and g2y.
Now if r is a mid-point between y and gy, then r is O(δ) close to either

[q, gy] or to [y, q] according as d(y, r) > d(y, q) or not. In the first case
d(r, gr) = O(δ), which implies that L(g) = O(δ) and there is nothing to
prove. In the second case gr will be at most O(δ) away from [q, g2y] and
we get:

|d(y, g2y)− [d(y, r) + d(r, q) + d(q, gr) + d(gr, g2y)]| = O(δ),

while d(r, q) 6 d(y, r) + O(δ) and d(q, gr) 6 d(gr, g2y) + O(δ). Combining
these two facts we get:

2d(r, gr) 6 d(y, g2y) +O(δ),

from which the inequality 2L(g) 6 L(g2) +O(δ) follows immediately.
We now pass to the general case, when is an arbitrary integer m > 2.

First we observe that if L(g2) > 2(L(g) − Cδ) for every isometry g, then
a straigthforward induction shows that L(g2n) > 2n(L(g)− 2Cδ) for every
g and every integer n. But observe that given any point x the sequence
m 7→ L(gm, x) is subadditive. In particular, by the subadditive lemma,{L(gm,x)

m

}
m

converges towards

inf
m>1

L(gm, x)
m

= lim
m7→+∞

L(gm, x)
m

.

Letting m grow along powers of 2 we see that the latter is at least L(g)−
2Cδ. This means that L(gm, x) > m(L(g)− 2Cδ) for every integer m and
every point x. In particular L(gm) > m(L(g)− 2Cδ) as desired. �
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5.3. Bochi-type formula for hyperbolic spaces

Here we prove Theorem 1.4 from the introduction.

Proposition 5.6 (Joint minimal displacement of a pair). — There is
an absolute constant K > 0 such that if δ > 0 and (X, d) is a δ-hyperbolic
geodesic space, and a, b are two isometries of X, then

L({a, b})−Kδ 6 max
{
L∞(a), L∞(b), L∞(ab)

2

}
6 L({a, b}).

Recall our notation used throughout for a finite set S of isometries of a
metric space (X, d) we denote by

L(S, x) := max
s∈S

d(x, sx), L(S) := inf
x∈X

L(S, x) and L∞(S) := limL(Sn)/n,

while λk(S) := max16j6k
1
j maxg∈Sj L∞(g).

Theorem 5.7 (Theorem 1.4 from the introduction). — There is an ab-
solute constant K > 0 such that if δ > 0 and (X, d) is a δ-hyperbolic
geodesic space, and S is a finite set of isometries of X, then

L(S)−Kδ 6 λ2(S) = max
a,b∈S

{
L∞(a), L∞(ab)

2

}
6 L(S).

We would like to remark that Koubi [50, Proposition 3.2] proved that if
L(S) > 100δ then S or S2 contains a hyperbolic isometry of X.

As a consequence of this proposition, we obtain the following strength-
ening of Proposition 5.2.

Corollary 5.8 (Growth of joint minimal displacement). — There is
an absolute constant K > 0 such that the following holds. Let S be a finite
set of isometries of a δ-hyperbolic space. Let n ∈ N. Then

n(L(S)−Kδ) 6 λ2(Sn) 6 L(Sn).

Moreover λ∞(S) = L∞(S).

We now pass to the proofs. As always in δ-hyperbolic geometry argu-
ments are modeled on the tree case and this is why we decided to include
the special case of trees separately even though it is of course implied by the
δ-hyperbolic case by setting δ = 0. A key ingredient will be Lemma 5.10
below, which computes the displacement of an isometry in terms of its
minimal displacement and the distance to its axis.
Before we embark in the proof we begin by recalling the following basic

fact about tree approximation in δ-hyperbolic spaces.
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Lemma 5.9 (see [13, Proposition 6.7]). — Given k points x1, . . . , xk in
a δ-hyperbolic metric space (X, d) there is a metric tree T embedded in X
such that for all i, j

(5.1) d(xi, xj) 6 dT (xi, xj) 6 d(xi, xj) + Ckδ,

where dT (xi, xj) is the length of the geodesic path joining xi and xj in T .
Here Ck is a constant depending only on k.

Recall that for an isometry a of a metric space (X, d) and a number
A > 0 we denote

FixA(a) := {x ∈ X; d(ax, x) 6 A}.

Lemma 5.10. — There are absolute constants c,K > 0 with the fol-
lowing property. Let (X, d) be a geodesic δ-hyperbolic metric space. Let
M > cδ and a ∈ Isom(X). Assume that FixM (a) is non-empty and let
x /∈ FixM (a). Then

(5.2) |2d(x,FixM (a)) +M − d(ax, x)| 6 Kδ,

and

(5.3) d(q, aq) 6M +Kδ,

for every mid-point q between x and ax.

Proof. — Let ε > 0 and pick y ∈ FixM (a) such that d(x, y) 6
d(x,FixM (a)) + ε. We may write:

d(ax, x) 6 d(ax, ay) + d(ay, y) + d(y, x) 6 2d(x, y) +M,

so one side of (5.2) follows immediately.
To see the other side consider the four points x, y, ax, ay and apply

Lemma 5.9 to these four points with k = 4. Let w be the intersection
of the three geodesics in T connecting ax, ay and x, and let z be the inter-
section of the three geodesics in T connecting ax, y and x. First we claim
that:

(5.4) d(y, z) 6 ε+O(δ)

To see this, first recall that in a δ-hyperbolic space the Gromov product
of a pair of points based at a third point is equal up to an error of 4δ to
the distance from the third point to the geodesic between the pair (see [13,
Lemma 6.2]). Now note that if α is the geodesic joining y and ay, then α
is entirely contained in FixM (a). Consequently d(x, α) > d(x, y)− ε. Hence
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(y, ay)x > d(x, α) − 4δ > d(x, y) − ε − 4δ, which unfolding the Gromov
product means:

d(x, z) + d(z, ay) > d(x, ay) > d(x, y) + d(y, ay)− 2ε−O(δ).

In view of (5.1), it follows that the same holds with dT in place of d.
However:

dT (x, y) + dT (y, ay) = dT (x, z) + dT (z, ay) + 2dT (y, z),

so we conclude that (5.4) holds.
At this pont we note that d(ay, y) >M − 2ε. Indeed by the intermediate

value theorem, we may pick a point u on a geodesic between x and y such
that d(au, u) = M . Then d(x, u) 6 d(x, y), while u ∈ FixM (a) so that
d(x, u) > d(x,FixM (a)) > d(x, y) − ε. Consequently d(u, y) 6 ε and hence
d(ay, y) > d(au, u)− 2ε as desired.

Now two cases occur, according as w belongs to the tree geodesic [ay, z]T
or to [z, x]T . In the first case, by symmetry the previous argument also
shows that

(5.5) d(ay,w) 6 ε+O(δ)

Combining (5.4) and (5.5) (and using (5.1) then yields

d(ax, x) > d(ax,w) + d(w, z) + d(z, x)−O(δ)
> d(ax, ay) + d(ay, y) + d(y, x)− 2ε−O(δ)
> 2d(x,FixM (a)) +M − 6ε−O(δ),

from which the remaining side of (5.2) is immediate since ε is arbitrary.
We can also observe now from the second inequality above that any

mid-point p between y and ay is satisfies |d(x, p) − d(ax, p)| = O(δ). The
δ-hyperbolicity of the space then implies that d(p, q) = O(δ) for every
mid-point q between x and ax. On the other hand d(p, ap) 6 M (because
y ∈ FixM (a)). Therefore d(q, aq) 6M +O(δ). And (5.3) holds.

In the second case, z is also the intersection of the tree geodesics between
the three points y, ay and ax and the previous argument once again shows
that

(5.6) d(ay, z) 6 ε+O(δ)

This means (using (5.4)) that d(ay, y) 6 2ε + O(δ) and hence that M 6
4ε+O(δ). So this case happens only when M = O(δ), a case we discard by
choosing c large enough. �
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Proof of Proposition 5.6. — Let ε > 0 be arbitrary and let x be a point
in X such that L({a, b}, x) 6 L({a, b}) + ε. At the end of the argument we
will let ε tend to 0. Let K be a large absolute constant, whose value we will
specify later. Without loss of generality, we may assume that L({a, b}) >
max{L(a), L(b)}+Kδ + 3ε, for otherwise there is nothing to prove.

We can apply Lemma 5.10 to a with Ma = max{L(a) + ε,Kδ}. Let x be
a point in FixMa

(a) such that d(x, x) 6 d(x,FixMa
(a)) + ε. Then (5.2) of

Lemma 5.10 shows that the piecewise geodesic path between x, x, ax and
ax is geodesic up to an error O(δ) + ε. More precisely if y is any point on
a geodesic between x and x, then (5.2) gives

d(ay, y) 6 d(ay, ax) + d(ax, x) + d(x, y)
6 2d(x, y) + L(a) + ε+O(δ)
6 d(ax, x)− 2d(x, y) + ε+O(δ)(5.7)

Now we may conclude that |d(ax, x) − d(bx, x)| 6 Kδ + 3ε. To see this
assume by contradiction that d(x, ax) > d(x, bx)+2t+ ε with 2t > 2ε+Kδ

and t < d(x,FixMa(a)). We may choose y at distance t from x on the
geodesic [x, x]. Then L({a, b}, x) = d(ax, x), while d(by, y) 6 d(bx, x)+2t <
d(ax, x) − ε and d(ay, y) 6 d(ax, x) − 2d(x, y) + ε + Kδ by the above
inequality, so d(ay, y) < d(ax, x)− ε so

L({a, b}, y) < L({a, b}, x)− ε,

which contradicts the choice of x. This argument is valid if 2d(x,FixMa
(a))>

2ε + Kδ. But we are always in this case, because otherwise L({a, b}, x) 6
d(x, ax) 6 Ma + 2ε + Kδ, which is in contradiction with our assumption
that L({a, b}) > max{L(a), L(b)}+Kδ + 3ε.

Now we claim that x is at most O(δ)+ε away from the midpoint between
ax and bx. By the above discussion it is enough to show that it is that close
to the geodesic between ax and bx. Let us verify this claim. Without loss
of generality we may assume that d(x,FixMa

(a)) > d(x,FixMb
(b)). Now

consider the triangle with vertices x, ax and bx. It is δ-thin by hyperbolicity.
Thus there is a point z at distance at most δ from all three geodesics. In
particular the geodesic between z and x is in the O(δ) neighborhood of
both the geodesic between x and ax and the geodesic between x and bx. If
y is any point on [x, z] such that d(x, y) 6 d(x,FixMb

(b)) + ε. Then we also
have d(x, y) 6 d(x,FixMa

(a)) + ε and the above inequality (5.7) for a and
its analogue for b applied at y show that

L({a, b}, y) 6 L({a, b}, x)− 2d(x, y) + ε+O(δ),
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and thus, given our choice of x,

d(x, y) 6 ε+O(δ).

Choosing y as far from x as possible, we see that this means either that
d(x, z) 6 ε+O(δ) and we have proved our claim, or that d(x,FixMb

(b)) 6
2ε+O(δ). Let us rule out the second case.
If d(x,FixMb

(b)) 6 2ε+O(δ) the entire segment [x, bx] lies in FixM ′
b
(b),

where M ′b = Mb + 2ε+O(δ) 6 L(b) + 3ε+O(δ). So again if y is any point
on [x, z] such that d(x, y) 6 d(x,FixMa

(a)) + ε, then not only d(ay, y) 6
d(ax, x) − 2d(x, y) + ε + O(δ) but also d(by, y) 6 M ′b 6 L(b) + 3ε + O(δ).
Now we may choose our numerical constantK > 0 so large that the implied
constant in the big O in the two last inequalities is at most K/2 say. Then
d(by, y) 6 L({a, b})−Kδ/2 and d(ay, y) 6 L({a, b})−2d(x, y)+ 2ε+Kδ/2
so

L({a, b}, y) 6 L({a, b}) + max{−Kδ/2, 2ε+Kδ/2− 2d(x, y)},

and we conclude that
2d(x, y) 6 2ε+Kδ/2.

Again choosing y as far from x as possible, we see that this means that
d(x,FixMa

(a)) 6 2ε + K/δ/2. In particular d(ax, x) and d(bx, x) are both
at most max{Ma,Mb}+ 4ε+Kδ 6 max{L(a), L(b)}+ 5ε+ 2Kδ. The last
quantity is < L({a, b}) by assumption and this is impossible. This ends the
proof of the claim.
We have thus shown that x is at most O(δ) + ε away from the midpoint

between ax and bx. The same reasoning applies to the segments between
b−1x and ax, as well as between bx and a−1x. If m is the midpoint of
[b−1x, ax] then (5.3) of Lemma 5.10 shows that

L(ab) 6 d(abm,m) 6 L(ab) + ε+O(δ),

so d(abx, x) 6 L(ab) +O(δ) + 2ε. On the other hand

2d(x, bx) 6 d(bx, a−1x) +O(δ) + 2ε
6 d(abx, x) +O(δ) + 2ε
6 L(ab) +O(δ) + 4ε.

And similarly 2d(x, bx) 6 L(ab) +O(δ) + 4ε, so that

L({a, b}) 6 L({a, b}, x) 6 1
2L(ab) +O(δ) + 2ε.

Letting ε tend to zero, the proof is complete. �
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Proof of Theorem 5.7. — The right hand side inequality is obvious. The
left hand side follows easily from Proposition 5.6 combined with Helly’s
theorem for hyperbolic spaces, namely Theorem 6.1. Indeed pick ε > 0 and
set

M = max
a,b∈S

{L(a), L(ab)/2}+Kδ + ε,

whereK is as in Proposition 5.6. This proposition tells us that FixM (a) and
FixM (b) intersect non trivially for every pair of isometries a, b ∈ S. From
our Helly-type theorem for hyperbolic spaces Theorem 6.1 we conclude that
the 28δ-neighborhoods of all FixM (a), a ∈ S, intersect non-trivially. Each
such neighborhood is clearly contained in FixM+56δ(a). We have established
that L(S) 6M + 56δ. Letting ε tend to 0, this ends the proof. �

Proof of Corollary 5.8. — Recall from Claim 7 equation (2.6) in the
proof of Lemma 1.1 in Section 2 that

nλ2(S) 6 λ2(Sn).

Now by Theorem 5.7 we get the desired inequalities:

n(L(S)−Kδ) 6 nλ2(S) 6 λ2(Sn) 6 L(Sn) 6 nL(S).

If we now apply Theorem 5.7 to Sn we get

L(Sn)−Kδ 6 λ2(Sn)

Letting n tend to infinity we also get λ∞(S) = L∞(S). �

We give a consequence of Proposition 5.8 anc Lemma 1.7.

Corollary 5.11. — Let X be CAT(0) and δ-hyperbolic. Then for any
ε > 0, there exists an integer N = N(δ, ε) > 0 with the following property.
For any finite set S ⊂ Isom(X) with 1 ∈ S, one of the following holds:

(1) L(S) < ε,
(2) there is g ∈ SN such that L∞(g) > L(S).

Proof. — By Theorem 5.7, L(S) 6 λ2(S) + Kδ. Also, for any n > 0,
L(Sn) 6 λ2(Sn) + Kδ. But since X is CAT(0), we also have

√
n

2 L(S) 6
L(Sn) by Lemma 1.7. Combining those two inequalities, and taking n large
enough, we obtain the desired conclusion. �

6. Helly type theorem for hyperbolic spaces

It is well-known and easy to prove that any family of convex subsets
of a tree with non-empty pairwise intersection must have a non-empty
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intersection. In this section we prove the following extension of this fact to
hyperbolic spaces:

Theorem 6.1 (Helly for hyperbolic spaces). — Let (X, d) be a δ-hyper-
bolic geodesic metric space. Let (Ci)i be a family of convex subsets of X
such that Ci ∩ Cj 6= ∅ for all i, j. Then the intersection of all (Ci)28δ is
non-empty.

Recall that for a subset E ⊂ X we denote by (E)t the t-neighborhood of
E, i.e.

(E)t := {x ∈ X; d(x,E) 6 t}.
The proof is insprired by [25]. We begin with a lemma:

Lemma 6.2. — Let C1 and C2 be convex subsets of X with non empty
intersection. Let z be a point in X. Let xi be a point in Ci such that
d(z, xi) 6 d(z, Ci)+δ. Assume that d(z, x1) > d(z, x2)−δ. Then d(x1, C2) 6
28δ.

Proof. — Pick u ∈ C1 ∩ C2. It is a standard fact about δ-hyperbolic
spaces that the distance to a geodesic and the Gromov product of the end
points are equal within an error 4δ (see [13, Lemma 6.2]). This means that
(u, x1)z > d(z, ux1) − 4δ > d(z, x1) − 5δ. Unfolding the Gromov product,
we get:

d(z, u) + 10δ > d(u, x1) + d(x1, z)
The same holds for x2 in place of x1. This means that the paths u, x1, z

and u, x2, z are almost geodesic (i.e. 10δ-taut in the terminology of [13,
Chapter 6]). Hence they must be very close to each other. Applying [13,
Lemma 6.4] we see that both paths are within 27δ of each other. In partic-
ular d(x1, C2) 6 d(x1, ux2) 6 28δ, which is what we wished for. �

Proof of Theorem 6.1. — Pick any point z ∈ X. The point of the proof
is that the previous lemma identifies one specific point that must be in
the intersection. Let xi ∈ Ci as in the previous lemma. Without loss of
generality, we may assume that d(x1, z) > d(xi, z) − δ for all indices i.
Then we may apply the lemma to all pairs C1 and Ci. And conclude that
x1 belongs to the desired intersection. This ends the proof. �

7. Symmetric spaces of non-compact type

In this section we prove the Berger–Wang identity for symmetric spaces
of non-compact type, as well as the Bochi-type inequality stated in the

TOME 71 (2021), FASCICULE 1



352 Emmanuel BREUILLARD & Koji FUJIWARA

introduction. In particular we establish Proposition 1.8 and Theorem 1.2
for these spaces.
So X is assumed to be a symmetric space of non-compact type associated

to a real semisimple algebraic group G. The space (X, d) is then CAT(0)
and the distance is G-invariant. We refer to [20] for background on these
spaces and to [44, 60] for finer properties. We only recall here the following
important example:

Example 7.1. — Let Pd be the symmetric space associated toG= SLd(C)
and K = SU(d,C), that is X = Pd = G/K. Recall the Cartan decompo-
sition G = KAK, where A is the Lie subgroup of diagonal matrices with
positive real entries. The distance on Pd is left G-invariant and is given by
the following simple formula:

(7.1) d(gx0, x0) = d(ax0, x0) =
√

(log a1)2 + · · ·+ (log ad)2,

where g = kak ∈ KAK, x0 is the point in Pd fixed by the maximal compact
subgroup K and a = diag(a1, . . . , ad).

This example is important also because every symmetric space of non-
compact type arises as a convex (totally geodesic) subspace of some Pd.
In fact if M is an arbitrary symmetric space of non-compact type, then
Isom(M) is a linear semisimple Lie group with finitely many connected
components and thus embeds as a closed subgroup of some SLd(C) for
some d. By the Karpelevich–Mostow theorem the connected component of
the identity Isom(M)0, which is a semisimple Lie group, admits a convex
totally geodesic orbit within the symmetric space Pd, which is isometric to
M . In particular every isometry of M extends to an isometry of Pd.

We also recall here that, since (X, d) is a locally compact CAT(0) space
we know that g ∈ Isom(X) satisfies L(g) = 0 if and only if L∞(g) = 0 and
if and only if g fixes a point in X = X ∪ ∂X (Corollary 3.13). This is also
equivalent to saying that the eigenvalues of g under some (or any) faithful
linear representation of Isom(X) have modulus 1.
To begin with, we recall the following fact:

Proposition 7.2 (subgroups of elliptics). — Suppose X is a symmetric
space of non-compact type and S ⊂ Isom(X) a finite set of isometries. Then
the following are equivalent:

(1) λ∞(S) = 0,
(2) L(S) = 0,

Moreover in this case S fixes a point in X.
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Note the contrast with Euclidean spaces, where the analogous statement
fails (see Section 9). This proposition, or at least some variant, is likely
well-known, but lacking a reference we will include a proof for the reader’s
convenience.

Remark 7.3. — Observe that L(S) = L(S ∪ S−1). So the conditions of
the previous proposition are also equivalent to λ∞(S ∪ S−1) = 0, which
amounts to say that L(g) = 0 for every g in the subgroup generated by S.

Remark 7.4. — In Section 10 we will show that we cannot replace λ∞(S)
by λk(S) for some finite k independent of S in the above proposition.

We now pass to the Berger–Wang identity.

Theorem 7.5 (geometric Berger–Wang). — LetXbe a symmetric space
of non-compact type. For every ε > 0 there is k = k(X, ε) ∈ N such that
for every finite set S ⊂ Isom(X) one has:

λk(S) > (1− ε)L∞(S)− ε.

In particular the Berger–Wang identity holds, i.e. λ∞(S) = L∞(S).

We also relate the joint minimal displacement to the asymptotic joint
displacement and find the following general inequality:

Proposition 7.6. — Let X be a symmetric space of non-compact type
viewed as a convex subspace of Pd := SLd(C)/ SUd(C), and let S ⊂
Isom(X) be a finite subset, then :

(7.2) 1√
d
L(S)− log

√
d 6 L∞(S) 6 L(S).

Similarly using the Bochi inequality (see Proposition 7.11 below) we will
show:

Proposition 7.7. — Let X be a symmetric space of non-compact type
viewed as a convex subspace of Pd := SLd(C)/ SUd(C), and let S⊂ Isom(X)
be a finite subset, then :

λk0(S) > 1√
d
L(S)− C,

where C > 0 is a constant depending on d only and k0 6 d2.

Remark 7.8. — Bochi’s original proof of his inequality (Proposition 7.11
below) gave a worse estimate on k0 (exponential in d). A different proof of
Bochi’s inequality with the above d2 bound was given in [17, Corollary 4.6].
Furthermore the dependence of C on d is not effective in Bochi’s proof
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from [10]. In [14] we make effective the argument from [17, Corollary 4.6]
and give an explicit estimate on the constant.

Remark 7.9. — Since rank one symmetric spaces are Gromov hyperbolic
the stronger inequality:

λk0(S) > L(S)− C

holds in these cases even with k0 = 2 according to Theorem 1.4. It is likely
that a similar linear lower bound (with no multiplicative constant in front of
L(S)) holds for general symmetric spaces as well (although not necessarily
with k0 = 2). The best we could do in this direction however is the lower
bound from Theorem 7.5.

Before passing to the proofs of the above results, we would like to explain
the connection with the well-studied notion of joint spectral radius of a
finite set of matrices.

Remark 7.10 (Connection with the joint spectral radius). — Recall that
if S ⊂Md(C) is a finite set of matrices, then the joint spectral radius R(S)
of S (in the sense of Rota and Strang [62]) is defined as

R(S) = lim
n→+∞

‖Sn‖1/n
2 ,

where ‖Q‖2 := maxg∈Q ‖g‖2 for Q ⊂Md(C) and ‖g‖2 is the operator norm
of g acting on Hermitian Cd. As it turns out, when S ⊂ SLd(C), we can
interpret R(S) as expL∞(S) for a suitably defined left invariant distance
on the homogeneous space P∞d := SLd(C)/ SUd(C). This distance is defined
by:

(7.3) d(gx0, x0) = max
i
{log ai}

where g = kak ∈ KAK, x0 is the point in P∞d fixed by the maximal compact
subgroup K = SUd(C) and a = diag(a1, . . . , ad) ∈ A the subgroup of
diagonal matrices with positive real entries. Note that even though P∞d and
the symmetric space Pd discussed in Example 7.1 have the same underlying
space SLd(C)/SUd(C), the distance is not the same.
Observe that as we have defined it:

d(gx0, x0) = log ‖g‖2,

and hence we have:
L
P∞

d∞ (S) = logR(S),

where LP
∞
d∞ (S) is the L∞(S) defined in the introduction for the metric

space X = P∞d .
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Similarly the largest modulus Λ(g) of an eigenvalue of g ∈ SLd(C) is the
limit lim ‖gn‖1/n, that is expLP

∞
d∞ (g). Therefore we see that for a finite

subset S in SLd(C) the Berger–Wang identity

R(S) = lim sup
n→+∞

max{Λ(g), g ∈ Sn}1/n

proved in [6] is simply the statement:

L
P∞

d∞ (S) = λ
P∞

d∞ (S).

Comparing (7.1) and (7.3) we see that all quantities pertaining to Pd are
comparable to the corresponding quantities pertaining to P∞d . In particular

L
P∞

d∞ (S) 6 LPd
∞ (S) 6

√
d · LP

∞
d∞ (S).

In [10] Bochi gave a different proof of the Berger–Wang identity, which
gave much more, namely an eigenvalue lower bound in terms of R(S). He
proved:
Proposition 7.11 (Bochi inequality [10, Theorem B]). — There are

constants c = c(d) > 0 and k0 = k0(d) ∈ N such that if S ⊂ Md(C) is a
finite set of matrices, then

c ·R(S) 6 max
j6k0

max
g∈Sj

Λ(g)1/j 6 R(S).

It is also known [10] that

R(S) = inf
‖·‖
‖S‖

where the infimum is taken over the operator norm associated to an arbi-
trary choice of (not necessarily hermitian) norm on the real vector space Cd.
Since by John’s ellipsoid theorem every two operator norms are equivalent
up to a factor

√
2d, we have that

R(S) 6 inf
x∈GLd(C)

‖xSx−1‖2 6
√

2d ·R(S).

Combining this with (7.1) and (7.3) we obtain in particular the following
inequalities between the joint minimal displacement, the asymptotic joint
displacement and the joint spectral radius of a finite subset S of SLd(C)

(7.4) logR(S) 6 LPd(S) 6
√
d log(

√
2dR(S))

and, replacing S by Sn and passing to the limit:

(7.5) logR(S) 6 LPd
∞ (S) 6

√
d log(R(S))

We now turn to the proofs of the statements above.
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Proof of Proposition 7.2. — That (2) implies (1) is clear by Lemma 3.6.
For the implication (1) implies (2), we first reduce to the case when X = Pd
is the symmetric space of Example 7.1. As described in this example, X
embeds as totally geodesic subspace of Pd for some d and Isom(X) embeds
in Isom(Pd). Since Pd is CAT(0) and X is a closed convex subset, the
nearest point projection πX from Pd to X is well-defined and it is a distance
non-increasing map [20, Proposition II.2.4]. Consequently for x ∈ Pd and
S ⊂ Isom(X) we have L(S, πX(x)) = L(S, x). This means that, when
S ⊂ Isom(X), all quantities L(S), L∞(S), λk(S) coincide when defined in
X or in Pd. So now we assume as we may that X = Pd.
Recall Burnside’s theorem (as in [5, 1.2] for example) : if G 6 GLd(C) is

an irreducible subgroup, then there are finitely many g1, . . . , gd2 ∈ G and
t1, . . . , td2 ∈ Md(C) such that x =

∑
tr(gix)ti for every x ∈ Md(C). So if

g has eigenvalues of modulus 1 for each g ∈ G, then G is contained in a
bounded part of Md(C). Note that Burnside’s theorem holds just as well
if G is a semi-group containing 1 in place of a subgroup: indeed the linear
span inMd(C) of a semigroup in GLd(C) is invariant under the subgroup it
generates so it must be all ofMd(C) provided the subgroup acts irreducibly.
We now show (1) implies (2) for Pd. For g ∈ Isom(Pd) the condition

L(g) = 0 is equivalent to the requirement that all eigenvalues of g have
modulus 1. Taking a composition series for 〈S〉, Burnside’s theorem im-
plies that 〈S〉 is conjugate to a bloc upper-triangular subgroup of GLd(C),
and bounded (i.e. relatively compact) in each bloc. Conjugating by an ap-
propriate diagonal element, we can conjugate S into any neighborhood of
the (compact) bloc diagonal part. This means that choosing y ∈ Pd we can
make L(S, y) arbitrarily small. Therefore L(S) = 0 as desired. �

Proof of Theorem 7.5. — As in the proof of Proposition 7.2 we may
assume that X is the symmetric space Pd of Example 7.1. For g ∈ SLd(C)
with eigenvalues a1, . . . , ad ordered in such a way that |a1| > · · · > |ad|, we
set

j(g) = (log |a1|, . . . , log |ad|)

and we observe that

(7.6) L∞(g) =
√

(log |a1|)2 + · · ·+ (log |ad|)2 = ‖j(g)‖2.

If g = k1ak2, with k1, k2 ∈ K = SUd(C) and a diagonal, then we set
κ(g) = j(a) and note that ‖g‖ = ‖κ(g)‖2.
We will use Bochi’s inequality in various irreducible representations of

SLd(C). in the spirit of Kostant’s paper [49].
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Recall that irreducible linear representations of SLd(C) are parametrized
by a highest weight n := (n1, . . . , nd), where the ni’s are integers satisfying
n1 > · · · > nd > 0. We denote the associated representation by (πn, Vn).
We may find a hermitian scalar product and an orthonormal basis of the
representation space Vn of πn in which πn(K) is unitary and πn(a) diagonal
for every diagonal a ∈ SLd(C). Then πn(a) has maximal eigenvalue equal
to its operator norm and equal to

〈n, j(a)〉 := n1 log |a1|+ · · ·+ nd log |ad|.

Furthermore:

log ‖πn(g)‖ = 〈n, κ(g)〉,(7.7)
log Λ(πn(g)) = 〈n, j(g)〉.(7.8)

Fix ε > 0. Note that there are finitely many integer vectors n1, . . . ,nm
in the quadrant Q = {x ∈ Rd;x1 > · · · > xd > 0} such that for all x ∈ Q
we have:

(7.9) sup
16i6m

〈
ni
‖ni‖

, x

〉
> ‖x‖(1− ε).

Indeed just pick rational points forming an ε-net near the unit sphere in Q.
Let Ln

∞(S) be the asymptotic joint displacement of πn(S) with respect
to uniform norm on Vn. Namely

Ln
∞(S) := lim

k

1
k

max
g∈Sk

log ‖πn(g)‖|

and similarly

λn
k (S) := max

j6k

1
j

max
g∈Sk

log Λ(πn(g)).

Note that

(7.10) λn
k (S) 6 λk(S)‖n‖

because

log Λ(πn(g)) = 〈n, j(g)〉 6 ‖j(g)‖2‖n‖ = L∞(g)‖n‖.

Now using (7.9) we may write for each k > 1

L∞(S) 6 1
k

max
g∈Sk

‖κ(g)‖ 6 1
k

1
(1− ε) max

g∈Sk
sup

16i6m

〈
κ(g), ni

‖ni‖

〉
(7.11)

6
1

(1− ε) sup
16i6m

1
‖ni‖

1
k

max
g∈Sk

log ‖πni(g)‖.(7.12)
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Passing to the limit as k tends to infinity we get:

(7.13) L∞(S) 6 1
(1− ε) sup

16i6m

Lni
∞(S)
‖ni‖

.

Then the Bochi inequality for the joint spectral radius (Proposition 7.11)
implies that for each n there is an integer kn and a positive constant Cn
such that for all S,

Ln
∞(S) 6 λn

kn
(S) + Cn.

Setting K=max{kni , i=1, . . . ,m} and C=max{Cni/‖ni‖; i=1, . . . ,m}
we get from (7.13) and (7.10)

(1− ε)L∞(S) 6 sup
16i6m

λni

K (S)
‖ni‖

+ C 6 λK(S) + C.

Finally we may choose the smallest integer n such that C/n < ε and,
changing S into Sn, from Claim 7 equation (2.6) in the proof of Lemma 1.1
we obtain:

(1− ε)L∞(S) 6 λKn(S) + ε. �

Proof of Proposition 7.6. — This is just the combination of (7.4) and
(7.5) given that, as argued in the proof of Proposition 7.2 L(S) and L∞(S)
defined in X coincide with their counterpart in Pd. �

Proof of Proposition 7.7. — This follows from Proposition 7.11 and (7.5)
after we note that log Λ(g) 6 L∞(g) for g ∈ SL(C). The bound k0 6 d2

follows from the different proof of Bochi’s inequality given in [17, Corol-
lary 4.6]. �

We end this section by recording two consequences of the above analysis
(compare with Corollary 5.11).

Corollary 7.12 (Escaping elliptic elements in symmetric spaces). —
Let X be a symmetric space of non-compact type and ε > 0, then there is
N(dimX, ε) > 0 such that for every finite subset S ⊂ Isom(X) with 1 ∈ S
one of the following holds:

(1) L(S) < ε,

(2) there is g ∈ SN such that L(g) > L(S).

Proof. — Since X is CAT(0), Theorem 3.6 shows that L(Sn) >
√
n

2 L(S)
for every integer n. In particular by Proposition 7.7, if L(S) > ε and

√
N �

2
√
d(C/ε+ 1), then there is g ∈ SN such that L(g) > L(S) as desired. �
Recall that for every symmetric space X, there exists a positive constant

ε > 0, the Margulis constant of X, such that if S is a finite set of isometries
of X generating a discrete subgroup of Isom(X) and if L(S) < ε, then the
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subgroup generated by S is virtually nilpotent (see [21, 61]). Hence we also
get:
Corollary 7.13. — Let X be a symmetric space of non-compact type,

then there is N > 0 such that for every finite subset S ⊂ Isom(X) contain-
ing 1 and generating a discrete subgroup, which is not virtually nilpotent,
there is g ∈ SN such that L(g) > L(S).
Proof. — Apply Corollary 7.12 with ε being the Margulis constant

of X. �

Remark 7.14. — The best N = N(ε, d) for which Corollary 7.12 holds
tends to infinity as ε goes to 0. For the same reason the constant C in
Proposition 7.7 cannot be taken to be 0 even at the cost of decreasing
the multiplicative constant in front of L(S). An example showing this in
SL(2,R) is given below in Section 8.
We can now give the
Proof of Proposition 1.8. — This follows from the combination of Propo-

sition 7.6 and Lemma 1.7. We embed X as a closed convex subspace of the
symmetric space Pd from Example 7.1 for some d. Let n be the smallest
positive integer such that L(S)

√
n/2 > 2

√
d log d. If n = 1, then L(S) >

4
√
d log

√
d and thus the inequality in Proposition 7.6 yields L∞(S) >

3
4L(S)/

√
d. When n > 2, Lemma 1.7 and Proposition 7.6 imply

nL∞(S) > 1√
d
L(Sn)− log

√
d >

√
n

2
√
d
L(S)− log

√
d >

√
n

4
√
d
L(S)

On the other hand if n > 2, then the minimality of n implies that L(S)
√
n 6

16
√
d log

√
d and the result follows. �

As shown in [17, Corollary 4.6] Proposition 7.11 also holds for Bruhat–
Tits buildings. In fact it was observed and shown later in [16, Lemma 2.1]
that in this case the constant c can be taken to be 1, that is the joint
spectral radius is equal to the renormalized maximal eigenvalue, namely:

R(S) = max
j6k0

max
g∈Sj

Λ(g)1/j ,

if S ⊂Md(k) is a finite set of matrices and k a non-archimedean local field.
The same argument as in the proof of Proposition 7.7 readily implies:
Lemma 7.15 (Bochi inequality for Bruhat–Tits buildings). — Let X be

a Bruhat–Tits building associated to a non-archimedean local field k and a
semisimple algebraic group G of dimension d. Then for every finite subset
S ⊂ G(k) containing 1 there is g ∈ SO(d2) such that

L(g) > L(S)/
√
d.
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Similarl the argument in the proof of Theorem 7.5 shows that L∞(S) =
λ∞(S) if S ⊂ G(k). An immediate consequence is also the following:

Theorem 7.16 (Escaping elliptic elements in Bruhat–Tits buildings).
Let X as in Theorem 7.15. There is N = N(d) ∈ N, such that for every
finite subset S ⊂ G(k) containing 1 we have:

(1) either L(S) = 0 and S fixes a point in X,
(2) or L(S) > 0 and there is g ∈ SN such that L(g) > L(S).

Compare with Corollary 7.12 and note the absence of ε. This result can be
seen as a quantitative version of the fact, proved in [60], that if a subgroup
of G(k) is made entirely of elliptic elements, then it must fix a point in X.
In particular we can always escape from elliptic elements in bounded time.
By contrast, we will show in Section 10 that this property fails in certain
symmetric spaces of non-compact type.
Even though results such as Theorems 7.12 and 7.16 fail for general

CAT(0) spaces (as they fail already for Euclidean spaces X = Rd) it is
worth investigating for which classes of CAT(0) spaces they hold. For ex-
ample:

Question. — Does Theorem 7.16 hold for the isometry group of an
arbitrary affine building? does it hold for isometries of a finite dimensional
CAT(0) cube complex?

We note that [45] answers this question positively for CAT(0) square
complexes.

8. Almost elliptics in PSL2(R) with large displacement

The purpose of this section is to prove Lemma 1.12 from the introduction,
which gives a simple example showing that Theorem 1.4 is best possible.
More generally we will show:

Proposition 8.1. — Let X be a symmetric space of non-compact type.
Then there is no N = N(X) > 0 such that for every finite set S ⊂ Isom(X)
with 1 ∈ S = S−1, there is g ∈ SN such that L(g) > L(S).

This shows that the additive term −Kδ is necessary (i.e. that we cannot
take K = 0) in Theorem 1.4, and the N(d, ε) must tend to infinity as ε→ 0
in Corollary 7.12. Note that this is in stark contrast to the non-archimedean
case (see Theorem 7.16).
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The proof is based on the fact that zooming in near a point in the
hyperbolic plane X = H2, the metric becomes almost Euclidean, while on
the Euclidean plane we can explicitely construct a set S with the desired
properties. We begin by giving this construction:

Example 8.2. — Let R2 be the Euclidean plane. Subgroups of Isom(R2)
which consist only of elliptic elements must have a global fixed point in
R2. Indeed the commutator of two non trivial rotations with different fixed
points is a non-trivial translation.
However the following is an example showing that we may have L(S) = 1,

while no translation with significant minimal displacement can be found in
SN for any fixed N .
Take small numbers x1, x2 > 0 and set θi ∈ (0, π) so that 2 sin(θi/2) = xi.

Assume that θ1 and θ2 are independent (i.e. that 1, θ1
2π and θ2

2π areQ-linearly
independent). Let S := {1, R±1

1 , R±1
2 }, where R1 is the rotation around the

point p1 := (−x−1
1 , 0) and angle θ1, and R2 the rotation around the point

p2 := (x−1
2 , 0) and angle θ2.

Note that due to the independence assumption on θ1 and θ2 the linear
parts of R1 and R2 generate a subgroup of SO(2,R) which is free abelian
of rank 2. Consequently any word in R1 and R2 which gives a translation
in Isom(R2) must belong to the commutator subgroup of the free group.

Moreover L(S) = 1 because Fix1(R1) = {p; |R1p−p|6 1} and Fix2(R2) =
{p; |R2p − p| 6 1} are the discs with radius x−1

1 and x−1
2 respectively

centered around p1 and p2 respectively. They intersect at (0, 0).
However, any word w = w(R1, R2) in R1 and R2 which is a translation

in Isom(R2) belongs to the commutator subgroup of the free group, and
hence the powers of R1 in this word sum up to 0 and so do the powers of
R2. As a result, for every ε > 0 and every given N ∈ N, one can choose
small but positive x1 and x2 so that any such w of length at most N maps
the origin (0, 0) at a distance at most ε from itself. Hence L(w) 6 ε while
L(S) = 1.

Proof of Proposition 8.1. — It is enough to prove this in the case when
X = H2 is the hyperbolic plane, because H2 always embeds as a closed
convex subspace of X stabilized by a copy of PSL(2,R) in Isom(X).

Suppose, by way of contradiction, that there is N ∈ N such that
maxSN L(g) > L(S) for every finite subset S ⊂ Isom(H2) containing 1.
Let x1, x2 be two small positive numbers to be determined later. On the

hyperbolic plane X = H2 consider a base point x0 and a geodesic through
x0. For every ε > 0 let p1(ε) and p2(ε) be points on this geodesic on opposite
sides of the base point x0 such that d(x0, pi(ε)) = εx−1

i . Let Ri(ε) be the
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hyperbolic rotation fixing pi(ε) and of angle θi(ε) ∈ (0, π) defined in such
a way that d(Ri(ε)x0, x0) = ε.
Also note that the sets {x ∈ H2; d(Ri(ε)x, x) 6 ε} are two hyperbolic

disc centered at pi(ε) that intersect only at the base point x0. It follows
that

(8.1) L(Sε) = L(Sε, x0) = ε.

Consider the renormalized pointed metric space (Xε, dε, x0) := (X,
d/ε, x0). In the Gromov–Hausdorff topology for pointed metric spaces, this
family of metric spaces converges, as ε tends to 0, to the Euclidean plane
(R2, 0) with its standard Euclidean metric. The points p1(ε) and p2(ε) con-
verge to two points p1 and p2, which, after choosing coordinates, can be
assumed to be (−x−1

1 , 0) and (x−1
2 , 0). Moreover the hyperbolic rotations

Ri(ε) converge to their Euclidean counterpart Ri based at pi with angle θi
defined by ‖Ri(0, 0)‖ = 1, i.e. x−1

i = 2 sin(θi/2) as in Example 8.2. Con-
sequently any word of length at most N in Sε := {1, R1(ε)±1, R2(ε)±1}
converges to the isometry of R2 given by the same word with letters R1
and R2. In particular:

lim
ε→0

w(R1(ε), R2(ε))x0 = w(R1(ε), R2(ε))(0, 0),

and

(8.2) lim
ε→0

1
ε
L(w(R1(ε), R2(ε)), x0) = L(w(R1, R2), (0, 0)),

where L(g, x) is the displacement of g at x in H2.

Now by our assumption for each ε there is a word w = wε of length at
most N such that

(8.3) L(w(R1(ε), R2(ε)) > L(Sε) = ε.

There are boundedy many words of length at most N , so letting ε tend to
0 along a certain sequence only we may assume that w is independent of
ε. Then there are two options according as w(R1, R2) is a translation or a
rotation. Suppose first that w is a translation. We have:

1
ε
L(w(R1(ε), R2(ε), x0) > 1

ε
L(w(R1(ε), R2(ε))) > 1,

while by (8.2) the left handside converges (as ε goes to zero along the sub-
sequence) to L(w(R1, R2), (0, 0)). However, w(R1, R2) being a translation
means that the word w belongs to the commutator of the free group and the
powers of R1 sum to 0 as do the powers of R2 (due to the independence of θ1
and θ2 as in Example 8.2). This implies that L(w(R1, R2), (0, 0)) < 1/100
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provided x1 and x2 are chosen larger than some absolute constant. This is
a contradiction.
We are left with the case when w(R1, R2) is a rotation, with center say

c ∈ R2. Since (X, d/ε, x0) Gromov–Hausdorff converges to Euclidean R2,
there must be some point c(ε) ∈ H2 which converges to c. This also means
that

lim
ε→0

1
ε
d(w(R1(ε), R2(ε))c(ε), c(ε)) = d(w(R1, R2)c, c) = 0.

In particular:
L(w(R1(ε), R2(ε)) = o(ε),

which is in contradiction with (8.3). This ends the proof. �

9. Euclidean spaces and linear escape of cocycles

In this section we assume that the metric space X is the Euclidean space
Rd. We will prove the results stated in Section 3 regarding isometric actions
on Rd. In particular we will show an example of a finitely generated group
of Isom(Rd) without global fixed point all of whose elements are elliptic.
And we will show that every affine isometric action on Rd without global
fixed point has positive drift, i.e. that cocycles that are not co-boundaries
have positive linear rate of escape.
We begin with the former.

Example 9.1 (A subgroup of rotations without global fixed point). —
This is an example of a subgroup of Isom(R2n) for each n > 2 without global
fixed point in R2n all of whose elements are elliptic. A similar example for
n = 2 for isometries of R4 ' C2 with linear part in SU2(C) is due to Bass,
answering a question of Kaplansky ([5, Counterexample 1.10]) and was later
generalized by Kabenyuk in [43], who gave a complete characterization of
those connected Lie groups admitting a dense subgroup entirely made of
elliptic elements. We thank Misha Kapovich for directing us to this paper.
The example below will be used in Section 10 in order to construct a Zariski
dense subgroup of Isom(H2n) whose Cayley graph has balls of large radius
made exclusively of elliptic elements.
Consider S = {1, A±1, B±1}, where A and B are two rotations fixing

different fixed points pA 6= pB . We may choose the linear parts RA and
RB in O(2n) of A and B in such a way that the group they generate
is a free group whose non-trivial elements never have 1 as an eigenvalue.
This fact follows easily from Borel’s theorem on the dominance of words
maps [12, 52] in simple algebraic groups (here SO(2n)) and from the fact
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that in even dimension a generic rotation does not have 1 as an eigenvalue.
To see this consider that, due to the dominance of word maps, the preimage
in SO(2n) × SO(2n) of the elements having 1 as an eigenvalue via any
word map is an algebraic subvariety of positive co-dimension, hence has
empty interior. By Baire’s theorem a Baire generic pair will lie outside
the (countable) union of these subvarieties when the word ranges over all
reduced words on two letters in the free group.
A consequence of this property is that every element in the subgroup Γ

of Isom(R2n) generated by A and B is elliptic (i.e. fixes a point in R2n).
Indeed, since RA and RB generate a free subgroup, every non trivial ele-
ment of Γ has a non trivial linear part and this linear part does not have
1 as an eigenvalue. But such isometries must fix a point. So L(g) = 0 for
every g ∈ Γ, while clearly L(S) > 1

2 |pA − pB |min |θ|, where the minimum
is taken over the angles θ of RA and RB (i.e. the numbers in [0, π] such
that exp(±iθ) are the eigenvalues of RA and RB).

This example is to be contrasted with Proposition 3.2, which we restate
here:

Proposition 9.2. — A subgroup G of Isom(Rd) with d = 2, 3 all of
whose elements have a fixed point must have a global fixed point.

Proof. — Let G0 be the index two subgoup of orientation preserving
isometries. When d = 2, the commutator subgroup [G0, G0] is made of
translations. Hence G0 is abelian. Two commuting isometries must preserve
the fixed point set of each other. It follows that G0 is either trivial or has
a unique global fixed point, which must then be fixed by G (since G0 is
normal in G).
When d = 3 generic orientation preserving isometries are skew transla-

tions and do not have fixed points, in fact isometries with a fixed point
form a closed subset of empty interior. In particular the closure H of G0 is
a proper closed subgroup of Isom(R3)0. Say SO(3,R) denotes the stabilizer
of the origin in R3. If the linear part of H is not all of SO(3,R) it must
either be finite or conjugate to SO(2,R). In the latter case all elements in
H have parallel axes and H must preserve an affine plane (the orthogonal
to the axes) and be either trivial or have a unique global fixed point by the
d = 2 case; in this case G fixes this point. If the linear part of H is finite,
then every element of H has bounded order forcing G0 itself (and hence
G) to be finite (Burnside) and hence to have a global fixed point. Finally
if the linear part of H is all of SO(3,R), then H must be conjugate to
SO(3,R) (and hence have the origin as its unique global fixed point, which
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must then be fixed by all of G). To see this note first the following simple
geometric fact: if g, h are two rotations of angle π with disjoint axis, then
gh is a skew rotation with axis the common perpendicular to the axes of
g and h and translation length twice the distance between the axes. Now
pick h ∈ H a rotation of angle π and axis ∆. If g∆ intersects ∆ for all
g ∈ H, then any two lines of the form g∆, g ∈ H, intersect. This means
either that the H-orbit of ∆ is made of all lines through a single point (and
then this point is the unique global fixed point), or that it lies in an affine
plane (the one spanned by any two of the lines) and that H preserves that
plane, a fact not compatible with the assumption that its linear part is all
of SO(3,R). �

Now we show that non trivial cocycles have linear rate of escape.

Proposition 9.3. — For any d > 2 and S ⊂ Isom(Rd) a finite set, then
L∞(S) = 0 if and only if S has a global fixed point in Rd.

Proof. — First we give a proof of the easier fact that L(S) = 0 implies
the existence of a global fixed point. Indeed note that the fixed point set
Fix(s) of an isometry s of Rd is an affine subspace and, when Fix(s) is non-
empty, the sublevel sets Fixt(s) = {x ∈ Rd; d(x, sx) 6 t} are convex subsets
of Rd that are products of Fix(s) by the unit ball for a positive definite
quadratic form on the orthogonal of Fix(s). In particular there is cs > 0
such that Fixt(s) ⊂ (Fix(s))cst for all t > 0. Similarly the intersection of
all (Fix(s))t for s varying in S and all t > 0 coincides with the intersection
of all Fix(s), s ∈ S (note that for any two affine subspaces there is c > 0
such that the intersection of their t-neighorhoods is contained in the ct-
neighborhood of their intersection). So we obtain that S has a global fixed
point.
Now we will show the slighty more delicate fact that the absence of

global fixed point implies L∞(S) > 0. To do this we will first assume that
Γ is dense in a Lie subgroup of the form R n V , where R is a closed Lie
subgroup of O(V ) and V 6 Rd is a non-zero vector subspace. Afterwards
we will reduce to this case.
For ε > 0 consider a finite covering of the unit sphere in V by Euclidean

balls of radius ε. In each ball pick an element γ ∈ Γ whose translation part
tγ belongs to this ball and whose rotation part rγ belongs to the ball of
radius ε around the identity in R, i.e. ‖rγ − 1‖ 6 ε for the operator norm
on endomorphisms of V . This gives us a finite list γ1, . . . , γN of elements
of Γ. They all belong to Sk for some integer k.

TOME 71 (2021), FASCICULE 1



366 Emmanuel BREUILLARD & Koji FUJIWARA

Now we make the following observation. If x ∈ V \{0} and g = (rg, tg) ∈
Isom(V ), then

‖gx‖2 = ‖rgx+ tg‖2 = ‖x‖2 + ‖tg‖2 + 2〈rgx, tg〉.

In particular:

‖gx‖2 > ‖x‖2 + ‖tg‖2 + 2〈rgx, tg〉 >
(
‖x‖+ 1

2

)2

provided 1
2 6 ‖tg‖ and 〈 rgx

‖rgx‖ , tg〉 >
1
2 . Now if tg lies in the same ε-ball

as x/‖x‖ and ‖rg − 1‖ 6 ε, then these conditions are satisfied, provided
ε is small enough (ε = 1/10 does it). So we have shown that given any
x ∈ V \ {0}, there is one γi ∈ Sk such that

‖γix‖ > ‖x‖+ 1
2 .

Starting with any point x0 ∈ V \ {0} this immediately implies that for all
n > 1,

L(Snk, x0) > n

2 ,

and thus L∞(S) > 1/2k > 0 as desired.
We now explain how to reduce to the above special case. Let H be the

closure of Γ in Isom(Rd). The Lie subgroup H has the form R n (∆ ⊕
V ), there V 6 Rd is a vector subspace and ∆ is a discrete subgroup of
Rd contained in the orthogonal of V . The isometric H-action on ∆ ⊕ V
factorizes modulo ∆ to an isometric H-action on V . It is enough to show
that L∞(S) > 0 in the quotient action. The quotient action contains all
translations from V . So by the analysis above it is enough to know that V
is non-zero. Note that, since ∆ is discrete and invariant under conjugation
by R, there is a finite index subgroup of R commuting with ∆. So if V were
trivial, there is a finite index subgroup Γ0 of Γ such that any element g in
this finite index subgroup will satisfy tgn = ntg. It follows that L∞(S) > 0
unless Γ0 lies in R. But then Γ0 (and hence Γ taking the barycenter of a
finite orbit) has a global fixed point. �

Finally we mention the following result, which completes the picture
regarding the failure of the Berger–Wang identity for isometries of Rd for
d 6 3. Its proof is very close to that of the two previous propositions, so
we leave it to the reader.

Proposition 9.4. — The Berger–Wang identity λ∞(S) = L∞(S) holds
for all finite subsets S ⊂ Isom(Rd) if and only if d = 1. When d = 2 it holds
for all symmetric finite subsets but fails in general, and when d = 3 it holds
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for subsets S generating a subgroup whose rotation part is either finite or
contains a dense subgroup of SO(3,R), but fails in general.

10. Escaping elliptic isometries of symmetric spaces

The goal of this section is mainly to provide certain counter-examples
showing that in general one cannot escape elliptic elements in bounded
time when taking products of isometries of symmetric spaces.

In this section we say that an element g ∈ Isom(X) is a generalized ellip-
tic element if L∞(g) = 0. Since here X will be CAT(0), this is equivalent
to the condition L(g) = 0 by Proposition 3.1. For symmetric spaces of non-
compact type, this condition is equivalent to requiring that all eigenvalues
of g (under some or any faithful linear representation of Isom(X)) have
modulus one.
We recalled in Proposition 7.2 the well-known fact that any subgroup

of isometries of a symmetric space X of non-compact type, which is made
exclusively of generalized elliptic elements, must fix a point in X or its
boundary. So if G is a subgroup of Isom(X) generated by a finite set S
we have L(S) = 0 if and only if L(g) = 0 for all g ∈ G. And if this
happens then G fixes a point either in X or on the visual boundary ∂X
(see Proposition 3.13).
The following natural question then arises:

Question. — Do we always escape from elliptics (or generalized ellip-
tics) in bounded time? namely does there exist N = N(X) ∈ N such that
for every finite symmetric set S ⊂ Isom(X) containing 1, either L(S) = 0
or there is g ∈ SN such that L(g) > 0?

This section is devoted to answering this question. The answer, for hy-
perbolic spaces, is a little surprising:

Proposition 10.1. — The above question has a positive answer if X
is an n-dimensional hyperbolic Hn, when n = 2, 3, but a negative answer
when n > 4.

So if X is hyperbolic n-space with n > 4, then there are subgroups of
isometries that pretend to be elliptic on a ball of arbitrarily large radius,
even though they have no global fixed point in X nor on its boundary (and
we will even build Zariski-dense examples when n is even). Further below
we will also answer the question completely for arbitrary symmetric spaces
of non-compact type.
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Similarly a subgroup of isometries of the Euclidean plane or 3-space, all
of whose elements are rotations, must have a global fixed point (Proposi-
tion 3.2 above). But this is no longer the case in Rn for n > 4 by Exam-
ple 9.1. So the dimension threshold is the same as for hyperbolic spaces.
Note that Example 9.1 can of course be embedded in a symmetric space

X (e.g. by viewing Isom(R2n) as a bloc upper triangular subgroup of
SL2n+1(R)). This group will be made of elliptic elements only. Even though
it will not fix a point in the symmetric space X, it will fix a point on the
boundary (see Corollary 3.13). In particular L(S) = 0 in this example (even
though L(S) and L∞(S) are strictly positive, when the group is viewed as
a subgroup of isometries of Euclidean space).
In the case of SL2(C) a simple matrix computation yields the following

avatar of Serre’s lemma (Lemma 4.1):

Proposition 10.2. — Let a, b ∈ SL2(C). Assume that a, b and ab have
all their eigenvalues of modulus 1. Then one of the following holds:

(1) a and b can be simultaneously conjugated into SU2(C),
(2) a and b can be simultaneously conjugated into the subgroup of

upper triangular matrices with eigenvalues of modulus 1,
(3) [a, b] := aba−1b−1 is loxodromic (i.e. its eigenvalues have modulus
6= 1).

Since PSL2(R) = Isom(H2)0 and PSL2(C) = Isom(H3)0 the first part of
Proposition 10.1 follows easily.
Proof. — We first recall the following well-known fact:

Claim. — For any a, b ∈ SL2(C) write x = 1
2 tr(a), y = 1

2 tr(b), z =
1
2 tr(ab). Then

1
2 tr([a, b]) = 2(x2 + y2 + z2)− 4xyz − 1.

The proof is omitted: it is a simple computation using Cayley–Hamilton.
One writes a2 − 2xa + 1 = 0 and similarly for b2 and (ab)2 in order to
expand any word in a and b as a linear combination of a, b, ab, aba and
bab, then one takes the trace.
Note that a matrix u ∈ SL2(C) has eigenvalues of modulus 1 if and only

if tr(u) is real and belongs to [−2, 2].
Suppose first that neither a nor b is diagonalizable. Then after changing

a and b into their opposite if necessary, we may assume that both a and
b are unipotent, hence have trace 2, that is x = y = 1. Then 1

2 tr[a, b] =
2z2 − 4z + 3. This achieves its minimum at z = 1 only and the minimum
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is 1. This means that [a, b] is loxodromic unless z = 1. In some basis the
matrices of a and b read:

a =
(

1 t

0 1

)
and b =

(
α β

γ δ

)
.

We may assume that t 6= 0. We compute easily tr(ab) = tr(b) + tγ. Hence
if [a, b] is not loxodromic, we conclude that tγ = 0. It follows that γ = 0,
which is case (2) in the proposition.
We may thus assume that a is diagonalizable, and a /∈ {±1}. In some

basis the matrices of a and b now read:

a =
(
eiθ 0
0 e−iθ

)
and b =

(
α β

γ δ

)
with cos(2θ) 6= 1. Then we compute:

1
2 tr[a, b] = cos(2θ) + αδ(1− cos(2θ)).

If [a, b] is not loxodromic, then tr[a, b] is real in [−2, 2]. Consequently
αδ ∈ R. Since α+ δ = tr(b) is real, we conclude that α and δ are complex
conjugates and αδ = |α|2. Since tr[a, b] 6 2, the above formula forces
|α| 6 1. If |α| = 1, then αδ = 1 and thus βδ = 0, which means that we are
in case (2) of the proposition.
We may thus assume that |α| < 1 and also that βδ 6= 0. Up to conjugating

simultaneously a and b by a diagonal matrix diag(t, t−1), for a suitable real
t > 0, we may assume that γ = −β. Indeed:

t−2γ = −t2β ⇐⇒ t4 = −γ/β = (1− |α|2)/|β|2.

But now δ = α and γ = −β. This means that b ∈ SU2(C). So we are in
case (1) of the proposition. This ends the proof. �

To prove the second part of Proposition 10.1, we need to construct a
counter-example in Isom(H4).

Example 10.3 (No escape in hyperbolic 4-space). — Let A,B be the two
rotations in SO(4) constructed in Example 9.1. They generate a free sub-
group of SO(4) whose non trivial elements do not have 1 as an eigenvalue.
Now observe that the union of all conjugates of SO(4) inside SO(4, 1) has
non-empty interior. One way to see this is to argue that this set is definable
in real algebraic geometry and has the same dimension as SO(4, 1) itself,
because the absolute (complex) ranks of SO(4) and of SO(4, 1) coincide
(they are equal to 2). Moreover an element of SO(4) lies in the interior
if and only if 1 is not one of its eigenvalues. This implies that for every
integer N > 1 there are neighborhoods UN (A) and UN (B) in SO(4, 1) of A
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and B respectively such that w(a, b) lies in the interior of elliptic elements
for every non trivial reduced word w of length at most N in the free group
on two letters, and every choice of a in UN (A) and b in UN (B). But we
may choose such a pair a, b so that it generates a Zariski-dense subgroup of
SO(4, 1). Indeed the set of pairs generating a non-Zariski dense subgroup
of a semisimple algebraic group is a proper closed subvariety of the product
([40, Theorem 3.3] or [18, Theorem 4.1]). A Zariski-dense subgroup can-
not be bounded, for otherwise it would be contained in a conjugate of the
maximal compact subgroup SO(4). So by Proposition 7.2 it must contain
a non-elliptic element.

Remark 10.4 (real closed fields). — This counter-example shows that
Proposition 7.2 is very special to the field of real numbers. It does not hold
for a general real closed field, or say for an ultrapower K of the reals. Over
such fields K the example yields a Zariski-dense subgroup of SO(4, 1)(K)
all of whose elements are contained in some conjugate of SO(4)(K).

The above counter-example can be made to work (with the exact same
proof) in any symmetric spaceX for which the elliptic elements of Isom(X)0

have non-empty interior. Namely for each N ∈ N one can find pairs gener-
ating a Zariski-dense subgroup with the entire N -ball of the Cayley graph
contained in the set of elliptic elements. Elliptic elements have non-empty
interior if and only if the fundamental rank rkCG− rkCK vanishes, where
G = Isom(X)0 and K is a maximal compact subgroup of G (by [58, Ex-
ample 3] this condition is equivalent to the vanishing of the Euler charac-
teristic of the compact dual of X). An equivalent condition is to ask that
G contains a Cartan subgroup (i.e. maximal abelian made of semisimple
elements), which is compact (see e.g. [42]). For example if X = Hn this
happens if and only if n is even. On the other hand, if X is such that el-
liptic elements have empty interior in Isom(X)0, then it is always possible
to escape them, and in fact escape from the set of generalized elliptic ele-
ments, in bounded time, because they are contained in a proper algebraic
subvariety of Isom(X)0.

Proposition 10.5 (general symmetric spaces). — Let X = G/K be
a symmetric space of non-compact type and G = Isom(X)0. If rkCG >

rkCK, then there is N = N(X) ∈ N such that for every finite set S ⊂ G

generating a Zariski-dense subgroup of G, SN contains an element g with
an eigenvalue of modulus different from 1.
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Proof. — An element g ∈ G is generalized elliptic (i.e. L∞(g) = 0) if and
only if all its eigenvalues under some or any faithful linear representation of
G have modulus 1. This can be read off the characteristic polynomial of g
by asking that its real irreducible factors are either X±1 or X2 + 2bX+ 1,
where b ∈ [−1, 1]. Therefore generalized elliptic elements form a definable
set in real algebraic geometry [11] whose Zariski-closure is a subvariety
of positive co-dimension in G. Then the lemma follows by “escape from
subvarieties” (see [32] and [19, Lemma 3.11]). �

11. Producing free semi-groups by Ping-Pong

We prove a proposition concerning free semi-groups in δ-hyperbolic ge-
ometry. A hyperbolic isometry g of a δ-hyperbolic space X has two fixed
points, which are in the ideal boundary of X. We denote the fixed point
set by Fix(g).

Proposition 11.1. — For δ > 0, there is an absolute (numerical) con-
stant ∆ with the following property. Let X be a δ-hyperbolic space, and
g, h isometries of X. Suppose L(g), L(h) > ∆δ. (Then g, h are hyperbolic
isometries.) Assume Fix(g) 6= Fix(h).
Then the pair {g, h}, maybe after taking inverses of one or both of those,

generates a free semi-group.

This proposition appears as Proposition 7.1 in [7] when X is a Hadamard
manifold with sectional curvature K 6 −1. The case when X is a simplicial
tree was treated by Bucher and de la Harpe in [41, Lemma]. In that case,
δ = 0. We give a proof of Proposition 11.1 since we do not know a reference
in this context. It is not optimal, but ∆ 6 10000. We follow the strategy
in [41] and use the following well-known Ping-Pong lemma. Finding suitable
ping-pong sets A,B in the δ-hyperbolic setting is more complicated than
in the tree case.

Lemma 11.2. — Let X be a set and g, h injective maps from X to X.
Suppose there are non-empty subsets A,B in X such that

A ∩B = ∅, g(A ∪B) ⊂ A, h(A ∪B) ⊂ B.

Then g, h generate a free semi-group.

We will use axes of g, h to define A,B. We believe the following result
is well known to specialists, but do not know a reference exactly for this
statement, so we will give an argument at the end of this section.
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Lemma 11.3. — If g is an isometry of a δ-hyperbolic space X with
L(g) > 1000δ, then there is a g-invariant, piecewise-geodesic, γ, parametr-
ized by the arc-length, such that

(1) γ is a ( 9
10 , 24δ)-quasi-geodesic.

(2) For any points x, y ∈ γ, the Hausdorff distance between a geodesic
[x, y] and the sub-path of γ from x to y is at most 12δ.

We call this quasi-geodesic γ an axis of g in this section. The fixed
point set Fix(g) consists of the two end-points of γ, which are γ(±∞) =
limt→±∞ γ(t), respectively for + and −.

Let πγ : X → γ be the nearest points projection. This is a coarse map
in the sense that the image of each point is not a point but a set in X, but
it is uniformly bounded:

Claim. — For every x ∈ X,

diam πγ(x) 6 30δ.

Proof. — If δ = 0 then X is a tree and the conclusion holds, so that we
assume δ > 0. Let M(δ) = 12δ be the constant in Lemma 11.3. Let x ∈ X
and y, z ∈ πγ(x). We show |y− z| 6 2M + 6δ = 30δ. Assume not. Let w be
the midpoint of [y, z], and take v on [x, y] (or on [x, z]) with |w − v| 6 δ.
Also take w′ ∈ γ with |w−w′| 6M . Then |w′ − v| 6M + δ. On the other
hand, |y − v| > M + 3δ − δ, so that |x − v| 6 |x − y| −M − 2δ. We then
have |x − w′| 6 |x − v| + |v − w′| 6 |x − y| − δ < |x − y|, so that y ∈ γ is
not a nearest point from x (w′ ∈ γ is closer), a contradiction. �

Since γ is g-invariant, the map πγ is g-equivariant: gπγ(x) = πγ(gx). For
convenience, we choose a point from the set πγ(x) and denote this point
by πγ(x). We arrange πγ in this new definition to be g-equivariant.

Proof of Proposition 11.1. — We set ∆ = 10000. We also assume δ > 0
since if δ = 0 then X is a tree and this case is essentially treated in [41]. We
will define subsets A,B in X that satisfies the assumption of Lemma 11.2
for g, h, or maybe one or both of their inverses. Then we are done by the
lemma.
Let γ, σ be axes of g, h from Lemma 11.3. We arrange the direction

(to which the parameter increases) of γ, σ as follows. If Fix(g) ∩ Fix(h)
is non-empty (then it consists of one point by our assumption), then we
arrange γ(−∞) = σ(−∞). Notice that this case is equivalent to the pro-
jection πγ(σ) being unbounded. Now, if πγ(σ) is bounded but its diameter
is longer than 500δ, then it means that near πγ(σ), σ runs parallel to γ
in a bounded (6 30δ) neighborhood of σ (use Lemma 11.3(2)), so that
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we arrange the directions of γ, σ coincide in this part. Otherwise, we put
directions randomly. In any case, γ(∞) 6= σ(∞).

Since g, h are hyperbolic, there are L 6= 0 with g(γ(t)) = γ(t+L) for all
t, and K 6= 0 with h(σ(t)) = σ(t + K) for all t. Changing g or h or both
to their inverses if necessary, we may assume that L > 0,K > 0. We will
prove the proposition for the pair g, h.
We choose two base points P ∈ γ, Q ∈ σ in the following way.

Case (a). — If the distance between γ, σ is more than 100δ, then choose
a shortest geodesic τ between them, and set P = τ ∩ γ,Q = τ ∩ σ.

Case (b). — If the distance between γ, σ is at most 100δ, then let P be
the last point (in terms of the parameter t) in γ that is contained in (σ)100δ,
which denotes the 100δ-neighborhood of σ. Likewise, let Q be the last point
in σ that is contained in (γ)100δ. Note that |P − πσ(P )| = |Q − πγ(Q)| =
100δ.

In either case, by adding constants to parameters, we may assume P =
γ(0), Q = σ(0).
Now we define two subsets in X. Set

A =
{
x ∈ X

∣∣∣∣πγ(x) ∈ γ
([

1
2 min(L(g), L(h)),∞

))}
B =

{
x ∈ X

∣∣∣∣πσ(x) ∈ σ
([

1
2 min(L(g), L(h)),∞

))}
We want to show the following. Then we are done by Lemma 11.2.

(11.1) A ∩B = ∅, g(A ∪B) ⊂ A, h(A ∪B) ⊂ B.

For two points x, y ∈ X, we write x ∼ y if |x−y| 6 1000δ. We first show:
(I) πσ(P ) ∼ Q. πγ(Q) ∼ P .
(II) If x ∈ B then πγ(x) ∼ P . If x ∈ A then πσ(x) ∼ Q.
We use the following lemma on the nearest points projection in a δ-

hyperbolic space to prove (I) and (II). If α is a geodesic, then the lemma
is well-known. We do not know a reference for our setting, so we give
an argument at the end of the section. We denote the Hausdorff distance
between two sets Y,Z in X by dH(Y,Z). A geodesic between two points
x, y ∈ X is denoted by [x, y].

Lemma 11.4.
(1) Let α be an axis from Lemma 11.3, x ∈ X, and w ∈ α. Let z =

πα(x). Then dH([x, z] ∪ [z, w], [x,w]) 6 16δ. Moreover, suppose
y ∈ X with w = πα(y). If |z − w| > 40δ, then dH([x, z] ∪ [z, w] ∪
[w, y], [x, y]) 6 18δ.
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(2) If |x− y| 6 D, then |πα(x)− πα(y)| 6 D + 36δ.

We start the proof of (I) and (II). Note that if x ∈ A, then |πγ(x)−P | >
9

10 5000δ − 24δ = 4476δ since L(g), L(h) > 10000δ and γ is an axis of g.
Similarly, if x ∈ B, then |πσ(x)−Q| > 4476δ.

First, we discuss the case (a) in terms of P,Q, ie, |P−Q| > 100δ. Then (I)
is trivial since (we can arrange that) πσ(P ) = Q and πγ(Q) = P .

For (II), we show that if x ∈ B then πγ(x) ∼ P . Set y = πσ(x) and
z = πγ(x). We want to show |z − P | 6 1000δ. Since Q = πσ(P ), y = πσ(x)
and |Q − y| > 4476δ, we have dH([x, y] ∪ [y,Q] ∪ [Q,P ], [x, P ]) 6 18δ by
Lemma 11.4. Also dH([x, z] ∪ [z, P ], [x, P ]) 6 16δ since z = πγ(x). So,
dH([x, y] ∪ [y,Q] ∪ [Q,P ], [x, z] ∪ [z, P ]) 6 34δ. To argue by contradiction,
assume |P − z| > 1000δ. Let R ∈ [P,Q] be the point with |P −R| = 100δ.
Then there is R′ ∈ [P, z] with |R − R′| 6 34δ. Then there is R′′ ∈ γ with
|R′ − R′′| 6 12δ, so that |R − R′′| 6 46δ < |R − P |. But then |R′′ −Q| 6
|Q−R|+ |R−R′′| < |Q−R|+ |R− P | = |Q− P |. This is a contradiction
since P must be the nearest point on γ from Q (but we found R′′ is closer).
We are done for the first claim of (II). The second one is similar (just switch
the roles), and we do not repeat. Case (a) is finished.
Suppose we are in case (b). For two points x, y ∈ γ, we write x 6 y if

x = y, or y appears after x in terms of the parameter t. We write x < y if
x 6 y and x 6= y. We use the similar notation for points on σ.
We argue (I). By the way we chose P,Q, we have πσ(P ) 6 Q and

πγ(Q) 6 P . By Lemma 11.4, dH([Q, πσ(P )]∪ [πσ(P ), P ], [Q,P ]) 6 16δ and
dH([Q, πγ(Q)] ∪ [πγ(Q), P ], [Q,P ]) 6 16δ. So, dH([Q, πσ(P )] ∪ [πσ(P ), P ],
[Q, πγ(Q)] ∪ [πγ(Q), P ]) 6 32δ.

To argue by contradiction, suppose |πσ(P ) − Q| > 1000δ. Then since
|Q− πγ(Q)| = 100δ and |P − πσ(P )| = 100δ, we have |πγ(Q)− P | > 800δ.
But this forces that the orientations of γ and σ are opposite along the
geodesic [πγ(Q), P ] (draw a thin rectangle for πγ(Q), Q, πσ(P ), P ), which
is a contradiction. We showed |πσ(P ) − Q| 6 1000δ. The other inequality
is proved similarly. (I) is shown.
We argue (II). As before we only discuss the first one. Set y = πσ(x) and

z = πγ(x). We want to show |P − z| 6 1000δ. Since πσ(P ) 6 Q, we have
|y − πσ(P )| > 4476δ. So, dH([P, πσ(P )] ∪ [πσ(P ), y] ∪ [y, x], [P, x]) 6 18δ.
Also, dH([P, z] ∪ [z, x], [P, x]) 6 16δ. Hence, dH([P, z] ∪ [z, x], [P, πσ(P )] ∪
[πσ(P ), y] ∪ [y, x]) 6 34δ.
Now, to argue by contradiction, assume |P − z| > 1000δ. Let R ∈ [P, z]

be the point with |P − R| = 500δ. Pick a point R′ ∈ γ with P < R′ < z

and |R − R′| 6 12δ by Lemma 11.3. Also, pick a point R′′ ∈ [P, πσ(P )] ∪
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[πσ(P ), y] ∪ [y, x] with |R−R′′| 6 34δ. Notice that in fact R′′ ∈ [πσ(P ), y]
since |P −πσ(P )| = 100δ. Then pick a point R′′′ ∈ σ with |R′′−R′′′| 6 12δ.
But this implies |R′′′ − R′| 6 (12 + 34 + 12)δ = 58δ, so that R′ ∈ (σ)100δ.
This is a contradiction since P < R′ on γ (P must be the last such point).
(II) is shown. We finished the proof of (I) and (II).
We now show (11.1) using (I) and (II).
Clearly both A and B are not empty. To see A ∩ B is empty, take any

point x ∈ B. Then by (II), πγ(x) ∼ P , ie, |πγ(x)−P | 6 1000δ. But if x ∈ A
then as we said |πγ(x)−P | > 4476δ, so x 6∈ A, hence we are done. g(A) ⊂ A
is immediate from the g-equivariance of πγ . To see g(B) ⊂ A, let x ∈ B.
Since πγ(x) ∼ P we have g(πγ(x)) ∼ g(P ). Also g(P ) ∈ γ ∩ A implies
|P − g(P )| > 9

10 10000δ − 24δ = 8976δ, hence |P − g(πγ(x))| > 7976δ. This
implies g(πγ(x)) ∈ γ∩A. But since g(πγ(x)) = πγ(g(x)), it follows g(x) ∈ A
from the definition of A. We showed g(B) ⊂ A, hence g(A ∪ B) ⊂ A.
h(A ∪ B) ⊂ B is similar (switch the roles) and we do not repeat. (11.1) is
proved. �

We give a proof of Lemma 11.3. A similar statement appears as Lemma 1
in [34], in which we only assume g is hyperbolic, with no large lower bound
of L(g), and find a g-invariant piecewise geodesic that satisfies (2) with a
constant bigger than 12δ. One can not expect (1) holds in that case.

Proof of Lemma 11.3. — If δ = 0, then X is a tree and there is a g-
invariant geodesic, γ. This is a desired path, so we assume δ > 0 in the
rest.
If we take any point x ∈ X and join its g-orbit in the obvious order by

geodesics, we obtain a g-invariant, piecewise geodesic. This path is always
a quasi-geodesic but we do not have uniform bounds on the quasi-geodesic
constants. But we choose m to be the midpoint of [x, gx], then define a
g-invariant, piecewise geodesic:

γ =
⋃
n∈Z

gn([m, gm]).

The merit of m is that [m, gm] is very close to L(g), and the “bumps” at
points gn(m) on γ are small. We first show γ satisfies (2) using L(g) >
1000δ. Take any two points x, y ∈ γ. Using the g-action if necessary, we
may assume x ∈ [m, g(m)], y ∈ [gn−1(m), gn(m)] for some n > 1. (If n = 1,
then (2) is trivial.) The first observation is that gi(m) ∈ N2δ([m, gn(m)])
for all 0 6 i 6 n. This is an easy exercise by induction on n, and we leave
it to readers (see Remark). From this it follows x, y ∈ N3δ([m, gn(m)]).

Next, we show:

TOME 71 (2021), FASCICULE 1



376 Emmanuel BREUILLARD & Koji FUJIWARA

Claim. — g(m), . . . , gn−1(m) are all in N10δ([x, y]).

To see that, take points on [m, gn(m)] that are close to those points:

x, g(m), g2(m), . . . , gn−1(m), y ∈ [m, gn(m)]

with |x − x| 6 3δ, |g(m) − g(m)| 6 2δ, . . . , |gn−1(m) − gn−1(m)| 6 2δ,
|y − y| 6 3δ. Take [x, y] to be the subpath of [m, gn(m)]. Notice that the
points g2(m), . . . , gn−2(m) are contained in [x, y] since L(g) > 1000δ, but
possibly g(m) or gn−1(m) is not in [x, y], ie, g(m) ∈ [m,x] or gn−1(m) ∈
[y, gn(m)]. But this exceptional case happens only when g(m) is close to x,
or gn−1(m) is close to y. We finish this case first. So suppose g(m) ∈ [m,x].
Then pick a point z ∈ [m,x] with |g(m) − z| 6 4δ using |x − x| 6 3δ. It
implies that |g(m) − z| 6 2δ + 4δ = 6δ, hence |x − g(m)| 6 6δ. This
is a desired bound and the claim is shown for g(m). Similarly, we have
|y − gn−1(m)| 6 6δ.

Now we go back to the general case, ie, gi(m) ∈ [x, y], so that gi(m) ∈
N2δ([x, y]). But, dH([x, y], [x, y]) 6 8δ since |x − x|, |y − y| 6 3δ. It then
implies that gi(m) is in N10δ([x, y]). The claim is shown.
Finally, let γ(x, y) denote the subpath of γ between x, y then the above

claim implies that dH([x, y], γ(x, y)) 6 12δ since γ(x, y) is a piecewise geo-
desic joining the points in the claim. (2) is shown.
We prove (1). Remember that gi(m), 1 6 i 6 n−1, are the points that are

contained in γ(x, y), the subpath of γ between x, y. Then by (2), pick points
xi ∈ [x, y], 1 6 i 6 n − 1, with |xi − gi(m)| 6 12δ. Let x = γ(t), y = γ(s).
Then,

|x− y|
= |x− x1|+ |x1 − x2|+ · · ·+ |xn−1 − y|

> (|x− g(m)| − 12δ) + (|g(m)− g2(m)| − 24δ) + · · ·

+ (|gn−2(m)− gn−1(m)| − 24δ) + (|gn−1(m)− y| − 12δ)

>
1000δ − 24δ

1000δ (|x− g(m)|+ |g(m)− g2(m)|+ · · ·+ |gn−1(m)− y|)− 24δ

>
1000− 24

1000 |t− s| − 24δ > 9
10 |t− s| − 24δ.

Note that we need −24δ since we do not have |x− g(m)|, |gn−1(m)− y| >
1000δ. �

Remark 11.5. — This claim appears in the beginning of the proof of
Lemma 1 in [34], where we do not assume L(g) > 1000δ, so that we take a
power of g, gN , with L(gN ) > 1000δ, then prove the same claim for gN .
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We now give a proof of Lemma 11.4.

Proof of Lemma 11.4. — If δ = 0, then X is a tree and the lemma is
trivial, so we assume δ > 0.

We prove the first claim. If |x − z| 6 14δ, then the conclusion is triv-
ial, so assume |x − z| > 14δ. Let z′ ∈ [x, z] with |z − z′| = 14δ. z′ ∈
Nδ([x,w] ∪ [z, w]), but in fact z′ ∈ Nδ([x,w]). This is because if z′ ∈
Nδ([z, w]), then z′ ∈ N13δ(α) since α is an axis, which is impossible since
d(z′, α) = d(z′, z) = 14δ. So, pick z′′ ∈ [x,w] such that |z′′ − z′| 6 δ,
then |z − z′′| 6 15δ. It implies that dH([z, w], [x, z] ∪ [z, w]) 6 16δ, and we
are done. An argument for the second claim is similar. Drawing a geodesic
quadrilateral for x, z, w, y and using |z − w| is long, we find z′′, w′′ ∈ [x, y]
with |z − z′′|, |w − w′′| 6 16δ. Then the conclusion easily follows. We omit
details. (1) is finished.
(2) is a consequence of (1). Indeed, suppose |πα(x)− πα(y)| > D + 36δ.

By (1), there must be points Z,W ∈ [x, y] with |Z −πα(x)|, |W −πα(y)| 6
18δ. That implies that |Z−W | > D, so that |x−y| > D, a contradiction. �

12. Uniform Tits alternative for groups acting on trees

There is no uniform Tits alternative for groups acting on trees. This
section is devoted to an example showing this. To begin with, we recall the
following:

Proposition 12.1. — If S is a finite set of isometries of a tree with no
global fixed point on the tree nor on its boundary, then one may find a pair
a, b in (S ∪ S−1)3 generating a free sub-semigroup.

Proof. — We give a quick proof for the readers convenience (e.g. see
also [54, Theorem 1]). This assumption implies that L(S) > 0. Proposi-
tion 4.4 implies that there is g ∈ S ∪ S2 with L(g) > 0. Since g is a
hyperbolic isometry it fixes exactly two points on the boundary of the tree.
Say x is the forward fixed point. Our assumption implies that there is s ∈ S
with sx 6= x. Now we may apply Proposition 11.1 to the pair {g, sgs−1}
(take inverses if necessary) and get the desired conclusion. �

So we can find a free sub-semigroup quickly. We now show that by con-
trast we may not be able to quickly find a pair generating a free subgroup.
This is Proposition 1.16 from the Introduction, which we restate here.
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Proposition 12.2. — For everyN ∈ N one can find a pair S = {a, b} of
automorphisms of the 3-valent homogeneous tree T such that the subgroup
generated by S contains a free subgroup and has no global fixed point on
T nor on the boundary ∂T , but no pair of elements in the N -ball B(N) :=
({1} ∪ S ∪ S−1)N generates a free subgroup.

Proof. — Let a and b be two hyperbolic elements with minimal displace-
ment 1 and whose axes intersect on a finite segment [p, q] of length L on
which they translate in the same direction. It is clear that aL+1 and bL+1

generate a free subgroup. Indeed they play ping-pong on the tree : the at-
tracting and repelling neighborhoods being the four connected components
of T \ {p, q} different from that containing the open segment (p, q). In par-
ticular the subgroup Γ := 〈a, b〉 generated by a and b does not fix a point
in T nor on the boundary ∂T .

Fix a labelling of the edges of T using the alphabet {1, 2, 3}. Now choose
a and b as above with the further property that a and b preserve the cyclic
ordering of the edges at every vertex, except possibly at the end-points
p and q of the intersection of the axes and a and b. To see that it is
possible to do this note first that if we start with one edge of T there is a
unique bi-infinite geodesic through this edge such that any two consecutive
edges on the geodesic are labelled by consecutive labels and thus there is
a unique tree automorphism a that preserves the cyclic order and acts by
unit translation on this bi-infinite geodesic ∆a. This gives a. To find b do
the same on a bi-infinite geodesic ∆b such that ∆a ∩∆b is a segment [p, q]
of length L. It is possible to obtain the isometry b (in a unique way) so
that b preserves the cyclic order at every vertex, except that we need to
reverse that order at exactly two points : the end-points p and q.

Now let c and d be any two words of length at most L/2 in a, b and their
inverses. The commutator [c, d] must fix the point p. We claim that [c, d]
has finite order (and thus c, d cannot generate a free subgroup). Indeed
[c, d] preserves the cyclic ordering at any vertex which is at distance at
least R from either p or q, where R is the maximum distance from either p
or q or the image of either p or q under any word of length at most 2L in
a, b and their inverses. Since [c, d] fixes p some power [c, d]n of [c, d] will fix
pointwise the entire ball of radius R around p. But since the edge ordering
outside is also preserved, [c, d]n must be trivial. This ends the proof. �

Remark 12.3. — In [2, 12.1] it is shown that if S is a finite set of tree
automorphisms, generators of a free subgroup can be found in ({1} ∪ S ∪
S−1)N with controlled N , provided 〈S〉 has not fixed global point on the
tree nor on its boundary and satisfies a certain acylindricity condition.
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Remark 12.4. — As was pointed out to us by Yves de Cornulier, the
above isometries a, b belong to the group of tree automorphisms with pre-
scribed local action and finitely many singularities. These groups, denoted
by G(F, F ′), in [53] have attracted a lot of attention lately. In our exam-
ple F ′ = Sym(3) and F = Z/3Z.

Remark 12.5. — We learned from Jack Button that the Baumslag–Solitar
group Γ = BS(2, 3) := 〈a, b | ba3b−1 = a2〉 also yields a similar example.
Indeed this group is a non-trivial HNN extension and as such acts on its
Bass–Serre tree, which is a 5-valent homogenous tree. This action has no
global fixed point on the tree nor on its boundary. Vertex stabilizers are
conjugates of 〈a〉, hence abelian. However it is easy to check that given
N ∈ N for every large enough n no pair of words of length at most N in
the elements b and a2n can generate a free subgroup: indeed there is an
arbitrarily long portion of the axis of b which is fixed by a2n if n is arbitrar-
ily large. In particular commutators of short words in b and a2n commute.
An interesting additional feature of this construction is that b and a2n still
generate Γ. And this group is not uniformly non-amenable: see [2].

13. Application to uniform exponential growth

In this section we discuss applications to the exponential growth of
groups. We recall some definitions. Let Γ be a group and S a finite set
in Γ. Assume that 1 ∈ S and S = S−1. Set

h(S) := lim
n→∞

1
n

log |Sn|.

write h(S,Γ) to indicate that the subset S generates Γ. We denote by 〈S〉
the subgroup generated by S. We recall that the quantities L∞(S) and
L(S) were defined in the Introduction. Let Γ be a finitely generated group.
Set

h(Γ) = inf
S
{h(S); 〈S〉 = Γ},

where S runs over finite generating subsets. If h(Γ) > 0 we say Γ has
uniform exponential growth, of growth rate h(Γ).

13.1. Trichotomy for actions on hyperbolic spaces

The following result is a consequence of the Bochi-type inequality for
hyperbolic spaces (Theorem 1.4) and of the construction of ping-pong pairs
from Section 11.
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Theorem 13.1 (Trichotomy for actions on hyperbolic spaces). — There
is an absolute constant C > 1 such that the following holds. Let X be a δ-
hyperbolic geodesic space and S ⊂ Isom(X) a finite set with 1 ∈ S. Assume
S = S−1. Then one of the following holds:

(1) L(S) 6 Cδ on X.
(2) 〈S〉 leaves a set of two points in the boundary of X invariant. More-

over, 〈S〉 contains a hyperbolic isometry g, and Fix(g) ⊂ ∂X is the
invariant set.

(3) If N > C is an integer, then SN contains two elements, which are
hyperbolic isometries and are generators of a free semi-group. In
particular, h(S) > (log 2)/N > 0.

Proof. — Assume C > K + 1, where K is the numerical constant from
Theorem 5.7 (and Corollary 5.8). If we are not in case (1), then L(S) >
(K + 1)δ. Since by Corollary 5.8, for all n > 0, n(L(S)−Kδ) 6 λ2(Sn), so
that nδ < λ2(Sn). It implies that for each n > 0 there exists g ∈ S2n with
2nδ < L∞(g).

Set N0 be the smallest integer with ∆ 6 N0, where ∆ is the constant
from Proposition 11.1. Then there is g ∈ S2N0 with ∆δ 6 L∞(g). Since
L∞(g) 6 L(g), we have ∆δ 6 L(g) and g is hyperbolic on X.

Now, if S preserves Fix(g), then we are in (2), otherwise, there must be
s ∈ S such that the proposition applies to g, sgs−1 ∈ S2N0+2 (take inverses
if necessary), and we are in (3) provided C > 2N0 + 2. �

13.2. Uniform exponential growth of hyperbolic groups

We now prove uniform, and uniform exponential growth of hyperbolic
groups.

First we show Theorem 1.14 from the introduction, that δ-hyperbolic
groups have uniform exponential growth depending only on δ, in the form
of a corollary of our trichotomy Theorem 13.1 applied to hyperbolic
groups. This slighlty improves on Koubi’s result [50] and Champetier–
Guirardel [24], where a further dependence on the size of the generating
set was required. We then discuss uniform exponential growth.

Corollary 13.2 (Growth of hyperbolic groups). — There is an ab-
solute constant C1 > 0 with the following property. If (G,S) is a non-
elementary, δ-hyperbolic group, then SM contains two hyperbolic elements
that are generators of a free semi-group, whereM is the least integer larger
than C1δ. In particular, h(S) > (log 2)/M .
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We start with a simple lemma.

Lemma 13.3. — Let G be an infinite group generated by a finite sym-
metric set S with Cayley graph Γ(G,S). Then for the (left) action of G on
Γ(G,S), we have for all n > 0, L(Sn) > n.

Proof. — Fix n > 0. For any g ∈ G, we need to show that there is
h ∈ Sng such that d(g, h) > n. Equivalently this amounts to ask that
h ∈ Sng but h /∈ gSn−1. Suppose for contradiction that Sng is contained
in gSn−1, then |Sn| 6 |Sn−1|. But since Sn−1 ⊂ Sn, this means that
Sn = Sn−1. This implies that 〈S〉 is finite. �

Proof of Corollary 13.2. — Let C > 0 be the absolute constant from
Theorem 13.1. (We may assume both C and δ are integers.) For each n > 0,
L(Sn) > n by Lemma 13.3. Let n be the least integer larger than Cδ.
Theorem 13.1 applied to Sn implies that either SNn contains generators
of a free semigroup, or Sn and hence 〈S〉 leaves invariant a pair of distinct
points on the boundary ∂X of the Cayley graph X = Γ(G,S). But G acts
with dense orbits on its boundary, so the second case cannot occur. Now
set C1 = NC. �

We now give a uniform exponential growth result for subgroups of hy-
perbolic groups, which is a direct consequence of Theorem 13.1.

Corollary 13.4 (Uniform growth of subgroups in a hyperbolic group).
There exists an absolute constant (integer) C1 > 0 with the following prop-
erty. Let G be a group generated by a finite symmetric set T so that the
Cayley graph Γ(G,T ) is δ-hyperbolic for some integer δ > 0. Then for every
finite subset S ⊂ G with 1 ∈ S and S = S−1, either 〈S〉 is finite or virtually
cyclic, or there is g ∈ G such that gSg−1 ⊂ TC1δ, or SdC1δe contains two
generators of free semi-group.

Proof. — This is immediate from Theorem 13.1 as the condition L(S) 6
Cδ translates by saying that there is g ∈ G such that gSg−1 ⊂ TCδ. �

We note that although it does not appear explicitely in the literature as
far as we know the last corollary is hardly new as explained in the remarks
below.

Remark 13.5. — Without a bound on |T | it can happen that a large
power of S stays inside TCδ and indeed for every ` > 1 one can easily build
a 2-hyperbolic group containing pairs of elements generating a non virtually
cyclic subgroup so that every word of length at most ` in these two ele-
ments are torsion. For example consider the example of Remark 1.15. The
group Γn,` is δ-hyperbolic with generators {a, b} for some δ = δ(n, `) > 0.
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Consider the same group with generating set T := {1, a±1, b±1}dδe. Then
(Γn,`, T ) is 2-hyperbolic, but every word of length at most ` in S := {a, b}
is of order dividing n.

Remark 13.6. — Note that if 〈S〉 is not virtually cyclic we can find an
upper bound on the least n such that L(Sn) > C1δ, and hence on the least
n for which Sn contains generators of a free semigroup. Indeed we can get
n < |T bC1δc|, because if L(Sn) 6 C1δ, then |Sn| 6 |T bC1δc|. But |Sn| > n

unless 〈S〉 is finite, hence the upper bound on n. Note that this bound
depends not only on δ, but also on |T |. A closely related result appears
in Arzhantseva–Lysienok [3] where it is shown that Sn contains generators
of a free subgroup with n 6 C(G), for some (effective but not explicity)
constant C(G) depending only on G. As the referee pointed out to us, there
are only finitely many hyperbolic groups with given number of generators
and given δ, therefore this shows that we have recovered the cited result
from [3] with the explicit bound C(G) = |T dC1δe|.

Remark 13.7. — In [50] Koubi obtains the same result in the case when
S = T is a generating subset of G. In [24] Champetier and Guirardel show
a related result: there is an explicit n depending only on δ and |T | such that
given any f, g ∈ G either at least one of the pairs {fn, gn} or {fn, g−n}
generates a free semigroup, or fn and gn commute.
In a very recent work Delzant and Steenbock [31] improve on Corol-

lary 13.4 and on the above mentioned work of Arzhantseva–Lysienok and
give an explicit entropy lower which improves as |S| gets larger.

13.3. Actions by virtually nilpotent groups

We give a proof of the following that is stated as Corollary 1.5.

Proposition 13.8. — Let X be a geodesic δ-hyperbolic space and S ⊂
Isom(X) a finite set. Assume that L∞(S) = 0. Then 〈S〉 either has a
bounded orbit on X, or fixes a unique point in ∂X.

Proof. — For every n > 0 we have L∞(Sn) = 0 since nL∞(S) = L∞(Sn).
So, λ2(Sn) = 0 by Lemma 1.1. Apply Theorem 1.4 to Sn, we obtain
Kδ > L(Sn).
So, for each n > 0, there is a point xn ∈ X such that L(Sn, xn) 6 Kδ.

We will show that Γ = 〈S〉 has a bounded orbit, or fixes a point in ∂X.
We recall an elementary fact. Let yn be an infinite sequence of points in

the δ-hyperbolic space X. Then there is a subsequence ymn
such that either
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ymn
converges to a point in ∂X, or it (coarsely) “rotates” about some point

x ∈ X in the sense that any geodesic [ymn
, ymk

], mn 6= mk, intersects the
ball B(x, 20δ).
By this fact, there are two cases for the sequence xn: there is an infinite

subsequence xmn such that either

(i) it converges to a point x ∈ ∂X, or
(ii) it rotates, ie, there exist a point x ∈ X such that for any mn < mk,

the distance between x and the geodesic [xmn
, xmk

] is at most 20δ.

Then, (i) implies that the point x is fixed by Γ. We discuss the uniqueness
later. In the case (ii), since both xmn

, xmk
, mn < mk are moved by Smn

at most by Kδ, each point on [xmn , xmk
] is moved by Smn at most by, say,

Kδ + 10δ. It implies that Smn moves x by at most 40δ + (K + 10)δ. This
is for any n > 0, so the Γ-orbit of x is bounded.

Now we argue that if there are at least two fixed points in ∂X, then Γ
has a bounded orbit in X. Indeed, if there are three fixed points, then a
Γ-orbit must be bounded since X is hyperbolic. If there are exactly two
fixed points in ∂X, then join those two points by a quasi-geodesic γ in
X. Then γ is coarsely invariant by Γ, ie, there is a constant C such that
for any g ∈ Γ, the Hausdorff-distance between γ and g(γ) is at most C.
Notice that Γ does not contain any hyperbolic isometry since L∞(S) = 0.
It implies that there is a constant D, which depends on C and δ, such that
every point on γ is moved by at most D by any element in Γ, ie, Γ-orbit is
bounded. �

Corollary 13.9 (Virtually nilpotent groups). — Let X be a δ-hyper-
bolic space, S ⊂ Isom(X) a finite set with 1 ∈ S and S = S−1. Assume
Γ = 〈S〉 is virtually nilpotent. Then one of the following holds:

(i) Γ has a bounded orbit in X,
(ii) Γ fixes a unique point x ∈ ∂X,
(iii) Γ leaves invariant a set of two points in ∂X, which is the fixed point

set of some hyperbolic isometry g ∈ Γ.

Proof. — This is again well-known. We deduce it from Theorem 13.1
applied to S as follows. The case (3) does not happen since h(S) = 0
since Γ has polynomial growth. The case (2) implies the conclusion (iii). So
assume S does not satisfy (2). Then S satisfies (1), ie, L(S) < (K + 1)δ.
We also apply Theorem 13.1 to Sn for each n > 1. Again, (3) does not

happen, and (2) is desirable, so we assume L(Sn) < (K + 1)δ. But this
implies L∞(S) = 0. Apply Proposition 13.8, and we are done. �
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13.4. Spaces with bounded packing

In this paragraph, we prove Theorem 1.13 from the Introduction. We
will establish in fact the slighlty more precise statement of Theorem 13.11
below.

For a metric space X, a subgroup Γ in Isom(X) is said to be discrete if
it has discrete orbits, namely if for any point x ∈ X and a bounded subset
Y ⊂ X, Γx ∩ Y is finite.
To state our main result, we recall one definition from [19]. A metric

space X has bounded packing with packing constant P > 0 if every ball of
radius 2 in X can be covered by at most P balls of radius 1.
Here is an elementary lemma we use later.

Lemma 13.10. — If a geodesic space has bounded packing for P , then
any ball of radius n > 0, which is an integer, is covered by at most Pn−1

balls of radius 1.

Proof. — We argue by induction on n. For n = 1, the claim is trivial.
Suppose the claim holds for n > 0. Take a ball B of radius n+1, and let B′
be the ball of radius n with the same center. By assumption, cover B′ by
at most Pn balls of radius 1. Now for each of those balls, take the ball of
radius 2 with the same center. Those balls of radius 2 cover B (here we are
using that the space is geodesic). Also, each ball of radius 2 is covered by
at most P balls of radius 1. So, by collecting all of those balls of radius 1,
B is covered by at most P · Pn balls of radius 1. �

In [19] balls of radius 4 instead of 2 were used to define the bounded
packing property. This is a minor change, which only affects the constant
P according to this lemma.

In the following theorem we state the bounded packing property in terms
of balls of radius δ and 2δ, which is more natural for a δ-hyperbolic space.

Theorem 13.11. — Given P , there is N(P ) with the following prop-
erty. Let X be a geodesic δ-hyperbolic space, with δ > 0, such that every
ball of radius 2δ is covered by at most P balls of radius δ.
Let S be a finite subset in Isom(X) with S = S−1 and assume that Γ =

〈S〉 is a discrete subgroup of Isom(X). Then either Γ is virtually nilpotent,
or SN contains two generators of a free semi-group, and in particular:

h(S) > 1
N

log 2.

Moreover, if Γ is virtually nilpotent, then either (i) Γ is finite, (ii) fixes a
unique point in ∂X, or (iii) Γ is virtually cyclic and contains a hyperbolic
isometry g such that Fix(g) in ∂X is invariant by Γ.
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The following theorem by Breuillard–Green–Tao, which improved Gro-
mov’s theorem on groups with polynomial growth, is a key ingredient of
the argument.

Theorem 13.12 ([19, Corollary 11.2]). — For Q > 1 there is a constant
C(Q) with the following property. Let S be a finite generating set of a
group G with 1 ∈ S. Suppose there exists a finite subset A in G such that
|A2| 6 Q|A| and SC(Q) ⊂ A. Then G is virtually nilpotent.

Here is a useful consequence.

Corollary 13.13. — For integers P, J > 0, set k = C(P 2J), where C
is from Theorem 13.12. Suppose X is a geodesic space and has bounded
packing P . Let S be a finite set in Isom(X) with S = S−1 such that Γ = 〈S〉
is discrete.
If L(Sk) < J , then 〈S〉 is virtually nilpotent.

Proof. — For a point x ∈ X define

SJ(x) = {γ ∈ Γ | d(x, γx) 6 J}.

By assumption, there is x ∈ X with L(Sk, x) < J , so Sk ⊂ SJ(x). Set
A = SJ(x). A is finite since Γ is discrete. We have A2 ⊂ S2J(x) by triangle
inequality.
Since X has bounded packing for P , |A2| 6 P 2J |A|. Indeed, let B be the

ball of radius 2J centered at x in X. Then A2(x) ⊂ B. By Lemma 13.10,
B is covered by balls of radius 1: B1, . . . , Bk with k 6 P 2J . Now choose
ai ∈ A2, if it exists, with ai(x) ∈ Bi for each i. Now for any a ∈ A2, since
a(x) ∈ B, there is Bi with a(x) ∈ Bi, so that d(ai(x), a(x)) 6 2. This means
a−1
i a ∈ A, so that a ∈ aiA. Since a ∈ A2 was arbitrary, and |aiA| = |A|,

we find |A2| 6 k|A| 6 P 2J |A|.
On the other hand, by definition, SC(P 2J ) = Sk ⊂ SJ(x) = A. Now by

Theorem 13.12 with Q = P 2J , 〈S〉 is virtually nilpotent. �

Proof of Theorem 13.11. — By scaling the metric of X by a constant, we
assume that X is 1-hyperbolic. By our assumption, X has bounded packing
property for P with respect to the new metric. Set k = C(P 2(K+1)) as in
Corollary 13.13 for J = K + 1.

There are two cases.
Case 1: L(Sk) < K + 1. — In this case 〈S〉 is virtually nilpotent by

Corollary 13.13 applied to Sk with J = K + 1.
Case 2: L(Sk) > K + 1. — Apply Theorem 13.1 to Sk with δ = 1. Set

N0 = N(1), where N(1) is the constant from Theorem 13.1. Since we are
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in Case 2, (1) does not happen. If (2) happens then 〈S〉 is virtually cyclic
since 〈S〉 is discrete. If (3) happens then SkN0 contains two elements that
generate a free semi-group. The constant k depends only on P . (K does
not depend on anything.) Set N = kN0 and we are done.
To show the moreover part, we apply Corollary 13.9. If Γ has a bounded

orbit, then Γ must be finite since the action is discrete. If there is g ∈ Γ
that is hyperbolic such that Fix(g) is invariant by Γ, then 〈g〉 has finite
index in Γ since Γ is discrete, so that Γ is virtually cyclic. Otherwise, Γ
fixes a unique point x ∈ ∂X. �

Using Theorem 13.11, we give a quick proof of the following theorem by
Besson–Courtois–Gallot.

Theorem 13.14 ([7, Theorem 1.1]). — Let X be a d-dimensional, sim-
ply connected Riemannian manifold with curvature −a2 6 K 6 −1. Let
Γ = 〈S〉 be a finitely generated discrete subgroup of Isom(X) with S = S−1.
Then either Γ is virtually nilpotent, or SN contains two generators of free
semigroup, in particular, h(S) > 1

N log 2, where the constant N depends
only on d and a.

In other words, unless Γ is virtually nilpotent, Γ has uniform exponential
growth, and the growth rate depends only on d, a.
Before we start the proof, we quote a well-known fact (see the paragraph

in [19] before Corollary 11.19).

Lemma 13.15. — Let d > 1 be an integer, and a > 0. Then there exists
K(d, a) > 1 with the following property. Suppose M is a d-dimensional
complete Riemannian manifold with a Ricci curvature lower bound Ric >
−(d− 1)a2. Then M has bounded packing K(d, a).

For readers’ convenience we give an outline of an argument.

Outline of proof of Lemma 13.15. — Let B(x,R) denote the ball
of radius R in M centered at x. By the Bishop–Gromov inequality,
supx∈M

vol(B(x,4)
vol(B(x,1/2) is bounded from above by a number K that depends

only on d, a.
We will show B(x, 2) is covered by at most K balls of radius 1. Let L be

the maximal number of disjoint balls of radius 1/2 in B(x, 2). Let B(y, 1/2)
be the one of maximal volume, v, among them. Since B(x, 2) is contained
in B(y, 4), we have Lv 6 vol(B(x, 2)) 6 Kv. In particular, L 6 K. But
the balls of radius 1 centered at the same points cover B(x, 2). We are
done. �
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Proof of Theorem 13.14. — Since X is simply connected and K 6 −1,
X is CAT(0) and δ-hyperbolic for, say, δ = 2. Since −a2 6 K and the
dimension of X is d, we have Ric > −(d − 1)a2. By Lemma 13.15, X has
bounded packing for the constant K(d, a). Namely, any ball of radius 2 is
covered by at most K balls of radius 1. So, any ball of radius 4 is covered
by at most K3 balls of radius 1 by Lemma 13.10.
Set N = N(K(d, a)3), where N on the right hand side is the function

from Theorem 13.11. Since the assumption of Theorem 13.11 is satisfied by
X for δ = 2 and P = K(d, a)3, either Γ is virtually nilpotent, or SN contains
two generators of free semigroup, in particular, h(S) > 1

N log 2. �

14. Questions

1. — Let X be the metric completion of the Teichmuller space of a sur-
face Σ with the Weil–Petersson metric. X is a complete CAT(0) space. Do
we have a Bochi-type inequality (see Thereom 1.4)? To be concrete, let
a, b be the Dehn twists along curves α, β. Then they are elliptic isometries.
Assume that a, b do not commute (ie, the geometric intersection number
of α, β is not 0), then Fix(a),Fix(b) are disjoint. Do we have a Bochi-type
inequality for the set {a, b}? We remark that there is a uniform positive
lower bound, which depends on Σ, on the distance between Fix(a),Fix(b).

2. — Does there exist an absolute constant c > 0 such that h(S) > c

for every generating set S of an arbitrary non elementary word hyperbolic
group (independently of δ, see [57, Question 2.1]).

3. — Can we remove the mutiplicative constant in Proposition 7.7? that
is given a symmetric spaceX of non-compact type, does there exist k,C > 0
such that λk(S) > L(S)−C for every finite set S of isometries of X. Does
this hold also for isometries of Bruhat–Tits buildings or more generally of
any Euclidean building?

4. — The proof of the geometric Berger–Wang identity (Theorem 7.5)
and the Bochi-type inequality (Proposition 7.7) for symmetric spaces of
non-compact type relies on the Bochi inequality for matrices, thus eventu-
ally on linear algebra (see the other proof given in [17]). It would be very
interesting to find a geometric proof, akin to our proof of Theorem 1.4 for
hyperbolic spaces. Perhaps this could shed light on Question 4.

5. — Is there a geometric Bochi inequality for isometries of a CAT(0)
cube complex? what about isometries of median spaces?
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