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EXTENSION OF THE CURVATURE FORM OF THE
RELATIVE CANONICAL LINE BUNDLE ON FAMILIES
OF CALABI–YAU MANIFOLDS AND APPLICATIONS

by Young-Jun CHOI & Georg SCHUMACHER (*)

Abstract. — Given a proper surjective holomorphic map of Kähler manifolds,
whose general fibers are Calabi–Yau manifolds, the volume forms for the Ricci-flat
metrics induce a hermitian metric on the relative canonical bundle over the regular
locus of the family. We show that the curvature form extends as a closed positive
current. Consequently the Weil–Petersson metric extends as a positive current. In
the projective case, the Weil–Petersson form is known to be the curvature of a cer-
tain determinant line bundle, equipped with a Quillen metric. As an application we
get that after blowing up the singular locus, the determinant line bundle extends,
and the Quillen metric extends as singular hermitian metric, whose curvature is a
positive current.
Résumé. — Étant donnée une application holomorphe surjective entre variétés

de Kähler, dont les fibres générales sont des variétés de Calabi–Yau, les formes
de volume pour les métriques Ricci-plates induisent une métrique hermitienne sur
le faisceau canonique relatif sur le lieu régulier de la famille. Nous montrons que
la forme de courbure s’étend comme un courant positif fermé. Par conséquent, la
métrique de Weil–Petersson s’étend comme un courant positif. On sait que dans
le cas projectif la forme de Weil–Petersson est la courbure d’un certain faisceau de
lignes déterminant, équipé d’une métrique de Quillen. Comme application, nous
obtenons qu’après éclatement du lieu singulier, le faisceau de lignes déterminant
s’étend et la métrique de Quillen s’étend comme métrique hermitienne singulière,
dont la courbure est un courant positif.

1. Introduction

When studying moduli spaces, the extension of the Weil–Petersson met-
ric into the boundary of the moduli space, more precisely in the situation
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of a degenerating family, is of interest. This could be done for families
of canonically polarized manifolds or stable holomorphic vector bundles.
The approach in both cases is to use a fiber integral formula for the Weil–
Petersson metric in terms of a certain positive (n + 1, n + 1)-form on the
total space (where n denotes the dimension of the fibers). Such a form has
to be extended as a positive current, and a push forward is taken. This
approach is closely related to the existence of Kähler–Einstein and Her-
mite–Einstein metrics resp. In the former case, uniform C0-estimates for
the solution of the resp. Monge–Ampère equations in a degenerating family
ultimately provide the extension property.
Here, we will treat the case of Calabi–Yau manifolds, i.e. polarized Käh-

ler manifolds with vanishing first real Chern class, equipped with Ricci-flat
metrics according to Yau’s theorem [11]. Our result will be based upon the
Ohsawa–Takegoshi extension theorem for canonical forms on submanifolds
in bounded pseudoconvex domains. The statement of the main theorem
will not depend on the type of the singularities of the degeneration.

Let f : X → S be a proper surjective holomorphic mapping between
complex manifolds, where X is Kähler . We denote by W ⊂ S the analytic
set of singular values of f , and let X ′ := f−1(S′) with S′ = S \W . Suppose
that for every s ∈ S′, the fiber Xs = f−1(s) is a Calabi–Yau manifold, i.e. a
compact Kähler manifold, whose first real Chern class c1(Xs) vanishes. Let
ω be a Kähler form on X. Then Yau’s theorem implies that there exists a
unique Ricci-flat metric ωKEs in the class of ω|Xs on each smooth fiber Xs,
s ∈ S′. One can see that the family of Ricci-flat metrics induces a fiberwise
Ricci-flat d-closed smooth real (1, 1)-form ρ on X ′ such that

ρ|Xs = ωKEs .

It can be normalized by the condition

(1.1) f∗(ρn+1) =
∫
X′/S′

ρn+1 = 0, where n = dimXs

in which case ρ is unique [7, Proposition 3.6]. By adding the pull-back of
a Kähler form on S′ to ρ, (like the fiber integral

∫
X′/S′

ωn+1, or the Weil–
Petersson form, if the family is effectively parametrized) we can achieve
that f∗(ρn+1) is positive definite. Conversely, if f∗(ρn+1) > 0, then ρ −
f∗(f∗(ρn+1)/Vol(Xs)) satisfies the former normalization condition. A form
ρ satisfying the latter condition is also called fiberwise Ricci-flat metric. A
fiberwise Ricci-flat metric ρ is not uniquely determined, but it always exists
globally on X ′ under our assumptions. The corresponding relative volume
form on X ′ → S′ is independent of the normalization, however, later we
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will use (1.1). It induces a hermitian metric hρX′/S′ on the relative canonical
line bundle (see Section 2). Now the Weil–Petersson metric ωWP

S′ and the
curvature Θhρ

X′/S′
(KX′/S′) of hρX′/S′ defined on S′ satisfy the following

equation according to [5]. (Note that the volume of the smooth fibers is
constant.)

(1.2) 1
Vol(Xs)

f∗ωWP = Θhρ
X′/S′

(KX′/S′).

This implies that the curvature Θhρ
X′/S′

(KX′/S′) of the relative canonical
line bundle is semi-positive on X ′. The main goal of this paper is the
extension of Θhρ

X′/S′
(KX′/S′).

Theorem 1.1. — Let f : X → S be a proper surjective holomorphic
mapping of Kähler manifolds. Suppose that every regular fiber Xs is a
Calabi–Yau manifold for s ∈ S′. Then the curvature Θhρ

X′/S′
(KX′/S′) of

the relative canonical line bundle extends to X as a d-closed positive (1, 1)-
current Θ.

On S′

ωWP = f∗
(
f∗(ωWP ) ∧ ωn

)
=
∫
X′/S′

f∗(ωWP ) ∧ ωn,

holds, where ω can be replaced by any Kähler form that induces the same
polarization on the fibers.
With wedge products taken in the sense of Bedford and Taylor, the

Theorem together with (1.2) will imply that∫
X/S

Θ ∧ ωn

defines an extension of ωWP as a positive, real current.

Corollary 1.2. — The Weil–Petersson form extends to all of S as a
positive, closed current.

The proof of the Theorem uses is inspired by a result of Păun from [8],
applying Demailly’s approximation theorem of plurisubharmonic functions
by logarithms of absolute values of holomorphic functions [6].

In [7, Section 10], for projective families of Ricci-flat manifolds (more gen-
erally extremal Kähler manifolds), we showed that a certain determinant
line bundle λ on the base of the family could be equipped with a Quillen
metric hQ such that the curvature form is up to a numerical constant
equal to the Weil–Petersson form. Using the extension theorem from [9, 10],
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we can see that after a blow-up (λ, hQ) can be extended into the singular
locus of such a projective family.
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2. Preliminaries

2.1. Construction of a background metric

Let f : X → S be a proper surjective holomorphic mapping between
Kähler manifolds. Let d = dimS, and dimX = n + d. Let S′ ⊂ S be
the set of regular values and X ′ = f−1(S′) as above. Then the restriction
f ′ : X ′ → S′ is a surjective holomorphic submersion.
Let ω be a Kähler form on X, or more generally a smooth, d-closed, real

(1, 1) form, which is positive definite along the smooth fibers of f . We will
use the notations ωn = ω ∧ . . . ∧ ω/n! and analogous.

Since the relative canonical bundle KX/S is defined as KX ⊗ f∗K−1
S a

hermitian metric hωX/S can be defined as follows:
Given any local coordinate system (z1, . . . , zn+d) on U ⊂ X we denote

the corresponding Euclidean volume form by dVX = dVX(z), and for lo-
cal coordinates (s1, . . . , sd) on the image of U under f in S we use the
Euclidean volume form dVS = dVS(s). Let

(2.1) ωn ∧ f∗dVS = χ · dVX ,

with a certain non-negative, differentiable function χ. At singular points of
f the function χ will vanish, and we write

(2.2) χ = eψU ,

where ψU takes the value −∞ at singular points of f .
On the regular locus of f inX the function χ is the absolute value squared

of a holomorphic function so that e−ψU defines a singular hermitian metric
hωX/S on KX/S .
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The corresponding curvature form on X ′ is given by

(2.3)
√
−1Θhω

X/S
(KX/S) = ddcψU |X ′ = ddc log (ωn ∧ f∗dVS) .

So far, the curvature is a positive current on X, and differentiable on the
regular locus of f in X.

2.2. Existence and curvature of a fiberwise Ricci-flat metric

Let the restriction of f now denote a smooth family of Calabi–Yau man-
ifolds f ′ : X ′ → S′, and let ω to be a Kähler form on X. Let ωs = ω|Xs .
For s ∈ S′ we take the Kähler class [ωs] as polarization, and apply Yau’s
theorem.
Since [Ric(ωs)] = 0, for any s ∈ S′, by the ddc-lemma, there exists a

unique function ηs ∈ C∞(Xs) such that

ddcηs = Ric(ωs)(2.4) ∫
Xs

eηsωns =
∫
Xs

ωns = Vol(Xs) .(2.5)

Then the implicit function theorem says that the function η, which is de-
fined by η(x) = ηs(x) for s = f(x), is a smooth function on X ′.

There exists a d-closed, smooth, real (1, 1)-form ρ such that ρ|Xs is the
Ricci-flat metric on the polarized manifold (Xs, [ωs]). This follows, since X ′
is assumed to be Kähler (cf. [5]): Take ωs as initial metric for the solution
of the Monge–Ampère equation in Yau’s solution of the Calabi problem,
and set ρs = ωs + ddcϕs on Xs, s ∈ S′. (Here we use the assumption that
ω is globally defined.) Then the form

ρ = ω + ddcϕ on X ′

restricts to ρs on each fiber Xs. It is possible to normalize ρ in the sense
of (1.1) or to make it a fiberwise Ricci-flat metric.
Using (2.4) and (2.5) we obtain

(2.6) eηsωns = ρns

for each s ∈ S′. Multiplying this equation by the Euclidean volume form
dVS , we get

eηωn ∧ f∗(dVS) = ρn ∧ f∗(dVS)
on X ′. Hence

ddc log (eηωn ∧ f∗(dVS)) = ddc log (ρn ∧ f∗(dVS))
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holds over S′. Now we apply (2.3) to the left-hand side of the above equa-
tion. Concerning the right-hand side, the same argument provides us with
the curvature of the relative canonical bundle with respect to ρ:

(2.7) ddc(η+ψU ) = ddcη+
√
−1Θhω

X′/S′
(KX′/S′) =

√
−1Θhρ

X′/S′
(KX′/S′).

2.3. Deformation theory of polarized Calabi–Yau manifolds, and
the Weil–Petersson metric

For general facts about the Weil–Petersson metric, in particular (1.2),
we refer to [5]. Let f : X → S be a (smooth) polarized, holomorphic
family of Calabi–Yau manifolds, and ρ be a form as above such that the
restriction to a fiber Xs is the Ricci-flat form on the polarized fiber with
the normalization

(2.8)
∫
X/S

ρn+1 = 0.

Previously, according to [7, Theorem 7.8, Remark 7.3], the following fiber
integral formula for the Weil–Petersson metric was known:

(2.9) ωWP =
∫
X/S

Θhρ
KX/S

∧ ωn,

which clearly follows from (1.2). Such fiber integrals fit into the framework
of the Riemann–Roch–Hirzebruch–Grothendieck formalism (cf. Section 4).

3. Extension of the curvature form of the relative
canonical line bundle

In this section, we will derive an upper bound of a local potential of
the curvature Θ′ = Θhρ

X′/S′
(KX′/S′), which is induced by ρ on the relative

canonical line bundle and prove Theorem 1.1. Since this curvature is known
to be positive, the boundedness from above of a local potential near singular
fibers will yield a local extension of the curvature current Θ′ into singular
fibers of the total space. The null-extensions (cf. [6, (1.19)]) of these currents
will fit together and yield a global positive current.
Let x0 be a point which belongs to a singular fiber Xs0 , i.e., s0 ∈W . Let

(U, z1, . . . , zn+d) be a local coordinate at x0 inX where U is biholomorphic
to a unit ball in Cn+d and (s1, . . . , sd) be a local coordinate at s0 which
is defined in a neighborhood containing f(U) in S. Take a neighborhood
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V ⊂ U of x0 and r > 0 such that Br(x) ⊂ U for any x ∈ V , where Br(x)
is a geodesic ball centered at x with radius r with respect to ω. Let ψU be
the local potential of Θhω

X/S
(KX/S) which is defined in Section 2.1. Define

a function θ : U ∩X ′ → R by

(3.1) θ := ψU + η.

Then θ is a local potential of Θhρ
X′/S′

(KX′/S′) in U ∩X ′ by (2.7). Since θ
is plurisubharmonic, it is enough for the extension of Θhρ

X′/S′
(KX′/S′) to

show that θ is bounded from above in V ∩X ′.
Fix a point x ∈ V ∩X ′ and denote by s = f(x). ThenXs is a smooth fiber

and Us := U ∩Xs is a Stein manifold of U . We claim that the restriction
of θ to Us

θs := θ|Us = ψs + ηs

is uniformly bounded from above in Vs. We now adopt an argument of
M. Păun from [8] to apply an approximation argument of Demailly. The
idea is to approximate the function θs by the logarithm of absolute values
of holomorphic functions.

Theorem 3.1. — Let H(m)
s be the Hilbert space defined as follows:

H(m)
s :=

{
φ ∈ O(Us) : ‖φ‖2m, s :=

∫
Us

|φ|2 e−mθs(ρs)n <∞
}
.

Then we have

θs(x) = lim
m→∞

sup
{

1
m

log |φ(x)|2 : φ ∈ H(m)
s s.t. ‖φ‖2m,s 6 1

}
for every x ∈ Us.

Proof. — The proof is essentially same with the proof of [6, Theorem
14.2]. We may assume that U is biholomorphic to a bounded strongly pseu-
doconvex domain in Cn+d, so Us is a Stein manifold. This implies thatH(m)

s

is a nontrivial seperable Hilbert space. Hence there exists an orthonormal
basis {σsk}k∈N for H(m)

s . Now we define the Bergman kernel ϕsm by

ϕsm(x) = 1
m

log
∞∑
k=1
|σsk(x)|2 .

It follows immediately that the Bergman kernel satisfies the extremal prop-
erty:

ϕsm(x) = sup
{

1
m

log |φ(x)|2 : φ ∈ H(m)
s s.t. ‖φ‖2m, s 6 1

}
.
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Take a local coordinate neighborhood Bε := {ζ ∈ Us : |x− ζ| < ε} in
Us. Denote by dλ the Lebesgue measure in Bε. For any φ ∈ H(m)

s with
‖φ‖2m, s 6 1, for 0 < r < ε, the mean value inequality implies

|φ(x)|2 6 n!
πnr2n

∫
Br

|φ(ζ)|2 dλ(ζ)

6
n!

πnr2n sup
ζ∈Br

(
emθs(ζ)

)∫
Br

|φ(ζ)|2 e−mθsdλ(ζ).

Let Cs := supBr dλ/(ρs)
n. Then it follows that

|φ(x)|2 6 n!Cs
πnr2n sup

ζ∈Br

(
emθs(ζ)

)∫
Br

|φ(ζ)|2 e−mθs(ρs)n

6
n!Cs
πnr2n sup

ζ∈Br

(
emθs(ζ)

)
.

Hence we have
1
m

log |φ(x)|2 6 sup
ζ∈Br

θs(ζ) + 1
m

(
log n!

πnr2n + logCs
)
.

Since θs is upper-semicontinuous, taking r = 1/m it follows that

θs(x) > lim
m→∞

ϕsm(x).

Conversely, first note that

σ = dz1 ∧ · · · ∧ dzn+d

f∗(ds1 ∧ · · · ∧ dsd)

is a holomorphic section of KX′/S′ over U ∩ X ′. We remark that as a
relative canonical form σ can be written as follows: Assume that on some
open subset of U ′ the functions (z1, . . . , zn) define local coordinates for
Us, s ∈ S′. Then

(3.2) σ =
(

∂(f1, . . . , fd)
∂(zn+1, . . . , zn+d)

)−1

· dz1 ∧ . . . ∧ dzn.

In particular, KUs is trivial. There exist n bounded holomorphic func-
tions on Us which form a local coordinate near x because Us is embed-
ded in U . Therefore, for any a ∈ C, Ohsawa–Takegoshi extension the-
orem (e.g. Proposition 3.2) says that there exists φ ∈ O(Us) such that
φ(x) = a and ∫

Us

|φ|2 e−mθs(ρs)n 6 C ′s |a|
2
e−mθs(x),
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where the constant C ′s does not depend on m. If we choose a ∈ C such that
the right hand side is 1, then∫

Us

|φ|2 e−mθs(ρs)n 6 1, i.e. φ ∈ H(m)
s .

It follows that
1
m

log |φ(x)|2 = 1
m

log |a|2 > θs(x)− 1
m

logC ′s,

hence
ϕsm(x) > θs(x) + 1

m
logC ′s.

This completes the proof of Theorem 3.1. �

Proposition 3.2. — Let (W,ω) be a Stein manifold with a Kähler
metric such that KW is trivial. Suppose that there exists bounded holo-
morphic functions q1, . . . , qn which form a local coordinate near a given
point x ∈ W . Then for a ∈ C, there exist a global holomorphic function
φ ∈ O(W ) with the following properties:

(i) φ(x) = a

(ii) for any plurisubharmonic function Ψ on W∫
W

|φ|2e−ΨdVW,ω 6 Cn
1

|Λn(dq)(x)|2ω
· |a|2e−Ψ(x),

where the constant Cn depends only upon n, and not on Ψ.

Proof. — Let C := e supW
√∑n

j=1 |qj |
2. We consider q = 1

C (q1, . . . , qn)
as a holomorphic section of the trivial vector bundle E = W × Cn. We
denote by |q| the Euclidean norm of the section s. Then we have

|q|2 6 1
e2

holds. Note that the curvature ΘE of E vanishes.
The (trivial) anti-canonicalline bundle −KW is equipped with the her-

mitian metric hL = e−ΨL with ΨL = Ψ. Then
√
−1Θ−KX + n

√
−1∂∂̄ log |q|2 > 0

in terms of currents.
Now we apply [6, Theorem 13.6]: There exists a global holomorphic sec-

tion φ of KX −KX = O(W ) with φ(x) = a and∫
W

|φ|2e−Ψ

|q|2n(− log |q|)2 dVW,ω 6 Cn
|a|2

|Λn(dq)(x)|2ω
e−Ψ(x).
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Since |q| 6 (1/e), it follows that∫
W

|φ|2e−ΨdVW,ω 6 Cn
|a|2

|Λn(dq)(x)|2ω
e−Ψ(x). �

Proof of Theorem 1.1. — Let φ ∈ H(m)
s be a holomorphic function on

Us with ‖φ‖2m, s 6 1. Then the Hölder inequality implies that

(3.3)

∫
Us

|φ|2/m e−θsρns 6
(∫

Us

|φ|2 e−mθsρns
) 1
m
(∫

Us

ρns

)m−1
m

6 (Vol(Xs))
m−1
m 6 C

where C can be taken as max(1,Vol(Xs)), and the volume of Xs is given
by (2.5) being taken with respect to the Kähler class ω|Xs . Hence this
constant is independent of m and s.
On the other hand, the equation (3.1) implies that in local coordinates,

it can be written as

e−θsρns = e−ψU e−ηsρns = e−ψUωns = dVX
ωn ∧ f∗dVS

· ωns = dVX
f∗dVS

,

where dVX and dVS are Euclidean volume form in U and p(U) with respect
to the coordinates (z1, . . . , zn+d) and (s1, . . . , sd), respectively. Combining
with (3.3), it follows that ∫

Us

|φ|2/m dVX
f∗dVS

6 C.

Applying the L2/m version of the Ohsawa–Takegoshi extension theo-
rem [1, Proposition 0.2] to φ ∈ O(Us), there exists a holomorphic function
F ∈ O(U) with the following properties (see Remark 3.3):

(1) The restriction of F to Us is equal to φ.
(2) There exists a numerical constant C0 > 0 independent of m and s

such that∫
U

|F |2/m dVX 6 C0

∫
Us

|φ|2/m dVX
f∗(dVS) .

Note that the measure dVX/f∗(dVS) coincides with dVUs/ |Λr(ds)|
2 by [6,

Remark 13.7]. It is essential that the constant C0 does not depend on s.
In fact, the Ohsawa–Takegoshi theorem states that the constant C0 only
depends on the sup norm of the holomorphic functions that define the
smooth subvariety, interpreted as section of a certain vector bundle. In our
case the smooth subvariety is Us and the section is given by the holomorphic
family. Hence the sup norms of the sections are uniformly bounded in terms
of the s-variable.
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Now the mean value inequality can be applied to the global holomorphic
function F on U : The mean value theorem implies that there exists a
constant which depends only on ω and r such that

|F (x)|2/m 6 Cr
∫
Br(x)

|F (z)|2/m dVX .

All together, it follows that |F (x)|2/m is bounded from above by a constant
which is independent of m and s. Now we have an estimate for the restric-
tion F |Us = φ. Therefore the weight function θs is bounded from above on
V ∩Xs (by Theorem 3.1 above).
This argument is carried out for all θs, and hence the function θ is uni-

formly bounded from above on V ∩X ′ where V ⊂⊂ U . This implies that the
curvature Θhρ

X′/S′
(KX′/S′) extends as a d-closed positive real (1, 1)-current

on the total space X. It completes the proof. �

Remark 3.3. — [1, Proposition 0.2] only deals with the extension from a
variety of codimension 1 in the unit ball. However, the proof is easily gen-
eralized to the case of the extension from a higher codimensional variety in
a bounded pseudoconvex domain using [6, Corollary 13.9]. More precisely,
we have the following:
Let Ω ∈ Cn+d be a bounded pseudoconvex domain and h : Ω → Cd be

a holomorphic function such that supΩ |h| 6 1; moreover, we assume that
Λrds 6= 0 on V := (h = 0). We denote by ϕ a plurisubharmonic function,
such that its restriction to V is well-defined (i.e, ϕ|V 6= −∞). For any
holomorphic function f : V → C with the property that∫

V

|f |2/m e−ϕ dλV

|Λrds|2

there exists a function F ∈ O(Ω) such that:
(i) F |V = f i.e., the function F is an extension of f ;
(ii) The next L2/m bound holds∫

Ω
|F |2/m e−ϕdλ 6 C0

∫
V

|f |2/m e−ϕ dλV

|Λrds|2
,

where C0 is an absolute constant.

The proof of Corollary 1.2 was given in Section 1.

4. Application to the projective case
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4.1. Relative Riemann–Roch Theorem for hermitian vector
bundles over Kähler manifolds

This part is based upon the theorem of Bismut, Gilet and Soulé, which
generalizes the Riemann–Roch–Hirzebruch–Grothendieck theorem from co-
homology classes to distinguished representatives. Given a proper, smooth
Kähler morphism f : Y → S with relative Kähler form ωY/S and a her-
mitian vector bundle (F, h) on Y , there exists a Quillen metric hQ on the
determinant line bundle

λ = λ(F ) := det f!(F )

taken in the derived category satisfying

Theorem 4.1 ([2, 3, 4]). — The Chern form of the determinant line
bundle λ(F ) on the base S is equal to the component in degree two of the
following fiber integral.

(4.1) c1(λ(F ), hQ) = −
[∫

Y/S

td(Y/S, ωY/S)ch(F, h)
](2)

Here ch and td resp. stand for the Chern and Todd character forms resp.

Based upon the universal properties of the construction, it was general-
ized from hermitian vector bundles (F, hF ) to elements of the Grothendieck
group, i.e. formal differences of such objects. It proved to be consistent to
define ch(G−H,hG, hH) = ch(G, hG)− ch(H,hH).

4.2. Application to degenerating families of Calabi–Yau
manifolds

We consider the situation of Theorem 1.1, and assume that there exists
a hermitian, holomorphic line bundle (L, h0) on X such that ω = c1(L, h0).
Following [7, Section 10] we define

F =
(
KX′/S′ −K−1

X′/S′

)
⊗
(
L− L−1)⊗n

on X. Note that the virtual bundles KX′/S′ −K−1
X′/S′ and L− L

−1 are of
rank zero so that the Chern character form in question is

c1
(
F, hF

)
= 2c1

(
KX′/S′ −K−1

X′/S′ , h
ρ
)
∧ 2nc1

(
L, hL

)n + . . . ,

where terms of degree larger than 2n+ 2 are omitted. At this point we use
the normalization (1.1) for ρ.
Now by (4.1) and (2.9) the curvature of the determinant line bundle is
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Proposition 4.2.
c1
(
λ(F ), hQ

)
= 2n+1ωWP .

We apply [9, Theorem 2] (cf. [10]), and get the following fact for a map
f : X → S as in this section.

Theorem 4.3. — After a blow up S̃ → S of the set S\S′ of singular
values of f , the determinant line bundle (λ(F ), hQ) extends to S̃ as a
holomorphic line bundle equipped with a singular hermitian metric, whose
curvature current is positive.
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