
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-σmersenne.org

Nicolas Curien & Loïc Richier
Duality of random planar maps via percolation
Tome 70, no 6 (2020), p. 2425-2471.
<http://aif.centre-σmersenne.org/item/AIF_2020__70_6_2425_0>

© Association des Annales de l’institut Fourier, 2020,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-σnd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2020__70_6_2425_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
70, 6 (2020) 2425-2471

DUALITY OF RANDOM PLANAR MAPS VIA
PERCOLATION

by Nicolas CURIEN & Loïc RICHIER (*)

Abstract. — We discuss duality properties of critical Boltzmann planar maps
such that the degree of a typical face is in the domain of attraction of a stable
distribution with parameter α ∈ (1, 2]. We consider the critical Bernoulli bond per-
colation model on a Boltzmann map in the dilute and generic regimes α ∈ (3/2, 2],
and show that the open percolation cluster of the origin is itself a Boltzmann map
in the dense regime α ∈ (1, 3/2), with parameter

α′ :=
2α+ 3
4α− 2

.

This is the counterpart in random planar maps of the duality property κ ↔ 16/κ
of Schramm–Loewner Evolutions and Conformal Loop Ensembles, recently estab-
lished by Miller, Sheffield and Werner [33]. As a byproduct, we identify the scal-
ing limit of the boundary of the percolation cluster conditioned to have a large
perimeter. The cases of subcritical and supercritical percolation are also discussed.
In particular, we establish the sharpness of the phase transition through the tail
distribution of the size of the percolation cluster.
Résumé. — On étudie la percolation par arête critique sur une carte planaire

de Boltzmann “stable” de paramètre α ∈ (3/2, 2]. On montre en particulier que la
composante connexe de l’origine est elle-même une carte de Boltzmann “stable” de
paramètre

α′ :=
2α+ 3
4α− 2

.

C’est le pendant dans la théorie des cartes planaires de la dualité κ ↔ 16/κ des
processus Schramm–Loewner (SLE) et des ensembles de boucles conformes (CLE)
récemment établie par Miller, Sheffield et Werner [33]. En bonus, on identifie la
limite d’échelle du bord des grands amas de percolation critiques et on prouve la
décroissance exponentielle de la taille des amas dans le régime sous-critique.
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Figure 0.1. A Boltzmann map equipped with a critical bond percola-
tion model. The open percolation cluster of the origin is in red.

1. Introduction and main results

The purpose of this work is to study duality properties of Boltzmann
planar maps through the Bernoulli bond percolation model. The Boltz-
mann measures on planar maps are parametrized by a weight sequence
q = (q1, q2, . . .) of nonnegative real numbers assigned to the faces of the
maps. Precisely, the Boltzmann weight of a bipartite planar map m (that
is, with faces of even degree) is

wq(m) :=
∏

f∈Faces(m)

q deg(f)
2

.

The sequence q is said to be admissible when wq gives a finite measure
to the set of rooted bipartite maps, i.e. with a distinguished oriented edge
called the root edge. The resulting probability measure Pq is the Boltzmann
measure with weight sequence q. A planar map with distribution Pq is called
a q-Boltzmann map, and denoted by Mq.

The scaling limits of Boltzmann bipartite maps conditioned to have a
large number of faces have been actively studied, providing also a natural
classification of the weight sequences. This classification is better under-
stood in terms of pointed rooted Boltzmann maps, i.e., with a distinguished
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vertex in addition to the root edge. We generally focus on critical weight
sequences, so that the average number of edges of such a map is infinite
(otherwise, the weight sequence is called subcritical). Among critical weight
sequences, special attention has been given to generic critical sequences, for
which the degree of a typical face has finite variance. Building on earlier
works of Marckert & Miermont [29] and Le Gall [27], Marzouk proved in [30]
that generic critical Boltzmann maps all have the same scaling limit, the
Brownian map. See also [32] for the case of quadrangulations. For a differ-
ent scaling limit to arise, Le Gall & Miermont initiated in [28] the study of
critical sequences q such that the degree of a typical face is in the domain of
attraction of a stable law with parameter α ∈ (1, 2). The weight sequence
q is then called non-generic critical with parameter α, and the associated
q-Boltzmann mapMq is said to be discrete stable with parameter α. Under
slightly stronger assumptions, they proved the subsequential convergence
towards random metric spaces called the stable maps with parameter α (see
also [5, 12] for a study of their dual maps). The geometry of non-generic
critical Boltzmann maps exhibits large faces that remain present in the
scaling limit. The behaviour of these faces is believed to differ in the dense
phase α ∈ (1, 3/2), where they are supposed to be self-intersecting, and in
the dilute phase α ∈ (3/2, 2), where it is conjectured that they are self-
avoiding, see [35]. In this paper, we will also deal with q-Boltzmann maps
that are discrete stable with parameter α = 2, meaning that q is critical
and that the degree of a typical face falls into the domain of attraction of
a Gaussian distribution (thereby generalizing the generic critical regime).
The framework of this paper is the Bernoulli bond percolation model

on discrete stable maps with parameter α ∈ (3/2, 2]. Given a planar map
m, the bond percolation model on m is defined by declaring each edge
open (or black) with probability p ∈ [0, 1] and closed (or white) otherwise,
independently for all edges. When considering this model, we implicitly
work conditionally on the event that the root edge of the map is open. We
are mostly interested in the open connected component containing the root
edge, called the (open) percolation cluster of the origin.

As we will detail in Section 3, there is a natural definition of a critical
parameter, the percolation threshold pcq ∈ [0, 1], that has been determined
in [14, Theorem 11.8] as an explicit function of the weight sequence q. This
parameter is indeed the almost sure percolation threshold for existence of
infinite cluster in a half-plane model of q-Boltzmann maps. Our main result
deals with the distribution of the percolation cluster of the origin in finite
Boltzmann maps.
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Theorem 1.1. — Let Mq be a discrete stable map with parameter α ∈
(3/2, 2], equipped with a Bernoulli bond percolation model of parameter
p ∈ [0, 1]. Let C be the percolation cluster of the origin in Mq. Then C is a
Boltzmann map (conditioned to have at least one edge). Moreover, when
p = pcq, the map C is discrete stable with parameter

α′ := 2α+ 3
4α− 2 ∈ [7/6, 3/2),

while when p < pcq it is subcritical and if p > pcq it is discrete stable with
parameter α′ = α.

Remark. — Notice that the whole range of values α′ in the dense regime
is not accessible, the parameter α′ = 7/6 being a lower bound. This is the
parameter associated with critical percolation on discrete stable maps with
parameter α = 2, see [4] for the case of uniform triangulations. We interpret
this result has a duality property of Boltzmann maps through critical per-
colation, which has also been observed in the so-called Schramm–Loewner
Evolutions (SLE) and Conformal Loop Ensembles (CLE) by Miller,
Sheffield and Werner [33]. By Theorem 1.1, we establish the discrete coun-
terpart of this result in random planar maps. Note that the results of [33]
also call on a continuum analog of critical Bernoulli percolation. This
question is closely related to a stronger form of the celebrated Knizhnik–
Polyakov–Zamolodchikov (KPZ) formula [25]. Namely, it is believed that
planar maps equipped with statistical mechanics models converge towards
the so-called Liouville Quantum Gravity (LQG) model [19] coupled with a
CLE of a certain parameter κ ∈ (8/3, 8) (see [22] for an example in the case
of the percolation model on quadrangulations). Moreover, discrete stable
maps are known to be related to planar maps equipped with a O(n) loop
model [8] through the so-called gasket decomposition. As a consequence,
there is a conjectural relation between the parameter α ∈ (1, 2] of Boltz-
mann maps and the parameter κ of CLEs, given by the formula

α = 1
2 + 4

κ
.

We can thus check that the duality relation of Theorem 1.1 corresponds to
the duality relation for SLEs and CLEs of [33], that is κ′ = 16/κ, through
this identity.
Finally, for q-Boltzmann maps in the subcritical and dense regimes,

by [14, Theorem 11.8] we have pcq = 1, which explains why we consider
only discrete stable maps with parameter α ∈ (3/2, 2] in Theorem 1.1.
In [14, Theorem 12.6], the results of this paper are used to prove that pcq
also corresponds to the almost sure percolation threshold for existence of
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infinite cluster in the q-Boltzmann maps of the plane. We also believe that
with our techniques, one can prove that for every p < 1, the cluster of the
origin C is subcritical if Mq belongs to the subcritical or dense regime.

The recent results of [35] also allow to identify the scaling limit of
the boundary of the percolation cluster, in the Gromov–Hausdorff sense
(see [13] for details on this topology).

Corollary 1.2 ([35, Theorem 1.1]). — LetMq be a discrete stable map
with parameter α ∈ (3/2, 2], equipped with a Bernoulli bond percolation
model of parameter p = pcq. Let Ck be the percolation cluster of the origin in
Mq, conditioned to have perimeter 2k (equipped with its graph distance).
Then there exists a slowly varying function Λ such that in the Gromov–
Hausdorff sense,

Λ(k)
k1/β · ∂Ck

(d)−→
k→∞

Lβ , where β := α− 1
2 ∈ (1, 3/2]

and Lβ is the random stable looptree with parameter β, see [16].

We also prove the following results concerning the distribution of the size
of the percolation cluster (see the end of this introduction for the meaning
of the notation ≈).

Proposition 1.3. — Let Mq be a discrete stable map with parameter
α ∈ (3/2, 2], equipped with a Bernoulli bond percolation model of param-
eter p ∈ [0, 1]. Let C be the percolation cluster of the origin in Mq, and |C|
be its total number of vertices. Then the following estimates hold.

• Critical case. If p = pcq, we have

Pq(|C| = 2n) ≈
n→∞

n−
8α+4
2α+3 .

• Supercritical case. If pcq < p 6 1, we have

Pq(|C| = 2n) ≈
n→∞

n−
2α+1
α .

• Subcritical case. If 0 6 p < pcq, there exists C1, C2 > 0 such that
for every n ∈ Z>0,

Pq(|C| = 2n) 6 C1 exp(−C2n).

Note that in the previous statement, we implicitly restricted ourselves to
the values of n for which Pq(|C| = 2n) 6= 0.

Remark. — In the wording of statistical mechanics, this result is known
as the sharpness of the phase transition of the Bernoulli bond percolation
model, since the tail distribution of the volume of the percolation cluster is
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polynomial in the (super)critical regime, and suddenly becomes exponential
in the subcritical regime. In the case of critical and supercritical percolation,
Proposition 1.3 is a direct consequence of Theorem 1.1 and the Bouttier–
Di Francesco–Guitter bijection [10] (see Proposition 2.3). On the contrary,
in the subcritical case, Proposition 1.3 does not follow from Theorem 1.1.
There, we also need to prove the exponential decay for the perimeter of
the percolation cluster (see Lemma 5.1), from which Proposition 1.3 and
Theorem 1.1 both stem.

Context

This paper takes place in the framework of percolation on random planar
maps, which has been the subject of extensive work. The first model to be
considered was site percolation on the so-called Uniform Infinite Planar Tri-
angulation (UIPT), for which Angel determined the percolation threshold
in [1]. Later on, he also dealt with the half-plane analog of the UIPT [2].
This work was then extended to bond and face percolation models and
to quadrangulations of the half-plane [3] and of the plane [31]. The case
of site percolation on quadrangulation, more delicate, has also been stud-
ied [7, 34]. Furthermore, many properties of the percolation models have
been investigated, like critical exponents [3, 21], crossing probabilities [34]
or the Incipient Infinite Cluster [36]. The common thread of these papers
is the so-called peeling process, that first appeared in the pioneer work of
Watabiki [37] and was made rigorous by Angel in [1]. The peeling process
proved to be very effective to study random planar maps, in particular the
percolation models on them. When introduced by Angel, the rough idea of
the peeling process was to reveal the map face by face. More recently, Budd
introduced in [11] a variant called the lazy peeling process, that reveals in-
stead the map edge by edge and allows to treat all Boltzmann maps in a
unified way [14]. Note that percolation on random planar maps have been
investigated by means of other techniques, like combinatorial decomposi-
tions [15] and analytic combinatorics [4].
Our approach in this paper builds upon and unifies those of [3] and of [4].

More precisely, as in [4] we use the Boltzmann point of view –in particu-
lar the notion of criticality for Boltzmann maps– but replace the analytic
combinatorics part by new probabilistic estimates using the peeling process.
However, although our result encompasses a large class of maps, namely
bond percolation on bipartite Boltzmann maps, it does not recover those
of [4] which were obtained in the case of (bond and site) percolation on
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triangulations (where the maps are non-bipartite). We believe that our
methods extend to the non-bipartite case, at the cost of technical difficul-
ties.
As mentioned above, the key tool is to use a new peeling process which

is tailored to bond percolation exploration. This process is close in spirit
to those of [1] or [3] but slightly more delicate here. This peeling process
is also explained and used in [14] to which the reader is referred for ex-
tensions. The strategy of our proof is based on the study of cut-edges of
percolation clusters, that disconnect the cluster when removed, see Fig-
ure 4.1. By computing the probability that the root edge is a cut-edge of
the percolation cluster in two different ways, we are able to determine the
partition function of the cluster, which is enough to characterize discrete
stable maps as we shall prove. We then transpose the problem on Infinite
Boltzmann Half-Planar Maps, in which the exploration process is described
in terms of a random walk with increments in the domain of attraction of
a stable law, for which the probabilistic estimates are routine.
The paper is organized as follows. In Section 2, we start with fundamen-

tal definitions around Boltzmann maps, set up some tools that we need,
and then give a clear account of the possible classifications of Boltzmann
maps (Propositions 2.4 and 2.5) that we prove to be all equivalent to each
other. Section 3 is devoted to background on the bond percolation model on
Boltzmann maps, where we define from scratch the peeling processes that
we use throughout the paper. We then turn in Section 4 to the technical
core of the paper, which is to estimate the probability that the root edge
is a cut-edge of the percolation cluster in the half-planar case. This allows
to establish Theorem 1.1 in the cases of critical and supercritical percola-
tion. Finally, we deal with subcritical percolation in Section 5, where we
prove Theorem 1.1 and Proposition 1.3 by using a peeling process defined
on q-Boltzmann maps instead of their half-planar version.

Notation

Throughout the paper, given two sequences of real numbers (xn : n ∈ N)
and (yn : n ∈ N), we write

xn ≈
n→∞

yn

if there exists an (eventually positive) slowly varying function L such that
xn = L(n)yn for every n > 0. Recall that a function L : R+ → R+ is slowly
varying (at infinity) if for every λ > 0 we have L(λx)/L(x)→ 1 as x→∞.

TOME 70 (2020), FASCICULE 6
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We may also use the notation xn ∝ yn if there exists a constant C > 0
(that does not depend on n) such that xn = Cyn for every n > 0.

Acknowledgements

We warmly thank Grégory Miermont for interesting discussions.

2. Boltzmann maps

This section is devoted to Boltzmann distributions and their proper-
ties. The goals are to set up tools for the remainder of the paper, as
well as to connect the several possible definitions of the type of a Boltz-
mann map that are scattered over the literature. There are three commonly
used classifications of weight sequences and Boltzmann maps: one uses the
Bouttier–Di Francesco–Guitter bijection between planar maps and well-
labeled trees [10], another deals with the partition function of maps with a
boundary, and the last one is based on the peeling process [11]. We show
that these definitions are equivalent in Propositions 2.4 and 2.5.

2.1. Maps

A planar map is a proper embedding of a finite connected graph in the
two-dimensional sphere S2, viewed up to orientation-preserving homeomor-
phisms. We always consider rooted maps, i.e., with a distinguished oriented
edge e∗ called the root edge. The faces of a map are the connected com-
ponents of the complement of the embedding of the edges, and the degree
deg(f) of the face f is the number of oriented edges incident to this face.
For technical reasons, we restrict ourselves to bipartite maps, in which all
the faces have even degree. All the maps we consider are planar, rooted and
bipartite so that we may simply call such an object a map. A generic map
is usually denoted by m, and we use the notation V(m), E(m) and F(m)
for the sets of vertices, edges and faces of m. The set of maps is denoted
by M. We may also consider pointed maps, which have a marked vertex
and whose set is denoted byM•.
We will also deal with maps with a boundary, meaning that the root face

f∗ that lies on the right of the root edge is interpreted as an external face,
whose incident edges and vertices form the boundary of the map (while
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the other vertices, edges and faces are called internal). The boundary ∂m
of a map m is called simple if it is a cycle without self-intersections. The
degree #∂m of the external face is the perimeter of m. The set of maps
with perimeter 2k is denoted byMk. By convention, the map † made of a
single vertex is the only element ofM0.

2.2. Boltzmann distributions

For every weight sequence q = (qk : k ∈ N) of nonnegative real numbers,
we define the Boltzmann weight of a map m ∈M by

(2.1) wq(m) :=
∏

f∈F(m)

q deg(f)
2

,

with the convention wq(†) = 1. The weight of a pointed map is the weight
of its underlying non-pointed map. We say that q is admissible if the par-
tition function wq(M) is finite. Surprisingly, this is equivalent to say that
wq (M•) is finite (see [4, Proposition 4.1] for a proof). We denote by Pq the
probability measure onM associated to wq, and call q-Boltzmann map a
map with this distribution. We will use the following function introduced
in [29]:

(2.2) fq(x) :=
∞∑
k=1

(
2k − 1
k − 1

)
qkx

k−1, x > 0.

By [29, Proposition 1], q is admissible if and only if the equation fq(x) =
1 − 1/x has a solution in (0,∞), and the smallest such solution is then
denoted by Zq. This number has a fairly nice interpretation since Zq =
(wq (M•) + 1)/2. The equation fq(Zq) = 1 − 1

Zq
enables us to define the

following probability distribution.

Definition 2.1. — If q is an admissible weight sequence, we put

µq(0) = 1− fq(Zq) and µq(k) = (Zq)k−1
(

2k − 1
k − 1

)
qk, k ∈ N.

We let mµq be the mean of the probability measure µq, which yields a
first classification of weight sequences essentially due to [8, 28, 29]. This
distribution pops-up if one studies (pointed) Boltzmann maps using bi-
jections with so-called well-labeled trees. Indeed, through the Bouttier–Di
Francesco–Guitter bijection [10] together with the Janson–Stefánsson bijec-
tion [24, Section 3], one obtains a Galton–Watson tree whose offspring dis-
tribution is precisely µq, see [29, Proposition 7], [24, Appendix A] and [35,
Lemma 2.2] for details. In particular, we always have mµq 6 1.

TOME 70 (2020), FASCICULE 6
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Definition 2.2. — Let q be an admissible weight sequence. The q-
Boltzmann mapMq is called critical if µq has meanmµq = 1, and subcritical
otherwise.
Moreover, we say that Mq is discrete stable of parameter α ∈ (1, 2] if

µq is critical and in the domain of attraction of a stable distribution with
parameter α.

Remark. — Recall that µq is in the domain of attraction of a stable
distribution with parameter α ∈ (1, 2) if

µq ([k,∞)) ≈
k→∞

k−α,

while µq is in the domain of attraction of a Gaussian distribution (stable
with parameter 2) if the truncated variance

Vq(k) :=
k∑
j=0

j2µq(j)

is slowly varying at infinity. By Karamata’s Theorem [6, Theorem 8.1.6], in
both cases, this is equivalent to the existence of a slowly varying function
`q such that

(2.3) ϕµq(t) = 1− t+ `q (1/t) tα + o(tα`q (1/t)) as t→ 0+ (α ∈ (1, 2]),

where ϕµq is the Laplace transform of the probability measure µq.

We emphasize that Definition 2.2 is slightly more general than those
of [5, 8, 12, 14, 27, 28, 29], because we allow slowly varying corrections.
See [35, Remark 2.5] for details on the interpretation of these definitions
in terms of q-Boltzmann maps. Before moving to another characterization
of criticality, let us state a result, which combined with Theorem 1.1 will
imply the critical and supercritical cases of Proposition 1.3.

Proposition 2.3. — Let Mq be a discrete stable map of parameter
α ∈ (1, 2]. Then, its total number of vertices #V(Mq) satisfies

Pq (#V(Mq) = n) ≈
n→∞

n−
2α+1
α .

In this result, we implicitly restrict ourselves to values of n for which
Pq (#V(Mq) = n) 6= 0.
Proof. — We invoke the Bouttier–Di Francesco–Guitter bijection [10],

together with the Janson–Stefánsson bijection [24, Section 3] that we both
mentioned. These allow to represent the number of vertices of a pointed q-
Boltzmann mapM•q (chosen inM• with probability P•q proportional to wq)
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as the total number of leaves of a Galton–Watson tree whose offspring dis-
tribution µq (given in Definition 2.1) is critical and falls within the domain
of attraction of a stable law with parameter α. Combined with the results
of [26], we obtain for those n ∈ N for which the probability is non-zero that

P•q
(
#V(M•q ) = n

)
≈

n→∞
n−

1
α−1.

But we also have

Pq (#V(Mq) = n) ∝ 1
n
P•q
(
#V(M•q ) = n

)
,

and the proof follows. �

2.3. Boltzmann maps with a boundary

Let us now introduce the partition functions for maps with a fixed
perimeter,

(2.4) W (k)
q := 1

qk

∑
m∈Mk

wq(m), k ∈ Z>0,

where the factor 1/qk stands for the fact that the root face receives no
weight. These quantities are all finite when q is admissible. The distribution
of q-Boltzmann maps with perimeter 2k is then defined by

(2.5) P(k)
q (m) :=

1{m∈Mk}wq(m)
qkW

(k)
q

, m ∈M, k ∈ Z>0.

We now recall the asymptotics of the partition functionW (k)
q . Following [8]

(see also [14, Chapter V] without slowly varying functions or [35, Sec-
tion 2.2]), the asymptotics of the partition function W (k)

q are given by

W (k)
q ∼

k→∞

Cqr
−k
q

k
3
2

(Mq subcritical)

W (k)
q ≈

k→∞

r−kq

kα+ 1
2

(Mq discrete stable with parameter α ∈ (1, 2])

where rq := (4Zq)−1 and Cq is a positive constant. Note that for α = 2,
our more general definition requires a new proof that we provide in Propo-
sition 2.5. The exponent a := α + 1/2 dictates the polynomial behavior
of the partition function. Thus, we borrow the notation of [14] for weight
sequences.

TOME 70 (2020), FASCICULE 6
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Notation. — An admissible weight sequence q is of type a = 3/2 if the
q-Boltzmann map Mq is subcritical, and of type a ∈ (3/2, 5/2] if Mq is
discrete stable with parameter α = a− 1/2.

It turns out that the asymptotics of the partition function can be used
as an equivalent definition for the type of a weight sequence, as we will see
in Propositions 2.4 and 2.5.

2.4. Peeling process of q-Boltzmann maps

We start by reviewing the lazy peeling process of q-Boltzmann maps, first
introduced in [11, Section 3.1]. We refer to [14, Chapter 3] for a detailed
presentation, in particular we focus on filled-in peeling processes.
Let us consider a finite map m ∈ M. We call peeling exploration of m

an increasing sequence ē0 ⊂ ē1 ⊂ · · · ⊂ m of sub-maps of m that contain
the root edge. We also require that the map ēi has a marked simple face,
called the hole, such that when filled-in with the proper (and unique) map
with a general boundary, we recover m. A peeling exploration of the map
m is driven by an algorithm A that associates to every map ēi an edge
on the boundary of its hole, or a cemetery state ‡. The cemetery state
is interpreted as the end of the peeling exploration (in particular, if the
hole has perimeter zero, A must take the value ‡). We denote by θ be the
lifetime of the peeling exploration.
The peeling exploration of m driven by A is the sequence of sub-maps

ē0 ⊂ · · · ⊂ ēθ ⊂m defined as follows. First, the map ē0 is made of a simple
face whose degree is that of the root face f∗ of m. Then given ēi, the map
ēi+1 is obtained by revealing the status of the face fi incident to the left
of A(ēi) in m, which we call peeling the edge A(ēi). Two situations may
occur, that are illustrated in Figure 2.1:

(1) The face fi does not belong to ēi, and has degree 2k (k ∈ N). In
this case, ēi+1 is obtained from ēi by adding this new face, without
performing any identification of its edges (that is, we simply add
a polygon of degree 2k incident to A(ēi)). We denote this event
by Ck.

(2) The face fi belongs to ēi. In this case, ēi+1 is obtained from ēi by
identifying the two half-edges of the hole that correspond to A(ēi).
This creates two holes, whose perimeters are denoted by 2j and 2k
(j, k ∈ Z>0), from left to right. In this case, we fill-in one of the
holes (determined by the algorithm A) using the proper map with
a boundary, so that ēi+1 has one hole. We denote this event by Gj,k.
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This peeling process is called a filled-in exploration in the terminology
of [11, 14].

2k

Ck

2k2j

Gj,k

A(ēi)

A(ēi)A(ēi)

Figure 2.1. The peeling events Ck and Gj,k. The explored part of the
map is in gray and the unexplored part in white. The filled-in hole is
the hatched area.

We now let q be an admissible weight sequence, and give the distribution
of the steps of the peeling process (ēi : 0 6 i 6 θ) of a q-Boltzmann
map (that is, under Pq). This distribution does not depend on the peeling
algorithmA, that can even be random as long as it does not use information
on the unrevealed parts of the map. For every 0 6 i 6 θ, we let Pi be the
half-perimeter of the hole of the map ēi. Then conditionally on the map ēi
(and on the event {θ > i}) we have

(2.6)
Pq (Ck | ēi) = p(Pi)(k) (k > 1)

and Pq (Gj,k | ēi) = p(Pi)(j, k) (j, k > 0),

where

p(l)(k) := qk
W

(l+k−1)
q

W
(l)
q

(l > 1, k > 1)

and p(l)(j, k) := W
(j)
q W

(k)
q

W
(l)
q

1j+k+1=l (l > 1, j, k > 0)

Finally, at each time, the maps that fill in the holes are q-Boltzmann maps
with the proper perimeter, independent of the past exploration (this is
sometimes referred to as the spatial Markov property). We refer to [14,
Proposition 4.5] for detailed proofs.
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Note that the probabilities in (2.6) depend on ēi only through the perime-
ter of the hole. Thus, by [14, Equation (5.2)], when the half-perimeter
Pi tends to infinity, these probabilities converge towards limiting transi-
tion probabilities p(∞)(k) = νq(k − 1) and p(∞)(∞, k) = p(∞)(k,∞) =
1
2νq(−k − 1), where

(2.7) νq(k) =
{
qk+1r

−k
q if k > 0

2W (−k−1)
q r−kq if k 6 −1.

We refer to [14, Lemma 5.2] for the proof that this is indeed a probability
measure on Z. The quantities p(∞) will be interpreted as the transition
probabilities for the peeling process on the q-Boltzmann map of the half-
plane (see Section 3.2.3).

2.5. Classification of weight sequences

In the last sections we have defined the offspring distribution µq appear-
ing when dealing with bijections with labeled trees, the partition functions
Wq enumerating maps with a boundary and the probability measure νq
connected to the peeling process. We now give equivalent definitions of the
type of a weight sequence q using those notions, starting with the criticality
property.
The following result is a direct consequence of [11, Proposition 4] and [4,

Proposition 4.3]. Recall that a random walk (Xi : i > 0) drifts to ∞ (resp.
to −∞) if P (Xi > X0, ∀ i > 0) > 0 (resp. if P (Xi 6 X0, ∀ i > 0) > 0).
Moreover, if a (non-constant) random walk drifts neither to∞ nor to −∞,
it is said to oscillate.

Proposition 2.4. — Let q be an admissible weight sequence and Mq
be a q-Boltzmann map. Then the following statements are equivalent.

(1) The probability measure µq has mean mµq < 1 (Mq is subcritical,
q is of type 3/2).

(2) There exists constants C > 0 and r > 0 such thatW (k)
q ∼ Cr−kk−3/2

as k →∞.
(3) The random walk Xq with steps distributed as νq drifts to −∞.
(4) The quantity Eq[#V(Mq)2] is finite.

Moreover, if none of these conditions is satisfied, µq is critical and Xq
oscillates.

The next result deals with the characterizations of the type of a critical
weight sequence.
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Proposition 2.5. — Let q be an admissible weight sequence such that
the q-Boltzmann map Mq is critical, and fix a ∈ (3/2, 5/2]. Then the fol-
lowing statements are equivalent.

(1) The probability measure µq is in the domain of attraction of a stable
law with parameter a − 1/2 (Mq is discrete stable with parameter
a− 1/2, q is of type a).

(2) The partition function Wq satisfies W (k)
q ≈ r−kq k−a as k →∞.

(3) The probability measure νq satisfies νq([k,∞)) ≈ k1−a as k → ∞
if a ∈ (3/2; 5/2). If a = 5/2 then

∑k
j=0 j

3/2νq(j) is slowly varying
when k →∞.

(4) The probability measure νq satisfies νq((−∞, k]) ≈ k1−a as k →
−∞.

Proof. — The implication (1)⇒ (2) has already been established in [35,
Equation (15)], except for the case a = 5/2 where we use here a more
general definition. The weight sequence q being admissible, we have the
following expression for the partition function [8] and [14, Equation (5.7)]

(2.8) W (k)
q =

(
2k
k

)∫ 1

0

(
uZq(u)

)k du, k ∈ Z>0,

where q(u) := (uk−1qk : k ∈ N). Following [35, Section 2.2], we can rewrite
the integral as

(2.9)
∫ 1

0

(
uZq(u)

)k du = (Zq)k
∫ ∞

0
e−ktU(dt),

where
U(t) := −Zqe

−t + Zqϕµq(t), t > 0,

and ϕµq is the Laplace transform of the probability measure µq. By ap-
plying [6, Theorem 1.7.1′] to the function U in (2.9) together with the
remark (2.3) on the domain of attraction of stable laws, this ensures that
(1)⇔ (2).
By the definition of µq in Lemma 2.1 and that of νq in (2.7), we obtain

that

νq(k) = 4k(2k−1
k−1

)µq(k + 1), k ∈ Z>0.

A summation by parts then establishes that (1) ⇔ (3). Finally, by (2.7),
we have νq(k) = 2W (−k−1)

q r−kq if k 6 −1 which shows that (2) ⇔ (4) and
concludes the proof. �
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3. Bond percolation and explorations

In this section, we define the bond percolation model and the associated
peeling exploration. The bond percolation model on a map m is defined by
declaring each edge open (or black) with probability p ∈ [0, 1] and closed
(or white) otherwise, independently for all edges. For the sake of clarity,
we usually hide the parameter p in the notation. When considering this
percolation model, we implicitly work conditionally on the event that the
root edge of the map is black (but the states of the other edges remain
unknown). We will be interested in the black connected component of the
source of the root edge, called the black percolation cluster of the origin.
In what follows, we may simply speak of percolation cluster since there is
no risk of confusion. Naturally, the root edge of the percolation cluster is
that of the underlying map.
We first prove the easy fact that the percolation cluster of a Boltzmann

map is still Boltzmann distributed. We then turn to the description of our
peeling exploration both in a finite and infinite setup.

3.1. Percolation clusters are Boltzmann maps

Let q be an admissible weight sequence, and consider the percolation
model with parameter p ∈ [0, 1] on a q-Boltzmann map. We first establish
that the percolation cluster is itself a Boltzmann map. We rely on a de-
composition inspired by [4]. This decomposition is based on islands, that
are maps with a simple boundary in which the boundary edges are black,
and all the internal edges incident to the boundary are white. For every
k ∈ N, we let Ik be the set of islands with perimeter 2k and introduce the
partition function

(3.1) Ik(p) := 1
qk

∑
m∈Ik

p#E•(m)(1− p)#E◦(m)wq(m),

where E•(m) (resp. E◦(m)) stands for the set of black (resp. white) internal
edges of m.
The fundamental observation is that a percolated map m can be uniquely

decomposed into its percolation cluster c and a collection of islands (mf :
f ∈ F(c)) associated to the faces of the cluster, and such that the perimeter
of mf equals deg(f) for every f ∈ F(c). These islands are obtained by cut-
ting the map m along the edges of the cluster, see [4, Section 2.3] for details
and Figure 3.1 for an illustration. As usual when dealing with planar maps,
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to kill symmetry factors, we shall suppose that during this decomposition
we have distinguished an oriented edge in each face of the cluster of the
root edge, which induces an oriented edge on the island, see Figure 3.1.
We shall not specify how to do so since any deterministic procedure would
work. We obtain the following result.

Proposition 3.1. — The percolation cluster C of Mq is a q̃-Boltzmann
map (conditioned to have at least one edge), where q̃ is defined by

(3.2) q̃k = pkIk(p), k ∈ N.

In particular, the weight sequence q̃ is admissible.

Proof. — The above decomposition is rigid, in the sense that the oper-
ation taking a percolated map m and giving its origin cluster c together
with a collection of islands with perimeters matching those of the faces of
c is bijective. Taking the wq weight we deduce that

Pq(C = c) ∝ p#E(c)
∏

f∈F(c)

I deg(f)
2

(p), c ∈M\{†}.

By the identity #E(c) =
∑
f∈F(c)

1
2 deg(f), this gives

Pq(C = c) ∝ wq̃(c), c ∈M\{†},

and thus the expected result. At the same time, this shows that q̃ is ad-
missible. �

=C
C

Figure 3.1. The decomposition of a map with perimeter 12 into its
percolation cluster C with perimeter 8 (in red) and three islands.

We now prove a result that will be useful in Section 4.1 to relate perco-
lation on finite q-Boltzmann maps to percolation on q-Boltzmann maps of
the half-plane.
When the map m and its percolation cluster c both have fixed perimeter,

say 2l and 2m respectively, the above decomposition can still be defined.
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As before, every internal face f of c is filled in with an island of perimeter
deg(f). However, the root face of c plays a special role: it is filled in with an
island of perimeter 2m such that the face incident to the left of the root edge
has degree 2l (because of the prescribed perimeter of m, see Figure 3.1).
For every l,m ∈ N, we let I(l)

m be the set of such islands and denote by
I

(l)
m (p) the associated partition function, defined as in (3.1). The following
result extends Proposition 3.1 to Boltzmann maps with a boundary.

Proposition 3.2. — Let l,m ∈ N, and consider the percolation model
with parameter p ∈ [0, 1] on a q-Boltzmann map M

(l)
q with perimeter 2l

(i.e., with law P(l)
q ). Then under P(l)

q ( · | #∂C = 2m), the percolation cluster
C of M (l)

q has law P(m)
q̃ , where q̃ is defined by (3.2).

Proof. — By the aforementioned decomposition of maps with fixed peri-
meter, for every c ∈Mm,

P(l)
q (C = c) ∝ I(l)

m (p)p#E(c)
∏

f∈F(c)
f 6=f∗(c)

I deg(f)
2

(p),

so that there exists a constant κ (that depends on p, q, m and l but not
on c) such that P(l)

q (C = c) = κ·wq̃(c). By summing over all maps c ∈Mm,
we have

P(l)
q (#∂C = 2m) =

∑
c∈Mm

P(l)
q (C = c) = κ · q̃mW (m)

q̃ ,

so that P(l)
q (C=c |#∂C=2m)=P(m)

q̃ (c) for every c∈Mm, as expected. �

3.2. Peeling exploration of bond percolation

We now introduce the peeling algorithm that we will use in order to
study the bond percolation model on q-Boltzmann maps. Surprisingly, it
will be easier to think of bond percolation as the shadow of a more general
process where edges of the map carry independent geometric numbers of
“marks”. The reader eager to get an “explanation” for this is referred to [14,
Section 11.3] where bond percolation is seen as a limit of face percolation
on a modified map.

3.2.1. Percolation exploration on finite deterministic maps

We start by defining this algorithm in a deterministic context. Let us
consider a finite map m ∈M, and assume that every edge e of m carries a
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nonnegative integer number ne of “marks” (represented by red crosses on
our figures). We turn these marks into a coloring of the edges by declaring
that the edge e is black if and only if ne > 0. The exploration of m will
be a sequence of decorated sub-maps ē0 ⊂ · · · ⊂ ēθ ⊂ m, i.e. sub-maps
carrying marks on their edges, including the boundary edges of their hole
(we however keep the same notation ē for a sub-map). Here, ēi is a sub-
map of m means that we can recover m by gluing inside the only hole of
ēi the proper map with a general boundary, this map carrying itself marks
on the edges, and we simply add-up the marks in the gluing operation (see
Figure 3.2).

Figure 3.2. Illustration of the gluing operation in the presence of
marks. Notice in particular that the marks carried by the half-edges
on both sides of the separating edge of the inside map add up in the
gluing process. The bottom picture shows the interpretation of marks
in terms of percolation.

An edge on the boundary of the hole of a submap ē ⊂ m carrying no
mark is called free. We do so because inside m, it may correspond either
to a black or a white edge depending whether the edge on which we glue
it inside the hole carries a mark or not.
In the next part, we call boundary condition of ēi the marks on the

boundary of its hole. We will say that ēi ⊂m has a “black-free” boundary
condition if the boundary of its unique hole is made of two finite connected
segments, one made of edges carrying a single mark (black edges) and the
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other one of edges carrying no mark (free edges). When ēi ⊂ m has a
“black-free” boundary condition, then the edge to peel A(ēi) is the edge
immediately on the left of the black segment (when turning counterclock-
wise inside the hole). Furthermore, if the boundary condition is totally
black, then we set A(ēi) = ‡ and the algorithm ends.

The basic principle of the peeling process (ēi : 0 6 i 6 θ) of m is to reveal
if ne = 0 or not, without revealing the exact value ne itself. Precisely, the
algorithm works as follows: we start by defining ē0 as the map made of a
simple face whose degree is that of the root face of m, and carrying a single
mark on the edge that corresponds to the root edge (recall that we assumed
that the root edge carries at least one mark). The sub-map ē0 ⊂ m thus
has a black-free boundary condition, and the edge A(ē0) is the edge on the
left of the root edge.

Algorithm 3.3. — Let 0 6 i < θ and assume that the map ēi has
“black-free” boundary condition. Recall that A(ēi) is the edge on the left
of the black segment on the boundary of the hole. Inside the hole to which
A(ēi) belongs, consider the edge ε of the map that fills this hole and which
is opposite(1) to A(ēi).

(1) If ε carries at least one mark, then remove one mark from ε and
add this mark on A(ēi) to form ēi+1 (we just move one mark).

(2) If ε carries no mark, then we trigger a standard peeling step and
reveal the face inside the hole that is incident toA(ēi). If we discover
a new face (event of type Ck) the new edges on the boundary of
the hole carry no mark. If two half-edges corresponding to A(ēi) are
identified (event of type Gj,k), their marks add up and two holes are
created. Then, we fill-in the hole that has a totally monochromatic
boundary.

Note that the “black-free” boundary condition is preserved, so that Al-
gorithm 3.3 is well defined. In case 2, for an event of type Ck, both sides of
the peeled edge have been discovered and no mark has been encountered:
this edge is white, see Figure 3.3. For an event of type Gj,k, the peeled edge
may be identified to a black edge (hence become black) or to a free edge
(hence become white). The two cases are illustrated in Figure 3.3.
We now make important remarks. Some care is needed when in case 2,

an event of type Gj,k identifies the peeled edge with the right-most edge of

(1)To be more precise, recall that if ēi ⊂ m this means that the map m is obtained
by gluing certain decorated maps hj with general boundaries in the holes of m. We can
consider the edge ε of the map hj0 filling-in the hole to which A(ēi) belongs and which
is identified with A(ēi) in this gluing operation. This is what we mean by “opposite to”.
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Ck

ēi 2.

A(ēi) 2k

6

2 2

6

G3,1

?

Finds a mark

Finds no mark
trigger a peeling step

A(ēi+1)

1.

A(ēi) A(ēi)

A(ēi+1)
A(ēi+1)

A(ēi)

A(ēi)

A(ēi+1)

4

4

A(ēi)

A(ēi+1)

G2,2

G1,3

Figure 3.3. The peeling Algorithm 3.3. Free edges are represented in
darkgray, the explored regions in lightgray and the filled-in regions are
hatched. In the top right drawing, the large vertex serves as a black
segment of length zero on the boundary of the hole.

the black boundary, or to the free edge on the right of the black boundary.
In the first case, the convention is that the endpoint of the peeled edge
belonging to the hole with free boundary serves as a black boundary of
length zero. So we fill in the other hole, and continue the exploration in
the free hole as shown in the framed case of Figure 3.3. In the second case,
the convention is to fill-in the free hole. This is one of the two ways the
algorithm can stop, both being illustrated in Figure 3.4.

STOP

A(ēi )

A(ēi )

Figure 3.4. The two ways Algorithm 3.3 may stop. (Left) The θ-th
peeling step identifies A(ēθ−1) with the edge adjacent immediately on
the right of the black segment. Then, we fill-in the “free” hole created.
(Right) At time θ− 1 the boundary of ēθ−1 contains a single free edge
which is then given a mark at step θ and becomes black. In both cases,
the boundary of ēθ is completely black, and the algorithm stops.
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When running, the exploration driven by Algorithm 3.3 “turns clockwise”
around the boundary ∂C of the percolation cluster, starting from the root
edge (see Figure 3.5). In particular, at time θ, the boundary ∂C of the
percolation cluster has been completely revealed by the exploration process,
as shown in Figure 3.4. Since at every step of the peeling exploration, at
most one half-edge of ∂C is discovered, we have the crude bound

(3.3) #∂C 6 θ + 1,

that will be useful later on (where the extra factor one accounts for the half
root-edge). Before moving to the stochastic properties of this process when
run on percolated q-Boltzmann maps, we let the reader get accustomed to
this exploration by performing the full exploration of the cluster given in
Figure 3.5 below.

3.2.2. Percolation exploration on q-Boltzmann maps

We now let q be an admissible weight sequence, consider a q-Boltzmann
mapMq. We assume that every edge e ofMq carries an independent random
number Ne of marks, distributed as a geometric variable with parameter
p ∈ [0, 1], that is, P (Ne = k) = (1−p)pk for every k ∈ Z>0. As above, these
marks are interpreted as a bond percolation model by declaring that the
edge e is black if and only if Ne > 0. If we further give an additional mark to
the root edge (in order to force it to be black), this precisely corresponds to
the bond percolation model we are working with in this paper. We keep the
notation Pq for the resulting probability measure, hiding the dependence
in the marks.

We now consider the peeling exploration (ēi : 0 6 i 6 θ) of Mq driven
by Algorithm 3.3. We claim that during such an exploration, the following
statement holds.

Lemma 3.4 (Decorated spatial Markov property). — Let 0 6 i < θ,
and recall that Pi is the half-perimeter of the unique hole of ēi ⊂m. Then,
conditionally on ēi, the map filling-in its hole has law P(Pi)

q , and its edges
are equipped with i.i.d. numbers of marks with geometric distribution of
parameter p.

Proof. — The claim is proved by induction. First, it clearly holds in ē0.
Suppose it holds at step i < θ. The mapMi filling-in the hole of ēi is thus a
q-Boltzmann map with i.i.d. numbers of marks with geometric distribution
of parameter p. Let X be the number of mark of the root edge of Mi,
if Mi > 0 then we are in Case 1 of the algorithm, that is, we will move
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Step 4 Step 9 Step 15

Initial map

Figure 3.5. A step by step exploration of a percolated map. On top,
the decorated map to explore as well as its interpretation as a bond
percolation model. Below, the exploration frozen at step 4, step 9 and
step 15. The explored region is in light gray with filled-in parts hashed.
The region that remains to be explored is in white and we drew the map
filling-it in light blue. In orange is the path followed by the exploration:
it turns clockwise around C. Notice the difference between the two
separating edges (of the cluster) visited at steps 9 and 15. In the first
case, this edge carries more than one mark : during its two visits by
the exploration at time at steps 3 and 9, we will face Case 1 of the
algorithm (i.e. discovery of a mark) and no “standard” peeling step is
performed. In particular, at the end of the exploration this separating
edge is seen, from the point of view of the exploration, as two black
edges. In the second case however, the separating edge carries a single
cross: this mark is discovered at step 11 so that at step 15 there is no
mark to discover and we trigger a standard peeling step which result is
a G5,2 event. In particular, at the end of the exploration this separating
edge is indeed seen as a separating black edge of the cluster.

one mark from the root edge of Mi to A(ēi) to get ēi+1. By the memory-
less property of geometric variable, conditionally on X > 1 the variable
X − 1 is again geometric so that the map Mi with one mark removed
from the root edge, is again q-Boltzmann with i.i.d. numbers of marks with
geometric distribution of parameter p. If now X = 0, then the root edge
of Mi carries no mark and we trigger a (standard) peeling step. The result
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follows then from the standard properties of the peeling process, see [14,
Proposition 4.5]. �

The above spatial Markov property of the exploration process given by
Algorithm 3.3 can be used to describe its transition probabilities only in
terms of the lengths of the black and free boundaries. We first introduce
some notation. For every 0 6 i 6 θ, we let Bi (resp. Fi) be the number
of black (resp. free) edges on the boundary of the hole of ēi (at step i of
the peeling algorithm). By definition of Algorithm 3.3, the lifetime θ of the
peeling process then reads

(3.4) θ := inf {i > 0 : A(ēi) = ‡} = inf{i > 0 : Fi = 0}.

Recall the subtlety that when a peeling step swallows the whole black
segment except one vertex (i.e., when Bi = 0), we agree that the black
segment on the boundary is reduced to this vertex in the definition of
Algorithm 3.3. Note that F0 = deg(f∗)−1 is given by the (random) degree
of the root face f∗ ofMq, while B0 = 1. Finally, recall that Pi = 1

2 (Bi+Fi)
stands for the half-perimeter of the hole of the map ēi.
We now examine the possible cases of Algorithm 3.3. In case 1, we see

that Bi+1 = Bi + 1 and Fi+1 = Fi − 1 (a free edge is turned into a
black edge). In case 2, if Ck is realized, then Fi+1 = Fi + 2k − 1, while
if Gj,k is realized, then Fi+1 = Fi − 2j − 2 if free edges are swallowed, or
Bi+1 = Bi − 2k − 1 and Fi+1 = Fi − 1 if black edges are swallowed.
Now, using the law of the peeling steps of a q-Boltzmann map recalled

in (2.6) together with the spatial Markov property of Lemma 3.4, we obtain
the following result.

Lemma 3.5. — Let (ēi : 0 6 i 6 θ) be the peeling exploration of Mq
driven by Algorithm 3.3. Then the process ((Bi, Fi) : 0 6 i 6 θ) is a
Markov chain (killed at the first time Fi takes value zero) whose transition
probabilities are given conditionally on (Bi, Fi) and {Fi > 0} by

(Bi+1, Fi+1) = (Bi, Fi)

+


(1,−1) proba. p

(0, 2k−1) proba. (1−p)p(Pi)(k) (k > 1)
(−2k−1,−1) proba. (1−p)p(Pi)(Pi−k−1, k) (0 6 k 6 1

2 (Bi−1))
(0,−2j−2) proba. (1−p)p(Pi)(j, Pi−j−1) (0 6 j 6 1

2Fi−1).

3.2.3. Bond percolation on Infinite Boltzmann Half-Planar Maps

The proof of our main theorem is based on a careful analysis of cut-
edges and of the tail distribution of the perimeter #∂C of the cluster C
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under Pq. Although such an analysis should in principle be performed on
finite q-Boltzmann maps, it is easier to carry out in the half-planar setting,
where the peeling steps lose their dependency in the perimeter and become
i.i.d.. In this section, we describe the adaptation of our Algorithm 3.3 in the
half-planar case (the main difference being that the algorithm is stopped
as soon as the percolation cluster C is separated from infinity).

The q-IBHPM and its peeling process. Let us briefly review the
construction of the Infinite Boltzmann Half-Planar Map and of its peel-
ing process. We refer to [14, Chapter VI] for details. Fix q an admissible
weight sequence and recall that P(k)

q is the law of a q-Boltzmann map with
perimeter 2k. Then we have the following convergence

(3.5) P(k)
q =⇒

k→∞
P(∞)

q ,

in distribution for the local topology. A map with distribution P(∞)
q is

usually denoted by M(∞)
q , and called the Infinite Boltzmann Half-Planar

Map with weight sequence q (for short, q-IBHPM). It is a.s. a map of the
half-plane, meaning that it is one-ended with a unique infinite face (the
root face), that we think of as an infinite boundary. The q-IBHPM is also
amenable to a peeling process, see [14, Chapter VI]. The description is
very similar to that of the peeling process of a q-Boltzmann map and we
only highlight the differences. A peeling process of a half-planar map m∞
is an increasing sequence (ēi : i > 0) of sub-maps of m∞ that contain
the root edge and such that for every i ∈ Z>0, the map ēi has a unique
hole with infinite perimeter. Here, the map ē0 is the embedding of the
graph of Z in the plane (defining two infinite faces, one of which is the
root face) and given ēi, the map ēi+1 is obtained by revealing the status of
the face fi incident to the left of A(ēi) in m∞. Two situations may occur,
corresponding to peeling events that we denote by Ck and Gk,∞ (or G∞,k)
and that are illustrated in Figure 3.6. The main difference with the finite
setting is that when two holes are created, we fill-in the finite hole.

We now consider the peeling process on the q-IBHPM by choosing m∞ =
M(∞)

q . Then, the conditional distribution of the events Ck and Gk,∞ does
not depend on ēi (as long as the peeling algorithm A does not use infor-
mation outside of ēi) and are given by

(3.6)
P(∞)

q (Ck | ēi) = νq(k − 1) (k > 1).

P(∞)
q (Gk,∞ | ēi) = P(∞)

q (G∞,k | ēi) = νq(−k − 1)/2 (k > 0),

where νq has been defined in (2.7).
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2k

Ck

2k

G∞,k

2k

Gk,∞

2k2k

Figure 3.6. The peeling events Ck, Gk,∞ and Gk,∞. On the event Ck,
the face fi does not belong to ēi, and has degree 2k (k ∈ N). In
this case, ēi+1 is obtained from ēi by adding this new face, without
performing any identification of its edges. Otherwise, fi belongs to ēi
and ēi+1 is obtained from ēi by identifying the two half-edges of the
hole that correspond to A(ēi). This creates two holes, one of which is
infinite. We denote this event by Gk,∞ (if we identify A(ēi) to an edge
on its left) or G∞,k (in the other case), where 2k (k ∈ Z>0) stands for
the perimeter of the finite hole.

Percolation exploration in the q-IBHPM. We resume with a frame-
work similar to that of Section 3.2.2, and suppose that the edges of M(∞)

q
are decorated by i.i.d. numbers of marks with geometric law of parameter
p, and that the root edge is given an extra mark to force it to be black.
We again keep the notation P(∞)

q for the law of the resulting map. We
say that a sub-map ēi of M(∞)

q has “free-black-free” boundary condition
if the boundary of its infinite hole contains a finite segment of black edges
carrying a single mark (and the other edges are free). We then explore the
(left) bond percolation interface starting from the root edge through the
following analogue of Algorithm 3.3.

Algorithm 3.6. — Let i ∈ Z>0 and assume that the map ēi has “free-
black-free” boundary condition. Let A(ēi) be the edge on the left of the
black segment on the boundary of the hole. We consider the edge ε of the
map that fills in the hole of ēi and that is opposite to A(ēi).

(1) If ε carries at least one mark, then remove one mark from ε and
add this mark on A(ēi) to form ēi+1.
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(2) If ε carries no mark, then we trigger a standard peeling step and
reveal the face inside the hole that is incident toA(ēi). If we discover
a new face (event of type Ck) the new edges on the boundary of
the hole carry no mark. If two half-edges corresponding to A(ēi)
are identified (event of type Gk,∞ or G∞,k), their marks add up and
two holes are created. Then, we fill-in the finite hole.

As announced, the main difference with Algorithm 3.3 is that we always
fill-in the finite hole, and so we may (this happens actually in most cases)
not complete a full turn around the boundary ∂C of the cluster before stop-
ping the exploration. More precisely, when an event of type G∞,k happens
with 2k strictly larger than the length of the black boundary, then the
latter is completely swallowed in the finite hole and the exploration stops.
The lifetime of this peeling exploration is denoted by τ .

1.

2k2.
Ck

Gk,∞

2k

G∞,k

2k

1.

2k2.
Ck

Gk,∞

2k

G∞,k

2k

A(ēi )

1.

2k2.
Ck

Gk,∞

2k

G∞,k

2k

A(ēi+1)

A(ēi+1)

A(ēi+1)

A(ēi+1)

Finds a mark
Finds no mark

A(ēi )

A(ēi )

A(ēi )

A(ēi )

Figure 3.7. The peeling Algorithm 3.6. Free edges are represented in
darkgray, the explored region in lightgray, and the filled-in regions are
hatched. Note that in the case Gk,∞, after the gluing operation the
resulting edge A(ēi) will be white (it carries no mark), while in the
case G∞,k it will be black.

Here also, some care is needed after an event of type G∞,k where the
length of the black boundary is exactly 2k + 1: as in the finite setting, the
extremity of the peeled edge then serves as a black boundary of length zero
in order to continue the exploration.
In order to describe the peeling exploration of Algorithm 3.6 run on

M(∞)
q quantitatively, it is convenient to introduce for every 0 6 i 6 τ the

length Bi of the black boundary of the hole of ēi (in terms of number of
edges). By definition we have B0 = 1, and (Bi : 0 6 i 6 τ) evolves as
follows: if the exploration of A(ēi) reveals a mark, then Bi+1 = Bi + 1. If
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we discover no mark and trigger a peeling step, the only non-zero variation
is produced by events of type G∞,k where we then have Bi+1 = Bi−2k−1.
We choose the convention that the last quantity may be negative, in which
case τ = i + 1 and the process stops (moreover, the value Bτ has no
meaning in terms of length of black boundary anymore). Combining the
last observation with (3.6) we arrive at the following result.

Lemma 3.7. — The process (Bi : 0 6 i 6 τ) is a random walk killed at
time τ = inf{i > 0 : Bi < 0}, whose increments are distributed as

(3.7) ∆B := B1−B0 =


1 proba. p

−(2k+1) proba. 1−p
2 νq(−k−1) (k > 0)

0 otherwise.

An important consequence of these observations is the following. Recall
that |C| stands for the total number of vertices of the percolation cluster
of the origin in m∞. Then we have

(3.8) {|C| =∞} = {τ =∞}.

Indeed, while i < τ , the black edges discovered by the peeling algorithm
belong to C. Moreover, if τ <∞, the edge peeled at time τ is a white edge
that encloses C into a finite region of the map. We can use this observation
to compute, as in [14, Theorem 11.8], the bond percolation threshold in the
q-IBHPM, which is then defined by

pcq := inf
{
p ∈ [0, 1] : P(∞)

q (|C| =∞) > 0
}
.

With this definition, the percolation threshold is annealed, however it is also
equal to the quenched threshold, see [14, Theorem 11.8]. Using Lemma 3.7,
we see that τ has a positive probability to be infinite if and only if the
random variable ∆B has positive mean, which amounts to

p− 1− p
2

∑
k>0

(2k + 1)νq(−k − 1)︸ ︷︷ ︸
:=λ

> 0 ⇐⇒ p >
λ

λ+ 2 .

This shows that pcq = λ
λ+2 , which is equivalent to the expression of [14,

Theorem 11.8] that uses the so-called mean gulp and exposure.

4. Cut edges in percolation clusters

The goal is now to prove Theorem 1.1 in the critical and supercritical
cases. Throughout this section, we fix a weight sequence q of type a∈(2,5/2],
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as well as p ∈ [pcq, 1]. We consider the map M(∞)
q and assume as before that

its edges are decorated by i.i.d. numbers of marks with geometric law, so
that it corresponds to the bond percolation model with parameter p.
The main idea is to relate (via Proposition 2.5) the critical and super-

critical cases of Theorem 1.1 to the probability of the event that the root
edge is a cut-edge of the large percolation cluster C, in a sense that we now
make precise. For every map m, an edge e ∈ E(m) is a cut-edge of m if and
only if m\{e} is not connected. When removing the root edge e∗ from the
cluster C, we denote by C− (resp. C+) the connected component containing
the source (resp. the target) of e∗ (rooted at the corner defined by e∗). We
will use the more precise event

(4.1) Cutk :=
{
e∗ is a cut-edge of C and #∂C− = 2k

}
, k ∈ Z>0,

that is illustrated in Figure 4.1.

C−

e∗

C

Figure 4.1. The event Cut7.

4.1. Relating Cutk to Theorem 1.1

From now on, we let q̃ stand for the weight sequence defined in (3.2).
Recall the notation rq := (4Zq)−1 for an admissible weight sequence q.
The connection between cut-edges and Theorem 1.1 is established by the
following proposition.

Proposition 4.1. — For every k ∈ Z>0,

P(∞)
q (Cutk | #∂C > 2m) −→

m→∞
rk+1

q̃ W
(k)
q̃ .
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Proof. — Let us fix k ∈ Z>0. We first argue under P(l)
q (· | #∂C > 2m)

for fixed l,m ∈ N and write

(4.2) P(l)
q (Cutk | #∂C > 2m)

=
∑
j>m P(l)

q (Cutk | #∂C = 2j)P(l)
q (#∂C = 2j)∑

j>m P(l)
q (#∂C = 2j)

.

Then observe that for every l ∈ N, by Proposition 3.2,

P(l)
q (Cutk | #∂C = 2j) = P(j)

q̃ (Cutk).

In the right-hand side, the event Cutk is to be interpreted as the fact that
the root edge separates the map into two maps with a boundary of respec-
tive perimeter 2k and 2(j − k − 1) (formally, all the edges are black under
P(j)

q̃ ). By definition of the Boltzmann measure, this yields

P(l)
q (Cutk | #∂C = 2j) =

W
(k)
q̃ W

(j−k−1)
q̃

W
(j)
q̃

.

By [14, Lemma 3.13], since q̃ is an admissible weight sequence, we get

(4.3) P(l)
q (Cutk | #∂C = 2j) −→

j→∞
W

(k)
q̃ rk+1

q̃ .

Back to (4.2), we find by Cesàro summation

(4.4) P(l)
q (Cutk | #∂C > 2m) −→

m→∞
W

(k)
q̃ rk+1

q̃ ,

and the convergence holds uniformly for l ∈ N because P(l)
q (Cutk |#∂C=2j)

does not depend on l. Now, the events {#∂C < 2m} and Cutk are both
measurable with respect to the ball of radius 2k ∨ 2m + 1, so that by the
local convergence (3.5), for every m ∈ N,

P(l)
q (Cutk | #∂C > 2m) −→

l→∞
P(∞)

q (Cutk | #∂C > 2m) .

Since (4.4) holds uniformly for l ∈ N, this concludes the proof. �

The second step of the proof of Theorem 1.1 is to estimate directly
P(∞)

q (Cutk | #∂C > 2m) when m goes to infinity and k is large using the
peeling exploration introduced in Section 3.2.3. In order to avoid meaning-
less complications, the trivial case p = 1 is excluded. The main result of
this section is the following.

Theorem 4.2. — Let q be a weight sequence of type a ∈ (2, 5/2].
• Critical case. If p = pcq, we have

lim
m→∞

P(∞)
q (Cutk | #∂C > 2m) ≈

k→∞
k−

a
a−1 .
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• Supercritical case. If pcq < p < 1, we have

lim
m→∞

P(∞)
q (Cutk | #∂C > 2m) ≈

k→∞
k−a.

Note that the limits in Theorem 4.2 exist thanks to Proposition 4.1. The
proof of Theorem 4.2 occupies the next sections. Before that, let us show
how the proof of Theorem 1.1 (in the critical and supercritical cases) stems
from these two results.

Proof of Theorem 1.1 (Critical and supercritical cases). — We first note
that for p = 1, the result is trivial because the cluster C is the whole map.
Then we apply Proposition 4.1 and Theorem 4.2 to get that

rkq̃W
(k)
q̃ ≈

k→∞
k−

a
a−1 if p = pcq,

rkq̃W
(k)
q̃ ≈

k→∞
k−a if pcq < p < 1.

The criteria of Propositions 2.4 and 2.5 give the expected result, recalling
that a = α+ 1/2. �

4.2. Hcutk and the peeling process

In order to prove Theorem 4.2, the main idea is to relate Cutk to yet
another event Hcutk where we require furthermore than C− does not sur-
round C+. The last event is convenient because it can be evaluated in terms
of the peeling process via Algorithm 3.6 (see Lemma 4.3) and we will show
in the next section that for large values of k, the events Cutk and Hcutk
are almost equivalent (see Lemma 4.7).
Let us first introduce some notation regarding the process introduced

in Section 3. Recall that (Bi : 0 6 i 6 τ) measures the black boundary
length in the exploration of M(∞)

q driven by Algorithm 3.6. Since we have
∆B = 0 with positive probability, it is more convenient to work with the
subordinated process (B∗i : 0 6 i 6 τ∗) which has non-zero steps. More
precisely, we put σ0 = 0 and

(4.5) σi+1 = inf {j > σi : Bj 6= Bj−1} , as well as B∗i = Bσi ,

for every 0 6 i 6 τ∗ := inf{i > 0 : B∗i < 0}. Note that (B∗i : 0 6 i 6 τ∗) is
still a (killed) random walk, and we let ∆B∗ := B∗1 −B∗0 . In particular, τ∗
can also be considered as the lifetime of the peeling process (in the sense
that στ∗ = τ). The first exit time of Z>0 by the process (B∗i : 0 6 i 6 τ∗)
is denoted by

(4.6) T ∗ := inf{i > 0 : B∗i 6 0},
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and plays an important role in the analysis of cut-edges.
We now introduce the event

(4.7) Hcutk := Cutk ∩
{
C− ∩ ∂rM(∞)

q = ∅
}
, k ∈ Z>0,

where we recall that C− is the connected component of C\{e∗} containing
the origin vertex, and ∂rM(∞)

q is the boundary of M(∞)
q on the right of the

root edge. The interest of the event Hcut is that it can be related to the
peeling Algorithm 3.6 through the following lemma.

Lemma 4.3. — For every k ∈ Z>0, we have

P(∞)
q (Hcutk) = 1

1− pP
(∞)
q (T ∗ = 2k + 1, B∗T∗ = 0).

Proof. — Recall from the Section 3.2.3 that the peeling exploration
driven by Algorithm 3.6 follows the left boundary of the percolation cluster
C until the later intersects the right boundary of the map (at that time, the
cluster is swallowed in a finite part of the map and the exploration stops).
In this interpretation, each step of the process (B∗i : 0 6 i 6 τ∗) (i.e. each
time Bi+1 − Bi is non-zero) corresponds to the exploration of exactly one
half-edge on the boundary of C, see Figure 4.2 for an example. This holds
only for 0 6 i < τ∗, because the last step of the exploration does not cor-
respond to the discovery of a half-edge on the boundary of C (but rather
on the right boundary of M(∞)

q ).
Let us examine the situation if B∗T∗ = 0. In that case, the peeling ex-

ploration identifies a half-edge to the root edge at time T ∗, which enforces
Ne∗ = 1 (otherwise, no peeling step is performed when visiting the half-edge
corresponding to the root, since a mark is discovered). This also imposes
that C− ∩ ∂rM(∞)

q = ∅, and by the above observation #∂C− = T ∗ − 1 so
that

{T ∗ = 2k + 1, B∗T∗ = 0} ⊂ Hcutk ∩ {Ne∗ = 1} .

This situation is depicted in Figure 4.2. Conversely, on the event Hcutk,
the peeling exploration visits a half-edge that is identified to the root edge
in M(∞)

q . If additionally Ne∗ = 1, this half-edge carries no mark, so that a
peeling step is performed on it, which enforces B∗T∗ = 0 (and thus #∂C− =
T ∗ − 1). This gives

{T ∗ = 2k + 1, B∗T∗ = 0} = Hcutk ∩ {Ne∗ = 1} .

Finally, since the event Hcutk depends only on the percolated map (and not
on the exact number of marks carried by the edges) and since the number
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of marks Ne∗ of the root edge is a geometric variable conditioned to be
larger than one, we have

P(∞)
q (Hcutk, Ne∗ = 1) = (1− p)P(∞)

q (Hcutk),

which concludes the proof. �

A
(
ēσT ∗−1

)

Figure 4.2. Illustration of the proof of Lemma 4.3. The peeling process
at time T ∗−1 on the event Hcutk∩{Ne∗ = 1} = {T ∗=2k+1, B∗T∗=0}.
In orange, the percolation interface. In green, the identification of edges
performed at time T ∗ between the root edge and the peeled edge (that
carries no mark).

We now move to the estimation of the probability of the event Hcutk.

Lemma 4.4. — Let q be a weight sequence of type a ∈ (2, 5/2].
• Critical case. If p = pcq, we have

P(∞)
q (Hcutk) ≈

k→∞
k−

a
a−1 .

• Supercritical case. If pcq < p < 1, we have

P(∞)
q (Hcutk) ≈

k→∞
k−a.

Remark. — Later on, we will use the following consequence of Lem-
ma 4.4, that is obtained by Karamata’s theorem [6, Proposition 1.5.10]:
when p = pcq, we have

(4.8)
∑
k>m

P(∞)
q (Hcutk) ≈

m→∞
m−

1
a−1 .
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Proof. — By Lemma 4.3, it suffices to estimate P(∞)
q (T ∗=2k+1, B∗T∗=0).

For convenience, we consider the random walk (B∗i : i > 0) without killing.
Using Lemma 3.7, we have that (B∗i : i > 0) is centered if p = pcq, and has
negative (resp. positive) drift if p < pcq (resp. p > pcq). We now use Feller’s
combinatorial (or “cyclic”) lemma [20, Chapter XII.6] to get that

(4.9) P(∞)
q (T ∗ = 2k + 1, B∗T∗ = 0) = 1

2k + 1P
(∞)
q

(
B∗2k+1 = 0

)
.

The cases of critical and supercritical percolation are now treated sepa-
rately.

Critical case (p = pcq). — The random walk (B∗i : i > 0) is centered.
We apply the local limit theorem ([23, Theorem 4.2.1]) to (B∗i : i > 0),
whose steps are in the domain of attraction of a stable distribution with
parameter a− 1. We obtain that

P(∞)
q (B∗k = 0) ≈

k→∞
k−

1
a−1 ,

which gives the expected result by (4.9).

Supercritical case (pcq < p < 1). — The random walk (B∗i : i > 0) has
positive drift d > 0. We introduce the centered version (Bi : i > 0) of the
random walk (B∗i : i > 0) by setting Bi = −B∗i + di for every i ∈ Z>0
(notice the minus sign). Clearly, we have

P(∞)
q

(
B∗2k+1 = 0

)
= P(∞)

q
(
B2k+1 = d(2k + 1)

)
.

Recall that ∆B∗ is in the domain of attraction of a (spectrally negative)
stable distribution with parameter a− 1. In fact, by Lemma 3.7, the defi-
nition (2.7) of νq and Proposition 2.5, we have the more precise identity

(4.10) P (∆B∗ = −(2k + 1)) ≈
k→∞

k−a.

By [17, Theorem 9.1], this ensures that the centered variable B1 is (0, 1]-
subexponential, which means that

P(∞)
q

(
Bk ∈ (x, x+ 1]

)
∼

k→∞
k · P(∞)

q
(
B1 ∈ (x, x+ 1]

)
,

uniformly for x > εk, for every ε > 0. Thus, we get

P(∞)
q

(
B∗2k+1 = 0

)
= P(∞)

q
(
B2k+1 = d(2k + 1)

)
≈

k→∞
k1−a.

The identity (4.9) concludes the proof. �
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4.3. Cutk, Hcut and the proof of Theorem 4.2

We finally prove Theorem 4.2 from Lemma 4.4. This will complete the
proof of Theorem 1.1 in the supercritical and critical cases. For this we
will show that Cutk and Hcutk are almost equivalent for large values of k.
The first step is to establish some bounds for the tail distribution of the
perimeter of the percolation cluster under P(∞)

q .

Lemma 4.5. — Let q be a weight sequence of type a ∈ (2, 5/2].
• Critical case. If p = pcq, there exists slowly varying functions L1 and
L2 such that for every m ∈ N,

L1(m)m−
a−2
a−1 6 P(∞)

q (#∂C > 2m) 6 L2(m)m−
a−2
a−1 .

• Supercritical case. If pcq < p < 1, we have

P(∞)
q (#∂C > 2m) −→

m→∞
P(∞)

q (#∂C =∞) > 0.

Proof. — The proof strategy closely follows that of [3, Theorem 2]. The
main issue is that the peeling Algorithm 3.6 does not provide the perimeter
#∂C of the cluster. Indeed, the finite hole of the map ēτ is not visited by
the peeling exploration and possibly contains part of ∂C (see Figure 4.3
for an example). We circumvent this problem by defining a right peel-
ing exploration, symmetric to that of Algorithm 3.6 in the sense that it
always explores the free edge on the right of the black boundary of the
hole. We denote by (B̃i : i > 0) the process defined as (B∗i : i > 0) for
the right peeling exploration (both unkilled for convenience), and let τ̃ :=
inf{i > 0 : B̃i < 0}. An argument similar to the proof of Lemma 4.3 then
shows that

τ∗ 6 #∂C 6 τ∗ + τ̃ .

Since τ∗ and τ̃ have the same distribution (though not independent) we
get

P(∞)
q (τ∗ > 2m) 6 P(∞)

q (#∂C > 2m) 6 2P(∞)
q (τ∗ > m) .

We now treat the cases of critical and supercritical percolation separately.
Critical case (p = pcq). — The random walk (B∗i : i > 0) is centered. We

use [18, Theorem 1], which ensures that

P(∞)
q (τ∗ > m) ≈

m→∞
m

1
a−1−1,

since ∆B∗ is in the domain of attraction of a stable distribution with
parameter a−1. (To be complete, we also need [9, Theorem 8.2.18] because
(B∗i : i > 0) starts at B∗0 = 1.)
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Supercritical case (pcq < p < 1). — This case immediately follows by
the definition of pcq and the continuity of probability along a monotone
sequence of events. �

Figure 4.3. The left percolation interface of the cluster C until τ∗ (in
orange), and its right percolation interface until τ̃ (in purple).

The next lemma establishes a sensitivity property of P(∞)
q (#∂C > 2m)

with respect to the boundary condition. Recall that P(∞)
q is the law of the

q-IBHPM equipped with marks corresponding to a bond percolation model
with “free-black-free” boundary condition. We denote by P(∞)

q the law of
the same model with totally free boundary condition, i.e. where all the
edges carry i.i.d. numbers of marks with geometric law of parameter p.
Recall that the percolation cluster C is the black connected component of
the origin (the source of the root edge).

Lemma 4.6. — Let q be a weight sequence of type a ∈ (2, 5/2]. Then,
we have

P(∞)
q (#∂C > 2m)

P(∞)
q (#∂C > 2m)

−→
m→∞

c ∈ (0, 1).

Remark. — At first glance, one could expect the constant c in the state-
ment of Lemma 4.6 to be equal to one, meaning that the asymptotics of
P(∞)

q (#∂C > 2m) do not depend on the boundary condition. However, as
the proof should reveal, the black root edge allows two “seeds” for the per-
colation cluster, which changes the asymptotics of P(∞)

q (#∂C > 2m) by a
constant factor.
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Proof. — We argue under P(∞)
q , and reveal the status of the free root

edge in the sense of Algorithm 3.6. Note that under our assumptions, this
root (half-)edge is black if and only if it carries a cross, because there is
no other black edge on the boundary it can be identified to. As usual, two
cases may to happen.

• The root edge carries a mark. Then the map has “free-black-free”
boundary condition as for P(∞)

q .
• The root edge carries no mark, and a peeling step is performed. If
the peeling step is of type C or G∞,·, the event {#∂C > 2m} is
realized if and only if it is realized in the infinite hole of the map,
that has law P(∞)

q by the spatial Markov property.
Finally, we let G(l)

∞ be the event that the root edge is white and identified
to an edge on its left. Then we have

P(∞)
q (#∂C > 2m)

= pP(∞)
q (#∂C > 2m) + (1− p)

∑
k>1

νq(−k)
2

P(∞)
q (#∂C > 2m)

+ P(∞)
q

(
#∂C > 2m, G(l)

∞

)
,

from where we obtain

(4.11) P(∞)
q (#∂C>2m)

P(∞)
q (#∂C>2m)

= p+ (1−p)

∑
k>1

νq(−k)
2

 P(∞)
q (#∂C>2m)

P(∞)
q (#∂C>2m)

+
P(∞)

q

(
#∂C > 2m, G(l)

∞

)
P(∞)

q (#∂C > 2m)
.

To conclude, we will show that

(4.12)
P(∞)

q

(
#∂C > 2m, G(l)

∞

)
P(∞)

q (#∂C > 2m)
−→
m→∞

0.

Intuitively, this comes from the fact that on the event G(l)
∞ , the percolation

cluster C is confined in a finite hole of the map. More precisely, the key
observation is the following almost sure inclusion of events:

(4.13)
{

#∂C > 2m, G(l)
∞

}
⊂
⋃
j>m

Hcutj .

Indeed, on the event G(l)
∞ , the white root edge separates the map into a

finite hole containing C and an infinite hole (see Figure 4.4). As seen in the
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proof of Lemma 4.3, since the root edge carries no mark, in such situation
we have #∂C− = T ∗ − 1, and moreover ∂C = ∂C− which yields (4.13) by
definition of Hcutj . (Note that since #∂C− = T ∗ − 1, the stopping time
T ∗ is necessarily odd because the map is bipartite.) We can now prove
assertion (4.12).

Critical case (p = pcq). — By Lemma 4.4 and (4.8), we get that

P(∞)
q

(
#∂C > 2m, G(l)

∞

)
6
∑
j>m

P(∞)
q (Hcutj) ≈

m→∞
m−

1
a−1 ,

while by Lemma 4.5, we have P(∞)
q (#∂C > 2m) > L1(m)m−

a−2
a−1 . This

yields the expected result, since a ∈ (2, 5/2].
Supercritical case (pcq < p < 1). — By Lemma 4.4 and since a > 2, we

know that

P(∞)
q

(
#∂C > 2m, G(l)

∞

)
6
∑
j>m

P(∞)
q (Hcutj) −→

m→∞
0

as the rest of a convergent series. This is enough to conclude because
P(∞)

q (#∂C > 2m)→ P(∞)
q (#∂C =∞) > 0 as m goes to infinity. �

e∗

C

Figure 4.4. The percolation cluster C on the event G(l)
∞ .

The last preliminary lemma shows that the events Cutk and Hcutk have
the same probability under P(∞)

q ( · | #∂C > 2m) when m tends to infinity.

Lemma 4.7. — For every k ∈ Z>0,

lim
m→∞

∣∣∣P(∞)
q (Cutk | #∂C > 2m)− P(∞)

q (Hcutk | #∂C > 2m)
∣∣∣ = 0.

Proof. — By definition (4.7) of the event Hcutk, it suffices to show that
for every k ∈ Z>0,

(4.14) P(∞)
q

(
Cutk, C− ∩ ∂rM(∞)

q 6= ∅
∣∣∣#∂C > 2m

)
−→
m→∞

0.
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Let k ∈ Z>0, and define the symmetric events of Cutk and Hcutk for the
right part C+ of the percolation cluster,

Cut′k =
{
e∗ is a cut-edge of C and #∂C+ = 2k

}
and Hcut′k := Cut′k ∩

{
C+ ∩ ∂lM(∞)

q = ∅
}
,

where ∂lM(∞)
q is the boundary of M(∞)

q on the left of the root edge. Then
we have the almost sure inclusion of events

(4.15) Cutk ∩
{
C− ∩ ∂rM(∞)

q 6= ∅, #∂C > 2m
}
⊂

⋃
j>m−k−1

Hcut′j .

Indeed, when C−∩∂rM(∞)
q 6= ∅, the left part C− of the cluster hits the right

boundary of the map M(∞)
q . If additionally the event Cutk is realized, C+

cannot intersect the left boundary of M(∞)
q (otherwise, the root edge would

not be a cut-edge of C). Finally, on the event Cutk, we have #∂C− = 2k so
that if #∂C > 2m, then #∂C+ > 2(m − k − 1). This concludes the proof
of (4.15), which is illustrated in Figure 4.5. Note that by symmetry, the
events Hcutj and Hcut′j have the same probability for every j ∈ Z>0.

From Equation (4.15) we obtain

(4.16) P(∞)
q (Cutk, BT < 0 | #∂C > 2m) 6

∑
j>m−k−1 P

(∞)
q (Hcutj)

P(∞)
q (#∂C > 2m)

.

We now argue as in the end of Lemma 4.6 to conclude the proof. �

Figure 4.5. The map M(∞)
q on the event Cutk ∩ {C− ∩ ∂rM(∞)

q 6=
∅, #∂C > 2m}, together with (part of) the left and right percolation
interfaces. Note that the event Hcut′j has to be realized for some j >
m− k − 1.
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We can finally prove Theorem 4.2.

Proof of Theorem 4.2. — By Lemma 4.7, it suffices to find an asymptotic
as k goes to infinity of the quantity

lim
m→∞

P(∞)
q (Hcutk | #∂C > 2m).

Moreover, by arguing as in Lemma 4.3, we have

(4.17) P(∞)
q (Hcutk | #∂C > 2m)

= 1
1− pP

(∞)
q (T ∗ = 2k + 1, BT = 0 | #∂C > 2m), k,m ∈ Z>0.

Let k ∈ Z>0, and recall that σT∗ is a stopping time with respect to the
filtration of the peeling process, so that the infinite hole of the map ēσT∗
has the law P(∞)

q of the q-IBHPM with free boundary condition. Moreover,
on the event {T ∗ = 2k + 1, B∗T∗ = 0}, C+ is the cluster of the target of
the root edge in the infinite hole of ēσT∗ , and #∂C > 2m if and only if
#∂C+ > 2(m− k − 1) (see Figure 4.6 for an illustration). By applying the
(spatial) Markov property at time T ∗, we get

P(∞)
q (T ∗ = 2k + 1, B∗T∗ = 0, #∂C > 2m)

= P(∞)
q (T ∗ = 2k + 1, B∗T∗ = 0)P(∞)

q (#∂C > 2(m− k − 1)).

From Lemma 4.6, (4.17) and Lemma 4.3, we can rewrite this as

(4.18) lim
m→∞

P(∞)
q (Hcutk | #∂C > 2m)

= c · P(∞)
q (Hcutk) lim

m→∞

P(∞)
q (#∂C > 2(m− k − 1))

P(∞)
q (#∂C > 2m)

,

where c ∈ (0, 1) is the constant in the statement of Lemma 4.6. Moreover,
by Proposition 4.1 and Lemma 4.7, we know that the limit on the left-hand
side exists. Let us define

κ := lim
m→∞

P(∞)
q (#∂C > 2(m− 1))
P(∞)

q (#∂C > 2m)
.

Then the power series whose coefficients are (P(∞)
q (#∂C > 2m) : m > 0)

has radius of convergence κ. By Lemma 4.5, we deduce that for pcq 6 p <

1, we have κ = 1. Together with Equation (4.18) and Lemma 4.4, this
concludes the proof. �
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C+

Figure 4.6. The peeling exploration at time T ∗, on the event {T ∗ =
2k+1, B∗T∗ = 0}. The left percolation interface is in orange. The right
part C+ of the cluster is also the cluster of the target of the root edge
in the infinite hole of the map ēσT∗ .

Remark. — The strategy we developed in this section can also be adapted
to the case of subcritical percolation. In this setting, one can prove the ex-
istence of a constant C > 0 such that

lim
m→∞

P(∞)
q (Cutk | #∂C > 2m) ∼

k→∞
Ck−

3
2 ,

and deduce Theorem 1.1 also in this regime. However, this does not provide
the sharpness of the phase transition (Proposition 1.3), so that we use
another strategy in Section 5.

5. Subcritical percolation and sharpness of the phase
transition

We now deal with Bernoulli bond percolation in the subcritical regime
(0 6 p < pcq). As we mentioned, the proof of Theorem 1.1 in this case can
also be obtained by sharpening the study of cut-edges that we made in
Section 4. However, this would not be sufficient to prove the exponential
decay of the size of the percolation cluster claimed in Proposition 1.3 and
we preferred coming back to the finite setting of q-Boltzmann maps.
Throughout this section, we fix a weight sequence q of type a ∈ (2, 5/2],
as well as p ∈ [0, pcq). We assume that the q-Boltzmann map Mq is deco-
rated by i.i.d. numbers of marks with geometric distribution of parameter
p, so that it corresponds to the bond percolation model on Mq with the
same parameter. We first establish in Lemma 5.1 an estimate on the tail
distribution of the perimeter of the percolation cluster in Mq, from where
we deduce Theorem 1.1 and Proposition 1.3 with short proofs.
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Lemma 5.1. — There exists C1, C2 > 0 such that for every m ∈ Z>0,

Pq(#∂C > 2m) 6 C1 exp(−C2m).

Proof of Lemma 5.1. — The case p = 0 is trivial so we assume that
0 < p < pcq. We proceed to the bond percolation exploration ofMq driven by
Algorithm 3.3. By the estimate (3.3), it suffices to prove that the stopping
time θ of the exploration has an exponential tail. Recall from Lemma 3.5
the notation Bi and Fi for the length of the black and free boundaries at
step i of the exploration, for every 0 6 i 6 θ.

On the one hand, we see that for every A > 0, there exists ε > 0 such
that

(5.1) Pq(θ > i+ 2 | θ > i, Bi < A) 6 1− ε.

Indeed, when the length of the free boundary is even, the peeling explo-
ration may stop at the next step by identifying the two free edges neighbor-
ing the black boundary. If the length of the free boundary is odd, we may
require that we first turn the edgeA(ēi+1) into a black edge and then repeat
the above argument. Moreover, if the black boundary has bounded length,
these events occur with probability bounded away from zero from the ex-
plicit transition probabilities p described in Section 2.4 together with [14,
Lemma 3.13]. This reasoning is illustrated by Figure 3.4.
On the other hand, we can choose A large enough so that when Bi > A

and θ > i, then (Bi : 0 6 i 6 θ) has a “uniform negative drift”. More
precisely, recall from Lemma 3.5 that conditionally on θ > i (i.e., Fi > 0)
we have

(5.2) Pq(Bi+1 = Bi + 1) = p

and Pq(Bi+1 = Bi − 2k − 1) = (1− p)p(Pi)(Pi − k − 1, k),

0 6 k 6 1
2(Bi − 1),

where Pi = 1
2 (Bi + Fi), and using [14, Lemma 3.13] again we have

(5.3) p(l)(l + k − 1, k) = W
(k)
q W

(l−k−1)
q

W
(l)
q

−→
l→∞

W (k)
q rk+1

q = 1
2νq(−k − 1), k > 0.
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Since p < pcq, this ensures (see the end of Section 3.2.3) that

p− 1− p
2

∑
k>0

(2k + 1)νq(−k − 1) < 0,

and so p− 1− p
2

D∑
k=0

(2k + 1)νq(−k − 1) < 0

for D large enough. Using this observation together with (5.3) and the
fact that Pi > Bi/2, one can find a probability measure ζ supported on
{−D, . . . , 1} with negative mean, such that if A is large enough, then the
conditional distribution of Bi+1 −Bi given Bi > A and θ > i is stochasti-
cally dominated by ζ. In symbols,

(5.4) Law(Bi+1 −Bi | θ > i, Bi > A)
sto
6 ζ.

It is now straightforward to combine (5.1) and (5.4) to establish that θ has
an exponential tail. This can be proved along the following lines: from (5.4)
and the fact that E[ζ] < 0, we see that the return times of (Bi : 0 6 i 6 θ)
to the interval [0, A) have an exponential tail. Hence, using (5.1) we can
bound θ from above by a sum of a geometric number of i.i.d. random
variables having exponential tails, so that θ also has an exponential tail.
We leave the details to the reader. �

We now prove Theorem 1.1 in the subcritical case using Lemma 5.1.
Proof of Theorem 1.1 (Subcritical case). — By Proposition 3.1, the per-

colation cluster C of Mq is a q̃-Boltzmann map for a certain admissible
weight sequence q̃. Let us proceed by contradiction and assume that q̃ is
critical. By [11, Proposition 2], the partition function for pointed maps with
a boundary of perimeter 2k reads

W
(k,•)
q̃ := 1

q̃k

∑
m∈M•

#∂m=2k

wq̃(m) = (4rq̃)−k
(

2k
k

)
, k ∈ Z>0.

Then, recalling from (2.2) the definition of the function fq̃ and the identity
rq̃ = (4Zq̃)−1, we find

fq̃(x) = 2rq̃

∞∑
k=1

(
x

Zq̃

)k−1
q̃kW (k,•)

q̃ , x > 0.

Now, by combining [14, Lemma 3.13] and [11, Proposition 2], we have that

lim
k→∞

(
W

(k,•)
q̃

)1/k
= lim
k→∞

(
W

(k)
q̃

)1/k
= 1
rq̃
.
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Moreover, since C is a q̃-Boltzmann map and by Lemma 5.1,

Pq(#∂C = 2k) = Pq̃(#∂Mq̃ = 2k) ∝ q̃kW (k)
q̃

and Pq(#∂C = 2k) 6 C1 exp(−C2k), k ∈ N,

for positive constants C1 and C2. By the above displays we deduce that

lim sup
k→∞

(
q̃kW (k)

q̃

)1/k
= 4Zq̃ lim sup

k→∞
q̃1/k
k

and by the ratio test this enforces the existence of ε>0 such that fq̃(Zq̃+ε)<
∞. In the terminology of Boltzmann maps, our assumption shows that the
weight sequence q̃ is actually regular critical, see [29], which is a sub-case
of generic critical sequences. In particular, by Theorem 1.1 (in the critical
case), there exists pcq̃ ∈ (0, 1) such that if we perform a bond percolation
with parameter pcq̃ on C, the cluster of the origin C′ is a discrete stable map
with parameter 7/6. We let q′ be the weight sequence such that C′ is a
q′-Boltzmann map. Then, we get

(5.5) Pq̃ (#∂C′ > 2k) = Pq′(#∂Mq′ > 2k) ∝
∑
j>k

q′jW
(j)
q′ ,

and the right-hand side decays at least polynomially by Definitions 2.1
and 2.2 as well as Proposition 2.5. We finally observe that by a standard
coupling argument, the cluster C′ can also be obtained from the initial map
Mq by performing a bond percolation with parameter p′ = p · pcq̃ < p < pcq.
By Lemma 5.1, this entails

Pq (#∂C′ > 2k) 6 C ′1 exp(−C ′2k)

for positive constants C ′1 and C ′2, in contradiction with (5.5). This concludes
the proof. �

We now prove Proposition 1.3 in the subcritical case using Lemma 5.1
and Theorem 1.1.

Proof of Proposition 1.3 (Subcritical case). — This proof is inspired
by [4, Proposition 5.1]. By Theorem 1.1, the percolation cluster C of Mq is
a q̃-Boltzmann map for a certain subcritical weight sequence q̃. We now let
the weight sequence q̃ vary by defining q̃(u) := (uk−1qk : k ∈ N). Then, we
see from (2.2) that fq̃(u)(x) = fq̃(ux) for every x > 0. By Lemma 5.1 and
using the same argument as in the proof of Theorem 1.1 (in the subcritical
case), we obtain that there exists ε > 0 such that fq̃(Zq̃ + ε) < ∞. Now,
we argue as in [4, Proposition 5.1]: since q̃ is subcritical, we can solve the
equation

fq̃(u)(x) = 1− 1
x
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in an open neighborhood of u = 1 by the implicit function theorem, so that
q̃(u) is admissible for some u > 1 by the criterion recalled in Section 2.2.
As a consequence, we have

wq̃(u)(M) :=
∑

m∈M

∏
f∈F(m)

q̃ deg(f)
2

u
deg(f)

2 −1 =
∑

m∈M
u#V(m)−2wq̃(m) <∞,

where we used Euler’s formula. This entails that

Eq

[
u|C|
]

= Eq̃

[
u#V(Mq̃)

]
=
∑

m∈M
u#V(m)wq̃(m) <∞

for some u > 1, as wanted. �
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