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ON THE VANISHING OF REDUCED 1-COHOMOLOGY
FOR BANACH REPRESENTATIONS

by Yves CORNULIER & Romain TESSERA

Abstract. — A theorem of Delorme states that every unitary representation
of a connected solvable Lie group with nontrivial reduced first cohomology has a
nonzero finite-dimensional subrepresentation. More recently Shalom showed that
such a property is inherited by cocompact lattices and stable under coarse equiv-
alence among amenable countable discrete groups. We give a new geometric proof
of Delorme’s theorem, which extends to a larger class of groups, including solvable
p-adic algebraic groups and finitely generated solvable groups with finite Prüfer
rank.

Moreover all our results apply to isometric representations in a large class of
Banach spaces, including reflexive Banach spaces. As applications, we obtain an
ergodic theorem in for integrable cocycles, as well as a new proof of Bourgain’s
Theorem that the 3-regular tree does not embed quasi-isometrically into any su-
perreflexive Banach space.
Résumé. — D’après un théorème de Delorme, pour un groupe de Lie résoluble

connexe, toute représentation unitaire dont la 1-cohomologie réduite est non nulle
possède une sous-représentation non nulle de dimension finie. Plus récemment,
Shalom a démontré que cette propriété passe aux réseaux cocompacts, et est un
invariant d’équivalence grossière parmi les groupes discrets moyennables. On donne
une nouvelle preuve géométrique du théorème de Delorme, s’étendant à une plus
grande classe de groupes, dont les groupes algébriques résolubles p-adiques et les
groupes résolubles de type fini de rang de Prüfer fini.

De plus, cela s’applique à des représentations isométriques dans toute une classe
d’espaces de Banach, parmi lesquels ceux qui sont réflexifs. On déduit, par exemple,
un théorème ergodique pour les cocycles intégrables, ainsi qu’une nouvelle preuve
du résultat de Bourgain disant qu’un arbre 3-régulier ne se plonge quasi-isométri-
quement dans aucun espace de Banach super-réflexif.

Keywords: Property Hfd, Banach representations, Unitary representations, Amenable
groups, Solvable Lie groups, WAP representations, Groups of finite Prüfer rank.
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1. Introduction

1.1. Background

Let G be a locally compact group. We consider representations of G into
Banach spaces. It is thus convenient to call G-module a Banach space V
endowed with a representation ρ of G, by bounded automorphisms, in a
way that the mapping g 7→ gv = ρ(g)v is continuous for all v ∈ V . We will
denote by V G the subspace of G-fixed points.

The space Z1(G,V ) (also denoted Z1(G, ρ)) of 1-cocycles is the set of
continuous maps b : G → V satisfying the 1-cocycle condition ρ(gh) =
ρ(g)b(h) + b(g). It is endowed with the topology of uniform convergence on
compact subsets. The subspace of coboundaries B1(G,V ) consists of those
b of the form b(g) = v−ρ(g)v for some v ∈ V . It is not always closed, and the
quotient of Z1(G,V ) by its closure is called the first reduced cohomology
space H1(G,V ) (or H1(G, ρ)). See notably the reference book [20].

Vanishing properties of the first reduced cohomology has especially been
studied in the context of unitary representations on Hilbert spaces. If G
satisfies Kazhdan’s Property T, it is a classical result of Delorme that
H1(G,V ) = 0 (and actually H1 itself vanishes) for every unitary Hilbert
G-module V . See also [5, Chapter 2]. For G a discrete finitely generated
group, the converse was established by Mok and Korevaar–Schoen [22, 27]:
if G fails to satisfy Kazhdan’s Property T then H1(G,V ) 6= 0 for some
unitary Hilbert G-module V . A more metrical proof was provided by Gro-
mov in [18], and Shalom [30] extended the result to the setting of locally
compact groups, see also [5, Chapter 3].
The locally compact groups in which we will be interested will usually

be amenable (and non-compact), so that this non-vanishing result holds.
However, it often happens that unitary representations with non-vanishing
reduced 1-cohomology for a given group are rare. For instance, it is an easy
observation of Guichardet [19] that if G is abelian, or more generally nilpo-
tent, and V is a Hilbert G-module with V G = 0, then H1(G, π) = 0. In
particular, the only irreducible unitary representation with non-vanishing
H1 is the trivial 1-dimensional representation. Shalom [31] thus introduced
the following terminology: if G satisfies the latter property, it is said to
satisfy Property Ht. He also introduced a natural slightly weaker invari-
ant: G has Property Hfd if for every unitary Hilbert G-module with no
G-submodule (= G-invariant closed subspace) of positive finite dimension,
we have H1(G,V ) = 0. For G second-countable, this can also be character-
ized as follows: G has Property Hfd if and only if every irreducible unitary
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representation with H1 6= 0 has finite dimension, and there are only count-
ably many up to equivalence. Nontrivial examples were provided by the
following theorem of P. Delorme.

Theorem ([13, Theorem V6, Corollary V2]). — Let G be a connected
solvable Lie group and let V be an irreducible unitary G-module. Assume
that V is not a tensor power of a character occurring as quotient of the
adjoint representation. Then V has zero first reduced cohomology.

Using Shalom’s subsequent terminology, it follows that connected solv-
able Lie group have Property Hfd. Florian Martin [26] extended this (and
the above theorem) to arbitrary amenable connected Lie groups.
Delorme’s proof takes more than 10 pages, involving a lot of ad-hoc

analytical arguments and strongly relying on representation theory of the
Lie algebra. Shalom proved in [31] that Property Hfd is invariant under
passing to cocompact lattices. As a consequence, it is satisfied by virtually
polycyclic groups: indeed such a group Γ has a finite index subgroup Γ′
embedding as a cocompact lattice in a group G as in the theorem, and
then Property Hfd thus successively passes from G to Γ′ and then to Γ.
A motivation for Property Hfd is to produce finite-dimensional repre-

sentations with infinite image, in contexts where it is not a priori clear
that these indeed exist. More precisely, if G is an infinite finitely generated
amenable group, it is easy to deduce from Property Hfd that G admits
an infinite virtually abelian quotient. Shalom’s originally ambition was to
provide an alternative proof of Gromov’s theorem about groups with poly-
nomial growth. The missing step in his approach was to directly establish
Property Hfd for such groups. This goal was finally achieved by Ozawa in
2016 [29]: more precisely, he managed to prove that a group G equipped
with a generating subset S such that lim infn log |Sn|

logn = 0 has Property Hfd.
Ozawa’s proof is based on a clever estimate on the entropy of the simple ran-
dom walk on the Cayley graph (G,S). Elaborating on Ozawa’s approach,
Erschler and Ozawa have shown that a certain property of concentration
of the random walk near the origin implies Property Hfd [16]. This result
was used in [15] and [17] to produce new examples of groups with property
Hfd (see also [9] for other examples and also new counterexamples).

In this work, we provide a new, simpler proof of Delorme’s theorem based
on geometric/dynamical considerations.This allows to extend the previous
results in two directions: first our approach allows to encompass a much
larger class of groups, and second it allows to generalize it to uniformly
bounded representations in more general Banach spaces.
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A crucial feature which is used all the time in the context of unitary
representations is the notion of “orthogonal complement”. Although this
notion does not survive in the more general framework of Banach spaces,
a weaker and yet very powerful property holds for a large class of Banach
G-modules: the subspace of invariant vectors is a factor, in fact it admits
a canonical complement.
Recall that a G-module (V, π) is called weakly almost periodic (WAP for

short) if for every v ∈ V , the orbit π(G)v is relatively compact in V in the
weak topology. Note that this does not depend on any choice of topology
on G. As observed in [4], it implies that ρ is a uniformly bounded represen-
tation: supg∈G ‖ρ(g)‖ <∞, and in case V is reflexive, this is equivalent to
being a uniformly bounded representation. WAP representations turn out
to be a convenient wide generalization of unitary representations.

Definition 1.1. — We say that a locally compact group G has Prop-
erty WAPt if every WAP G-module V with V G = {0} has H1(G,V ) = 0.

Property WAPt is a strengthening of Property Ht. Using that there a
G-invariant complement ([4, Theorem 14], see Section 2.4), this means that
for every WAP G-module V , the reduced 1-cohomology is “concentrated”
in V G. Observe that a 1-cocycle valued in V G is just a continuous group
homomorphism. It follows, for instance, that for a compactly generated, lo-
cally compact group G without Kazhdan’s Property T (e.g., amenable and
non-compact), the condition Hom(G,R) = 0 is an obstruction to Property
Ht, and hence to Property WAPt.
This explains why it is, in the context of unitary representations, nat-

ural to deal with the more flexible Property Hfd. Defining an analogue in
this broader context prompts some technical difficulties, which leads us
to introduce two distinct notions. First, recall that a Banach G-module
is almost periodic if all orbit closures are compact (in the norm topol-
ogy). This is obviously a strengthening of being WAP. This is satisfied
by finite-dimensional uniformly bounded modules, and it can be checked
(Corollary 2.8) that a uniformly bounded Banach G-module is almost pe-
riodic if and only if the union of its finite-dimensional submodules is dense.
In general, the set of vectors whose G-orbit has compact closure is a closed
submodule, denoted V G,ap, and, by the above, equals the closure of the
union of finite-dimensional submodules.

Definition 1.2. — Let G be a locally compact group.
• G has PropertyWAPap if for every WAP Banach G-module V with
V G,ap = 0 we have H1(G,V ) = 0;
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• G has Property WAP fd if for every WAP Banach G-module V
and every 1-cocycle b that is nonzero in H1(G,V ), there exists a
closed submodule W of nonzero finite codimension such that the
projection of b on V/W is unbounded.

Since finite-codimensional submodules are complemented (Proposi-
tion 2.12), Property WAP fd implies Property WAPap. We do not know if
the converse holds (see Question 4.5 and the discussion around it; in the
setting of unitary representations on Hilbert spaces the converse indeed
holds).

1.2. Main results

In the sequel, we abbreviate “compactly generated locally compact” as
“CGLC”.

Our main result is the fact that a relatively large class of CGLC groups,
including connected solvable Lie groups, algebraic solvable p-adic groups,
and finitely generated solvable groups with finite Prüfer rank, satisfy prop-
ertyWAPap. Even in the case of connected solvable Lie groups, the proof is
not merely an adaptation of Delorme’s proof, which is specific to the Hilbert
setting. Instead it uses a dynamical phenomenon which is very specific to
these groups.

In order to illustrate this dynamical phenomenon, let us examine the
simplest example where it arises: the affine group Aff(R) := U oA, where
U ' A ' R, and where the group law is given by (x, t)(y, s) = (x +
ety, t+ s). The important feature of this group is the fact that the normal
subgroup U is “contracted” by the action of A: i.e. given at = (0, t) ∈ A
and u = (x, 0) ∈ U , one has

a−1
t uat = (e−tx, 0),

from which we deduce that a−1
t uat → (0, 0) as t → ∞. The group Aff(R)

turns out to have Property WAPt, and, roughly speaking, the proof con-
sists in proving that U behaves as if it did not exist at all, so that everything
boils down to the fact that A itself satisfies WAPt. A complete proof for
this example is given in Section 5.6.
An elaboration of this argument applies to the following ad-hoc class of

groups:
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Definition 1.3. — Denote by C the class of (solvable) locally compact
groups G having two closed subgroups U and N such that

(1) U is normal and G = UN ;
(2) N is a CGLC compact-by-nilpotent group, i.e., is compactly gener-

ated and has a compact normal subgroup such that the quotient is
nilpotent;

(3) U decomposes as a finite direct product
∏
Ui, where each Ui is

normalized by the action of N and is an open subgroup of a unipo-
tent group Ui(Ki) over some non-discrete locally compact field of
characteristic zero Ki.

(4) U admits a close cocompact subgroup V with, for some k, a decom-
position V =V1V2 . . . Vk where each Vi is a subset such that there is
an element t= ti ∈ N such that t−nvtn→1 as n→∞ for all v∈Vi.

This notably includes (see Proposition 6.1)
• real triangulable connected Lie groups;
• groups of the form G = G(Qp), where G is a solvable connected
linear algebraic group defined over the p-adic field Qp such that G
is compactly generated;

• mixtures of the latter, such as the semidirect product (K1 ×
K2) o(t1,t2) Z, where Ki is a nondiscrete locally compact field and
|ti| 6= 1.

Let us also pinpoint that in many cases, the method applies without the
characteristic zero assumption in (3). Namely, assuming that U = U0 ×⊕

p Up where U0 is the characteristic zero part and Up is the p-torsion (p
ranges over primes, with only finitely many p for which Up 6= 1), this applies
if for every p > 0, Up is (p − 1)-step-nilpotent, so that it naturally has a
Lie algebra, and this Lie algebra has a G-invariant structure of Lie algebra
over Fp((t)).
Here is our first main result

Theorem 1.4. — Locally compact groups in the class C have Property
WAPt. In particular, they have Property Ht.

The proof of Theorem 1.4 involves several steps of independent interest,
including the existence of “strong controlled Følner subsets” for groups
in the class C (Theorem 6.10). This is enough to obtain that these groups
satisfyHfd by [17, Corollary 3.13], whose argument is specific to the Hilbert
setting. In order to extend Theorem 1.4, we use induction methods as
in [3, 31] to obtain:
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Theorem 1.5 (see Section 4).

(1) Properties WAPt and WAPap are inherited by closed cocompact
subgroups such that the quotient has an invariant probability mea-
sure. In particular these properties are inherited by closed cocom-
pact subgroups among amenable groups.

(2) Properties WAPt and WAPap are invariant (i.e., both the prop-
erty and its negation is stable) under taking quotients by compact
normal subgroups.

(3) Let G be a locally compact group with a closed normal cocom-
pact subgroup N . If N has Property WAPt then G has Property
WAPap.

(4) Let Λ be a countable discrete group with Property WAPap and Γ
a countable discrete group admitting an RCE (random cocompact
embedding, see Section 3.2.1) into Λ. Then Γ also has Property
WAPap. In particular, Property WAPap is stable under coarse
equivalence among countable discrete amenable groups.

We introduce the terminology RCE to name a slight reinforcement of
uniform measure equivalence used in [31].

Definition 1.6. — Let C′ be the larger class consisting of those locally
compact groups G such that there exists a sequence of copci (= continuous,
proper with cocompact image) homomorphisms G→ G1 ← G2 → G3 such
that the image of G2 → G1 is normal in G1 and G3 belongs to the class C.

This may sound a bit artificial, but the point is that this definition en-
sures that all amenable, virtually connected Lie groups belong to the class
C′ (Proposition 6.2), as well as all groups with a open finite index subgroup
in the class C.

Corollary 1.7. — Locally compact groups in the class C′ have Prop-
erty WAP fd. In particular, they have Property Hfd.

Corollary 1.8. — Every virtually connected amenable Lie group G

has Property WAP fd.

In view of Proposition 6.1, we deduce

Corollary 1.9. — Real-triangulable Lie groups and compactly gen-
erated amenable Zariski-(closed connected) subgroups of GLn(Qp) have
WAPt.

We combine these results to obtain the following Banach space version
of Delorme’s theorem.

TOME 70 (2020), FASCICULE 5
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Corollary 1.10 (see Corollary 7.5). — Let G be a connected solvable
Lie group. Then every WAP G-module with nonzero first cohomology has
a 1-dimensional factor (with nonzero first cohomology).

We can also apply Theorem 1.4 to deduce many new examples of discrete
groups with Property WAPap.

Corollary 1.11. — The class of groups satisfying Property WAPap
includes all discrete groups that are virtually cocompact lattices in a finite
direct product of connected Lie groups and algebraic groups over Qp (for
various primes p). This includes polycyclic groups and more generally all
amenable groups already known to satisfy Property Hfd (see [31]). Some
of these, being cocompact lattices in groups in the class C, actually have
Property WAPt: this includes for instance of SOL, solvable Baumslag–
Solitar groups and lamplighter groups (Z/nZ) o Z.

We can also, along with additional structural work, deduce the following
result, which answers a question of Shalom [31] (who asked whether these
groups have Hfd).

Recall that a group has finite Prüfer rank if for some k, all its finitely gen-
erated subgroups admit a generating k-tuple. Let us abbreviate “virtually
solvable of finite Prüfer rank” to “VSP”.

Theorem 1.12 (Corollary 8.13). — Every finitely generated, VSP group
has Property WAP fd, and in particular has Property Hfd.

Finitely generated amenable (or equivalently, virtually solvable) sub-
groups of GL(d,Q) are notably covered by the theorem: more precisely,
these are precisely (when d is allowed to vary) the virtually torsion-free
groups in the class of finitely generated VSP groups. Actually, the theorem
precisely consists of first proving it in this case, and deduce the general
case using a recent result of Kropholler and Lorensen [24]: every finitely
generated VSP group is quotient of a virtually torsion-free finitely gener-
ated VSP group. The case of finitely generated amenable (or equivalently,
virtually solvable) subgroups of GL(d,Q) is based on an embedding result
(see Proposition 8.9 and 8.10) of independent interest.

Remark 1.13. — For a discrete solvable group G with derived series G0 =
G, Gi+1 = [Gi, Gi], the sum

∑
i>0 dimQ((Gi/Gi+1) ⊗Q) is known as the

Hirsch number of G.
Shalom conjectured [31, §6.6] that a finitely generated solvable group

with finite Hirsch number has Property Hfd. This was recently disproved
by Brieussel and Zheng, who showed that the groups (Z/mZ) oZd for d > 3
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and m > 2 do not have Property Hfd. Shalom previously proved that Z oZ
does not have Property Hfd. All this shows that our methods cannot apply
to such “large” solvable groups.
However, it follows from Theorem 1.12 that the conjecture holds in the

case of torsion-free groups: indeed, it is known [23] that finitely generated
torsion-free solvable groups with finite Hirsch number are VSD groups.

We deduce the following strengthening of [31, Theorem 1.3], which is the
particular case of polycyclic groups.

Corollary 1.14. — Let Λ be a finitely generated, (virtually) solvable
group of finite Prüfer rank. Let Γ be a finitely generated group quasi-
isometric to Λ. Then Γ has a finite index subgroup with infinite abelian-
ization.

Proof. — This consists in combining Theorem 1.12 with two results of
Shalom:

• [31, Theorem 4.3.1]: every infinite finitely generated amenable
group with Property Hfd has a finite index subgroup with infinite
abelianization;

• [31, Theorem 4.3.3]: among finitely generated amenable groups,
Property Hfd is a quasi-isometry invariant. �

1.3. Cocompact hull of amenable subgroups of GL(d,Q)

Our proof of Theorem 1.12 relies on a construction of independent inter-
est. We start introducing a second variant of the class C.

Definition 1.15. — Let C′′ be the class of compactly generated locally
compact groups defined as the class C (Definition 1.3) but replacing (3)
with: N has polynomial growth.

Theorem 1.16. — Every finitely generated amenable (= virtually solv-
able) subgroup of GLm(Q) embeds as a cocompact lattice into a locally
compact group G with an open subgroup of finite index G′ in the class C′′.

This is a key step in the proof of Theorem 1.12. Let us pinpoint other
consequences of the existence of this cocompact hull.

Let G be a compactly generated locally compact group, and let λ be the
left representation of G on real-valued functions on G, namely λ(g)f(x) =
f(g−1x). We let S be a compact symmetric generating subset of G. For
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any 1 6 p 6∞, and any subset A of G, define

Jp(A) = sup
f

‖f‖p
sups∈S ‖f − λ(s)f‖p

,

where f runs over nonzero functions in Lp(G), supported in A. Recall [36]
that the Lp-isoperimetric profile inside balls is given by

JbG,p(n) = Jp(B(1, n)).

Corollary 1.17 (see Corollary 8.14). — For every finitely generated
VSP group G equipped with a finite generating subset S, we have

JbG,p(n) � n,

i.e., there exists c > 0 such that JbG,p(n) > cn for all n.

Corollary 1.17 has a consequence in terms of equivariant Lp-compression
rate. Recall that the equivariant Lp-compression rate Bp(G) of a locally
compact compactly generated group is the supremum of those 0 6 α 6 1
such that there exists a proper isometric affine action σ on some Lp-space
satisfying, for all g ∈ G, ‖σ(g).0‖p > |g|αS − C for some constant C < ∞.
It follows from [38, Corollary 13] that for a group G with JbG,p(n) � n, we
have Bp(G) = 1; hence

Corollary 1.18. — Let 1 6 p < ∞, and G be a finitely generated
VSP group. Then Bp(G) = 1.

See also [38, Theorem 10] for a finer consequence.

1.4. An mean ergodic theorem in L1

Let X be a probability space and let T : X → X be a measure-preserving
ergodic self-map of X. Recall that Birkhoff’s theorem states that for all f ∈
L1(X), the sequence 1

n

∑n−1
i=0 T

i(f) converges a.e. and in L1 to the integral
of f . Observe that the map n 7→ c(n) =

∑n−1
i=0 T

i(f) ∈ L1(X) (a priori
well defined on positive integers, and more generally on Z if T is invertible)
satisfies the cocycle relation: c(n+1) = T (c(n))+c(1). Hence, assuming that
T is invertible, Birkhoff’s ergodic theorem can be restated in a more group-
theoretic fashion: given an ergodic measure measure-preserving action of
Z on a probability space X, every continuous cocycle c ∈ Z1(Z, L1(X))
satisfies [

x 7→ 1
|n|

(
c(n)(x)−

∫
c(n)(x′)dµ(x′)

)]
n→∞−→ 0,
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both a.e. and in L1. By action of G on a probability space X, we mean a
measurable map G×X → X, denoted (g, x) 7→ g.x (G being endowed with
the Lebesgue σ-algebra), such that for every g, h ∈ G, the functions g.(hx)
and (gh)x coincide outside a subset of measure zero. This makes Lp(G) a
Banach G-module for all 1 6 p <∞.

As a generalization, Boivin and Derriennic [7, Theorem 4] proved that
Zd and Rd satisfy the mean ergodic theorem in L1. To obtain almost sure
convergence, stronger integrability conditions are required when d > 1
(see [7, Theorems 1 and 2]). Here however, we focus on convergence in L1:

Definition 1.19. — A CGLC group G satisfies the mean ergodic the-
orem for cocycles in L1 if for every ergodic measure-preserving action of G
on a probability space X, and every continuous cocycle c ∈ Z1(G,L1(X)),
we have

lim
|g|→∞

1
|g|

(
c(g)(x)−

∫
X

c(g)(x′)dµ(x′)
)

= 0,

where the convergence is in L1(X), and |g| denotes a word length on G

associated to some compact generating subset.

We start with the following observation.

Proposition 1.20. — A group G with Property WAPap satisfies the
mean ergodic theorem for 1-cocycles in L1 if and only if G satisfiesWAPt.

The if part immediately follows from the well-known fact [14, Corol-
lary 6.5] that the representation of G on L1(X) is WAP. The “only if” part
is more anecdotical, see Section 9 for the proof.

Corollary 1.21. — Groups in the class C and their closed cocompact
subgroups satisfy the ergodic theorem for cocycles in L1.

To our knowledge, this is new even for the group SOL. For nilpotent
groups, it can be easily deduced from Proposition 1.20 together with the
fact that these groups have WAPt, an observation due to [4].

1.5. Bourgain’s theorem on tree embeddings

We obtain a new proof of the following result of Bourgain.

Corollary 1.22 (Bourgain [8]). — The 3-regular tree does not quasi-
isometrically embed into any superreflexive Banach space.
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The idea is to use a CGLC group in the class C that is quasi-isometric
to the 3-regular tree, and make use of amenability and Property WAPt.
In [12], the authors and Valette used a similar argument based on property
Ht to show Bourgain’s result in the case of a Hilbert space. See Section 9
for the proof.
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2. Preliminaries on Banach modules

2.1. First reduced cohomology versus affine actions

Let G be a locally compact group, and (V, π) be a Banach G-module.
Observe that, given a continuous function b : G → V , we can define for

every g ∈ G an affine transformation αb(g)v = π(g)v+ b(g). Then the con-
dition b ∈ Z1(G, π) is a restatement of the condition αb(g)αb(h) = αb(gh)
for all g, h ∈ G, meaning that α is an action by affine transformations. Then
the subspace B1(G, π) is the set of b such that αb has a G-fixed point, and
its closure B1(G, π) is the set of 1-cocycles b such that the action αb almost
has fixed points, that is, for every ε > 0 and every compact subset K of G,
there exists a vector v ∈ V such that for every g ∈ K,

‖αb(g)v − v‖ 6 ε.

If G is compactly generated and if S is a compact generating subset, then
this is equivalent to the existence of a sequence of almost fixed points, i.e. a
sequence (vn) of vectors satisfying

lim
n→∞

sup
s∈S
‖αb(s)vn − vn‖ = 0.

2.2. Almost periodic actions

Definition 2.1 (Almost periodic actions). — Let G be a group acting
on a metric space X. Denote by XG,ap the set of x ∈ X whose G-orbit has
a compact closure in X. Say that X is almost (G-)periodic if XG,ap = X.

ANNALES DE L’INSTITUT FOURIER



VANISHING OF REDUCED COHOMOLOGY 1963

Note that this definition does not refer to any topology on G. Although
we are mainly motivated by Banach G-modules, some elementary lemmas
can be established with no such restriction.
The following lemma is well-known when X = V is a WAP Banach

G-module.

Lemma 2.2. — Let G be a group and X a complete metric space with
a uniformly Lipschitz G-action (in the sense that C < ∞, where C is the
supremum over g of the Lipschitz constant Cg of the map x 7→ gx). Then
XG,ap is closed in X.

Proof. — Let v be a point in the closure of XG,ap. Choose vj ∈ XG,ap

with v = limj vj .
Let (gn) be a sequence inG. We have to prove that (gnv) has a convergent

subsequence. First, up to extract, we can suppose that (gnvj) is convergent
for all j. Then for all m,n, j we have

d(gnv, gmv) 6 d(gnv, gnvj) + d(gnvj , gmvj) + d(gmvj , gmv)
6 2Cd(v, vj) + d(gnvj , gmvj).

Now fix ε > 0 and choose j such that d(v, vj) 6 ε/3. Then there ex-
ists n0 such that for all n,m > n0, we have d(gnvj , gmvj) 6 ε/3. It
then follows from the above inequality that for all n,m > n0, we have
d(gnv, gmv) 6 ε. �

Lemma 2.3. — Let G be a locally compact group and H a closed co-
compact subgroup. Let X be a metric space with a uniformly Lipschitz,
separately continuous G-action. Then XH,ap = XG,ap.

Proof. — Choose x ∈ XH,ap. Choose a compact subset K ⊂ G such that
G = KH. Let (gnx) be any sequence in the G-orbit of x. Write gn = knhn
with kn ∈ K, hn ∈ H. We can find an infinite subset I of integers such
that kn

n∈I−−→
n→∞

k and hnv
n∈I−−→
n→∞

w. Then, denoting C the supremum of Lipschitz
constants, we have

d(gnx, kw) = d(knhnx, kw) 6 d(knhnx, knw) + d(knw, kw)

6 Cd(hnx,w) + Cd(w, k−1
n kw) n∈I−→

n→∞
0.

Thus the G-orbit of x has compact closure, that is, x ∈ V G,ap, showing the
nontrivial inclusion. �

Proposition 2.4. — Let G be a topological group and (X,π) a metric
space with a separately continuous uniformly Lipschitz G-action (denoted
gx = π(g)x). Then X is almost G-periodic if and only if the action of G on
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X factors through a compact group K with a separately continuous action
of K on X and a continuous homomorphism with dense image G→ K.

Proof. — The “if” part is immediate. Conversely, suppose that X is al-
most periodic. Let O be the set of G-orbit closures in X. Each Y ∈ O
is a compact metric space; let IY be its isometry group; we thus have a
continuous homomorphism G→ IY . So we have a canonical continuous ho-
momorphism q : G→

∏
Y ∈O Y ; let K be the closure of its image; this is a

compact group. We claim that the representation has a unique separately
continuous extension to K. The uniqueness is clear. To obtain the exis-
tence, consider any net (gi) in g such that (q(gi)) converges in K, π(gi)v
converges in X for every v ∈ X. Indeed, we have d(π(g−1

i gj)v, v) → 0
when i, j →∞, and hence, since the representation is uniformly bounded,
d(π(gj)v, π(gi)v) tends to 0. So (π(gi)v) is Cauchy and thus converges; the
limit only depends on v and on the limit k of (q(gi)); we define it as π̃(k)v.
Also, if c is the supremum of all Lipschitz constants, then, as a pointwise

limit of c-Lipschitz maps, π̃(k) is c-Lipschitz.
Now let us show that it defines an action of K, namely π̃(k)π̃(`) = π̃(k`)

for all k, ` in K. We first claim that k 7→ π̃(k)v is continuous for every
fixed v ∈ X. Indeed, if Y is the closure of the orbit of v, then this map
can be identified to the orbital map of the action of the image of k in IY ,
which is continuous. The same argument shows that (k, `) 7→ π̃(k)π̃(`)v is
continuous, and also this implies, by composition, that (k, `) 7→ π̃(k`)v is
continuous. Since these two maps coincide on the dense subset q(G)×q(G),
they agree. Thus π̃ defines an action, and we have also checked along the
way that it is separately continuous. �

2.3. Almost periodic Banach modules

We recall the following well-known fact.

Lemma 2.5. — Let G be a group and (V, π) a Banach G-module. If
every G-orbit is bounded, then the representation is uniformly bounded.
In particular,

• every WAP representation is uniformly bounded;
• for G compact, every Banach G-module is uniformly bounded.

Proof. — Define Vn = {v ∈ V : ∀g ∈ G, ‖gv‖ 6 n}. Since the action is
by bounded (=continuous) operators, Vn is closed for all n. Since all G-
orbits are bounded,

⋃
n Vn = V . By Baire’s theorem, there exists Vn with
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non-empty interior. Since Vn = −Vn and Vk + V` ⊂ Vk+` for all k, `, the
set V2n contains the centered ball of radius ε for some ε > 0. This implies
that supg∈G ‖π(g)‖ 6 2n/ε.
(Note that the last consequence was not a trivial consequence of the

definition, since the map g 7→ π(g) often fails to be continuous for the
norm topology on operators.) �

Lemma 2.6. — Let V be a Banach G-module. Then V G,ap is a subspace
of V .

Proof. — This is clear since G(λv + w) ⊂ λGv +Gw for all v, w. �

Theorem 2.7 ([33, Theorem 2]). — Let G be a compact group and
(V, π) be a Banach G-module. Then the sum of finite-dimensional irre-
ducible G-submodules of V is dense in V .

Let now G be an arbitrary topological group. Recall that a Banach G-
module is almost periodic if every G-orbit is relatively compact in the norm
topology.

Corollary 2.8. — Let V be a uniformly bounded Banach G-module.
Then V G,ap is the closure of the sum of all finite-dimensional submodules
of V , and is also the closure of the sum of all irreducible finite-dimensional
submodules of V .

Proof. — Let V G,ap, V2, V3 be the three subspaces in the corollary. That
V3 ⊂ V2 is clear.
That every finite-dimensional submodule is contained in V G,ap is clear

(even without assuming V uniformly bounded). So the sum of all finite-
dimensional submodules is contained in V G,ap, and hence its closure by
Lemma 2.2, since V is uniformly bounded. So V2 ⊂ V G,ap.
For the inclusion V G,ap ⊂ V3, we use that the G-action on V G,ap

factors through a compact group (Proposition 2.4), and then invoke
Theorem 2.7. �

Definition 2.9. — Let G be a locally compact group and let (V, π) be
a Banach G-module. Define V ∗[G] as the set of f ∈ V ∗ such that the orbital
function νf : g 7→ g · f is continuous on G.

Lemma 2.10. — Let G be a locally compact group and (V, π) be a
Banach G-module. Then V ∗[G] is a closed subspace of V ∗ (and thus is a
Banach G-module). Moreover, V ∗[G] separates the points of V .
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Proof. — That V ∗[G] is a subspace is clear.
Write c = supg∈G ‖π(g)‖ (it is finite by Lemma 2.5). For f, f ′ ∈ V ∗ and

v ∈ V , we have

νf (g)(v)− νf ′(g)(v) = (g · f)(v)− (g · f ′)(v) = (f − f ′)(g−1v);

hence

‖νf (g)(v)− νf ′(g)(v)‖ 6 ‖f − f ′‖‖g−1v‖ 6 c‖f − f ′‖‖v‖

and thus
‖νf (g)− νf ′(g)‖ 6 c‖f − f ′‖

Suppose that (fn) converges to f , with fn ∈ V ∗[G] and f ∈ V ∗. The above
inequality shows that νfn

converges uniformly, as a function on G, to νf .
By assumption, νfn is continuous, and thus νf is continuous, meaning that
f ∈ V ∗[G].
For the separation property, we consider v ∈ V r {0} and have to find

an element in V ∗[G] not vanishing on v. First, we choose f ∈ V ∗ such that
f(v) = 1.
For every g ∈ G, (g · f)(v) = f(g−1v), and hence q : g 7→ (g · f)(v) is

continuous on G; we have q(1) = 1. Let U be a compact neighborhood of
1 in G on which q takes values > 1/2. Let ϕ be a non-negative continuous
function on G, with support in U , and integral 1 (G being endowed with a
left Haar measure).
For ξ ∈ V , define u(ξ) =

∫
G
ϕ(g)f(g−1ξ)dg. Then u is clearly linear, and

‖u‖ 6 c‖f‖, so u is continuous. We have u(v) =
∫
G
hnq > 1/2.

It remains to show that u ∈ V ∗[G]. It is enough to check that h 7→ h · u is
continuous at 1. We have, for h ∈ G and ξ ∈ V

u(ξ)− (h · u)(ξ) =
∫
G

ϕ(g)f(g−1ξ)dg −
∫
G

ϕ(g)f(g−1h−1ξ)dg

=
∫
G

ϕ(g)f(g−1ξ)dg −
∫
G

ϕ(h−1g)f(g−1ξ)dg

=
∫
G

(ϕ(g)− ϕ(h−1g))f(g−1ξ)dg.

Define εh = supg∈G |ϕ(g) − ϕ(h−1g)|. Since ϕ has compact support, it is
uniformly continuous. Hence εh tends to 0 when h→ 1. We conclude

‖u(ξ)− (h · u)(ξ)‖ 6 εh
∫
G

|f(g−1ξ)|dg 6 εhc‖f‖‖ξ‖,

so ‖u− h · u‖ 6 εhc‖f‖, which tends to 0 when h→ 1. �
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Proposition 2.11. — Let V be an almost periodic Banach G-module.
Then every finite-dimensional submodule is complemented in V as G-
module.

Proof. — By Proposition 2.4, we can suppose that G is compact.
Let C be a finite-dimensional submodule; let us show, by induction on

d = dim(C), that C is complemented. This is clear if d = 0; assume now
that C is irreducible. Beware that V ∗ need not be a Banach G-module (G
does not always act continuously). We consider the subspace V ∗[G] ⊂ V of
Definition 2.9, which is a Banach G-module by Lemma 2.10. Let F ⊂ V ∗[G]
the sum of all irreducible finite-dimensional submodules. By Theorem 2.7,
F is dense in V ∗[G], and by Lemma 2.10, the latter separates the points of
V . So there exists an element in F that does not vanish on C. In turn,
this means that there is an irreducible finite-dimensional submodule M of
F that does not vanish on C, or equivalently whose orthogonal W does
not contain C. Note that W ⊂ V is closed and that M is isomorphic, as
G-module, to the dual of V/W ; in particular, V/W is an irreducible G-
module; in other words, W is maximal among proper G-submodules of V .
It follows that V = C ⊕W .

If C is not irreducible, let C ′ be a nonzero proper submodule. Then by
induction, C/C ′ is complemented in V/C ′, which means that V = C +W

with W a G-submodule and W ∩ C = C ′. By induction, we can write
W = C ′ ⊕W ′ with W ′ a submodule. Hence V = C ⊕W ′. �

Proposition 2.12. — Let V be an almost periodic Banach G-module.
Then every finite-codimensional submodule is complemented in V as G-
module.

Proof. — LetW be a submodule of finite codimension. Lift a basis of the
quotient to a family in the complement (e1, . . . , en). Then there exists an
open ball Bi around ei such that for every (e′1, . . . , e′n) ∈

∏
Bi, the family

(e′1, . . . , e′n) projects to a basis of V/W . Since by Corollary 2.8, the union
of finite-dimensional submodules of V is dense, we can choose e′i to belong
to a finite-dimensional submodule Fi, and define F =

∑
Fi.

Then F is a finite-dimensional G-submodule and F + W = V . Then G
preserves a scalar product on F , so preserves the orthogonal F ′ of F ∩W
for this scalar product. Thus V = F ′ ⊕W . �

2.4. Canonical decompositions

We use the following known results.
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Theorem 2.13. — Let G be a locally compact group and V a WAP
G-module. Then

(1) V G has a canonical complement, consisting of those v such that 0
belongs to the closure of the convex hull of the orbit Gv;

(2) V G,ap has a canonical complement, consisting of those v such that
0 belongs to the weak closure of the orbit Gv.

Here by complement of a subspace W1 in a Banach space V we mean
a closed submodule W2 such that the canonical map W1 ⊕W2 → V is an
isomorphism of Banach spaces. The complement being here defined in a
“canonical” way, it follows that if G preserves these complements.

These statements are Theorems 14 and 12 in [4]. The part (1) is due to
Alaoglu–Birkhoff [1] in the special case of superreflexive G-modules (that is,
whose underlying Banach space is superreflexive), and [3, Proposition 2.6]
in general. Part (2) is a generalized version of a theorem of Jacobs and de
Leeuw–Glicksberg, stated in this generality in [6].

3. Induction

3.1. A preliminary lemma

Lemma 3.1. — Let G be a locally compact group, let (E, π) be a contin-
uous Banach G-module. Let b : G→ E satisfy the cocycle relation b(gh) =
π(g)b(h)+b(g). If b is measurable and locally integrable, then it is continu-
ous. Moreover if a sequence (bn) in Z1(G, π) is locally uniformly bounded,
i.e. for every compact subset K ⊂ G, we have supg∈K,n∈N ‖bn(g)‖ < ∞,
and if (bn) converges pointwise to b, then the convergence is uniform on
compact subsets.

Proof. — Pick a probability measure ν on G with compactly supported
continuous density φ and define b̃(g) =

∫
b(h)(φ(g−1h) − φ(h))dh. One

checks (see the proof of Lemma 5.2 in [37]) that b̃ is continuous and that
b̃(g)− b(g) = π(g)v − v, where v =

∫
b(h)dν(h). Hence b is continuous.

For the second statement, we first note that vn =
∫
bn(h)dν(h) converges

to v =
∫
b(h)dν(h), by Lebesgue’s dominated convergence theorem. So we

are left to consider (̃bn), which converges pointwise for the same reason. We
conclude observing that the b̃n are equicontinuous. Indeed, let g1, g2 ∈ G
and define

C = sup{‖bn(g)‖ : g ∈ g1 supp(φ) ∪ g2 supp(φ), n ∈ N}.
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We have ‖b̃n(g1)− b̃n(g2)‖

=
∥∥∥∥∫ bn(h)(φ(g−1

1 h)− φ(g−1
2 h))dh

∥∥∥∥ 6 C sup
h∈G
|φ(g−1

1 h)− φ(g−1
2 h)|,

and we conclude thanks to the fact that g 7→ φ(g−1) is uniformly conti-
nuous. �

3.2. Measure equivalence coupling

For the notions introduced in this subsection, we refer to [31].

3.2.1. ME coupling and ME cocycles

Given countable discrete groups Γ and Λ, a measure equivalence (ME)
coupling between them is a nonzero σ-finite measure space (X,µ), which
admits commuting free µ-preserving actions of Γ and Λ which both have
finite-measure fundamental domains, respectively XΓ and XΛ. Let α : Γ×
XΛ → Λ (resp. β : Λ ×XΓ → Γ) be the corresponding cocycle defined by
the rule: for all x ∈ XΛ, and all γ ∈ Γ, α(γ, x)γx ∈ XΛ (and symmetrically
for β). If, for any λ ∈ Λ and γ ∈ Γ, there exists finite subsets Aλ ⊂ Γ
and Bγ ⊂ Λ such that λXΓ ⊂ AλXΓ and γXΛ ⊂ BγXΛ, then we say the
coupling is uniform, and call it a UME coupling, in which case the groups
Γ and Λ are called UME. We now introduce the following reinforcement
of UME.

Definition 3.2. — A random cocompact embedding of Λ into Γ is a
UME coupling satisfying in addition XΓ ⊂ XΛ.

3.2.2. Induction of WAP modules

We assume that Λ and Γ are ME and we let α : Γ × XΛ → Λ be the
corresponding cocycle. Now let (V, π) be an Λ-module. The induced module
is the Γ-module (W, IndΓ

Λ π) defined as follows:W is the space L1(XΛ, µ, V )
of measurable maps f : XΛ → V such that∫

XΛ

|f(x)|dµ(x) <∞,

and we let Γ act on W by

IndΓ
Λ π(g)f(x) = π(α(g, x))(f(g−1 · x).

Proposition 3.3. — If (V, π) is WAP, then so is (W, IndΓ
Λ π).

Proof. — This follows from the main result of [35]. �
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3.2.3. Induction of cohomology

For simplicity, we shall restrict our discussion to cohomology in degree
one. We now assume that Λ and Γ are UME, and we let α and β be the
cocycles associated to some UME-coupling. Assume (V, π) is a Banach Λ-
module. Following [31], we define a topological isomorphism I : H1(Γ, π)→
H1(Γ, IndΓ

Λ π) as follows: for every b ∈ Z1(Λ, π) define

Ib(g)(x) = b(α(g, x)),

for a.e. x ∈ X and all g ∈ Γ. Note that Ib is continuous by Lemma 3.1.
Observe that the UME assumption ensures that Ib(g) has finite norm for

all g ∈ G and therefore is a well-defined 1-cocycle. Now assume in addition
that the coupling satisfies XΓ ⊂ XΛ (so that Λ randomly cocompactly
embeds into Γ).
Then one can define an inverse T of I, defined for all c ∈ Z1(Γ, IndΓ

Λ π)
and h ∈ Γ by

Tc(h) =
∫
XΓ

c(β(h, y))(y)dµ(y).

The fact that I and T induce inverse maps in cohomology follows from the
proof of [31, Theorem 3.2.1].

3.3. Induction from a closed cocompact subgroup

Let G be a LCSC group and H a closed cocompact subgroup of finite
covolume.
Let (V, π) be a WAP H-module. Let µ be a G-invariant probability

measure on the quotient G/H. Let E = L2(G/H, V, µ) be the space of
Bochner-measurable functions f : G/H → V such that ‖f‖ ∈ L2(G/H,µ).
Let D ⊂ G be a bounded fundamental domain for the right action of H
on G; let s : G/H → D be the measurable section. Define the cocycle
α : G×G/H → H by the condition that

α(g, x) = γ ⇐⇒ g−1s(x)γ ∈ D,

We can now define a G-module (E, IndGH π) induced from (V, π) by letting
an element g ∈ G act on f ∈ E by

(gf)(kH) = π(α(g, kH))f(g−1kH).

The fact that the induced representation is WAP follows from [35].
Note that one can similarly induce affine actions (the same formula holds,

replacing π by an affine action σ). The corresponding formula for 1-cocycles
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(corresponding to the orbit of 0) is as follows: given b ∈ Z1(H,π), one
defines the induced cocycle b̃ ∈ Z1(G, IndGH π) by

b̃(h)(gH) = b(α(h, gH)).

This defines a continuous cocycle by Lemma 3.1.
The map b → b̃ induces a topological isomorphism in 1-cohomology

(by Lemma 3.1). The inverse is defined as follows: given a cocycle c ∈
Z1(G, IndGH π), one gets a cocycle c̄ ∈ Z1(H,π) by averaging (see for in-
stance [31, Theorem 3.2.2]):

(3.1) c̄(γ) =
∫
D

c(xγx−1)(x)dµ(x).

Observe that b̃ = b.

4. Properties WAPt and WAPap

4.1. The definitions

Definition 4.1. — Let G be a locally compact group. We say that G
has

• PropertyWAPt if H1(G,V ) = 0 for every WAP Banach G-module
V such that V G = 0;

• Property WAPap if H1(G,V ) = 0 for every WAP Banach G-
module V such that V G,ap = 0;

• Property WAP fd if for every G-module V and b ∈ Z1(G,V ) that
is not an almost coboundary, there exists a closed G-submodule of
positive finite codimension modulo which b is unbounded.

• Property AP fd: same as WAP fd, but assuming that V is almost
periodic.

There is a convenient restatement of the definition ofWAP fd, in view of
the following lemma:

Lemma 4.2. — Let V be an almost periodic Banach G-module and b a
1-cocycle. The following are equivalent:

(1) there exists a G-module decomposition V = V1 ⊕ V2 such that
dim(V1) < ∞ and, under the corresponding decomposition b =
b1 + b2, we have b1 unbounded;

(2) there is a closed G-submoduleW ⊂ V of positive finite codimension
such that the projection of b in V/W is unbounded.
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Proof. — Clearly (1) implies (2), and the converse follows from the fact
that W is complemented (Proposition 2.12). �

Proposition 4.3. — PropertyWAP fd is equivalent to the conjunction
of Properties WAPap and AP fd.

Proof. — It is obvious that WAP fd implies both other properties. Con-
versely, assume that G has both latter properties. Let V be a G-module and
let b be a 1-cocycle that is not an almost coboundary. By Theorem 2.13(2),
we have V = V G,ap ⊕W for some G-submodule W . Let b = b1 + b2 be the
corresponding decomposition of b. Since WG,ap = 0, Property WAPap im-
plies that b2 is an almost coboundary. Hence b1 is not an almost coboundary
for the almost periodic G-module V G,ap. Then Property AP fd yields the
conclusion. �

Proposition 4.4. — G has PropertyWAPt (resp.WAPap) if and only
if, for every G-module V and b ∈ Z1(G,V ) that is not an almost cobound-
ary, V G 6= 0 (resp. V admits a nonzero finite-dimensional submodule).

Proof. — The case WAPt is trivial and only stated to emphasize the
analogy.
Suppose that G satisfies the given property (in the second case). Let

V be a WAP G-module with V G,ap = 0. Let b be a 1-cocycle. Since the
condition V G,ap = 0 implies that V has no nonzero finite-dimensional sub-
representation, the assumption implies that b is an almost coboundary.

Conversely, suppose that G has Property WAPap. Let V and b be as
in the assumptions. By Theorem 2.13(2), write V = V G,ap ⊕W with W

its canonical complement. Decompose b = b1 + b2 accordingly. Then by
Property WAPap, b2 is an almost coboundary. So b1 is not a coboundary.
Hence V G,ap 6= 0. Hence, it admits a nonzero finite-dimensional subrepre-
sentation, by Corollary 2.8. �

As a consequence, we have the implications

WAPt =⇒WAP fd =⇒WAPap.

The left-hand implication is not an equivalence, for instance the infinite
dihedral group is a counterexample.

Question 4.5. — Are Properties WAP fd and WAPap equivalent?

This is the case for the unitary Hilbert analogue, because any almost
periodic unitary Hilbert G-module can be written as an `2-direct sum of
finite-dimensional ones. A positive answer to the question, even with some
restrictions on the class of G-modules considered, would be interesting (at
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least if the given class has good stability properties under induction of
actions).
In view of Proposition 4.3, a positive answer would follow from a positive

answer to:

Question 4.6. — Does Property AP fd hold for an arbitrary locally
compact group G?

In turn, a positive answer would result from the following more specific
question:

Question 4.7. — Let G be a locally compact group and V an almost
periodic Banach G-module. Consider b ∈ Z1(G,V )rB1(G,V ). Does there
exist a G-submodule of finite codimension W ⊂ V such that the image of
b in Z1(G,V/W ) is unbounded?

For instance, the answer is positive in the case of unitary Hilbert G-
modules.
See Section 4.6 for more on Property AP fd.

4.2. Extension by a compact normal subgroup

Proposition 4.8. — Let 1 → K → G → Q → 1 be a short exact
sequence of locally compact groups, and assume that K is compact. Then
G has propertyWAPt (resp.WAPap, resp.WAP fd) if and only if Q does.

Proof. — These properties are obviously stable under taking quotients.
For the converse, consider a WAP G-module (V, π). Let b be a 1-cocycle.

Since K is compact, we can find a cohomologous 1-cocycle b′ that vanishes
on K. Then b′ takes values in V K : indeed, for g ∈ G and k ∈ K, b(kg) =
π(k)b(g) + b(k) = π(k)b(g), so

π(k)b(g) = b(kg) = b(gg−1kg) = π(g)b(g−1kg) + b(g) = b(g).

If we assume that Q has Property WAPt, and we assume V G = 0, then
(V K)G = 0 and we deduce that b is an almost coboundary, showing that
G has Property WAPt. If we assume that Q has Property WAPap, and
assume V G,ap = 0, we deduce that (V K)Q,ap = 0. It follows that b′ is an
almost coboundary, and hence b as well.
If we assume that Q has Property WAP fd, we first invoke Theo-

rem 2.13(1): we have V = V K⊕W , where W is a canonically defined com-
plement. Then by Property WAP fd of Q, we have V K = W ′ ⊕W ′′, where
W ′ is a finite-dimensional G-submodule and b has an unbounded projection
on W ′ modulo W ′′. This shows that G has Property WAPap. �
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4.3. Invariance of WAPt under central extension

The material of this section uses some trick which was exploited in [2]
in the case of Heisenberg’s group. See [31, Theorem 4.1.3] in the Hilbert
setting and [4, Theorem 2] for a more general statement (involving reduced
cohomology in any degree).

Proposition 4.9. — Let G be a locally compact group with a com-
pactly generated, closed central subgroup Z such that G/Z has Property
WAPt. Then G has Property WAPt.

Proof. — We start with the case when Z is discrete cyclic. Let 1 →
Z → G → Q → 1 be a central extension where Q has property WAPt.
Let V be a weakly almost periodic Banach space and let (V, π) be a G-
module with V G = 0, and let b be a cocycle. Let V Z be the subspace of
V consisting of fixed Z-vectors. Because Z is central, V decomposes as a
G-invariant direct sum V = V1⊕V2, where V1 = V Z and V2 is its canonical
complement (Proposition 2.13(1)).
Let us decompose π = π1 ⊕ π2 and b = b1 ⊕ b2 accordingly, with bi ∈

Z1(G, πi). Since H
1(G, π) = ⊕iH

1(G, πi), it is enough to show that both
terms in the direct sum vanish. Let z be a generator of Z. Let us first show
that H1(G, π2) = 0, showing that under this assumption the sequence
xn = 1

n

∑n−1
i=0 b(zi) is almost fixed by the affine action σ of G associated to

b. The cocycle relation together with the fact that Z is central imply that

σ(g)xn = 1
n

n−1∑
i=0

b(gzi) = 1
n

n−1∑
i=0

b(zig) = 1
n

n−1∑
i=0

π(z)ib(g)

which goes to zero by the ergodic theorem (which states in general that this
converges to a G-invariant vector and is an immediate verification). Let φ :
H

1(G, π1)→ H
1(Z, π1) be the map in cohomology obtained by restricting

cocycles to the central subgroup Z. Using that Z is central and that the
restriction of π1 to Z is trivial, we deduce that b1(z) is a π(G)-invariant
vector, which therefore equals 0. It follows that b1 induces a cocycle b̃1 for
the representation π̃1 of Q. It is easy to see that b1 is an almost coboundary
if and only if b̃1 is an almost coboundary. So we conclude thanks to the
fact that Q has WAPt.

Let us now prove the general case. As a CGLC abelian group, Z has a
cocompact discrete subgroup Λ isomorphic to Zd for some d. Then G/Z is
quotient of G/Λ with compact kernel, and hence by Proposition 4.8, G/Λ
has Property WAPt. Then by an iterated application of the case with
discrete cyclic kernel, G has Property WAPt as well. �
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Corollary 4.10. — Among compactly generated locally compact
groups, the class of compactly presented groups with Property WAPt is
closed under taking central extensions.

Proof. — Let G be compactly generated, with a central subgroup Z such
that G/Z is also compactly presented and has PropertyWAPt. Since G/Z
is compactly presented and G is compactly generated, Z is compactly gen-
erated. Hence Proposition 4.9 applies (and G is compactly presented). �

Since CGLC nilpotent groups are compactly presented, we deduce

Corollary 4.11 ([4, Theorem 8]). — CGLC nilpotent groups have
Property WAPt.

4.4. Cocompact subgroups

Lemma 4.12. — Let G be a locally compact group, H a closed normal
cocompact subgroup. Let (V, π) be a Banach G-module. If b ∈ Z1(G,V ) is
an almost coboundary in restriction to H, then it is an almost coboundary.

Proof. — Use a bounded measurable section P ⊂ G, so that P ×H → G

is a measurable bijective map (with measurable inverse). Denote by y 7→ ŷ

the section G/H → P . Let (vn) be a sequence of H-almost fixed vectors.
Let S be a compact generating subset of H; enlarging S if necessary, we
can suppose that PS contains a compact generating subset of G.
Define ξn =

∫
x∈P α(x̂)vndx. Then for y ∈ G/H and s ∈ S, we have

ξn − α(ŷs)ξn =
∫
x∈P

α(x)vndx− α(ŷs)
∫
x∈P

α(x)vndx

=
∫
x∈G/H

α(x̂)vn −
∫
x∈G/H

α(ŷsx̂)vndx

=
∫
x∈G/H

α(x̂)vn −
∫
x∈G/H

α(ŷsŷ−1x)vndx

=
∫
x∈G/H

(α(x̂)vn − α(x̂ν(x, y, s))vn)dx

=
∫
x∈G/H

π(x̂)(vn − α(ν(x, y, s))vn)dx,

with ν(x, y, s) = x̂−1ŷsŷ−1x. Since ν(x, y, s) belongs to some fixed ball
of H (independently of x, y, s), we have ‖vn − α(ν(x, y, s))vn‖ 6 εn for
some sequence (εn) depending only of this ball, tending to zero. Thus
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‖ξn − α(ŷs)ξn‖ 6 cεn, where c = supg∈G ‖π(g), ‖ and hence (ξn) is a se-
quence of almost fixed points for G. �

Proposition 4.13. — Let G be a locally compact group andH a closed
cocompact subgroup.

(1) if H has Property WAPap, so does G;
(2) if H has Property WAPt and is normal in G, then G has Property
WAP fd.

Proof. — Suppose that H has Property WAPap. Let V be a G-module
with V G,ap = 0 and b ∈ Z1(G, π). Since H is cocompact in G, we have
V H,ap ⊂ V G,ap and hence V H,ap = 0. By Property WAPap of H, b is an
almost coboundary in restriction to H, and hence on G by Lemma 4.12.
Hence G has Property WAPap.

Now assume that H is normal and has Property WAPt. Let V be a
WAP G-module and b a 1-cocycle that is not an almost coboundary. Since
H is normal, Theorem 2.13(1) implies that V decomposes as a G-invariant
direct sum V = V H ⊕ V2. Decompose b = b1 + b2 accordingly. Since H has
PropertyWAPt, b2 is an almost coboundary in restriction toH, and hence,
by Lemma 4.12, b2 is an almost coboundary on G. Hence b1 is not an almost
coboundary (on G). But b1 is a group homomorphism in restriction to H,
and since H is CGLC, b1(H) generates a finite-dimensional subspace F of
V . Since H is normal, this subspace is π(G)-invariant. By Proposition 2.11,
F as a complement W in V H as a G-module, and under the decomposition
V = F ⊕ (W ⊕ V2) we have b = b1 + (0 + b2), where b1 is unbounded. This
shows Property WAP fd. �

Theorem 4.14. — PropertiesWAPt andWAPfd are inherited by closed
cocompact subgroups H ⊂ G of finite covolume.

Proof. — We start with Property WAPt. Let (V, π) be a WAP H-
module and c a 1-cocycle. We use the notation of Section 3.3; in particular
(E, IndGH π) is the induced G-module. Assuming that c is nonzero in the
reduced cohomology, we get that c̃ is also nonzero in reduced cohomol-
ogy. Decompose the cocycle c̃ = c̃1 + c̃2 according to the decomposition
E = E1⊕E2 (see Theorem 2.13(1)). Since G has WAPt, and c̃ is nonzero
in reduced cohomology, we obtain that c̃1 is a nonzero group homomor-
phism. Therefore, integrating c̃1 over µ as in (3.1) gives back a non-zero
group homomorphism H → V which, being a 1-cocycle, is valued in V H .
Hence V H 6= 0, proving Property WAPt.

ANNALES DE L’INSTITUT FOURIER



VANISHING OF REDUCED COHOMOLOGY 1977

Now suppose G has WAP fd. We argue in the same way, but instead
with E1 = EG,ap (using Theorem 2.13(2) instead). We obtain a decom-
position E = F ⊕W of G-module, with F finite-dimensional, such that
the corresponding decomposition c̃ = c̃1 + c̃2 has c̃1 unbounded (hence not
an almost coboundary). Write ci = c̃i ∈ Z1(H,π). Then c1 is also not an
almost coboundary, and in addition, has its range contained in a finite-
dimensional subspace. Clearly the subspace V1 spanned by the range of c1,
being the affine hull of the orbit of 0 in the affine action defined by c1,
is π-invariant. By Proposition 2.11, we can find an H-module complement
V = V1 ⊕ V2, and the projection of c1 is just c1. On the other hand, c̃2
being an almost boundary, so is c2, as well as its projections. Since c = c̃ ,
we have c = c1 + c2, and the projection of c to V1 differs from c1 by a
bounded function, and hence is unbounded. This proves that H has Prop-
erty WAP fd. �

Remark 4.15. — We could not adapt this proof to Property WAPap.

Theorem 4.16. — Every compactly generated, locally compact group
G with polynomial growth has Property WAP fd.

Proof. — By Losert’s theorem [25] (due to Gromov in the discrete case),
for such G, there exists a copci (proper continuous with cocompact image)
homomorphism to a locally compact group of the form N oK with N a
simply connected nilpotent Lie group and K a compact Lie group. Let W
be the kernel of such a homomorphism.
Then N has Property WAPt by Corollary 4.11, and hence N oK has

Property WAP fd by Proposition 4.13(2), and hence G/W has Property
WAP fd by Theorem 4.14, and in turn G has Property WAP fd by Propo-
sition 4.8. �

4.5. Stability under RCE

Theorem 4.17. — If a countable group Λ has Property WAP fd and Λ
randomly cocompactly embeds into another countable group Γ, then Λ has
WAP fd as well.

Proof. — The proof is almost identical to that of Theorem 4.14 but we
reproduce it for the sake of completeness. Assume that Λ randomly cocom-
pactly embeds into Γ and that Γ has Property WAP fd. Consider a WAP
Λ-module (V, π) and a 1-cocycle c ∈ Z1(Λ, π). Assuming that c is nonzero
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in the reduced cohomology, we get that c̃ := Ic is also nonzero in re-
duced cohomology. By Proposition 3.3, the induced Γ-module (E, IndΓ

Λ π)
is WAP. Hence there is a decomposition E = F ⊕ W of Γ-module (see
Theorem 2.13(2)), with F finite-dimensional, such that the corresponding
decomposition c̃ = c̃1+c̃2 has c̃1 unbounded (hence not an almost cobound-
ary). Write ci = T c̃i ∈ Z1(H,π). Then c1 is also not an almost coboundary,
and in addition, has its range contained in a finite-dimensional subspace.
Clearly the subspace V1 spanned by the range of c1, being the affine hull
of the orbit of 0 in the affine action defined by c1, is π-invariant. By The-
orem 2.11, we can find an Λ-module complement V = V1 ⊕ V2, and the
projection of c1 is just c1. On the other hand, c̃2 being an almost bound-
ary, so is c2, as well as its projections. Since c = TIc, we have c = c1 + c2,
and the projection of c to V1 differs from c1 by a bounded function, and
hence is unbounded. This proves that H has Property WAP fd. �

4.6. Property AP fd

The following part is notably motivated by Question 4.6.
Let G be a locally compact group. Let K(G) be the intersection of all

kernels of continuous homomorphisms from G into compact groups. Then
K(G) is itself such a kernel (using a product). Note that by the Peter–Weyl
theorem, it is also the intersection of all kernels of continuous homomor-
phisms into the finite-dimensional orthogonal groups O(n).
Next, define K†(G) to be the intersection of all kernels of continuous ho-

momorphisms fromG into the finite-dimensional isometry groups RnoO(n).
Clearly, H = G/K†(G) is the largest quotient of G such that K†(H) = 1.

Recall that g ∈ G is distorted if there exists a compact subset S of G
containing g such that lim |gn|S/n = 0, where | · |S is the word length with
respect to S (in particular, this includes elements of finite order and more
generally elliptic elements, for which (|gn|S) is bounded for some S).

Proposition 4.18. — K(G)/K†(G) is abelian, and contains no non-
trivial element that is distorted in G/K†(G).

Proof. — We can suppose that K†(G) is trivial. So we have to prove that
K(G) is abelian and has no nontrivial distorted element.
If u, v ∈ K(G) do not commute, we can find n and a continuous ho-

momorphism G → Rn o O(n) such that [u, v] is not in the kernel. Since
u, v ∈ K(G), both are mapped to translations, and we have a contradiction.
Also, if u ∈ K(G)r {1}, we can find a continuous homomorphism as above
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such that u is not in the kernel, and hence u maps to a translation. Then
we have a contradiction since the translation is undistorted in the group of
Euclidean isometries. �

This yields a method to “approach” G/K†(G) from G: first mod out
by the closure of the derived subgroup [K(G),K(G)]. Then mod out by
the closure of the subgroup of the abelian subgroup K(G/[K(G),K(G)])
consisting of those elements that are distorted in G/[K(G),K(G)].

Example 4.19. — Let G be a real triangulable Lie group. Then K†(G)
is equal to the derived subgroup (because the derived subgroup is equal to
K(G) and its elements are at least quadratically distorted).
If G = G(Qp) for some linear algebraic Qp-group G, let H = G/N

be the largest quotient with no simple factor of positive Qp-rank, with
abelian unipotent radical, and whose maximal Qp-split torus centralizes
the unipotent radical. (By Borel–Tits, G is compactly generated if and only
if : H is reductive.) Then N(G) is contained in K†(G). (If G is compactly
generated, then H(Qp) is compact-by-abelian.)

Proposition 4.20. — G has Property AP fd if and only if G/K†(G) has
Property AP fd. If N is any closed normal subgroup contained in K†(G),
this is also equivalent to: G/N has Property AP fd.

Proof. — It is trivial that Property AP fd passes to quotients, hence it
passes from G to G/N and from G/N to G/K†(G). Now suppose that
G/K†(G) has Property AP fd. Let V be an almost periodic G-module and
b a 1-cocycle that is not an almost coboundary. By Proposition 2.4, the G-
representation factors through a compact group; in particular, it is trivial
on K(G). So on K(G), b is given by a continuous group homomorphism
K(G) → V . We claim that b vanishes on K†(G). Assume the contrary by
contradiction: pick g ∈ K†(G) with b(g) 6= 0.
Then by Lemma 2.10, there exists f ∈ V ∗[G] such that f(b(g)) > 2. Since

V ∗[G] is almost periodic, the union of finite-dimensional submodules is dense
(Corollary 2.8), and hence there is f ′ ∈ V ∗[G] inside a finite-dimensional
submodule M ⊂ V ∗[G] such that f ′(b(g)) > 1. Let W be the orthogonal (for
duality) of M , it has finite codimension and b(g) /∈ W . This means that
the projection of b in V/W is nonzero. Hence g is not in the kernel of the
affine action on V/W . Hence g /∈ K†(G), a contradiction. �

Say that G has Property AP fd if every almost periodic Banach G-module
V with V G = 1, we have H1(G,V ) = 0.

The same proof also shows:
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Proposition 4.21. — Let G be a locally compact group. Then G has
Property AP fd if and only if G/K†(G) has Property AP fd. In particular, if
G has Property WAPap, it has Property WAP fd if and only if G/K†(G)
has Property AP fd.

Let us now provide information about K†(G) in more specific examples.

Lemma 4.22. — Let G be a compactly generated locally compact group
in the class C′′. Then G/K†(G) has polynomial growth.

Proof. — We first see that Contr(G) ⊂ K†(G). This amounts to showing
that in H = RnoO(n) we have K†(H) = {1}: indeed first in L = O(n) we
have K†(L) = {1} because L is compact and hence has closed conjugacy
classes; it follows that K†(H) ⊂ Rn, and clearly the conjugacy classes of
H contained in Rn are compact.

By Lemma 7.3, we deduce that Udiv ⊂ K†(G). Since the class C′′ is stable
under taking quotients, we are reduced to proving that if G belongs to the
class C′′ satisfies Udiv = {1}, then G has polynomial growth. Indeed in this
case, U is compact and since G = UN and N has polynomial growth, the
conclusion follows. �

The previous lemma is a way to show that G/K†(G) is small in many
relevant examples. In contrast, the following proposition shows that it is
often large in the setting of discrete groups.

Proposition 4.23. — Let Γ be a discrete and finitely generated group.
Then K(Γ) = K†(Γ) is the intersection of all finite index subgroups of G.

Proof. — Denote by R(Γ) the intersection of all finite index subgroups of
Γ. Clearly, K†(Γ) ⊂ K(Γ) ⊂ R(Γ). The remaining inclusion R(Γ) ⊂ K†(Γ)
follows from Malcev’s theorem that finitely generated linear groups are
residually finite. �

5. A dynamical criterion for property WAPap

This section contains the central ideas of this paper. It culminates with
Theorem 5.11, which provides dynamical criteria for PropertiesWAPt and
WAPap. The latter is designed to apply to groups from the class C. The
following lemmas are the key ingredients. It starts with Lemma 5.2, an
analogue of Mautner’s phenomenon.
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5.1. Mautner’s phenomenon

Definition 5.1. — Let G be a locally compact group, and let N be a
subgroup of G. Denote by Contr(N) the set of elements g ∈ G such that
there exists a sequence an ∈ N such that a−1

n gan → 1. Such an element g
is called N -contracted.

Note that Contr(N) is stable under inversion; it is not always a subgroup.

Lemma 5.2 (Mautner’s phenomenon). — Let G be a locally compact
group,N a subgroup, and L the subgroup generated by Contr(N). Consider
a separately continuous, uniformly Lipschitz action of G on a metric space
X. Then the subspace XN,ap of almost periodic points (Definition 2.1) is
contained in the subspace XL of L-fixed points.

Proof. — Let C be the supremum of all Lipschitz constants of the G-
action. Fix u∈Contr(N), a sequence (an) with an ∈ N and εn=a−1

n uan→1.
Consider x ∈ XN,ap. Write ux = anεna

−1
n x. Let J be an infinite subset

of integers such that (a−1
n x)j∈J converges, say to x′. Then

d(anεna−1
n x, x) 6 d(anεna−1

n x, anεnx
′) + d(anεnx′, anx′) + d(anx′, x)

6 Cd(a−1
n x, x′) + Cd(εnx′, x′) + Cd(x′, a−1

n x) n∈J−→
n→∞

0.

This shows that
ux = a−1

n εnanx = x. �

Lemma 5.2 generalizes Mautner’s phenomenon, as well as [31, Lem-
ma 5.2.6]; both were written in a more specific context for G; in addi-
tion in Mautner’s result the metric space is a Hilbert space with a unitary
representation; in Shalom’s result X is an arbitrary metric space with an
isometric action; in both cases the result takes the form XN ⊂ XL. We
will use the following consequence of Lemma 5.2.

Lemma 5.3. — Let G a locally compact group, and N a subgroup of G.
Define M as the normal subgroup generated by Contr(N), and H = MN .
Consider a separately continuous, uniformly Lipschitz action of G on a
metric space X. Then

(1) if H = G, then XN = XG;
(2) if H is cocompact in G, then XN,ap = XG,ap.

Proof. — By definition N acts trivially on XN , and by Lemma 5.2, M
acts trivially on XN . Hence, in the context of (1), MN is dense and hence
G acts trivially on XN .
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Assume now as in (2), and write H = MN , which is cocompact. Then by
Lemma 5.2, M acts trivially on XN,ap. In particular H preserves XN,ap,
and the H-action on XN,ap factors through H/M . Since N has a dense
image in H/M , it follows that the closure of H-orbits in XN,ap coincide
with closure of N -orbits, which are compact by assumption. This shows
that XN,ap = XH,ap.
Finally, we have XH,ap = XG,ap by Lemma 2.3. �

5.2. Controlled Følner sequences and sublinearity of cocycles

We now recall some material from [12], also used in [37].

Definition 5.4. — [12] Let G be a locally compact group generated
by some compact subset S and equipped with some left Haar measure µ.
A sequence of compact subsets Fn ⊂ G of positive measure is called a
controlled Følner sequence if either G is compact, or Diam(Fn)→∞, and
there exists a constant C > 1 such that for all n ∈ N and all s ∈ S,

µ(sFn M Fn) 6 C µ(Fn)
Diam(Fn) .

Remark 5.5. — Let G be a compactly generated group with a compact
generating subset S. For n, let f(n) be the smallest m such that the m-ball
contains a compact subset F of positive measure such that µ(sFn M Fn) 6
µ(Fn)/n. Then G is amenable if and only if f(n) <∞ for all n, and admits
a controlled Følner sequence if and only if lim inf f(n)/n <∞. Actually in
all examples we are aware of groups with controlled Følner sequences, we
indeed have f(n) = O(n); notably strong controlled Følner sequences of
Definition 6.3 satisfy this property.

The following is [12, Corollary 3.7] in the case of unitary Hilbert modules.

Proposition 5.6 (Sublinearity versus triviality of cocycles). — Let G
be a CGLC group and let (V, π) be a uniformly bounded Banach G-module.
Let b ∈ Z1(G, π) be a 1-cocycle.

If b is an almost coboundary, then it is sublinear, i.e. ‖b(g)‖ = o(|g|)
when |g| goes to infinity. The converse holds if G admits a controlled Følner
sequence: if b is sublinear, then it is an almost coboundary.

Proof. — Both implications are adaptations of the original proof for uni-
tary Hilbert G-modules, up to some technical points, which we emphasize
below.
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Denote C = supg∈G ‖π‖, and by S a compact generating subset of G; let
| · | be the word length in G with respect to S. If b ∈ Z1(G, π) and T ⊂ G,
denote ‖b‖T = sups∈S ‖b(s)‖T . Then we have, for all g ∈ G, the inequality
‖b(g)‖ 6 C|g|‖b‖S .
Suppose that b is an almost coboundary. For ε > 0, there exists a bounded

cocycle b′ such that ‖b− b′‖ 6 ε/C on S. Say, ‖b′‖G 6 cε. Then, using the
previous inequality for the cocycle b − b′, we have for all g ∈ G, ‖b(g)‖ 6
‖b′(g)‖+‖(b−b′)(g)‖ 6 c+ |g|ε. Thus, for |g| > cεε−1, we have ‖b(g)‖|g| 6 2ε.

Now assume that G admits a controlled Følner sequence and let us prove
the converse. Suppose that b is sublinear. Let (Fn) be a controlled Følner
sequence in G. We need to define a sequence (vn) ∈ V N by

vn = 1
µ(Fn)

∫
Fn

b(g)dg.

Here is the technical issue: since V is not assumed to be reflexive, we
have to be more careful to claim that this integral is well-defined. Since Fn
is compact, it follows that on Fn, we can write the function b (or any con-
tinuous function to a normed space) as a uniform limit of simple functions.
This implies that g 7→ b(g) is Bochner-integrable.
We claim that (vn) defines a sequence of almost fixed points for the affine

action σ defined by σ(g)v = π(g)v+b(g) (which is equivalent to saying that
b is an almost coboundary). Indeed, we have (noting that σ(s)b(g) = b(sg))

‖σ(s)vn − vn‖ =
∥∥∥∥ 1
µ(Fn)

∫
Fn

σ(s)b(g)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

=
∥∥∥∥ 1
µ(Fn)

∫
Fn

b(sg)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

=
∥∥∥∥ 1
µ(Fn)

∫
s−1Fn

b(g)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

6
1

µ(Fn)

∫
s−1FnMFn

‖b(g)‖dg.

Since Fn ⊂ Sn, we obtain that

‖σ(s)vn − vn‖ 6
C

n
sup

|g|S6n+1
‖b(g)‖,

which converges to 0. �

5.3. Combing

An important feature of the groups studied in this article is the following
“combing” property.
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Definition 5.7. — Let G be a locally compact group generated by
some compact subset S, and let H 6 G be a closed subgroup. We say that
G is H-combable if there exists an integer k ∈ N and a constant C > 1
such that every element g ∈ G can be written as a word w = w1 . . . wk in
the alphabet S ∪H with

(5.1)
k∑
i=1
|wi|S 6 C|g|S .

Remark 5.8. — It is easy to check that being H-combable does not de-
pend on the choice of S. Moreover, assuming for convenience that S is
symmetric with 1, it is equivalent to the existence of constants k, ` such
that Sn ⊂ ((S`n ∩H)S)k for all n. In most examples, we actually have a
stronger property: there exist constants k, ` such that Sn ⊂ ((S` ∩H)nS)k
for all n.

If G is H-combable with k as above, then G ⊂ (HS)k. In particular,
when H is compact, then G is H-combable if and only if G is compact.
However, there are many interesting cases where G is H-combable with H
being nilpotent and G having exponential growth.

The following lemma is immediate, but we emphasize it to show how this
property can be used.

Lemma 5.9. — Let G be a CGLC group and H a closed subgroup such
that G is H-combable. Let ` be a length function on G that is sublinear on
H (with respect to the restriction to H of the word length of G). Then it
is sublinear on G.

In particular, if H is compactly generated and ` is sublinear on H (with
respect to its intrinsic word length), then ` is sublinear on G. �

5.4. Injectivity of the restriction map in 1-cohomology

Lemma 5.10 (Restriction in 1-cohomology). — Let G be a locally com-
pact group and N a closed subgroup. Suppose that G has a controlled
Følner sequence and is N -combable. Let V be a WAP G-module. Then the
restriction map H1(G,V )→ H1(N,V ) is injective.

Proof. — We can change the norm to an equivalent G-invariant norm.
Consider a cocycle b ∈ Z1(G, π). Suppose that in restriction to N , b is an
almost coboundary. Then by Proposition 5.6, b is sublinear in restriction
to N , i.e. ‖b(a)‖ = o(|a|S). Note that ‖b‖ is sub-additive, because the norm
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is G-invariant. Since G is N -combable, one thus deduces from Lemma 5.9
that b is sublinear on all of G, and therefore is an almost coboundary by
Proposition 5.6, using that G has a controlled Følner sequence. �

5.5. Dynamical criteria for Properties WAPt and WAPap

We are now ready to state and prove the main result of this section.

Theorem 5.11. — Let G be locally compact group, and let N be a
closed subgroup. Let H be the closure MN of the subgroup generated by
N ∪M , where M is the normal subgroup generated by Contr(N). Assume:

(1) G has a controlled Følner sequence;
(2) G is N -combable;
(3) N has Property WAPt;
(4) H is dense in G.

Then G has Property WAPt.
Still assume (1) and (2) along with:
(3′) N has Property WAPap;
(4′) H is cocompact in G.

Then G has Property WAPap.

Proof. — Suppose that (1), (2), (3), (4) hold. Let V be a Banach G-
module with V G = 0. By (4) and Lemma 5.3(1), V N = 0. By (3),
H1(N,V ) = 0. By Lemma 5.10 and (1), (2), it follows that H1(G,V ) = 0.
So G has Property WAPt.
Similarly, suppose that (1), (2), (3′), (4′) hold. Let V be a Banach G-

module with V G,ap = 0. By (4′) and Lemma 5.3(2), V N,ap = 0. By (3′),
H1(N,V ) = 0. By Lemma 5.10 and (1), (2), it follows that H1(G,V ) = 0.
So G has Property WAPap. �

5.6. A warm-up: the case of affR

As an application of Theorem 5.11, we prove an illustrating particular
case of Theorem 1.4, namely that Aff(R) has Property WAPt. Although
we choose here to restrict to this case, the reader can check that the proof
readily extends to the case when R is replaced with any nondiscrete locally
compact field.
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We describe Aff(R) as U oA, where U ' A ' R, with group law given
by

(x, t)(y, s) = (x+ ety, t+ s).
SinceA ' R has PropertyWAPt, it is enough by Theorem 5.11 to establish
that G has Følner sequences and that it is A-combable.
We let S = SU ∪SA, where SU = [−1, 1] ⊂ U , and SA = [−1, 1] ⊂ A. For

all n > 1 we define Fn = [−e2n, e2n]×[−n, n]. One checks that Fn ⊂ S5n+1,
and that

FnS ⊂ [−e2n − en, e2n + en]× [−n, n] ∪ [−e2n, e2n]× [−n− 1, n+ 1],

and therefore that
|FnS r Fn|
|Fn|

6
3
n
.

Hence (Fn) is a controlled Følner sequence for G.
Now, assume that g ∈ Sn ∩ U . A straightforward computation shows

that g = (u, k) satisfies |u| 6 en+1 and |k| 6 n. Therefore, one has

g = (0, n+ 1)(u′, 0)(0,−n− 1)(0, k),

where (u′, 0) = (e−n−1u, 0) ∈ SU . It follows that Sn ⊂ Sn+1
A SUS

2n+1
A ,

therefore that G is A-combable. This finishes the proof that G has Property
WAPt.

6. Groups in the class C

6.1. Families of examples in the class C

We start proving that two important classes of groups belong to the class
C introduced in Definition 1.3.

Proposition 6.1. — The following groups belong to the class C:
(1) real triangulable connected Lie groups;
(2) groups of the form G = G(Qp), where G is a connected linear

algebraic group defined over Qp such that G is compactly generated
and amenable.

Proof. — Let us first prove (1). Let G be a real triangulable connected
Lie group. Let N be a Cartan subgroup and U = V its exponential radical.
So U is the intersection of the lower central series, N is nilpotent, and
G = UN . The N -action on the Lie algebra g induces a grading on g,
valued in the dual Hom(n,R) of the abelianization of n, for which n = g0
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and u is the subalgebra generated by the gα for α 6= 0. By definition, a
weight is an element α in Hom(n,R) such that gα 6= {0}. Then there exists
k and a (possibly non-injective) family of nonzero weights α1, . . . , αk such
that, denoting Vi = Vαi

, we have U = V1 . . . Vk; we omit the details since
this is already covered by [11, §6.B]. The existence of elements in N acting
as contraction on Vi is straightforward, and thus all the data fulfill the
requirements to belong to the class C.
Next, we prove (2). WriteG = Uo(DK), where U is the unipotent radical,

and some reductive Levi factor is split into its Qp-split part D (a torus, by
the amenability assumption) and its Qp-anisotropic part K (so K(Qp) is
compact). Define N = D(Qp) and V = U(Qp). Thus U = V o K(Qp), so
V is closed cocompact in U . Then in the grading on g induced by the D-
action (which takes values in a free abelian group of rank dim(D), namely
the group of multiplicative characters of D), v is generated by the nonzero
weights: as a consequence of the assumption that G is compactly generated.
Then the proof can be continued as in the real case (being also covered by
the work in [11, §6.B]). �

Proposition 6.2. — Every virtually connected amenable Lie group G
belongs to the class C′ (Definition 1.6).

Proof. — By [11, Lemma 3.A.1] (based on [10, Lemmas 2.4 and 6.7]),
there exist copci homomorphisms G ← G1 → G2 ← G3 with G3 triangu-
lable. In addition, G1 → G2 has normal image (as it is mentioned in the
proof of that lemma that G2 is generated by its center and the image of
G1). Thus G belongs to the class C′. �

6.2. Controlled Følner sequences for groups in the class C′′

Definition 6.3. — In a CGLC group G with compact generating sym-
metric subset S with 1 and left Haar measure µ, we call strong controlled
Følner sequence, a sequence of positive measure compact subsets (Fn) such
that Fn belongs to a ball of radius O(n) and

µ(F ′n)
µ(Fn) = O(1),

where F ′n = FnS
n is the n-tubular neighborhood of Fn with respect to

word metric associated to S.

In [38], the pair (Fn, F ′n) is called a controlled Følner pair. An easy
argument [38, Proposition 4.9] shows that if (Fn) is a strong controlled
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Følner sequence, then there exists kn ∈ {1, . . . , n} such that (FnSkn) is a
controlled Følner sequence (Definition 5.4).
We shall need the following result from [11] (which is proved there for a

smaller class of groups but the proof readily extends to our setting).

Lemma 6.4 ([11, Theorem 6.B.2]). — Fix a CGLC group G = UN in
the class C′′. Let S and T be compact generating subsets of respectively G
and N . There exist constants µ1 and µ2 > 1 such that the following holds.
For every small enough norm ‖ · ‖ on u, denoting by U [r] the exponential
of the r-ball in (u, ‖ · ‖), we have, for all n, the inclusions

Sn ⊂ U [µn2 ]Tn, U [µn1 ]Tn ⊂ S2n.

By a straightforward application of the Baker–Campbell–Hausdorff for-
mula, we obtain the following lemma.

Lemma 6.5. — Let u be a finite-dimensional nilpotent Lie algebra over
a finite product of non-archimedean local fields of characteristic zero. Con-
sider a norm ‖ · ‖ on u. There exists d ∈ N such that for all r > 2

〈U [r]〉 ⊂ U [rd],

where 〈U [r]〉 is the (compact) subgroup generated by U [r].

In the proof of [21, Theorem II.1], Guivarc’h provides an asymptotic
description of Kn, where K is a compact symmetric generating subset of a
nilpotent connected Lie group G, which in particular implies the following
lemma.

Lemma 6.6. — Let u be a finite-dimensional nilpotent Lie algebra over
R. Consider a norm ‖ · ‖ on u. For every compact symmetric generating
subset K of U , there exists C > 1 such that for all large enough integers
r > 2,

U [r1/C ] ⊂ Kr ⊂ U [rC ].

We deduce the following corollaries:

Corollary 6.7. — Under the assumptions of Lemma 6.4, and assum-
ing in addition that U is totally disconnected, there exist constants λ1 and
λ2 > 1 such that the following holds. For every norm ‖ · ‖ on u, denoting by
U [r] the exponential of the r-ball in (u, ‖ · ‖), we have, for all large enough
n, the inclusions

Sn ⊂ 〈U [λn2 ]〉Tn, 〈U [λn1 ]〉Tn ⊂ S2n.
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Corollary 6.8. — We keep the assumptions of Lemma 6.4, assuming
in addition that U is connected, and that K is a compact generating subset
of U . Then there exist constants β1 and β2 > 1 such that the following
holds. For all large enough n, we have the inclusions

Sn ⊂ Kβn
1 Tn, Kβn

2 Tn ⊂ S2n.

Finally, we shall use

Lemma 6.9. — Under the assumptions of Lemma 6.4, there exists λ > 1
such that for all r > 1, n ∈ N, g ∈ U [r], and h ∈ Tn,

h−1gh ∈ U [λnr].

In particular, if U is connected, and K is a compact generating subset of
U , there exist α, b > 0 such that for all integers r > 2, n > 1, for all g ∈ Kr

and h ∈ Tn,
h−1gh ∈ Kdα

nrbe.

Proof. — Let λ be the supremum over all t ∈ T of the operator norm of
t acting on the normed vector space (u, ‖ · ‖). The first statement is now a
direct consequence of the fact that the operator norm is submultiplicative.
The second statement follows from Lemma 6.6. �

Theorem 6.10. — Every CGLC group G = NU in the class C′′ (in
particular in the class C) admits a strong controlled Følner sequence.

Proof. — We write U = UR × Una, where UR is connected, and Una is
totally disconnected. Fix some large enough integer µ (to be specified later)
and define

Fn = (Kµn

× 〈Una[µn]〉)Tn,
where K is a compact symmetric generating subset of UR.

By Corollaries 6.7 and 6.8, there exists C > 0 such that Fn ⊂ SCn. Now
observe that if µ is large enough, Lemma 6.9 implies that

〈Una[µn]〉Tn〈Una[λn1 ]〉 = 〈Una[µn]〉Tn.

On the other hand, assuming µ > βb1λ, we have

Kµn

TnKβn
1 ⊂ Kµn+λnβbn

1 Tn ⊂ K2µn

Tn.

We deduce that
F ′n ⊂ (〈Una[µn]〉 ×K2µn

)T 2n.

Finally, in order to conclude, we observe that by the doubling property for
both N and UR, there exists an integer k such that for all n there exist
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finite subsets Xn ⊂ N and Yn ⊂ UR of cardinality at most k such that
T 2n ⊂ TnXn and K2µn ⊂ YnKµn . Hence we have

F ′n ⊂ YnFnXn,

from which we deduce that

|F ′n| 6 k2|Fn|. �

6.3. Combability of groups in the class C′′

Theorem 6.11. — CGLC groups in the class C′′ are N -combable in the
sense of Definition 5.7.

Proof. — Let G ∈ C and let S be a compact generating subset of G. For
convenience, we shall assume that the generating set S = SU ∪ SN , where
SU ⊂ U (resp. SN ⊂ N). We assume that i = 1, namely that G = UN , with
U being a nilpotent algebraic group over some local field K; the general
case being similar. Let q : G → M := G/U . For every g ∈ G of size n, its
projection has length 6 n with respect to q(S), hence g can be written as
a product g = um, such that m has length equal to |q(g)| 6 n, and u has
length 6 n+ |q(g)| 6 2n. Therefore, it is enough to prove (5.1) for g = u.

Consider a finite-dimensional faithful representation of U as unipotent
matrices in Md(K) and equip the latter with a submultiplicative norm
‖ · ‖. We shall use the notation � and ' to mean “up to multiplicative and
additive constants”.
Moreover, an easy calculation (using that U is unipotent) shows that for

all u1, . . . , un ∈ U ,

(6.1) ‖u1 . . . un‖ � nd max
i
‖ui‖.

We shall also use the fact that given a norm ‖ · ‖Lie on the Lie algebra u of
U , one has

log ‖u‖ ' log ‖ log(u)‖Lie,

where log : U → u is the inverse of the exponential map. This estimate
follows from the Baker–Campbell–Hausdorff formula, using that log and
exp are polynomial maps. The action by conjugation of N on U induces
a group homomorphism N → Aut(u). Let ‖ · ‖op be the operator norm on
End(u), that by abuse of notation we consider as a norm on elements of N .
Let C = maxm∈SN

‖m‖op and K = maxu∈SU
‖u‖Lie.
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Lemma 6.12. — For all u ∈ U , |u|S � log ‖u‖.

Proof. — Assume that |u|S = n, and so that u = m1u1 . . .mnun, where
the ui ∈ SU and mi ∈ SN . Denote hg = g−1hg. One has the following
formula

u = um1
1 um1m2

2 . . . um1...mn
n .

by (6.1), by submultiplicativity, one has

‖u‖ � nd max
i
‖um1...mi

i ‖.

On the other hand, for every i, ‖um1...mi‖Lie 6 ‖m1 . . .mi‖op‖ui‖Lie 6
KCn. The lemma follows. �

In addition, we have

Lemma 6.13 ([11, Lemma 6.B.3.]). — There exists an integer ` such
that every element x ∈ U can be written as v1 . . . v` with vi ∈

⋃
j Vj , and

max ‖vi‖ � ‖u‖.

Thanks to the previous lemma, it is enough to treat the case where
U = Vj . Therefore we can assume that there exists t ∈ N contracting all
of U . Up to replacing it by some power, we can assume that ‖t‖op 6 1/2.
For convenience, let us assume that SU contains all elements u ∈ U such
that ‖u‖Lie 6 1. Given an element u ∈ U such that ‖u‖Lie 6 2n, it follows
that the element utn belongs to SU . It follows from Lemma 6.12, that every
element u ∈ U such that |u|S 6 n can be written as tn′u0t

−n′ , where n′ � n
and u0 ∈ SU . This finishes the proof that G is N -combable. �

7. Proof of Theorem 1.4 and other results

7.1. Proof of Theorem 1.4

We need to check all four requirements of Theorem 5.11:
• G has a controlled Følner sequence: this is done in Section 6.2.
• G is N -combable: this is done in Section 6.3.
• N has Property WAPt: this is easy (Corollary 4.11 with Proposi-
tion 4.8)

The last requirement, (4), can actually fail, but we can arrange it to
hold enlarging N , replacing it with N ′ = NW for some suitable compact
subgroup W normalized by N . Namely, we use:
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Lemma 7.1. — Let U be a open subgroup in a finite product L of unipo-
tent real and p-adic fields. Then the divisible subgroup Udiv of U is closed,
cocompact in U and contains the real component.

Proof. — Since U decomposes as a product over the components, we can
suppose L is real or p-adic for a single p. In the real case, necessarily U = L.
Suppose that L is p-adic. Then Udiv =

⋂
n φ

n(U), where φ(u) = up. Since
u is a self-homeomorphism of L, φn(U) is closed and hence Udiv is closed;
this implies that it is a p-adic subgroup, and it easily follows that it is
Zariski-closed. An extension of two divisible nilpotent groups is divisible.
In particular, in the quotient L/Udiv, the open subgroup group U/Udiv has
no p-divisible element. Since φ contracts to 0, we can deduce that U/Udiv
is compact. �

Lemma 7.2. — Let G be a group in the class C, with U,N as in the
definition. Then G has a compact subgroup W ⊂ U , normalized by N ,
such that U = UdivW .

Proof. — The quotient U/Udiv is compact, and is a product of various
unipotent p-adic groups. So the N -action is necessarily distal (only eigen-
values of modulus 1).
Let Una be the elliptic radical of U , so Una × U◦. Let U1 be the distal

part of the N -action on Una. Then the restriction to Una of the quotient
map U → U/Udiv is surjective. Moreover, U1 is an increasing union of its
N -invariant compact open subgroups. Hence there exists an N -invariant
compact open subgroup W of U1 whose image in U/Udiv is surjective. �

To conclude, we defineN ′ = NW . This does not affect the first condition,
nor the second since we pass to a larger subgroup N . Since PropertyWAPt
is also invariant under extensions by compact kernels (Proposition 4.8), N ′
has Property WAPt. Finally, the last verification (Lemma 7.3) is that the
subgroup generated by Contr(N ′) is equal to Udiv and we deduce that
H = G.

Lemma 7.3. — The subgroup V generated by Contr(N) is equal to Udiv.

Proof. — Clearly, the image of Contr(N) in the compact group U/Udiv
is trivial. Hence Contr(N) ⊂ Udiv. Thus V is cocompact in Udiv. It is
easy to see that Udiv has no proper cocompact subgroup: indeed, if Udiv
is abelian, its quotient by V is a compact, divisible totally disconnected
abelian group and apart from the trivial group, this does not exist (since
nontrivial profinite groups have nontrivial finite quotients). So, when Udiv
is abelian, we deduce that V is dense. But in this case, it is clear that V is
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closed, since it is generated by some eigenspaces. So V = Udiv when U is
abelian.
In general, we deduce that V [Udiv, Udiv] = Udiv, that is, V generates the

nilpotent group Udiv modulo commutators, and deduce that V = Udiv. �

7.2. Other results

Theorem 7.4. — Every compactly generated locally compact group G
having an open subgroup G′ of finite index in the class C′′ (Definition 1.15)
has Property WAP fd.

Proof. — Along with Theorem 4.16 and using the second part of The-
orem 5.11 the above proof shows that G′ has Property WAPap. That G′
has Property WAPap follows from Proposition 4.13(1).
Then we observe that G/K†(G) has polynomial growth (see Section 4.6

for the definition of K†(G)), by Lemma 4.22, and hence has Property
WAP fd by Theorem 4.16. Hence G/K†(G) has Property AP fd, and in turn,
by Proposition 4.20, G has Property AP fd. Since G has Property WAPap,
this shows that G has Property WAP fd. �

Note that by Proposition 4.21, we have a criterion whether G has Prop-
ertyWAPt, namely if and only if the group of polynomial growth G/K†(G)
has Property WAPt.
Proof of Corollary 1.7. — The statement is that locally compact groups

in the class C′ (Definition 1.6) have Property WAP fd. Indeed, consider
G → G1 ← G2 → G3 as in Definition 1.6. Since G3 belongs to the class
C, it has Property WAPt by Theorem 1.4 Since G2 → G3 is copci and
G3 has Property WAPt, G2 has Property WAPt by Theorem 4.14 and
Proposition 4.8. Since G2 → G1 is copci with normal image, it follows
that G1 has Property WAP fd by Proposition 4.13 and Proposition 4.8. By
Theorem 4.14 again (for Property WAP fd this time) and Proposition 4.8,
it follows that G has Property WAP fd. �

Proof of Corollary 1.8. — This follows from Corollary 1.7 in combination
with Proposition 6.2. �

Theorem 7.5. — Let G be a connected solvable Lie group. Then every
WAP Banach G-module with nonzero reduced first cohomology has a 1-
dimensional factor (with nonzero first cohomology).

Proof. — This follows from Corollary 1.8, using that finite-dimensional
unitary irreducible representations of connected solvable Lie groups have
complex dimension one. �
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8. Subgroups of GL(n,Q)

8.1. Fine closure

Let (Gi) be a family of groups, with given compact open subgroups Ki.
The corresponding semirestricted product is the subgroup of

∏
iGi consist-

ing of families of whose coordinates are in Ki with finitely many exceptions
(in other words, it is the subgroup generated by

∏
Ki and

⊕
Gi). We de-

note it by
∏(Ki)
i Gi. When Ki = Gi for all i, this is the whole (unrestricted)

product, while when Ki = {1} for all i, this is the restricted product, con-
sisting of finitely supported families.
We henceforth assume that for every i, Gi is a locally compact group and

Ki is a compact open subgroup. Then the semirestricted product
∏(Ki)
i Gi

has a unique group topology for which
∏
Ki (with its product topology) is

a compact open subgroup.
If Hi ⊂ Gi is a family of closed subgroups,

∏(Ki∩Hi)
i Hi naturally occurs

as a closed subgroup of
∏(Ki)
i Gi. We call it a standard subgroup (according

to this given decomposition).
Now assume that, p ranging over the prime numbers, Gp is a p-elliptic

locally compact group (in the sense that every compact subset of G is
contained in a pro-p-subgroup). Then we have

Lemma 8.1. — Every closed subgroup H of
∏(Kp)

Gp is standard.

Proof. — Let us show thatH is closed under taking under all projections.
Fix a prime q. That Z is dense in

∏
p Zp implies that there exists a sequence

(ni) in Z such that ni → 1 in Zq and ni → 0 in Zp for all p 6= q. Then for
every x ∈

∏(Kp)
Gp, the sequence xni tends to the projection of x on Gp.

In particular, if x ∈ H, then this projection also belongs to H.
Now let Hp be the projection of H on Gp. Then the closed subgroup

generated by the Hp contains
∏
p(Hp ∩ Kp) and contains

⊕
pHp. Thus∏(Kp∩Hp)

Hp is contained in H. Conversely, H is contained in both
∏
pHp

and
∏(Kp)

Gp, and the intersection of these two is by definition
∏(Kp∩Hp)

Hp,
so H is contained in

∏(Kp∩Hp)
Hp; we conclude that these subgroups are

equal. �

Recall that the ring of finite adeles is the semirestricted product A =∏(Zp)
p Qp; the diagonal inclusion embeds Q as a dense subring into A and

as a discrete cocompact subring in A ×R (the latter is known as ring of
adeles).
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Definition 8.2. — Let H be a subgroup of GLm(Q). We define its fine
closure as the closure of the subgroup C(H) of GLm(A×R) generated by
the closures of the various p-adic projections πp(H), and the Zariski closure
C0(H) of the real projection.

Lemma 8.3. — LetHbe a subgroup of GLm(Q) conjugate to a subgroup
of upper unipotent matrices. Then H is cocompact in its fine closure C(H).

(It is well-known that the condition is equivalent to assuming that each
element of H is unipotent.)

Proof. — Denote by Cp(H) the closure of the projection ofH in GLm(Qp)
and C+(H) the closure of the subgroup they generate in GLm(A), so that
C(H) = C+(H) × C0(H). Denote by π+ and π the natural embeddings
GLm(Q)→ GLm(A) and GLm(Q)→ GLm(A×R).
By the assumption, Cp(H) is p-elliptic for every prime p. Then by

Lemma 8.1, π+(H) is dense in C+(H) =
∏(Cp(H)∩Zp)
p Cp(H). Let K be the

compact open subgroup
∏
p(Cp(H)∩Zp). Then this implies that C+(H) =

π+(H)K. Therefore, C(H) = π(H)(K × C0(H)).
We claim that the projection of π(H) ∩ (K × C0(H)) is cocompact in

C0(H). Indeed, in a connected unipotent real group U , a subgroup is co-
compact if and only if it is Zariski-dense, if and only it is not contained
in the kernel any nonzero homomorphism U → R. Assume by contradic-
tion we have such a homomorphism f on C0(H). Pick (u, b) ∈ π(H) with
u ∈ C+(H) and b ∈ C0(H) with f(b) 6= 0. Then there exists n > 1 such that
un ∈ K. Hence (un, bn) ∈ π(H) ∩ (K × C0(H)) but f(bn) = nf(b) 6= 0, a
contradiction.
So the projection of π(H) ∩ (K × C0(H)) is cocompact in C0(H). This

implies (pulling back by a quotient homomorphism with compact kernel)
that π(H) ∩ (K × C0(H)) is cocompact in K × C0(H). Since K × C0(H) is
an open subgroup and C(H) = π(H)(K × C0(H)), this implies that π(H)
is cocompact in C(H). �

Now, let Γ be a finitely generated, virtually solvable subgroup of GLm(Q).
Let U be its unipotent radical (the intersection with the unipotent radical
of its Zariski closure, which is also the largest normal subgroup of Γ con-
sisting of unipotent elements). So Γ/U is finitely generated and virtually
abelian. Identify Γ with its image in GLm(A×R).

Proposition 8.4. — C(U) is open in ΓC(U), which is closed in
GLm(A×R), and Γ is cocompact in ΓC(U).

Proof. — Choose a partial flag in Qm that is Γ-invariant with irreducible
successive quotients. This yields an upper block-triangular decomposition.
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Then U acts trivially on the irreducible subquotients, which means it acts
by matrices with identity diagonal blocks. Let φ be the homomorphism
mapping a matrix that is upper triangular in this decomposition to its
“diagonal trace”, that is, replacing all upper unipotent blocks with 0. Then
the kernel of φ : Γ→ φ(Γ) is exactly U . Moreover, φ extends to ΓC(U) and
φ(ΓC(U)) = φ(Γ), which is discrete. Hence the kernel C(U) of φ : ΓC(U)→
φ(Γ) is open in ΓC(U). This implies in particular that ΓC(U) is closed in
GLm(A×R).
Lemma 8.3 ensures that U is cocompact in C(U), and the cocompactness

statement follows. �

Remark 8.5. — A related embedding construction is performed by
Shalom and Willis in the proof of [32, Proposition 7.5], in the context
of certain lattices in semisimple groups.

8.2. Partial splittings

Lemma 8.6. — Let M be a locally compact group and s a contracting
automorphism of M . Define f(g) = gs(g)−1. Then f is a self-homeomor-
phism of M .

Proof. — We wish to define its inverse as F (g) = gs(g)s2(g) . . . ; we need
to check that this product is “summable” (uniformly on compact subsets),
namely that

∏n+`
k=n s

k(g) tends to 1 when n tends to +∞, uniformly in `

and for g in any given compact subset.
If M is totally disconnected, then it has a compact open subgroup K

such that s(K) ⊂ K, and then
⋂
n>0 s

n(K) = {1}. Then the summability
condition immediately follows.
IfM is connected, thenM is a simply connected nilpotent Lie group and

the summability is a standard verification left to the reader.
The general case follows from the fact that M decomposes canonically

as topological direct product of M◦ and its elliptic radical, which is totally
disconnected [34, Proposition 4.2].
Once the summability is established, it is immediate that F ◦f and f ◦F

are both the identity of G. �

Lemma 8.7. — Let G be a locally compact group in an extension 1 →
M → G→ A→ 1, with M and A abelian. Assume that some element g of
G right-acts on M as a contraction. Then the centralizer of g is a section
of the extension.
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Proof. — Let H be the centralizer of g. Clearly H ∩M = {1}. So it is
enough to show that HM = G. Equivalently, letting h be any element of G,
we have to show that the equation [hm, g] = 1 has a solution m ∈M . Here
the commutator is defined as [X,Y ] = X−1Y −1XY and satisfies the iden-
tity [XY,Z] = [X,Z]Y .[Y,Z]. Then [hm, g] = [h, g][m, g]. By Lemma 8.6,
m 7→ [m, g] is a self-homeomorphism of M . So indeed we obtain a unique
solution. �

In the following lemma, we refer to Definition 5.1 for the definition of
Contr(F ).

Lemma 8.8. — Let G be a locally compact group in an extension 1 →
U → G → A → 1, with A compactly generated abelian and U sub-
unipotent (over a finite product of adic and real fields), i.e., a closed sub-
group of a unipotent group containing the real component. Then G has
a compactly generated, closed subgroup F such that FU = G and F has
polynomial growth, and F ∩ U◦ is the distal part of U◦. Moreover, if G
is compactly generated, the subgroup generated by F and Contr(F ) is co-
compact.

Proof. — We first prove the result with F not assumed compactly gen-
erated (so polynomial growth means that all its open, compactly generated
subgroups have polynomial growth). The result immediately follows, since
we can replace then F with a large enough compactly generated open sub-
group F ′ still satisfying F ′U = G (since G/U is compactly generated).

We argue by induction on the dimension of U (the sum of its real and
p-adic dimensions for various p). If dim(U) = 0, then U = 1 and the result
is trivial. Let Z be the last term of the lower central series of U . Then Z
has positive dimension. If the action of A on Z is distal (i.e., all eigenvalues
have modulus 1), we define M = Z; otherwise, in the Lie algebra we find
an irreducible non-distal submodule, which corresponds to an irreducible
submodule M of Z; in both cases M has positive dimension. We can argue
by induction for 1 → U/M → G/M → A → 1 to get a closed subgroup
L/M of polynomial growth with LN = G and (L/M)∩(U/M)◦ is the distal
part of (U/M)◦. If Z is distal as A-module, then L also has polynomial
growth and we are done with F = L. Otherwise, M is irreducible non-
distal and L contains the distal part of U◦. We have the extension 1 →
L ∩ U → L → L/L ∩ U → 1. Note that L ∩ U is sub-unipotent, making
use that L ∩ U◦ is connected. If dim(L) < dim(U), we can argue once
more by induction within L to find the desired subgroup. Otherwise, L∩U
is open in U . This means that (L ∩ U)/M is open in U/M , and if this
happens, G/M has polynomial growth. If U is not abelian, this forces G
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to have polynomial growth, and then we are done with F = L. Otherwise
U is abelian. In this case, if the distal part is nontrivial, we can argue in
the same way with M = D. If the distal part is trivial, and we choose
M irreducible as above, the previous argument works as soon as U/M is
nontrivial. So the remaining case is when U is irreducible and non-distal;
in particular the distal part of U◦ is trivial. In this case, there exists an
element acting as a contraction (if g acts non-distally, the contraction part
of either g or g−1 is a nonzero submodule, hence is all of M), so we can
invoke Lemma 8.8.
Now suppose that G is compactly generated and let us prove the last

statement. It is enough to show that the subgroup of U generated by
(F ∩ U) ∪ Contr(F ) is cocompact, i.e., contains Udiv. First, it contains
U◦, because we have ensured that F ∩ U contains the distal part. For the
non-Archimedean part, that G is compactly generated implies that U is
compactly generated as normal subgroup (because G/U is compactly pre-
sented, being abelian), and hence it follows that the non-Archimedean part
of Udiv is contained in the subgroup generated by Contr(F ) (indeed, oth-
erwise we would obtain an A-equivariant quotient of U isomorphic to Qk

p

with an irreducible distal action, for some p, k and get a contradiction). �

Proposition 8.9. — Let Γ be a finitely generated amenable subgroup
of GLm(Q), and let G = ΓV ⊂ GLm(A×R) with V = C(U) as defined as
before Proposition 8.4. Then G has an open normal finite index subgroup
G′ of the form V F with F compactly generated of polynomial growth,
such that the subgroup of G′ generated by F ∪Contr(F ) is cocompact. In
particular, G′ belongs to the class C′′ (Definition 1.15).

Proof. — Γ has a finite index subgroup Λ whose Zariski closure is
unipotent-by-abelian. It follows that G′ = ΛV is open normal of finite
index in G, and G′/V is abelian. So Lemma 8.8 applies. The last statement
immediately follows. �

Corollary 8.10. — Every finitely generated amenable subgroup of
GLm(Q) embeds as a cocompact lattice into a locally compact group G

with an open subgroup of finite index G′ in the class C′′. �

Corollary 8.11. — Every finitely generated amenable subgroup of
GLm(Q) has Property WAP fd, and hence has Property Hfd.

Proof. — Use the notation of Corollary 8.10, so that G′ belongs to the
class C′′. By Theorem 7.4, we deduce that G has Property WAP fd. Hence
by Theorem 4.14, Γ has Property WAP fd: �
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Remark 8.12. — Corollary 8.11 works when Q is replaced with any num-
ber field K, since GLm(K) embeds into GLm[K:Q](Q).

Using that every finitely generated VSP group is quotient of a virtually
torsion-free finitely generated VSP group [24], and the fact that WAP fd
passes to quotients, this can be improved to

Corollary 8.13. — Every finitely generated amenable VSP group has
Property WAP fd.

Corollary 8.14. — For every finitely generatedVSP groupG equipped
with a finite generating subset S, there exists c > 0 such that the Lp-
isoperimetric profile inside balls (see Section 1.3) satisfies

(8.1) JbG,p(n) > cn.

Proof. — By Lemma 6.4, groups of the class C′′ have a strong controlled
Følner sequence (called a controlled Følner pair in [38]). By [38, Propo-
sition 4.9], this implies that groups of the class C′′ satisfy (8.1). On the
other hand, G being quasi-isometric to its cocompact hull, we deduce from
Theorem 1.16 and [36, Theorem 1] that every amenable finitely generated
subgroup of GLm(Q) satisfies (8.1). Now, we once again apply the main
result of Kropholler and Lorensen [24] and the fact that Jb∗,p behaves well
under taking quotients [39, Theorem 1] to conclude. �

9. Mean ergodic theorem and Bourgain’s theorem

9.1. Proof of Proposition 1.20

The “if” part was already addressed in the introduction. For the other di-
rection, suppose that G does not haveWAPt, but hasWAP fd. This means
that G has a finite-dimensional orthogonal representation π with nonzero
first reduced cohomology and no non-zero invariant vector. Now, recall that
by the standard Gaussian construction (see [5, Corollary A.7.15]), one can
assume that π is a subrepresentation of some orthogonal representation π′
of G coming from a measure-preserving ergodic action on some probability
space X. Let b be a 1-cocycle for π that is not an almost coboundary, and
let b′ be the corresponding cocycle for π′: note that since π has no invariant
vectors, b′ is orthogonal to the space of constant functions. One therefore
has b′(g)(x) = c(g)(x) where c is a square-integrable cocycle c : X×G→ R
of zero average. Using that b′ is not an almost coboundary, one easily checks
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that 1
|g| (c(g)(x)) does not tend to zero in L2-norm as |g| → ∞. In particular

the ergodic theorem for G in L2 (defined similarly) fails; since the inclusion
L2(X)→ L1(X) is continuous, it also fails in L1.

Remark 9.1. — The above proof works with no change if G has Property
Hfd and not Ht. This is actually more general, since the reader can easily
check that if G has Property WAP fd but not WAPt, then it has Property
Hfd but not Ht.

9.2. Proof of Corollary 1.22

For every commutative unital ring R and t ∈ R×, consider the group

A(R, t) =
{(

tn x
0 t−n

)
: x ∈ R,n ∈ Z

}
⊂ GL2(R).

Let us fix some prime p. Note that the ring Fp[t, t−1] embeds densely in
Fp((t)), but the diagonal embedding Fp[t, t−1] → Fp((t)) ⊕ Fp((t)) send-
ing t to (t, t−1) is easily seen to be discrete and cocompact. The lamp-
lighter group Lp = Fp oZ can be described as A(Fp[t, t−1], t), and therefore
embeds as a cocompact lattice in G = (Fp((t)))2 o Z, where Z acts by
multiplication by t on the first factor and by t−1 on the second factor.
First, we note that this implies that Lp has WAPt. On the other hand
the group G, and therefore Lp quasi-isometrically embeds as a subgroup of
(A(Fp((t)), t))2. Observe that A(Fp((t)), t) acts properly and cocompactly
on the Bass–Serre tree of SL(2,Fp((t))). It follows that Lp embeds quasi-
isometrically into a product of two (p + 1)-regular trees. Therefore, in or-
der to show Bourgain’s theorem, it is enough to prove that Lp does not
quasi-isometrically embed into any superreflexive Banach space. Since Lp
is amenable, by [28, Theorem 9.1] it is enough to prove that Lp does not
admit any affine isometric action on some superreflexive Banach space E
whose orbits are quasi-isometrically embedded. Consider the 1-cocycle b
associated to such an action. Since Lp has Property WAPt, this cocycle
decomposes as b = b1 + b2, where b1 is a group homomorphism to E, and
b2 is an almost coboundary. Approximating b2 by coboundaries, one easily
checks that it is sublinear, namely ‖b2(g)‖/|g| → 0 as |g| → ∞ (where | · |
is some arbitrary word metric on Lp). This clearly implies that b cannot
be a quasi-isometric embedding. So the corollary is proved.

Remark 9.2. — Note that in Corollary 1.22, we only recover the quali-
tative part of Bourgain’s theorem. Indeed, the latter also provides optimal
quantitative estimates on the distortion (as in [38]), which do not follow
from the approach here.
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