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THE DUAL ACTIONS, EQUIVARIANT
AUTOEQUIVALENCES AND STABLE TILTING

OBJECTS

by Jianmin CHEN, Xiao-Wu CHEN & Shiquan RUAN (*)

Abstract. — For a finite abelian group action on a linear category, we study
the dual action given by the character group acting on the category of equivariant
objects. We prove that the groups of equivariant autoequivalences on these two
categories are isomorphic. In the triangulated situation, this isomorphism implies
that the classifications of stable tilting objects for these two categories are in a
natural bijection. We apply these results to stable tilting complexes on weighted
projective lines of tubular type.
Résumé. — Pour une catégorie linéaire munie d’une action d’un groupe abélien

fini, on étudie l’action duale du groupe des caractères de ce groupe abélien sur la
catégorie des objets équivariants. On montre que les groupes des auto-équivalences
équivariantes de ces deux catégories sont isomorphes. Dans la situation où la caté-
gorie linéaire est triangulée, les objets basculants stables dans ces deux catégories
sont en bijection naturelle compatible avec l’isomorphisme ci-dessus. On applique
ces résultats aux complexes basculants stables sur les droites projectives à poids
de type tubulaire.

1. Introduction

Weighted projective lines are introduced in [18], which provide a geo-
metric approach to canonical algebras in the sense of [33]. It is well known
that weighted projective lines are related to smooth projective curves via
equivariantization; compare [22, 29, 34]. More precisely, let X be a smooth
projective curve, and G be a finite group of automorphisms on X such
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2020 Mathematics Subject Classification: 18E30, 16S35, 58E40, 16D99.
(*) This work is supported by the National Natural Science Foundation of China (No.s
11971398, 11971449 and 11801473), the Fundamental Research Funds for Central Univer-
sities of China (No.s 20720180002 and 20720180006), and the Alexander von Humboldt
Stiftung.



2678 Jianmin CHEN, Xiao-Wu CHEN & Shiquan RUAN

that X/G is isomorphic to the projective line. Then the category of G-
equivariant coherent sheaves on X is equivalent to the category of coherent
sheaves on some weighted projective line, whose weight structure is given
by the ramification data of the quotient map X → X/G.

The equivariantization with respect to various finite group actions is very
important in the study of weighted projective lines and their derived cate-
gories. We are motivated by the classification of τ2-stable tilting complexes
on weighted projective lines, where τ is the Auslander–Reiten translation;
see [20]. We observe that τ2 induces a cyclic group action on the derived
category of a weighted projective line. Then it is natural to ask how this
τ2-action interacts with the tilting theory on the weighted projective line.
More generally, given a triangulated category T with a finite group action,
we are interested in the interaction of the equivariantization and the tilting
theory on T . This leads to the study of stable tilting objects in T , that
is, those tilting objects fixed by the group action. We mention that stable
tilting objects arise naturally in quite different setups; see [1, 2, 27].
Let us describe the main results of this work. For this, we explain first

what the classification of (stable) tilting objects really means.
Let k be a field, and T be a k-linear triangulated category. The tilting

objects and their endomorphism algebras are of great interest to represen-
tation theorists. We denote by Tilt(T ) the set of isoclasses of basic tilting
objects. The group AutM(T ) of triangle autoequivalences on T acts natu-
rally on Tilt(T ). Then the classification of basic tilting objects in T boils
down to the orbit set Tilt(T )/AutM(T ). Indeed, this orbit set is in a bijec-
tion to the set of isoclasses of the endomorphism algebras of those tilting
objects; see Corollary 7.3.
Let G be a finite abelian group, which acts on T . There is an equivariant

version of the classification problem. More precisely, we denote by TiltG(T )
the subset of Tilt(T ) formed by G-stable objects, that is, those basic tilting
objects fixed by the G-action. We denote by AutGM (T ) the centralizer of
G in AutM(T ). Then AutGM (T ) acts on TiltG(T ) naturally. We should be
concerned with the corresponding orbit set.
However, it seems that the group AutGM (T ) is not the right object to study

in the equivariant situation. Instead, we take the group AutM(T ;G) of G-
equivariant triangle autoequivalences on T into consideration. Moreover,
we have a forgetful homomorphism

AutM(T ;G) −→ AutGM (T ),
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which is in general neither injective nor surjective. We will be concerned
with the orbit set TiltG(T )/AutM(T ;G), which parameterizes the classifi-
cation of basic G-stable tilting objects in T . This orbit set is in a bijection
to a certain set of equivalence classes of G-crossed systems; see Proposi-
tion 7.7.
We denote by T G the category of G-equivariant objects; in nice situa-

tions, it is naturally triangulated [4, 10, 16]. The character group Ĝ of G
acts naturally on T G, called the dual action; see Definition 4.4. Then the
classification of basic Ĝ-stable tilting objects in T G is parameterized by
the orbit set TiltĜ(T G)/AutM(T G; Ĝ). Here, TiltĜ(T G) denotes the set of
isoclasses of basic Ĝ-stable tilting objects in T G, which carries a natural ac-
tion by the group AutM(T G; Ĝ) of Ĝ-equivariant triangle autoequivalences
on T G.
The first main result claims that the two classifications are in a natural

bijection; see Theorems 6.2 and 7.11.

Theorem A. — Let G be a finite abelian group, which splits over k.
Let T be a triangulated category, which is Hom-finite and Krull–Schmidt.
Assume that G acts on T by triangle autoequivalences. Consider the dual
Ĝ-action on T G. Then there exist an isomorphism of groups

AutM(T ;G) ∼−→ AutM
(
T G; Ĝ

)
,

and a bijection between the sets of isoclasses

TiltG(T ) ∼−→ TiltĜ
(
T G
)
,

which are compatible. In particular, we have an induced bijection between
the orbit sets

TiltG(T )/AutM(T ;G) ∼−→ TiltĜ
(
T G
)
/AutM

(
T G; Ĝ

)
.

The main ingredient of the proof is the duality theorem in [16], which
states that the category of Ĝ-equivariant objects in T G is naturally triangle
equivalent to T . We mention that the duality theorem is implicit in [31]
with a completely different setup, and might be deduced from a general
theorem in [15].
Theorem A may have potential application for finite abelian group ac-

tions on varieties of higher dimension [28]. In this paper, we apply it to
weighted projective lines of tubular type. We obtain new insight on the
classification of τ2-stable tilting complexes in [20], where the Auslander–
Reiten translation τ is given by the degree-shift with respect to the dual-
izing element ~ω in the Picard group; see [18].
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Let Y be a weighted projective line of tubular type (6, 3, 2) or (4, 4, 2),
where p = 6 or 4 is the order of ~ω, respectively. Assume that a is a prime
number, which divides p. Then the cyclic group Z( pa~ω) has order a, and
acts on the category coh -Y of coherent sheaves on Y via degree-shift by
p
a~ω, or equivalently, by τ

p
a . Then the category (coh -Y)Z( pa ~ω) of equivariant

sheaves is equivalent to the category coh -X for another weighted projective
line X of tubular type; see [7, 22].
We denote by Cp,a the character group of Z( pa~ω), which is also cyclic of

order a. Then we have the dual Cp,a-action on

(coh -Y)Z( pa ~ω) .

On the other hand, there is an explicit automorphism gp, a on X of order
a, which induces a Cp,a-action on coh -X; see Subsection 8.1. These ac-
tions extend to their bounded derived categories, and we will consider the
corresponding equivariant derived categories.
The following second main result summarizes Propositions 8.1, 8.2 and

8.3.

Theorem B. — Keep the notation as above. Then the following state-
ments hold.

(1) There is an equivalence of triangulated categories

Db(coh -X) ∼−→ Db(coh -Y)Z( pa ~ω),

which is equivariant with respect to the above two Cp,a-actions.
Consequently, we have an equivalence of triangulated categories

Db(coh -X)Cp, a ∼−→ Db(coh -Y).

(2) There is a bijection between the sets of isoclasses{
τ
p
a -stable tilting complexes

on Y

}
ι−→

{
gp, a-stable tilting complexes

on X

}
,

which is compatible with the actions by the equivariant triangle
autoequivalence groups.

We mention that the equivalences in (1) are based on the results in [7];
see also [22]. The bijection in (2) follows from Theorem A.

The paper is organized as follows. Let G be a finite group. In Section 2,
we recall the notion of equivariant functors between two categories with
G-actions. We observe that any group actions on module categories, that
fix the regular modules, correspond to crossed systems; this observation is
applied to G-stable objects. In Section 3, we prove that up to isomorphism,
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a cyclic group action is in a bijection to certain compatible pairs. For mod-
ule categories, this is related to certain elements in the outer automorphism
group of the algebra.
We recall the associated monads for a group action in Section 4. Assume

now that G is abelian. For a given G-action on a linear category C, we
have the dual action on the category CG of G-equivariant objects by the
character group Ĝ. In Theorem 4.6, we describe explicitly the equivalence
between C and the category of Ĝ-equivariant objects in CG. This result is
due to [16]. In Section 5, we prove that the groups of equivariant autoequiv-
alences with respect to the given action and its dual action are naturally
isomorphic; see Theorem 5.3. We obtain an additive version of Theorem A
in Proposition 5.7, which claims a natural bijection between the sets of
isoclasses of basic stable objects.
We study triangle G-actions on a triangulated category T in Section 6.

We obtain Theorem 6.2, which is analogous to Theorem 5.3 on equivari-
ant triangle autoequivalences. In Section 7, we prove Theorem 7.11, which
claims that the classification of basic stable tilting objects for the given
action and that for its dual action are in natural bijections.
In Section 8, we apply the results to the classifications of stable tilt-

ing complexes on weighted projective lines of different tubular types. In
Section 9, we obtain an exact sequence, which involves the forgetful homo-
morphism and the second cohomological group of G with values in k∗.
We collect in Appendix A some identities for group actions and provide

full proofs. In Appendix B, we recall the notion of a strongly K-standard
category from [12]. This subtle notion plays a role in the study of stable
tilting objects in Section 7.

Acknowledgements

The authors are indebted to Henning Krause and Helmut Lenzing for
their continued support. The second-named author is very grateful to
Hideto Asashiba for helpful discussions and to David Ploog for many useful
comments. We thank the referee for many helpful suggestions, and Guodong
Zhou for the help in preparing the final version.

2. Group actions and equivariantization

In this section, we recall basic notions on group actions and equivarianti-
zation. Any group action on a module category fixing the regular module
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corresponds to a weak action on the given ring. Stable objects under the
action naturally give rise to crossed systems.

2.1. Group actions and equivariant functors

We will recall basic facts on group actions and equivariant functors. The
details are found in [15]; compare [13, 16, 31].

Let G be an arbitrary group. We write G multiplicatively and denote its
unit by e. Let C be an arbitrary category.
A G-action on C consists of the data {Fg, εg, h| g, h ∈ G}, where each

Fg : C → C is an autoequivalence and each εg, h : FgFh → Fgh is a natural
isomorphism such that the following 2-cocycle condition holds

εgh, k ◦ εg, hFk = εg, hk ◦ Fgεh, k(2.1)

for all g, h, k ∈ G. This condition is equivalent to the following commutative
diagram.

FgFhFk
εg, hFk //

Fgεh, k

��

FghFk

εgh, k

��
FgFhk

εg, hk // Fghk

We observe that there exists a unique natural isomorphism u : Fe → IdC ,
called the unit of the action, satisfying εe, e = Feu; moreover, we have
Feu = uFe by (2.1); see also Lemma A.3.
The given G-action is strict provided that each Fg is an automorphism

on C and that each isomorphism εg, h is the identity, in which case the unit
u equals the identity. We observe that a strict G-action on C coincides with
a group homomorphism from G to the automorphism group of C.

Let us fix a G-action {Fg, εg, h| g, h ∈ G} on C. An object X is G-stable
provided that X is isomorphic to Fg(X) for each g ∈ G. In this case, we
also say that the G-action fixes X. The full subcategory of G-stable objects
does not behave well. For example, even if the category C is abelian, the
subcategory of G-stable objects is not abelian in general.
A G-equivariant object in C is a pair (X,α), where X is an object in C

and α assigns, for each g ∈ G, an isomorphism αg : X → Fg(X) subject to
the relations

αgh = (εg, h)X ◦ Fg(αh) ◦ αg.(2.2)

These relations imply that αe = u−1
X . A morphism f : (X,α) → (Y, β)

between two G-equivariant objects is a morphism f : X → Y in C such

ANNALES DE L’INSTITUT FOURIER
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that βg ◦ f = Fg(f) ◦ αg for each g ∈ G. We denote by CG the category
of G-equivariant objects. The forgetful functor U : CG → C is defined by
U(X,α) = X and U(f) = f .
The following observation will be useful. Associated to two given G-

equivariant objects (X,α) and (Y, β), the Hom set HomC(X,Y ) carries a
(left) G-action by g.f = β−1

g ◦ Fg(f) ◦ αg for each g ∈ G and f : X → Y .
Then by the very definition, we have the following identity

HomCG((X,α), (Y, β)) = HomC(X,Y )G.(2.3)

Here, for any set S with a G-action, we denote by SG the subset of fixed
elements.
For a given G-action on C, the process forming the category CG of G-

equivariant objects is known as the equivariantization; see [15, Section 4].
Assume that C has a G-action {Fg, εg, h| g, h ∈ G} and that D is another

category with a G-action {F ′g, ε′g, h| g, h ∈ G}. Let F : C → D be a func-
tor. The functor F is G-equivariant with respect to these two G-actions
provided that there are natural isomorphisms δg : FFg → F ′gF of functors
subject to the conditions

δgh ◦ Fεg, h = ε′g, hF ◦
(
F ′gδh ◦ δgFh

)
.(2.4)

That is, the following diagram is required to be commutative.

FFgFh
Fεg, h //

F ′gδh◦δgFh
��

FFgh

δgh

��
F ′gF

′
hF

ε′g, hF // F ′ghF

Indeed, by a G-equivariant functor, we really mean the data (F, (δg)g ∈G),
which will be abbreviated as (F, δ); compare [1, Definition 4.8]. The com-
position of two equivariant functors

C (F, δ)−−−→ D (E, ∂)−−−−→ E

is defined to be (EF, (∂gF ◦ Eδg)g ∈G) = (EF, ∂F ◦ Eδ).
We say that the functor F : C → D is strictly G-equivariant provided

that FFg = F ′gF for each g ∈ G and that Fεg, h = ε′g, hF for each g, h ∈ G.
In other words, (F, (IdFFg )g ∈G) is a G-equivariant functor. We will denote
this strictly G-equivariant functor simply by F .
A G-equivariant functor (F, δ) : C → D gives rise to a functor

(F, δ)G : CG −→ DG(2.5)

TOME 70 (2020), FASCICULE 6
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sending (X,α) to (F (X), α̃), where α̃g : F (X) → F ′gF (X) equals (δg)X ◦
F (αg) for each g ∈ G. The functor (F, δ)G acts on morphisms by F . This
construction is compatible with the composition of equivariant functors.
Two G-equivariant functors (F, δ) : C → D and (F ′, δ′) : C → D are iso-

morphic provided that there is a natural isomorphism φ : F → F ′ satisfying

F ′gφ ◦ δg = δ′g ◦ φFg,(2.6)

for each g ∈ G. In this case, the two functors (F, δ)G and (F ′, δ′)G are
naturally isomorphic.
The following fact is standard; compare [1, Lemma 4.10].

Lemma 2.1. — Let (F, δ) : C → D be a G-equivariant functor as above.
Assume that F is an equivalence of categories. Then the functor

(F, δ)G : CG −→ DG

is also an equivalence of categories.

Proof. — Assume that (X,α) and (Y, β) are two G-equivariant objects
in CG. Then the set HomC(X,Y ) carries a G-action. Similarly, associ-
ated to the G-equivariant objects (F (X), α̃) and (F (Y ), β̃) in DG, the set
HomD(F (X), F (Y )) carries a G-action. We observe that the bijection

HomC(X,Y ) −→ HomD(F (X), F (Y )),

sending f to F (f), is compatible with these two G-actions. Then we have
the induced bijection between the subsets of fixed elements. Applying (2.3),
this bijection implies the fully faithfulness of (F, δ)G.
It remains to prove the denseness of (F, δ)G. Take an object (Z, γ) in

DG. We have an isomorphism θ : F (X)→ Z in D for some object X in C.
For each g ∈ G, there is a unique isomorphism αg : X → Fg(X) satisfying

F (αg) = (δX)−1 ◦ F ′g(θ−1) ◦ γg ◦ θ.

One verifies that (X,α) is indeed a G-equivariant object and that

θ : (F, δ)G(X,α) −→ (Z, γ)

is a required isomorphism. �

Two G-actions {Fg, εg,h| g, h ∈ G} and {F ′g, ε′g,h| g, h ∈ G} on C are
isomorphic provided that there are natural isomorphisms δg : Fg → F ′g
such that (IdC , δ) : C → C is a G-equivariant functor, or equivalently, the
following identities hold

δgh ◦ εg, h = ε′g, h ◦ (F ′gδh ◦ δgFh).(2.7)

ANNALES DE L’INSTITUT FOURIER
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In other words, the following diagram is commutative

FgFh
εg, h //

F ′gδh◦δgFh
��

Fgh

δgh

��
F ′gF

′
h

ε′g, h // F ′gh

for any g, h ∈ G.
Up to isomorphism, we may adjust the autoequivalences appearing in a

G-action by any given natural isomorphisms. More precisely, the following
statement is routine.

Lemma 2.2. — Let {Fg, εg, h| g, h ∈ G} be a given G-action on C. As-
sume that for each g ∈ G, there is an autoequivalence F ′g on C with a
natural isomorphism δg : Fg → F ′g. Then there exists a unique G-action
{F ′g, ε′g, h| g, h ∈ G} on C satisfying (2.7).

In particular, the two G-actions {Fg, εg, h| g, h ∈ G} and {F ′g, ε′g, h| g, h ∈
G} are isomorphic.

Proof. — The uniqueness follows by (2.7), since we have

ε′g, h = δgh ◦ εg, h ◦
(
F ′gδh ◦ δgFh

)−1
.

It is routine to verify that these natural isomorphisms ε′g, h satisfy (2.1). �

The following fact is standard.

Lemma 2.3. — Let F : C → D be an equivalence of categories. As-
sume that C has a G-action {Fg, εg, h| g, h ∈ G}. Then there is a G-action
{F ′g, ε′g, h| g, h ∈ G} on D with natural isomorphisms δg : FFg → F ′gF such
that (F, δ) is a G-equivariant functor. Such a G-action on D is unique up
to isomorphism.

We will say that the G-action {F ′g, ε′g, h| g, h ∈ G} on D is transported
from the given one on C.

Proof. — We take a quasi-inverse F−1 of F with unit a : IdC → F−1F .
We may take F ′g = FFgF

−1, ε′g, h = Fεg, hF
−1 ◦ FFga−1FhF

−1 and δg
= FFga.
For the uniqueness, we take another G-action {F ′′g , ε′′g, h| g, h ∈ G} on D

with natural isomorphisms δ′g : FFg → F ′′g F . There is a unique isomorphism
∂g : F ′g → F ′′g satisfying δ′g = ∂gF ◦ δg; see Lemma A.2. Then the two G-
actions on D are isomorphic via the G-equivariant functor (IdD, ∂). �
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2.2. Actions on module categories

Let R be a ring with identity. We denote by Mod -R the category of
right R-modules. By mod -R and proj -R, we mean the full subcategories of
finitely presented R-modules and finitely generated projective R-modules,
respectively. For an R-module M = MR, we usually denote the R-action
by “.”. We denote by R = RR the regular right R-module.
We will recall that G-actions on Mod -R, which fix R, are in a bijection

to weak G-actions on R.
We denote by Aut(R) the group of automorphisms on R, and by R× the

multiplicative group formed by invertible elements in R.
For an automorphism σ ∈ Aut(R) and an R-module M , the twisted

module σM is defined as follows: σM = M as an abelian group, and the new
R-action “◦” is given by m◦r = m.σ(r). This gives rise to an automorphism

σ(−) : Mod -R −→ Mod -R

of categories, called the twisting automorphism. It acts on morphisms by
the identity.
We observe that there is an isomorphism R → σR of right R-modules,

which sends r to σ(r). Moreover, for another automorphism σ′ ∈ Aut(R),
we have σ′(σM) = (σσ′)M .

Lemma 2.4. — Keep the notation as above.

(1) Any autoequivalence F on Mod -R satisfying F (R) ' R is isomor-
phic to σ(−) for some σ ∈ Aut(R).

(2) The twisting automorphisms σ(−) and σ′(−) are isomorphic if and
only if there exists a ∈ R× with σ′(x) = a−1σ(x)a for all x ∈ R.

(3) For a given natural isomorphism ε : σ(−)→ σ′(−), there is a unique
element a ∈ R× satisfying

εM (m) = m.a(2.8)

for any R-module M and m ∈ M . Here, the dot “.” denotes the
original R-action on M , not the one on σM or σ′M .

The same results hold for the categories mod -R and proj -R.

Proof. — These statements are all well known. In (3), we observe that
a = εR(1). Moreover, the statement (2) is implied by (3). �

The following notion is standard; compare [26, Section 1.4].
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Definition 2.5. — By a weak G-action on R, we mean a pair (ρ, c),
where ρ : G→ Aut(R) and c : G×G→ R× are maps subject to the condi-
tions
(WA1) ρ(gh)(x) = c(g, h)−1 · ρ(g)(ρ(h)(x)) · c(g, h);
(WA2) c(g, h) · c(gh, k) = ρ(g)(c(h, k)) · c(g, hk),
for any g, h, k ∈ G and x ∈ R. Here, we use the central dot to denote the
multiplication in R.

Two weak G-actions (ρ, c) and (ρ′, c′) are isomorphic provided that there
is a map δ : G → R× satisfying ρ′(g)(x) = δ(g)−1 · ρ(g)(x) · δ(g) and
c′(g, h) = δ(g)−1 · ρ(g)(δ(h)−1) · c(g, h) · δ(gh). �

We observe from (WA1) that ρ(e)(y) = c(e, e) · y · c(e, e)−1 for all y ∈ R.
Moreover, by taking h = e in (WA2), we infer that c(e, k) = c(e, e) and
c(g, e) = ρ(g)(c(e, e)).

In the literature, the triple (R, ρ, c) is called a G-crossed system. The
corresponding crossed product R ∗G is a ring which is defined as follows:
R ∗G is a free left R-module with basis {ḡ| g ∈ G}, and its multiplication
is given by

(r1ḡ)(r2h̄) = (r1 · ρ(g)(r2) · c(g, h))gh.

We observe a ring embedding R → R ∗ G sending r to (r · c(e, e)−1)ē. In
particular, the identity of R ∗G is c(e, e)−1ē.
By a G-action on R, we mean a weak G-action (ρ, c) with c(g, h) = 1 for

all g, h ∈ G; then the map ρ is a group homomorphism. In this case, the
crossed product R ∗G is called the skew group ring.
For a given weak G-action (ρ, c) on R, we consider the following natural

isomorphism on Mod -R

cg, h : ρ(h
−1)ρ(g−1)(−) −→ ρ((gh)−1)(−)(2.9)

such that (cg, h)M (m) = m.c(h−1, g−1); compare (WA1) and Lemma 2.4(3).
Indeed, this gives rise to a G-action {ρ(g−1)(−), cg, h| g, h ∈ G} on Mod -R,
where the condition (2.1) follows from (WA2).

Proposition 2.6. — There is a bijection from the set of isoclasses of
weak G-actions on R to the set of isoclasses of G-actions on Mod -R

{weak G-actions on R}/ ' ←→ {G-actions on Mod−R fixing R}/ ',

which sends (ρ, c) to {ρ(g−1)(−), cg, h| g, h ∈ G} on Mod−R.
Under this bijection, we have an isomorphism of categories

(Mod−R)G ∼−→ Mod -R ∗G.
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The bijection holds for mod -R and proj -R. Moreover, if the group G is
finite, we have an isomorphism of categories

(mod -R)G ∼−→ mod -R ∗G.

Proof. — The above map is injective by Lemma 2.4(3). For the surjec-
tivity, take any G-action {Fg, εg, h| g, h ∈ G} on Mod -R that fixes R. By
Lemmas 2.4(1) and 2.2, we may assume that Fg = ρ(g−1)(−) for some map
ρ : G → Aut(R). By Lemma 2.4(3), the natural isomorphisms εg, h give
rise to the map c such that εg, h coincide with cg, h in (2.9). Moreover,
(ρ, c) is a weak G-action on R, where (2.1) implies (WA2). This proves the
surjectivity.
The last isomorphism sends a G-equivariant R-module (M,α) to the

R ∗G-module M , whose action is given by m.(rḡ) = (αg−1)−1(m.r). Here,
the expression m.r means the action on M by the element r ∈ R. The
inverse functor sends an R ∗G-module X to (X,β), where the underlying
R-module structure on X is given by x.r = x.((r · c(e, e)−1)ē), and the
isomorphism βg : X → ρ(g−1)X is defined by βg(x.g−1) = x for each x ∈ X
and g ∈ G. �

2.3. The stable objects and crossed systems

We will show that G-crossed systems arise naturally from G-stable ob-
jects; compare [14].
Let C be an additive category with a fixed G-action {Fg, εg, h| g, h ∈ G}.

Recall that an object T is G-stable provided that T ' Fg(T ) for each g ∈ G.
We denote by add T the full subcategory consisting of direct summands
of finite direct sums of copies of T . In this case, we obtain the restricted
G-action on add T .

We take a G-stable object T and set R = EndC(T ) to be its endomor-
phism ring. Choose for each g ∈ G an isomorphism αg : T → Fg(T ). Then
we have a ring automorphism ρ(g) ∈ Aut(R) such that

ρ(g)−1(a) = (αg−1)−1 ◦ Fg−1(a) ◦ αg−1

for each a ∈ R. For g, h ∈ G, there is a unique element c(g, h) ∈ R×, or
equivalently, a unique automorphism c(g, h) of T , satisfying

F(gh)−1(c(g, h)) ◦ α(gh)−1 = (εh−1, g−1)T ◦ Fh−1(αg−1) ◦ αh−1 .(2.10)

This defines a weak G-action (ρ, c) on R. We observe that if we choose
another family of isomorphisms βg : T → Fg(T ), then the resulting weak
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G-action on R is isomorphic to (ρ, c). In particular, we have a G-crossed
system (R, ρ, c).
The well-known functor

HomC(T,−) : C −→ Mod -R

restricts to a fully faithful functor add T
∼−→ proj -R; moreover, it is dense

if C is idempotent complete. Here, we recall that an additive category C is
idempotent complete provided that each idempotent e : X → X splits, that
is, there exist morphisms u : X → Z and v : Z → X satisfying e = v ◦ u
and IdZ = u ◦ v.
For each object X ∈ C and g ∈ G, there is a natural isomorphism of

R-modules

(φg)X : HomC(T, Fg(X)) −→ ρ(g−1) HomC(T,X),

such that f = Fg((φg)X(f)) ◦ αg for each f : T → Fg(X).
Let T and the resulting G-crossed system (R, ρ, c) be as above. As in

Proposition 2.6, we consider the G-action {ρ(g−1)(−), cg, h| g, h ∈ G} on
Mod -R and its restricted G-action on proj -R.

Lemma 2.7. — Keep the notation as above. Then

(HomC(T,−), (φg)g ∈G)

is a G-equivariant functor. In particular, if C is idempotent complete, we
have a G-equivariant equivalence

(HomC(T,−), φ) : add T
∼−→ proj -R.(2.11)

Proof. — We just observe that (2.10) implies (2.4) for the above data
(HomC(T,−), (φg)g ∈G). We omit the details. �

Let f : R→ S be an isomorphism between two rings. For a weak G-action
(ρ, c) on R, the isomorphism f induces a weak G-action f∗(ρ, c) = (ρ̄, c̄) on
S as follows: ρ̄(g) = f ◦ ρ(g) ◦ f−1 and c̄ = f ◦ c.

Definition 2.8. — Two G-crossed systems (R, ρ, c) and (R′, ρ′, c′) are
equivalent provided that there is an isomorphism f : R→ R′ of rings such
that the two weak G-actions f∗(ρ, c) and (ρ′, c′) on R′ are isomorphic in
the sense of Definition 2.5.

We assume that in the situation of Definition 2.8, there is a map δ : G
→ R′× giving the isomorphism between f∗(ρ, c) = (ρ̄, c̄) and (ρ′, c′). For
each right R-module X, we denote by f∗(X) = X the corresponding R′-
module, where the R′-action “◦” is given by x◦a′ = x.f−1(a′). This gives
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rise to an isomorphism f∗ : Mod -R → Mod -R′ of categories. For each
g ∈ G, there is a natural isomorphism of R′-modules

(δg)X : f∗(ρ(g
−1)X) −→ ρ′(g−1)f∗(X), x 7→ x◦δ(g−1).

Here, we use ρ′(g−1)(a′) = δ(g−1)−1 · ρ̄(g−1)(a′) · δ(g−1) to verify this
natural isomorphism; see Lemma 2.4(2).
In the following Lemma 2.9, we consider the G-action {ρ(g−1)(−),

cg, h| g, h ∈ G} on Mod -R and G-action {ρ′(g−1)(−), c′g, h| g, h ∈ G} on
Mod -R′; see Proposition 2.6.

Lemma 2.9. — Keep the notation as above. Then we have a G-equivar-
iant isomorphism of categories

(f∗, (δg)g ∈G) : Mod -R −→ Mod -R′.

Proof. — The condition (2.4) for the data (f∗, (δg)g∈G) follows directly
from

c̄
(
h−1, g−1) · δ (h−1g−1) = ρ̄(h−1)

(
δ(g−1)

)
· δ
(
h−1) · c′ (h−1, g−1) .

This identity is one of the properties of the map δ : G→ R′
×, which gives

the isomorphism from (ρ̄, c̄) to (ρ′, c′). �

The following observation will be used later.

Lemma 2.10. — Let T be a G-stable object in C with the G-crossed
system (R, ρ, c) as above. Assume that (F, δ) is an equivariant autoequiva-
lence on C. Set T ′ = F (T ), which is also G-stable. Denote the correspond-
ing G-crossed system by (R′, ρ′, c′) with R′ = EndC(T ′). Then (R, ρ, c) is
equivalent to (R′, ρ′, c′).

Proof. — We take for each g ∈ G the isomorphism δT ◦ F (αg) : T ′
→ Fg(T ′) to define the weak G-action (ρ′, c′) on R′. Recall that R

= EndC(T ) and R′ = EndC(T ′). Then the isomorphism f : R → R′ of
rings, defined by f(a) = F (a), yields the required equivalence between the
two G-crossed systems. �

3. Cyclic group actions

In this section, we study the action by a cyclic group. Indeed, actions
by a cyclic group are classified by compatible pairs. For module categories,
compatible pairs correspond to compatible elements in the outer automor-
phism groups of the algebras.
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3.1. Compatible pairs

Let C be a category, and let d > 2. Denote by Cd = {e, g, · · · , gd−1} the
cyclic group of order d. Then we have gigj = g[i+j] for 0 6 i, j 6 d − 1,
where [i+ j] = i+ j if i+ j 6 d− 1 and [i+ j] = i+ j − d otherwise.
The following example is taken from [11, Example 2.2].

Example 3.1. — Let F : C → C be an autoequivalence with an isomor-
phism c : F d → IdC satisfying Fc = cF .
We construct a Cd-action {F̄gi , ε̄gi, gj | 0 6 i, j 6 d − 1} on C as follows:

F̄gi = F i, where F 0 = IdC ; the natural transformation

ε̄gi, gj : F̄gi F̄gj −→ F̄gigj = F̄g[i+j]

is given by the identity if i+ j < d, and by F i+j−dc otherwise. We mention
that to verify (2.1), one uses the condition F ic = cF i for each i > 0.
The constructed Cd-action {F̄gi , ε̄gi, gj | 0 6 i, j 6 d − 1} is said to be

induced from the pair (F, c). It is a strict action if and only if F is an
automorphism with F d = IdC and c equals the identity.

Let us consider an arbitrary Cd-action {Fgi , εgi, gj | 0 6 i, j 6 d−1} on C.
Set F = Fg. We define a natural isomorphism ε(i) : F i → Fgi for each i > 0
as follows: ε(0) = u−1, ε(1) = IdF , ε(2) = εg, g and ε(i+1) = εgi, g ◦ ε(i)F for
each i > 2. Consider the following composition

c : F d ε(d)

−→ Fgd = Fe
u−→ IdC ,

where u is the unit of the given Cd-action.

Lemma 3.2. — Keep the notation as above. Then the following state-
ments hold.

(1) The natural isomorphism c : F d → IdC satisfies Fc = cF .
(2) The given Cd-action {Fgi , εgi, gj | 0 6 i, j 6 d− 1} is isomorphic to

the Cd-action induced by the pair (F, c).

Proof.
(1) is contained in [11, Lemma 2.1], where we use the identity ε(i+1)

= εg, gi ◦ Fε(i).
(2) We use the notation in Example 3.1. For each 0 6 i 6 d− 1, we have

the isomorphism ε(i) : F̄gi = F i → Fgi . We claim that

ε([i+j]) ◦ ε̄gi, gj = εgi, gj ◦
(
Fgiε

(j) ◦ ε(i)F̄gj
)

holds for any 0 6 i, j 6 d− 1. Then we are done with the required isomor-
phism.
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Indeed, the claim follows from Lemma A.6(1) if i+ j 6 d− 1, and from
Lemma A.6(2) if i+ j > d. �

The following terminology will be convenient for us.

Definition 3.3. — A compatible pair (F, c) of order d consists of an
endofunctor F on C and a natural isomorphism c : F d → IdC satisfying
Fc = cF .
Two compatible pairs (F, c) and (F ′, c′) are defined to be isomorphic,

provided that there is a natural isomorphism a : F → F ′ satisfying c

= c′ ◦ ad. Here, the natural isomorphism ai : F i → F ′i is defined induc-
tively by a1 = a and ai+1 = aF ′i ◦ Fai.

We have the following classification result: the cyclic group actions are
classified by compatible pairs.

Proposition 3.4. — There is a bijection between the sets of isomor-
phism classes

{compatible pairs of order d}/ ' ←→ {Cd-actions on C}/ ',

sending a compatible pair to its induced Cd-action.

Proof. — The map is well defined, since isomorphic compatible pairs
yield isomorphic actions. The surjectivity follows from Lemma 3.2.

For the injectivity, we take two compatible pairs (F, c) and (F ′, c′). Con-
sider the induced Cd-actions {F̄gi , ε̄gi, gj | 0 6 i, j 6 d− 1} and {F̄ ′gi , ε̄

′
gi, gj |

0 6 i, j 6 d − 1}. Assume that they are isomorphic. Then there is an iso-
morphism δi : F̄gi = F i → F̄ ′gi = F ′i for each 0 6 i 6 d− 1, such that the
following identity holds

δ[i+j] ◦ ε̄gi,gj = ε̄′gi, gj ◦
(
F ′iδj ◦ δiF j

)
.

Set a = δ1 : F → F ′. We take i = j = 0 to infer that δ0 equals the identity.
The cases where i+ j 6 d− 1 imply that δi = ai. The case that i+ j = d

yields that c = c′ ◦ ad, where we use the fact that ad = F ′iaj ◦ aiF j . Hence
the two compatible pairs are isomorphic. Then we are done. �

Let k be a field, and let C be a skeletally small k-linear category. Here, be-
ing skeletally small means that the isoclasses of objects form a set. Recall by
definition that the center Z(C) of the category C consists of natural trans-
formations λ : IdC → IdC . Then Z(C) is a commutative k-algebra, whose
addition and multiplication are induced by the addition of morphisms and
the composition of morphisms in C, respectively.
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For a k-linear autoequivalence F : C → C, we denote by [F ] its isoclass.
We denote by Autk(C) the group formed by isoclasses of k-linear autoe-
quivalences on C, whose multiplication is induced by the composition of
functors. In the literature, Autk(C) is called the group of autoequivalences
on C.

Lemma 3.5. — Let d > 2. Assume that Z(C) = k and each element in k
has a dth root. Let [F ] ∈ Autk(C) with two isomorphisms c : F d → IdC and
c′ : F d → IdC satisfying Fc = cF and Fc′ = c′F . Then the two compatible
pairs (F, c) and (F, c′) are isomorphic.

Proof. — Since Z(C) = k, there is a nonzero element λ ∈ k such that
c′ = λc. Assume that λ = µd. Then the natural isomorphism µF : F → F

implies that the two compatible pairs are isomorphic. �

A G-action {Fg, εg, h| g, h ∈ G} on C is k-linear, provided that each
autoequivalence Fg is k-linear. Combining Proposition 3.4 and Lemma 3.5,
we have the following immediate consequence.

Corollary 3.6. — Let d > 2. Assume that Z(C) = k and each element
in k has a dth root. Then there is a bijection between

(1) the set of isoclasses of k-linear Cd-actions on C, and
(2) {[F ] ∈ Autk(C) | there exists some compatible pair (F, c) of ord-

er d},
which sends a Cd-action {Fgi , εgi, gj | 0 6 i, j 6 d− 1} on C to [Fg].

3.2. Cyclic group actions on module categories

Let A be a finite dimensional k-algebra. We denote by Autk(A) the au-
tomorphism group of the algebra A. We say that a weak G-action (ρ, c) on
A is k-linear if ρ takes values in Autk(A).
Recall that an automorphism σ is inner provided that there is an invert-

ible element a ∈ A× satisfying σ(x) = a−1xa. Inner automorphisms form
a normal subgroup Innk(A) of Autk(A). The quotient group

Outk(A) = Autk(A)/Innk(A)

is called the outer automorphism group of A, where the corresponding
image of σ ∈ Autk(A) is denoted by σ̄.

Definition 3.7. — Let d > 2. An automorphism σ ∈ Autk(A) is d-
compatible, provided that there exists some element a ∈ A× such that
σ(a) = a and σd(x) = a−1xa for all x ∈ A.
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For any inner automorphism δ, we observe that σ is d-compatible if and
only if so is σδ. If σ is d-compatible, we will also call the corresponding
element σ̄ ∈ Outk(A) d-compatible. These elements are closed under con-
jugation.

Lemma 3.8. — Assume that the algebra A is basic. Let F be a k-linear
autoequivalence on mod -A and σ ∈ Autk(A). Then the following state-
ments hold.

(1) We have F (A) ' A, and thus F is isomorphic to σ′(−) for some
σ′ ∈ Autk(A).

(2) There is an isomorphism Outk(A)→ Autk(mod -A) of groups, send-
ing σ̄′ to [σ′(−)], the isoclass of the twisting automorphism σ′(−).

(3) The automorphism σ is d-compatible if and only if there is a com-
patible pair (σ(−), c) of order d.

Proof. — Recall that any equivalence preserves basic projective gener-
ators. Then (1) follows from Lemma 2.4(1). Lemma 2.4(2) implies the
statement (2). For (3), we just observe that a compatible isomorphism
c : σd(−)→Idmod -A yields the required element a ∈ A×; see Lemma 2.4(3).

�

We denote by Z(A) the center of A. It is well known that Z(A) is iso-
morphic to Z(mod -A).

Proposition 3.9. — Let A be a finite dimensional basic k-algebra sat-
isfying Z(A) = k, and d > 2. Assume that each element in k has a dthroot.
Then the following sets are in one-to-one correspondence to each other:

(1) the set of isoclasses of k-linear Cd-actions on mod -A;
(2) the set of isoclasses of k-linear weak Cd-actions on A;
(3) the set of d-compatible elements in Outk(A).

Moreover, the bijection “(2) ⇔ (3)” induces a bijection between the set
of equivalence classes of k-linear Cd-crossed systems (A, ρ, c) to the set of
conjugacy classes formed by d-compatible elements in Outk(A).

Proof. — By Lemma 3.8(1), each G-action on mod -A fixes A. By Propo-
sition 2.6, we have the correspondence between (1) and (2). By Lem-
ma 3.8(2) and (3), the set of d-compatible elements is in a bijection to
the set in Corollary 3.6(2). Then Corollary 3.6 yields the correspondence
between (1) and (3).
The bijection from (2) to (3) sends (ρ, c) to the canonical image of ρ(e)

in Outk(A). Then the final statement is immediate. �
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4. Associated monads and dual actions

In this section, we recall the comparison between the category of equivari-
ant objects and module categories over certain monads. The strict action
of the character group on the category of equivariant objects is called the
dual action. We recall the details of a duality theorem from [16].

4.1. Monads and adjoint pairs

In this subsection, we recall basic facts on monads and adjoint pairs. The
standard reference is [24, Chapter VI].

Let C be a category. Recall that a monad on C is a triple (M,η, µ)
consisting of an endofunctor M : C → C and two natural transformations,
the unit η : IdC → M and the multiplication µ : M2 → M , subject to the
relations µ ◦Mµ = µ ◦ µM and µ ◦Mη = IdM = µ ◦ ηM . We suppress the
unit and multiplication when they are understood, and denote the monad
(M,η, µ) simply by M .
We will recall that each adjoint pair yields a monad. Assume that F : C

→ D is a functor, which admits a right adjoint U : D → C. We denote
by η : IdC → UF the unit and ε : FU → IdD the counit; they satisfy
εF ◦Fη = IdF and Uε ◦ ηU = IdU . We denote this adjoint pair on C and D
by the quadruple (F,U ; η, ε). In other words, an adjoint pair really means
the relevant quadruple. However, we suppress the unit and counit, when
they are clear from the context.
The adjoint pair (F,U ; η, ε) defines a monad (M,η, µ) on C, where M

= UF : C → C and µ = UεF : M2 = UFUF → U IdD F = M . The
resulting monad (M,η, µ) on C is said to be defined by the adjoint pair
(F,U ; η, ε). Indeed, as we will recall, any monad is defined by a certain
adjoint pair; see [24, VI.2].

For a monad (M,η, µ) on C, an M -module is a pair (X,λ) consisting of
an object X in C and a morphism λ : M(X)→ X subject to the conditions
λ◦Mλ = λ◦µX and λ◦ηX = IdX ; the object X is said to be the underlying
object of the module. A morphism f : (X,λ) → (X ′, λ′) between two M -
modules is a morphism f : X → X ′ in C satisfying f ◦λ = λ′ ◦M(f). Then
we have the category M -ModC of M -modules and the forgetful functor
UM : M -ModC → C.
We observe that each object X in C gives rise to an M -module FM (X)

= (M(X), µX), the free M -module generated by X. Indeed, this gives rise
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to the free module functor FM : C →M -ModC sending X to the free mod-
ule FM (X), and a morphism f : X → Y to the morphism M(f) : FM (X)
→ FM (Y ).
We have the adjoint pair (FM , UM ; η, εM ) on C and M -ModC , where for

an M -module (X,λ), the counit εM is given such that

(εM )(X,λ) = λ : FMUM (X, λ) = (M(X), µX) −→ (X,λ).

The unit of the adjoint pair is given by the unit η of the monad M , where
we observe that M = UMFM . Moreover, the adjoint pair (FM , UM ; η, εM )
defines the given monad (M,η, µ) on C.
For the given monad (M,η, µ), the above adjoint pair (FM , UM ; η, εM )

enjoys the following universal property: for any adjoint pair (F,U ; η, ε) on
C and D that defines M , there is a unique functor

K : D −→M -ModC

satisfying KF = FM and UMK = U ; see [24, VI.3]. This unique functor
K will be referred as the comparison functor associated to the adjoint pair
(F,U ; η, ε).

Indeed, the comparison functorK : D →M -ModC is described as follows:

K(D) = (U(D), UεD), K(f) = U(f)(4.1)

for an object D and a morphism f in D. Here, we observe that M = UF

and that (U(D), UεD) is an M -module.
An isomorphism ι : (M1, η1, µ1) → (M2, η2, µ2) between two monads on

C is a natural isomorphism ι : M1 → M2 of functors satisfying ι ◦ η1 = η2
and ι ◦ µ1 = µ2 ◦ (ιM2 ◦M1ι). This isomorphism yields an isomorphism

ι∗ : M2-ModC −→M1-ModC(4.2)

between module categories, which sends an M2-module (X,λ) to the M1-
module (X,λ ◦ ιX), and acts on morphisms by the identity.

4.2. The associated monads

In what follows, we assume that G is a finite group and that C is an
additive category. We fix a G-action {Fg, εg, h| g, h ∈ G} on C. Then the
category CG of equivariant objects is additive, and the forgetful functor
U : CG → C is also additive.
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We recall that the induction functor Ind: C → CG is defined as follows:
for an object X, set

Ind(X) =
(⊕
h∈G

Fh(X), ε(X)
)
,

where for each g ∈ G, the isomorphism

ε(X)g :
⊕
h∈G

Fh(X) −→ Fg

(⊕
h∈G

Fh(X)
)

is diagonally induced by the isomorphism (εg, g−1h)−1
X : Fh(X) → FgFg−1h

(X). Here, to verify that Ind(X) is indeed an equivariant object, we need
the 2-cocycle condition (2.1). The induction functor sends a morphism θ : X
→ Y to Ind(θ) =

⊕
h∈G Fh(θ) : Ind(X)→ Ind(Y ).

For an object X in C and an object (Y, β) in CG, a morphism Ind(X)
→ (Y, β) is of the form

∑
h∈G θh :

⊕
h∈G Fh(X) → Y satisfying Fg(θh)

= βg ◦ θgh ◦ (εg, h)X for any g, h ∈ G. The adjoint pair (Ind, U ; η, ε) is given
by the following natural isomorphism

HomCG(Ind(X), (Y, β)) ∼−→ HomC(X,U(Y, β))(4.3)

sending the morphism
∑
h∈G θh to θe ◦ u−1

X : X → Y . The correspond-
ing unit η : IdC → U Ind is given such that ηX = (u−1

X , 0, · · · , 0)t, where
‘t’ denotes the transpose; the counit ε : IndU → IdCG is given such that
ε(Y, β) =

∑
h∈G β

−1
h .

The monad M = (U Ind, η, µ) defined by the adjoint pair (Ind, U ; η, ε)
is computed as follows. The endofunctor M = U Ind: C → C is given by
M(X) =

⊕
h∈G Fh(X) and M(f) =

⊕
h∈G Fh(f) for an object X and a

morphism f in C. The multiplication µ : M2 →M is given by

µX = UεInd(X) : M2(X) =
⊕

h, g ∈G

FhFg(X) −→M(X) =
⊕
h′ ∈G

Fh′(X)

such that the corresponding entry FhFg(X)→ Fh′(X) equals δhg, h′(εh, g)X .
Here, δ is the Kronecker symbol.
Applying (4.1), we compute that the associated comparison functor

K : CG −→M -ModC

sends a G-equivariant object (X,α) to the M -module (X,λ), where the
module action is given by λ =

∑
h∈G(αh)−1 : M(X) =

⊕
h∈G Fh(X)

→ X. The functor K acts on morphisms by the identity.
The following result is standard; see [16, Proposition 3.11(2)] and [8,

Proposition 3.1].
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Lemma 4.1. — Keep the notation as above. Then the comparison func-
tor K : CG →M −ModC is an isomorphism of categories. �

For an object (Y, β) ∈ CG and an object X ∈ C, any morphism (Y, β)
→ Ind(X) is of the form (θh)h∈G : Y →

⊕
h∈G Fh(X) satisfying θgh

= (εg,h)X ◦ Fg(θh) ◦ βg for each g, h ∈ G. The adjoint pair (U, Ind; η′, ε′) is
given by the following natural isomorphism

HomC(U(Y, β), X) ∼−→ HomCG((Y, β), Ind(X)),(4.4)

which sends a morphism f : Y → X to (Fh(f) ◦βh)h∈G : (Y, β)→ Ind(X).
The unit η′ : IdCG → IndU is given such that η′(Y, β) = (βh)h∈G. The counit
ε′ : U Ind → IdC is given such that ε′X = (uX , 0, · · · , 0) :

⊕
h∈G Fh(X)

→ X.
The monad N = (IndU, η′, µ′) defined by the adjoint pair (U, Ind; η′, ε′)

is computed as follows. The endofunctor N = IndU : CG → CG is given by
N(Y, β) = Ind(Y ) and N(f) = Ind(f) for any object (Y, β) and morphism
f in CG. The multiplication µ′ : N2 → N is given as follows

µ′(Y, β) : N2(Y, β) =

 ⊕
g, h∈G

FgFh(Y ), ε
(⊕
h∈G

Fh(Y )
) −→ N(Y, β)

=
(⊕
h′ ∈G

Fh′(Y ), ε(Y )
)
,

where µ′(Y, β) = Ind ε′U(Y, β) = Ind ε′Y . Therefore, the corresponding entry
FgFh(Y )→ Fh′(Y ) equals δg, h′δh, eFg(uY ), where u : Fe → IdC is the unit
of the action.
Applying (4.1), we infer that the associated comparison functor

K ′ : C −→ N -ModCG

is given by K ′(X) = (Ind(X), Ind ε′X) and K ′(f) = Ind(f) for any object
X and morphism f in C.

Lemma 4.2. — Keep the notation as above. Assume that C is idempo-
tent complete. Then the comparison functor K ′ : C → N −ModCG is an
equivalence of categories.

Proof. — We observe that the counit ε′ is a split epimorphism. Then the
induction functor Ind is separable; for example, see [10, Lemma 2.2]. Then
the statement follows from [10, Corollary 3.6]; compare [15, Theorem 4.4]
and [16, Proposition 3.11(4)]. �
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We mention that the adjoint pairs (4.3) and (4.4) may be found in [15,
Lemma 4.6(ii)]. The monad M on C and the monad N on CG are said to
be associated to the given G-action.
The following observation will be used later. Let (F, δ) : C → C be a G-

equivariant endofunctor, and (F, δ)G : CG → CG be the induced endofunctor
on CG; see (2.5). For each object X, there is an isomorphism

ξX =
⊕
h∈G

(δg)X : (F, δ)G Ind(X)

=
(⊕
h∈G

FFh(X), ε̃(X)
)
−→ IndF (X)

=
(⊕
h∈G

FhF (X), ε(FX)
)
.

Here, to see that ξX is a morphism in CG, we use the following direct
consequence of (2.4)(

εg,g−1hF
)−1 ◦ δh = Fgδg−1h ◦

(
δgFg−1h ◦ (Fεg,g−1h)−1) .

Indeed, this gives rise to a natural isomorphism of functors

ξ : (F, δ)G Ind −→ IndF.(4.5)

We say that a natural number n is invertible in the category C provided
that for each morphism f : X → Y , there is a unique morphism g : X → Y

satisfying f = ng. This unique morphism is denoted by 1
nf . In case that

C is skeletally small, n is invertible in C if and only if n is invertible in its
center Z(C). We denote by |G| the order of the finite group G.
The following observation is well known.

Lemma 4.3. — Assume that |G| is invertible in C. Then the counit
ε : IndU → IdCG is a split epimorphism and the unit η′ : IdCG → IndU is
a split monomorphism.

Proof. — The section of ε(Y, β) is 1
|G| (βh)h∈G : (Y, β)→ Ind(Y ), and the

retraction of η′(Y, β) is 1
|G|
∑
h∈G(βh)−1 : Ind(Y )→ (Y, β). �

4.3. The dual action and the double-dual action

Let k be a field. In this subsection, we assume that the additive cat-
egory C is k-linear. Let G be a finite group. We fix a k-linear G-action
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{Fg, εg, h| g, h ∈ G} on C. In this case, the category CG of equivariant
objects is naturally k-linear.

We denote by Ĝ = Hom(G, k∗) the character group of G. For a character
χ on G and an object (X,α) ∈ CG, we have another equivariant object
(X,χ⊗ α), where for each g ∈ G, the isomorphism (χ⊗ α)g : X → Fg(X)
equals χ(g−1)αg. Set Fχ(X,α) = (X,χ⊗α). This yields an automorphism

Fχ : CG −→ CG,(4.6)

which acts on morphisms by the identity. We observe that FχFχ′ = Fχχ′

for any χ, χ′ ∈ Ĝ. In other words, we have a strict Ĝ-action on CG, which
is k-linear.
The following terminology will be justified by Theorem 4.6.

Definition 4.4. — For the given G-action {Fg, εg, h| g, h ∈ G} on C,
we call the above strict Ĝ-action on CG the dual action by Ĝ. �

We consider the category (CG)Ĝ of Ĝ-equivariant objects in CG, with
respect to the dual Ĝ-action. For an object X ∈ C and a character χ ∈ Ĝ,
we recall that

Ind(X)=
(⊕
h∈G

Fh(X), ε(X)
)

and Fχ Ind(X)=
(⊕
h∈G

Fh(X), χ⊗ ε(X)
)
.

Therefore, we have a canonical isomorphism in CG

can(X)χ =
⊕
h∈G

χ(h) : Ind(X) −→ Fχ Ind(X).

This gives rise to a Ĝ-equivariant object (Ind(X), can(X)) in CG. Further-
more, we have a well-defined functor

Θ: C −→
(
CG
)Ĝ

such that Θ(X) = (Ind(X), can(X)) and Θ(f) = Ind(f) for any morphism
f in C.
There is a canonical evaluation homomorphism

ev: G −→ ̂̂
G = Hom

(
Ĝ, k∗

)
(4.7)

given by ev(g)(χ) = χ(g). Then we obtain a strict G-action on the category
(CG)Ĝ, which is called the double-dual action by G. More precisely, each
g ∈ G gives rise to an automorphism

F̂g :
(
CG
)Ĝ −→ (

CG
)Ĝ
,(4.8)
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which sends (A,α) to (A, ev(g)⊗α) and acts on morphisms by the identity.
Here, A is an object in CG, and αχ : A→ Fχ(A) is an isomorphism for each
χ ∈ Ĝ. We have (ev(g)⊗ α)χ = χ(g−1)αχ.
For an object X ∈ C and g ∈ G, we have that

ΘFg(X) = (Ind(FgX), can(FgX))

and F̂gΘ(X) = (Ind(X), ev(g)⊗ can(X)) .

Recall that

IndFg(X) =
(⊕
h∈G

FhFg(X), ε(FgX)
)

and Ind(X) =
(⊕
h∈G

Fh(X), ε(X)
)
.

Then we have an isomorphism in CG

(∂g)X =
⊕
h∈G

(εg, h)X : IndFg(X) −→ Ind(X).

Moreover, this isomorphism gives rise to an isomorphism

(∂g)X : ΘFg(X) −→ F̂gΘ(X)

in (CG)Ĝ. Furthermore, this yields a natural isomorphism of functors

∂g : ΘFg −→ F̂gΘ.

Lemma 4.5. — Consider the given G-action on C and the double-dual
G-action on (CG)Ĝ. Then

(Θ, (∂g)g∈G) : C −→
(
CG
)Ĝ

is a G-equivariant functor with respect to these G-actions.

Proof. — Since the G-action on (CG)Ĝ is strict, it suffices to prove that
∂gh ◦Θεg, h = F̂g∂h ◦ ∂gFh. Indeed, it follows directly from (2.1). �

4.4. The duality theorem

In this subsection, let G be a finite abelian group. We assume that G
splits over k, that is, the group algebra kG is isomorphic to a product of
k. In particular, the characteristic of k does not divide the order |G| of
G. In this case, the character group Ĝ is isomorphic to G and the evalua-
tion homomorphism (4.7) is an isomorphism. In particular, we are in the
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situation, provided that the field k is algebraically closed of characteristic
zero.
The following duality theorem is essentially due to [16, Theorem 4.2],

which may be deduced from the general result [15, Theorem 4.4]; com-
pare [31, Subsection 5.1]. We make the equivalence explicit for our purpose.

Theorem 4.6. — Keep the notation as above. Let G be a finite abelian
group, which splits over k. Assume that C is idempotent complete. Then
the above functor

(Θ, (∂g)g∈G) : C −→
(
CG
)Ĝ

is a G-equivariant equivalence.

For the proof, we recall from Lemma 4.2 that the monad N on CG is
associated to the given G-action. We denote by M̂ the monad on CG,
which is associated to the dual Ĝ-action on CG; that is, M̂ is the monad in
Lemma 4.1 applied to the dual Ĝ-action.
The following observation may be deduced from the dual of [16, Propo-

sition 4.1].

Lemma 4.7. — Keep the same assumptions as above. Then the two
monads N and M̂ on CG are isomorphic.

Proof. — For an object (X,α) ∈ CG, we have N(X,α) = Ind(X)
= (
⊕

h∈G Fh(X), ε(X)) and

M̂(X,α) =
⊕
χ∈ Ĝ

Fχ(X,α) =
⊕
χ∈ Ĝ

(X,χ⊗ α) .

We construct an isomorphism

f : M̂(X,α) −→ N(X,α)(4.9)

as follows. The restriction of f to Fχ(X,α) is given by(
χ
(
h−1)αh)h∈G : X −→

⊕
h∈G

Fh(X);

compare the adjunction (4.4). The χth component of f−1 is given by
1
|G|

∑
h∈G

χ(h)α−1
h :

⊕
h∈G

Fh(X) −→ X.

Here, we use the well-known orthogonality of characters.
The isomorphism f is natural in (X,α). Then the two endofunctors M̂

and N are isomorphic. Using the explicit calculation in Subsection 4.2, it is
direct to verify that f is compatible with the units and the multiplications.
In other words, we have the required isomorphism of monads. �
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Proof of Theorem 4.6. In view of Lemma 4.5, it suffices to show that Θ is
an equivalence. We observe that Θ equals the composition of the following
sequence of equivalences, which are all explicitly given

C K′−→ N -ModCG
f∗−→ M̂ -ModCG

K̂−1

−→
(
CG
)Ĝ
.

Here, the equivalence K ′ is given in Lemma 4.2 and the isomorphism
K̂ : (CG)Ĝ → M̂ -ModCG is given as in Lemma 4.1, which is applied to
the dual Ĝ-action on CG. The isomorphism f : M̂ → N of monads is given
in (4.9). �

The following Example 4.8 will be used later.

Example 4.8. — Let G be a finite group, which might be non-abelian.
Let C be an additive category with a G-action {Fg, εg, h| g, h ∈ G}.

Assume that a ∈ G is a central element. For each g ∈ G, we have a
natural isomorphism

(ca)g = (εg, a)−1 ◦ εa, g : FaFg −→ FgFa.

Here, we use the fact that ag = ga. By applying (2.1) three times, we in-
fer (2.4) with F = Fa and ε′ = ε. In other words, (Fa, ca)=(Fa, ((ca)g)g ∈G)
is a G-equivariant endofunctor on C.
We claim that the corresponding endofunctor (Fa, ca)G on CG is isomor-

phic to the identity functor. More precisely, we have a natural isomorphism

ψ : IdCG −→ (Fa, ca)G

such that ψ(X,α) = αa : (X,α) → (Fa(X), α̃). Here, to verify that αa
is indeed a morphism in CG, we use the identity (εa, g)X ◦ Fa(αg) ◦ αa
= (εg, a)X ◦ Fg(αa) ◦ αg, since both equal αag = αga by (2.2).
We assume further that C is k-linear and that the given G-action is k-

linear. Recall that the dual Ĝ-action on CG sends χ to the automorphism
Fχ. We observe that (Fa, ca)G becomes a strictly Ĝ-equivariant functor.
We view the identity functor IdCG also as a strictly Ĝ-equivariant functor.

In general, the above isomorphism ψ is not an isomorphism between
Ĝ-equivariant functors. Indeed, Fχψ 6= ψFχ provided that χ(a) 6= 1.
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5. An isomorphism between groups of equivariant
autoequivalences

In this section, we prove that for an action by a finite abelian group, the
equivariantization yields an isomorphism between the two groups of equi-
variant autoequivalences. This isomorphism induces a bijection between
the orbit sets of isoclasses of stable objects.

Throughout, we work over a fixed field k. So we omit the subindex k,
and require that all functors are k-linear. We assume that C is a skeletally
small k-linear additive category.

5.1. Groups of equivariant autoequivalences

By Aut(C) = Autk(C), we denote the group of isoclasses of k-linear au-
toequivalences on C. For a k-linear autoequivalence F , we denote by [F ]
its isoclass. However, by abuse of notation, we sometimes view F as an
element in Aut(C).
The following fact is standard.

Lemma 5.1. — Let C and D be k-linear categories with a given k-linear
equivalence Θ: C → D. Then there is a unique isomorphism

Θ∗ : Aut(C) −→ Aut(D)

of groups such that for each k-linear autoequivalence F on C, there is a k-
linear autoequivalence Θ∗(F ) on D with an isomorphism ΘF → Θ∗(F )Θ.

�

Let G be a finite group with a k-linear G-action {Fg, εg, h| g, h ∈ G} on
C. The subgroup

AutG(C) = {[F ] ∈ Aut(C) | [FFg] = [FgF ] for each g ∈ G}

of Aut(C) is of interest. However, it does not behave well. Instead, we will
consider the group of equivariant autoequivalences.
Recall that a G-equivariant endofunctor on C means the data (F, δ) =

(F, (δg)g∈G), where F : C → C is an endofunctor and the natural isomor-
phisms δg : FFg → FgF satisfy (2.4). The composition of two equivariant
endofunctors (F, δ) and (F ′, δ′) is defined to be (FF ′, (δgF ′ ◦ Fδ′g)g ∈G).
The isoclass of the G-equivariant endofunctor (F, δ) will be denoted by

[F, δ]. We denote by Aut(C;G) the isoclass group of k-linear G-equivariant
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autoequivalences on C, whose multiplication is induced by the composi-
tion of equivariant functors. We call Aut(C;G) the group of G-equivariant
autoequivalences on C.
We have the following group homomorphism

φ : Aut(C;G) −→ AutG(C), [F, δ] 7→ [F ],(5.1)

called forgetful homomorphism associated to the given G-action. In general,
it is neither injective nor surjective.
We observe the following equivariant version of Lemma 5.1. Let C and

D be two k-linear categories with k-linear G-actions {Fg, εg, h| g, h ∈ G}
and {F ′g, ε′g, h| g, h ∈ G}, respectively. Assume that we are given a k-
linear G-equivariant equivalence (Θ, ∂) : C → D. We have that Θ∗([Fg])
= [F ′g] by the isomorphism ∂g. Hence, we have a restricted isomorphism
Θ∗ : AutG(C)→ AutG(D).
Take any G-equivariant k-linear autoequivalence (F, δ) on C. Then there

is a k-linear autoequivalence Θ∗(F ) on D with an isomorphism γ : ΘF
→ Θ∗(F )Θ. There are unique natural isomorphisms δ′g : Θ∗(F )F ′g → F ′gΘ∗
(F ) satisfying the following identity

δ′gΘ ◦Θ∗(F )∂g ◦ γFg = F ′gγ ◦ ∂gF ◦Θδg.

Moreover, (Θ∗(F ), (δ′g)g∈G) is a G-equivariant endofunctor on D and γ

yields an isomorphism between equivariant functors

γ : (Θ, ∂)(F, δ) −→ (Θ∗(F ), δ′)(Θ, ∂).

We put (Θ, ∂)∗(F, δ) = (Θ∗(F ), δ′). This gives rise to the upper row iso-
morphism of the following commutative diagram

Aut(C;G)

φ

��

(Θ,∂)∗ // Aut(D;G)

φ

��
AutG(C) Θ∗ // AutG(D),

(5.2)

where the vertical maps are the forgetful homomorphisms.
For the givenG-action {Fg, εg,h| g, h ∈ G} on C, we consider the following

normal subgroup of Aut(C;G)

Act(C;G) = {[F, δ] ∈ Aut(C;G) | F is isomorphic to Fa for some a ∈ G}.

Here, “Act” stands for action.
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Corollary 5.2. — Let (Θ, ∂) : C → D be the above k-linear G-equivar-
iant equivalence. Then the above isomorphism (Θ, ∂)∗ restricts to an iso-
morphism

(Θ, ∂)∗ : Act(C;G) −→ Act(D;G)

Proof. — It follows from the commutative diagram (5.2) and the fact
that Θ∗([Fa]) = F ′a for each a ∈ G. �

5.2. An isomorphism theorem

We fix a k-linear G-action {Fg, εg, h| g, h ∈ G} on C, and consider the cat-
egory CG of G-equivariant objects. Recall that the character group Ĝ has a
strict action on CG by sending each character χ to the automorphism Fχ on
CG; see Subsection 4.3. We then have the corresponding group Aut(CG; Ĝ)
of Ĝ-equivariant autoequivalences on CG and its subgroup Act(CG; Ĝ).

For a given G-equivariant k-linear autoequivalence (F, δ) on C, we have
by Lemma 2.1 the autoequivalence (F, δ)G : CG → CG. We observe that
Fχ(F, δ)G = (F, δ)GFχ for each χ ∈ Ĝ. In other words, the autoequivalence
(F, δ)G is a strictly Ĝ-equivariant endofunctor. More precisely, the data(

(F, δ)G,
(
Id(F, δ)GFχ

)
χ∈ Ĝ

)
form a strictly Ĝ-equivariant functor, which will be abbreviated as (F, δ)G.

Hence, the following group homomorphism is well defined

(−)G : Aut(C;G) −→ Aut
(
CG; Ĝ

)
, [F, δ] 7→

[
(F, δ)G

]
.(5.3)

We refer to (−)G as the equivariantization homomorphism associated to
the given G-action on C.

Theorem 5.3. — Let G be a finite abelian group, which splits over k.
Keep the notation as above. Assume further that C is idempotent complete.
Then the above equivariantization homomorphism (−)G is an isomorphism.

In particular, each Ĝ-equivariant autoequivalence on CG is isomorphic to
a strictly Ĝ-equivariant autoequivalence.

Proof. — We recall that G is identified with ̂̂G via the evaluation map
(4.7). Then we have the double-dual G-action on (CG)Ĝ. It is a strict action
by sending g ∈ G to the automorphism F̂g on (CG)Ĝ; see (4.8). Recall
from Theorem 4.6 theG-equivariant equivalence (Θ, (∂g)g ∈G) : C → (CG)Ĝ.
Here, we use the assumption that C is idempotent complete.
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Similar as (5.3), we have the equivariantization homomorphism associ-
ated to the dual Ĝ-action on CG

(−)Ĝ : Aut
(
CG, Ĝ

)
−→ Aut

((
CG
)Ĝ;G

)
.

We claim that there is a commutative triangle of group homomorphisms.

Aut(C;G)

(−)G %%

(Θ,∂)∗ // Aut
( (
CG
)Ĝ ;G

)

Aut
(
CG; Ĝ

) (−)Ĝ

77
(5.4)

Recall from (5.2) that (Θ, ∂)∗ is an isomorphism. It follows from the
claim that (−)G is injective and that (−)Ĝ is surjective. Applying the same
argument to the dual Ĝ-action, we infer that (−)Ĝ is also injective. This
implies the required statements.
For the claim, we take an arbitrary G-equivariant autoequivalence (F, δ)

on C. For an object X in C, we have

ΘF (X) = (Ind(FX), can(FX)) and(
(F, δ)G

)Ĝ Θ(X) =
(

(F, δ)G Ind(X), ˜can(X)
)
,

where ˜can(X)χ = (F, δ)G(can(X)χ) for each χ ∈ Ĝ. It follows that the
isomorphism ξ in (4.5) yields a natural isomorphism of functors

ξ :
(
(F, δ)G

)Ĝ Θ −→ ΘF.

Here, we use the explicit construction of “can” in Subsection 4.3 to verify
that can(FX)χ ◦ ξX = Fχ(ξX) ◦ ˜can(X)χ for each χ ∈ Ĝ.

Moreover, the above isomorphism ξ is an isomorphism of G-equivariant
functors, that is, the following identity holds

F̂gξ ◦
(
(F, δ)G

)Ĝ
∂g = (∂gF ◦Θδg) ◦ ξFg.

Here, we use the explicit form of ∂g and ξ. The above identity follows, since
(F, δ) is a G-equivariant endofunctor on C, that is, (2.4) holds with F ′g = Fg
and ε′g, h = εg, h. By the very definition of (Θ, ∂)∗, we conclude from the
isomorphism ξ that (Θ, ∂)∗(F, δ) is isomorphic to the strictly G-equivariant
functor ((F, δ)G)Ĝ. This proves the claim. �

We are indebted to Hideto Asashiba for the remark below.
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Remark 5.4. — One might deduce Theorem 5.3 from the following con-
jectural observation: there is a 2-equivalence between the 2-category of
small idempotent complete k-linear categories with G-actions and the 2-
category of small idempotent complete k-linear categories with Ĝ-actions.
This observation might be expected from [15, Theorem 4.4]; compare [3,
Theorem 7.5].

Recall that Z(C) is the center of C; it is a commutative k-algebra. The
following well-known fact will be used later; compare Lemma A.2.

Lemma 5.5. — Let F : C → C be a k-linear autoequivalence. Then any
natural morphism F → F is of the form λF = Fλ′ for some uniquely
determined λ, λ′ ∈ Z(C). Moreover, if λ belongs to k, then λ = λ′.

To each character χ ∈ Ĝ, we associate a G-equivariant endofunctor(
IdC ,

(
χ(g)−1 IdFg

)
g∈G

)
: C −→ C,

where χ(g)−1 IdFg : IdC Fg → Fg Id C is a natural isomorphism induced by
the multiplication of χ(g)−1. We observe the following identity(

IdC ,
(
χ(g)−1 IdFg

)
g∈G

)G
= Fχ,(5.5)

where the left hand side is by the construction (2.5) and Fχ is defined
in (4.6).
Recall the normal subgroup of Aut(CG; Ĝ)

Act
(
CG; Ĝ

)
=
{

[H, δ] ∈ Aut
(
CG; Ĝ

)
| H is isomorphic to Fχ for some χ ∈ Ĝ

}
.

Proposition 5.6. — Keep the assumptions in Theorem 5.3. Assume
further that Z(C) = k = Z(CG). Then the equivariantization homomor-
phism (−)G restricts to an isomorphism

(−)G : Act(C;G) −→ Act
(
CG; Ĝ

)
.

Proof. — Take an element [Fa, δ] from Act(C;G) for some a ∈ G. Recall
the G-equivariant functor (Fa, ca) from Example 4.8. By Lemma 5.5 there
is a unique nonzero scalar χ(g) ∈ k such that δg = χ(g)−1(ca)g for each
g ∈ G. Indeed, one infers that χ is a character of G. In other words, we
have the following identity of G-equivariant functors

(Fa, δ) =
(

IdC ,
(
χ(g)−1 IdFg

)
g ∈G

)
(Fa, ca).
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Hence, the following identity holds

(Fa, δ)G =
(

IdC ,
(
χ(g)−1 IdFg

)
g∈G

)G
(Fa, ca)G.

We recall (5.5), and that the functor (Fa, ca)G is isomorphic to IdCG ;
see Example 4.8. It follows that the underlying functor of the strictly Ĝ-
equivariant functor (Fa, δ)G is isomorphic to Fχ. In other words, we have
that [(Fa, δ)G] lies in Act(CG; Ĝ).
We have shown that (Act(C;G))G ⊆ Act(CG; Ĝ). By the same argument,

we have (Act(CG; Ĝ))Ĝ ⊆ Act((CG)Ĝ;G). Now we are done by the commu-
tative triangle (5.4) and Corollary 5.2. �

5.3. Bijections between stable objects

In this subsection, we assume that the k-linear category C is idempotent
complete and Hom-finite. Here, the Hom-finiteness means that HomC(X,Y )
is a finite dimensional k-space for any objects X,Y ∈ C. In particular,
the category C is Krull–Schmidt. An object M in C is basic if each of its
indecomposable direct summands has multiplicity one. In this case, the
endomorphism algebra EndC(M) is basic.

Let G be a finite abelian group. We fix a k-linear G-action {Fg, εg, h| g, h
∈ G} on C. Recall that an object M is G-stable provided that Fg(M) 'M
for each g ∈ G. We denote by StabG(C) the set of isoclasses of basic G-
stable objects. It carries a natural Aut(C;G)-action by [F, δ].M = F (M).
Here, using the isomorphisms δg’s, we observe that F (M) is again G-stable.
We are interested in the orbit set StabG(C)/Aut(C;G).
We consider the dual Ĝ-action on the category CG of G-equivariant ob-

jects. Then StabĜ(CG) denotes the set of isoclasses of basic Ĝ-stable objects
in CG, which has a natural action by Aut(CG; Ĝ). Recall that Ind: C → CG
is the induction functor.
The following result shows that basic stable objects in C and in CG are in

a natural bijection, which extends the corresponding result for cyclic group
actions on module categories; see [19, Corollary 13] in slightly different
terminologies.

Proposition 5.7. — Let G be a finite abelian group, which splits over
k. Then there is a bijection

ι : StabG(C) −→ StabĜ
(
CG
)
, M 7→ ι(M),
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where the object ι(M) is uniquely determined by add ι(M) = add Ind(M).
Moreover, ι induces a bijection on orbit sets

StabG(C)/Aut(C;G) −→ StabĜ
(
CG
)
/Aut

(
CG; Ĝ

)
.

Proof. — The map ι is well defined, since Ind(M) is always Ĝ-stable; see
Subsection 4.3. It is injective, since add Uι(M) = add M . Here, U is the
forgetful functor. For the surjectivity, let (Y, α) be a basic Ĝ-stable object
in CG. Then Fχ(Y, α) ' (Y, α) for each χ ∈ Ĝ. By the isomorphism (4.9),
we infer that add Ind(Y ) = add (Y, α). Take a basic object Y0 such that
add Y0 = add Y . Since Y is clearly G-stable, so is Y0. We observe that
ι(Y0) = (Y, α). Then we are done.
For the second bijection, it suffices to show that ι is compatible with the

equivariantization isomorphism in Theorem 5.3. Indeed, for a G-equivariant
autoequivalence (F, δ) on C and a G-stable object M , we recall the iso-
morphism ξM : (F, δ)G Ind(M) → IndF (M) in (4.5). Then we have the
following isomorphism

ιF (M) ' (F, δ)Gι(M).

Since the equivariantization isomorphism sends [F, δ] to [(F, δ)G], we infer
the required compatibility. �

Remark 5.8.
(1) A basicG-stable objectM isG-indecomposable if it is not decomposable
into the direct sum of two G-stable objects. Then the bijection ι induces
a bijection between G-indecomposable objects and Ĝ-indecomposable ob-
jects.
Denote by ind C the set of isomorphism classes of indecomposable ob-

jects in C. Then G acts on ind C. There is a bijection between the orbit
set (ind C)/G and the set of G-indecomposables, sending a G-orbit to its
direct sum. Consequently, we obtain a bijection between (ind C)/G and
(ind CG)/Ĝ.

(2) For a basic G-stable object M , we observe that EndCG(ι(M)) is
Morita equivalent to EndCG(Ind(M)). We claim that EndCG(Ind(M)) is
isomorphic to EndC(M) ∗G, where the crossed product is with respect to
the weak G-action on EndC(M) described in Subsection 2.3; compare [14,
Proposition 3.1.1]. In particular, we have chosen an isomorphism αg : M
→ Fg(M) for each g ∈ G.
The claim follows immediately from the following isomorphisms

EndCG(Ind(M)) ∼−→
⊕
g∈G

HomC(M,Fg(M)) ∼←− EndC(M) ∗G,
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where the left isomorphism is by the adjunction (4.3) and the right one
sends ag−1 to incg ◦Fg(a) ◦ αg. Here, incg : Fg(T ) →

⊕
h∈G Fh(T ) is the

inclusion, and a belongs to EndC(M).

6. Groups of equivariant triangle autoequivalences

In this section, we sketch a triangle version of Theorem 5.3. We first
recall the notion of a triangle action by a group on a (pre-)triangulated
category.

6.1. Triangle actions

Let T be a pre-triangulated category with the translation functor Σ.
Here, by a pre-triangulated category we mean a triangulated category,
which possibly does not satisfy the octahedral axiom.
A triangle functor between two pre-triangulated categories is a pair

(F, ω), where F : T → T ′ is an additive functor and ω : FΣ → Σ′F is
a natural isomorphism such that any exact triangle

X → Y → Z
f→ Σ(X)

in T is sent to an exact triangle

F (X)→ F (Y )→ F (Z) ωX◦F (f)−−−−−−→ Σ′F (X) in T ′ .

We call ω the connecting isomorphism for F . The composition and natural
isomorphisms of triangle functors respect the connecting isomorphisms. For
example, (IdT , IdΣ) is a triangle functor, which is simply denoted by IdT .
More generally, the connecting isomorphism in a triangle functor (F, ω)
is trivial provided that FΣ = Σ′F and that ω = IdFΣ is the identity
transformation. In this case, the triangle functor (F, IdFΣ) will be simply
denoted by F .
Let T be a pre-triangulated category and G a finite group. A triangle G-

action {(Fg, ωg), εg, h| g, h ∈ G} on T consists of triangle autoequivalences
(Fg, ωg) on T and natural isomorphisms

εg, h : (Fg, ωg)(Fh, ωh) −→ (Fgh, ωgh)

of triangle functors subject to the condition (2.1). Since the isomorphism
εg,h respects the connecting isomorphisms, we have the condition

ωgh ◦ εg,hΣ = Σεg, h ◦ (ωgFh ◦ Fgωh).(6.1)
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We consider the category T G of G-equivariant objects in T ; it is an
additive category. We observe by (6.1) that(

Σ,
(
ω−1
g

)
g ∈G

)
: T −→ T

is a G-equivariant endofunctor. In particular, we have a well-defined endo-
functor (

Σ,
(
ω−1
g

)
g ∈G

)G : T G −→ T G,

which is abbreviated as ΣG; it is an autoequivalence; see Lemma 2.1. For
an object (X,α) in T G, we have ΣG(X,α) = (Σ(X), α̃) with α̃g = (ωg)−1

X ◦
Σ(αg) for each g ∈ G. The autoequivalence ΣG acts on morphisms by Σ.
The following basic result is essentially due to [4, Corollary 4.3], which

is made explicit in [10, Lemma 4.4] and [16, Theorem 6.9].

Lemma 6.1. — Assume that the pre-triangulated category T has a tri-
angle G-action as above. Suppose that T is idempotent complete and that
|G| is invertible in T . Then T G is pre-triangulated with ΣG its translation
functor and satisfying the following condition: a triangle (X,α)→ (Y, β)→
(Z, γ)→ ΣG(X,α) is exact if and only if the corresponding triangle of un-
derlying objects is exact in T .

In the case of Lemma 6.1, both the forgetful functor U : T G → T and the
induction functor Ind: T → T G are triangle functors, where the connecting
isomorphism for U is trivial and the one for Ind is induced from ωg’s.

Indeed, in most cases, the category T G is triangulated; see [16, Corol-
lary 6.10]. In general, we do not know whether T G is triangulated under
the assumption that T is triangulated.

Let k be a field. Let T be a k-linear pre-triangulated category, which
is skeletally small. Recall that the triangle center of T is given by ZM(T )
= {λ ∈ Z(T ) | Σλ = λΣ}; it is a k-subalgebra of the center Z(T ). We
observe that the triangle center is bijective to the set consisting of natural
transformations λ : (IdT , IdΣ)→ (IdT , IdΣ) as triangle functors.

We denote by AutM(T ) the group of triangle autoequivalences on T ,
whose elements are the isoclasses [F, ω] of k-linear triangle autoequivalences
(F, ω) of T and whose multiplication is given by the composition of triangle
functors. The homomorphism

AutM(T ) −→ Aut(T )

sending [F, ω] to [F ] is in general neither injective nor surjective.
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6.2. A triangle version of Theorem 5.3

Let k be a field and let T be a k-linear pre-triangulated category, which
is skeletally small. Let G be a finite abelian group, which splits over k. We
fix a k-linear triangle G-action {(Fg, ωg), εg, h| g, h ∈ G} on T .

We denote by AutGM (T ) the subgroup of AutM(T ) consisting of elements
[F, ω] which commute with each [Fg, ωg]. The group of equivariant triangle
autoequivalences behaves better.
A G-equivariant triangle endofunctor ((F, ω), δ) on T consists of a trian-

gle endofunctor (F, ω) and natural isomorphisms

δg : (F, ω)(Fg, ωg) −→ (Fg, ωg)(F, ω)

between triangle functors subject to (2.4). We denote by AutM(T ;G) the
group of equivariant triangle autoequivalences on T , whose elements are
the isoclasses [(F, ω), δ] of equivariant triangle autoequivalences. Then we
have the forgetful homomorphism associated to the given triangle G-action

φ : AutM(T ;G) −→ AutGM (T ), [(F, ω), δ] 7→ [F, ω].

We denote by ActM(T ;G) the normal subgroup of AutM(T ;G) consisting
of those elements [(F, ω), δ] such that (F, ω) is isomorphic to (Fa, ωa) for
some a ∈ G.
We consider the dual Ĝ-action on T G, which sends χ to the automor-

phism Fχ in (4.6). We observe that Fχ is a triangle functor with the trivial
connecting isomorphism. In particular, the dual Ĝ-action on T G is a tri-
angle action. We then have the corresponding groups AutM(T G; Ĝ) and
ActM(T G; Ĝ).

Let ((F, ω), δ) : T → T be an equivariant triangle autoequivalence. Recall
that the autoequivalence (F, δ)G on T G is strictly Ĝ-equivariant. We have
a natural isomorphism

ωG : (F, δ)GΣG −→ ΣG(F, δ)G

given by (ωG)(X,α) = ωX for each object (X,α) ∈ T G. Moreover, the pair
((F, δ)G, ωG) is a triangle endofunctor on T G. Hence, we have a strictly Ĝ-
equivariant triangle autoequivalence (((F, δ)G, ωG), Id) on T G, which will
be abbreviated as ((F, ω), δ)G.
This gives to the triangle version of the equivariantization homomor-

phism associated to the given triangle G-action

(−)G : AutM
(
T ;G

)
−→ AutM

(
T G; Ĝ

)
, [(F, ω), δ] 7→

[
((F, ω), δ)G

]
.
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Theorem 6.2. — Let G be a finite abelian group, which splits over
k. Assume that the pre-triangulated category T is idempotent complete
with the given k-linear triangleG-action. Then the above equivariantization
homomorphism (−)G is an isomorphism.

Moreover, if ZM(T ) = k = ZM(T G), this equivariantization homomor-
phism restricts to an isomorphism

(−)G : ActM(T ;G) −→ ActM
(
T G; Ĝ

)
.

Proof. — We mention that the triangle version of Theorem 4.6 holds.
More precisely, we observe that the G-equivariant equivalence in Theo-
rem 4.6 is a triangle functor, whose connecting isomorphism is induced by
the isomorphisms ωg’s. Then the argument in the proof of Theorem 5.3
and Proposition 5.6 carries over to the triangle case. �

7. Stable tilting objects and bijections

In this section, we study tilting objects that are stable under a given
triangle action. If the acting group is finite abelian, there is a bijection
between the sets of isoclasses of stable tilting objects for the given action
and for the dual action.

Throughout, let k be a field, and let T a k-linear pre-triangulated cate-
gory, which is assumed to be idempotent complete and Hom-finite.

7.1. Tilting objects

We recall the basic facts on tilting objects. For an object M in T , we
denote by thick〈M〉 the smallest thick triangulated subcategory of T con-
tainingM . Here, the thickness means being closed under direct summands.

Definition 7.1. — An object T ∈ T is called tilting provided that the
following conditions are fulfilled.
(T1) The object T satisfies HomT (T,Σi(T )) = 0 for i 6= 0;
(T2) thick〈T 〉 = T .

The motivating example is as follows. Let A be a finite dimensional al-
gebra. We denote by Kb(proj -A) the bounded homotopy category of pro-
jective A-modules. We view a module X as a stalk complex concentrated
in degree zero, still denoted by X. Then the regular module A is a tilting
object in Kb(proj -A).
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Following [21, Subsection 8.7], the pre-triangulated category T is alge-
braic provided that there is a k-linear Frobenius category E with a k-linear
triangle equivalence T → E . Here, E is the stable category modulo projec-
tive objects; it is a k-linear triangulated category.
The following basic fact is well known, which is essentially contained

in [21, Theorem 8.5]; for a sketchy proof, we refer to [9, Lemma 3.1].
Proposition 7.2. — Let T be an algebraic triangulated category. As-

sume that T is a tilting object. Then there is a k-linear triangle equivalence

(Ψ, u) : T −→ Kb(proj -EndT (T )),

which restricts to the equivalence

HomT (T,−) : add T → proj -EndT (T ) . �
We denote by Tilt(T ) the set of isoclasses of basic tilting objects in T .

This set carries an action by AutM(T ) as follows: [F, ω].T = F (T ) for any
k-linear triangle autoequivalence (F, ω). We are interested in the orbit set
Tilt(T )/AutM(T ), for which we have another interpretation.
We denote by Alg(T ) the set of isoclasses of finite dimensional basic k-

algebras, which are isomorphic to EndT (T ) for some basic tilting object T .
The following map is surjective by definition

Tilt(T )/AutM(T ) −→ Alg(T ), T 7→ EndT (T ).(7.1)

The following observation shows that this map is bijective, provided that
T is algebraic.
Corollary 7.3. — Let T be an algebraic triangulated category. As-

sume that T and T ′ are two tilting objects. Then there is a k-linear triangle
autoequivalence (F, ω) on T satisfying F (T ) ' T ′ if and only if the alge-
bras EndT (T ) and EndT (T ′) are isomorphic. Consequently, the map (7.1)
is bijective.
Proof. — The “only if” part is clear, since F induces the isomorphism.

Conversely, an isomorphism between these algebras yields an isomorphism
Kb(proj - EndT (T )) → Kb(proj - EndT (T ′)) of triangulated categories,
which sends EndT (T ) to EndT (T ′). Combining it with the equivalences
in Proposition 7.2 applied to T and T ′, we obtain the required triangle
autoequivalence on T . �

7.2. Stable tilting objects

Let G be a finite group, whose order |G| is invertible in k. We fix a
k-linear triangle G-action {(Fg, ωg), εg, h| g, h ∈ G} on T .
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We denote by TiltG(T ) ⊆ Tilt(T ) the subset consisting of basic
G-stable tilting objects. There is an AutM(T ;G)-action on TiltG(T ) as
follows: [(F, ω), δ].T = F (T ). By the isomorphisms δg’s, the tilting ob-
ject F (T ) is indeed G-stable. We are interested in the orbit set TiltG(T )/
AutM(T ;G). We mention that stable tilting objects are studied in [1, 2, 14,
20, 27, 37] in quite different setups.

Remark 7.4. — We observe that AutGM (T ) also acts on TiltG(T ). Indeed,
if the forgetful homomorphism φ : AutM(T ;G) → AutGM (T ) is surjective,
then the orbit sets TiltG(T )/AutM(T ;G) and TiltG(T )/AutGM (T ) coincide.
This surjectivity holds provided that G is cyclic, ZM(T ) = k and that the
ground field k is nice enough; see Section 9 for details.

We denote by Alg(T ;G) the set of equivalence classes of G-crossed sys-
tems (A, ρ, c) with A ∈ Alg(T ); see Definition 2.8.
In what follows, we will construct a G-equivariant version of the map

(7.1). For a basic G-stable tilting object T , we choose for each g ∈ G an
isomorphism αg : T → Fg(T ). Set A = EndT (T ). In Subsection 2.3, we
already obtain a G-crossed system (A, ρ, c) from these isomorphisms. By
Lemma 2.10, the following map is well defined

TiltG(T )/AutM(T ;G) −→ Alg(T ;G), T 7→ (A, ρ, c).(7.2)

The condition in the following Definition 7.5 is subtle.

Definition 7.5. — Let T be an algebraic triangulated category as
above. We say that T is tilt-standard provided that it has a tilting ob-
ject T such that the additive category add T is strongly K-standard in the
sense of Definition B.1.

In this situation, by Proposition B.4, the additive category add T ′ is
strongly K-standard for any tilting object T ′.

Example 7.6. — Let H be a hereditary abelian category such that its
bounded derived category Db(H) is Hom-finite. Assume that Db(H) has
a tilting object T , which is usually called a tilting complex on H. Then
Db(H) is tilt-standard.

Indeed, the endomorphism algebra A = EndDb(H)(T ) is piecewise hered-
itary, in particular, triangular. Then proj -A is strongly K-standard; see
Appendix B. By the equivalence HomDb(H)(T,−) : add T → proj -A, we
are done.

Proposition 7.7. — Assume that T is tilt-standard. Then the map
(7.2) is injective.
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Remark 7.8. — We mention that the map (7.2) is not surjective in gen-
eral. Indeed, we consider the Grothendieck group K0(T ) of the triangu-
lated category T , and the induced G-action on it. On the algebra side,
we have the G-action on the K0-group K0(A). More precisely, for g ∈ G
and P ∈ proj−A with its class [P ] ∈ K0(A), the action is given by
g.[P ] = [ρ(g−1)P ]. Since K0(A) is naturally isomorphic to K0(Kb(proj -A)),
we might identifyK0(A) withK0(T ) via the equivalence in Proposition 7.2.
We observe that if (A, ρ, c) lies in the image of (7.2), then the two G-actions
on K0(T ) and K0(A) are necessarily compatible.

In the cyclic group case, Proposition 7.7 provides a practical way for
classifying the stable tilting objects. For d > 2 and an algebra A, we de-
note by Out(A)d the subset of Out(A) consisting of d-compatible elements;
see Subsection 3.2. Since those elements are closed under conjugation, we
denote by Out(A)d the set of conjugation classes contained in Out(A)d.

In view of Proposition 3.9, we have the following immediate consequence
of Proposition 7.7.

Corollary 7.9. — Let G = Cd = 〈g〉 be the cyclic group of order d.
Assume that ZM(T ) = k and that each element in k has a dth root. Keep
the assumptions as above. Then there is an injective map

TiltCd(T )/AutM(T ;Cd)

−→
{

(A, σ)
∣∣∣ A ∈ Alg(T ), σ ∈ Out(A)d,K0- comp

}
.

Here, the K0-compatiblity of (A, σ), shortened as “K0-comp” above, means
that the action of σ on K0(A) is isomorphic to the g-action on K0(T ); see
Remark 7.8.

Let T be a G-stable tilting object as above with A = EndT (T ). We
have obtained the G-crossed system (A, ρ, c). For any autoquivalence H
on proj -A, it naturally induces a triangle autoequivalence on Kb(proj -A),
which has a trivial connecting isomorphism. The induced triangle equiv-
alence is still denoted by H. Consequently, from the crossed system, we
obtain a triangle G-action {ρ(g−1)(−), cg, h| g, h ∈ G} on Kb(proj -A); see
Subsection 2.3.

Lemma 7.10. — Assume that T is tilt-standard. Keep the notation as
above, and recall the equivalence (Ψ, u) in Proposition 7.2. Then for each
g ∈ G, there exists a natural isomorphism

δg : (Ψ, u)(Fg, ωg) −→ ρ(g−1)(−)(Ψ, u)
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of triangle functors, such that

((Ψ, u), δ) : T −→ Kb(proj -A)

is a G-equivariant triangle equivalence.

Proof. — We might use the equivalence (Ψ, u) to transport the triangle
action from T to Kb(proj -A); compare Lemma 2.3. More precisely, for
each g ∈ G, there is a triangle autoequivalence (Hg, vg) on Kb(proj -A)
together with a natural isomorphism δ′g : (Ψ, u)(Fg, ωg) → (Hg, vg)(Ψ, u).
However, we observe that the restriction Hg on proj -A is isomorphic to
the twisting automorphism ρ(g−1)(−); compare Lemma 2.7. Since add T

and thus proj -A are strongly K-standard, we infer from Lemma B.2 that
(Hg, vg) is isomorphic to ρ(g−1)(−), the natural extension of the twisting
automorphism on Kb(proj -A). So we replace Hg by ρ(g−1)(−), and adjust
δg suitably; see Lemma 2.2. Then the result follows immediately. �

Proof of Proposition 7.7. We take two G-stable tilting objects T and T ′,
which yield two G-crossed systems (A, ρ, c) and (A′, ρ′, c′). To show the
injectivity, we assume that f : A→ A′ is an algebra isomorphism such that
f∗(ρ, c) and (ρ′, c′) are isomorphic; see Definition 2.8.

The rows of the following commutative diagram are obtained by applying
the previous lemma to T and to T ′, respectively. The right hand column is
an G-equivariant triangle isomorphism induced by Lemma 2.9.

T

((F,ω),∂)
��

((Ψ,u),δ) // Kb(proj -A)

f∗

��
T

((Ψ′,u′),δ′) // Kb(proj -A′)

Then there is a unique [(F, ω), ∂] ∈ AutM(T ;G) making the diagram com-
mute. Since f∗(A) ' A′, we infer that F (T ) ' T ′. We are done. �

7.3. Bijections between stable tilting objects

Let G be a finite abelian group, which splits over k. We fix a k-linear
triangle G-action {(Fg, ωg), εg, h| g, h ∈ G} on T . The induction functor
Ind: T → T G is a triangle functor. Consider the dual Ĝ-action on T G. So
we have the set TiltĜ(T G) of isoclasses of basic Ĝ-stable tilting objects in
T G, which carries an action by AutM(T G; Ĝ).
We have the following triangle analogue of Proposition 5.7, where the

first bijection is related to [27, Theorem 4.1].
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Theorem 7.11. — Let G be a finite abelian group, which splits over k.
Then there is a bijection

ι : TiltG(T ) −→ TiltĜ
(
T G
)
, T 7→ ι(T )

such that add ι(T ) = add Ind(T ). Moreover, ι induces a bijection on orbit
sets

TiltG(T )/AutM (T ;G) −→ TiltĜ
(
T G
)
/AutM

(
T G; Ĝ

)
.

Proof. — To see that ι is well defined, it suffices to claim that the basic
object ι(T ) is tilting in T G. Indeed, by the adjunction (4.3) we have

HomT G
(
Ind(T ), (ΣG)n Ind(T )

)
'
⊕
h∈G

HomT (T,ΣnFh(T )) = 0,

for each n 6= 0, where we use T ' Fh(T ) and the condition (T1) for T . It
remains to show that thick〈Ind(T )〉 = T G. For this end, we consider the
full subcategory

N =
{
X ∈ T

∣∣ Ind(X) ∈ thick〈Ind(T )〉
}
.

Since Ind is a triangle functor, it follows that N is a thick triangulated
subcategory, which certainly contains T . We conclude that N = T . Take
an arbitrary object (Y, α) in T G. By Lemma 4.3, (Y, α) is a direct summand
of Ind(Y ), while the latter lies in thick〈Ind(T )〉 by the previous conclusion.
Hence (Y, α) lies in thick〈Ind(T )〉. Then we are done with (T2) for ι(T ).
By Proposition 5.7, the map ι is injective. For the surjectivity, let (Y, α)

be a basic Ĝ-stable tilting object in T G. As in the proof of Proposition 5.7,
there is a basic G-stable object Y0 such that ι(Y0) = (Y, α). We claim that
Y0 is a tilting object in T . This will complete the proof of the bijectivity
of ι.
By reversing the argument above, we infer that Y0 satisfies (T1). For (T2),

we consider the full subcategory

M =
{

(X,β) ∈ T G
∣∣ U(X,β) = X ∈ thick〈Y0〉

}
,

which is a thick triangulated subcategory containing (Y, α). We conclude
thatM = T G. Then for an arbitrary object Z in T , Ind(Z) lies inM. It
follows that U Ind(Z) lies in thick〈Y0〉, which forces that so does Z. This
proves (T2) for Y0 and thus the claim.
For the second bijection, it suffices to claim that ι is compatible with the

equivariantization isomorphism in Theorem 6.2. This is analogous to the
last paragraph in the proof of Proposition 5.7. We omit the details. �
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8. Weighted projective lines of tubular type

In this section, we apply the bijections on stable tilting objects to weight-
ed projective lines of tubular type. The obtained bijection relates the stable
tilting complexes on weighted projective lines of different tubular types.

We assume that k is algebraically closed, whose characteristic is different
from 2 or 3.

8.1. Graded automorphisms

We will fix the notation for this section. Let H be an abelian group,
which is written additively. Let R = ⊕h∈HRh be a finitely generated H-
graded commutative algebra. We denote by gr -R the abelian category of
finitely generated H-graded right R-modules. Such modules are denoted
by M = ⊕h∈HMh. We denote by qgr -R = gr -R/ gr0 -R the quotient
abelian category, where gr0 -R denotes the Serre subcategory formed by
finite dimensional modules.
For an element w ∈ H, we denote by (w) : gr -R → gr -R the degree-

shift automorphism. For a graded module M , we obtain a shifted module
M(w) = M , which is graded by M(w)h = Mh+w. The degree-shift auto-
morphism acts on morphisms by the identity. Moreover, (w) descends to
an automorphism on qgr -R, which will be still denoted by (w).
By a graded automorphism on R, we mean a pair (g, ψ), where ψ : H

→ H is a group automorphism and g : R→ R is an algebra automorphism
such that g(Rh) = Rψ(h) for each h ∈ H. It induces the twisting automor-
phism g(−) on both gr -R and qgr -R, where we suppress ψ in the notation.
More precisely, for a graded module M , the twisted module gM = M is
graded by (gM)h = Mψ(h), whose R-action is given by m◦r = m.g(r) for
r ∈ R.
It is well known that weighted projective lines [18] of tubular types are

of weight types (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) and (6, 3, 2); compare [33]. For
the type (2, 2, 2, 2), there is a parameter λ ∈ k, which is not 0 or 1. Follow-
ing [18], we list their homogeneous coordinate algebras explicitly as follows.

S(2, 2, 2, 2;λ) = k[X1, X2, X3, X4]/
(
X2

3 −
(
X2

2 −X2
1
)
, X2

4 −
(
X2

2 − λX2
1
))

;

S(3, 3, 3) = k[Y1, Y2, Y3]/
(
Y 3

3 −
(
Y 3

2 − Y 3
1
))

;

S(4, 4, 2) = k[Z1, Z2, Z3]/
(
Z2

3 −
(
Z4

2 − Z4
1
))

;

S(6, 3, 2) = k[U1, U2, U3]/
(
U2

3 −
(
U3

2 − U6
1
))
.
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Moreover, we will use letters in the lower case to represent their images
in the quotient algebras. For example, yi will represent the image of Yi in
S(3, 3, 3).

The algebra S(2, 2, 2, 2;λ) is graded by the abelian group L(2, 2, 2, 2),
which is generated by ~x1, ~x2, ~x3 and ~x4 subject to the relations 2~x1
= 2~x2 = 2~x3 = 2~x4. More precisely, we have deg xi = ~xi. The cate-
gory coh -X(2, 2, 2, 2;λ) of coherent sheaves on the corresponding weighted
projective line X(2, 2, 2, 2;λ) is identified with qgr -S(2, 2, 2, 2;λ).

Similarly, the algebra S(3, 3, 3) is graded by the ablian group L(3, 3, 3),
which is generated by ~y1, ~y2 and ~y3 with the relations 3~y1 = 3~y2 = 3~y3; here,
this common value is denoted by ~c. The grading is given by deg yi = ~yi. The
category coh -X(3, 3, 3) of coherent sheaves on the corresponding weighted
projective line X(3, 3, 3) is identified with qgr -S(3, 3, 3). The Auslander–
Reiten translation τ on coh -X(3, 3, 3) is given by the degree-shift (~ω), where
~ω = ~c − ~y1 − ~y2 − ~y3 is the dualizing element. Similar remarks hold for
X(4, 4, 2) and X(6, 3, 2). For example, the Auslander–Reiten translation τ
of coh -X(4, 4, 2) is given by (~ω), where ~ω = ~c− ~z1 − ~z2 − ~z3 in L(4, 4, 2).

In what follows, we fix two elements
√
−1 and ε in k, where ε2−ε+1 = 0

is satisfied. In Table 1, we consider the following graded automorphisms,
where the automorphisms ψi’s on the grading groups are naturally induced
by gi’s.

Table 8.1. The graded automorphisms on the coordinate algebras

(g1, ψ1) on S(2, 2, 2, 2;−1) x1 7→
√
−1x1, x2 7→ x2, x3 7→ x4, x4 7→ x3

(g2, ψ2) on S(2, 2, 2, 2; ε) x1 7→ x2, x2 7→ x3, x3 7→
√
−1x1, x4 7→

√
−1εx4

(g3, ψ3) on S(3, 3, 3) y1 7→ y2, y2 7→ y1, y3 7→ εy3

We denote by C2 and C3 the cyclic groups of order two and three, respec-
tively. We observe that the degree-shift automorphism g2

1 (−) is isomorphic
to the identity functor. Moreover, there is a natrual isomorphism

c : g
2
1 (−) −→ Idcoh -X(2, 2, 2, 2;−1)

such that (g1(−), c) is a compatible pair of order two; see Definition 3.3. In
more details, for a graded module M , the isomorphism

cM : g
2
1 (M) −→M

is given such that (cM )~l = γ(~l) IdM~l for each ~l ∈ L(2, 2, 2, 2). Here, the
group homomorphism γ : L(2, 2, 2, 2) → {±1} is defined by γ(~x1) = −1
and γ(~x2) = γ(~x3) = γ(~x4) = 1.
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By the compatible pair (g1(−), c) of order two, we obtain a k-linear C2-
action on coh -X(2, 2, 2, 2;−1), which is uniquely determined by (g1, ψ1);
see Corollary 3.6. Here, we observe that Z(coh -X(2, 2, 2, 2;−1)) = k. So
the action is independent of the choice of c.

In a similar way, we obtain a k-linear C3-action on coh -X(2, 2, 2, 2; ε) de-
termined by (g2, ψ2), and a k-linear C2-action on coh -X(3, 3, 3) by (g3, ψ3).
These actions extend naturally to their bounded derived categories.

8.2. Relating different tubular types

In this subsection, we use the equivariantization to relate weighted pro-
jective lines of different tubular types. We apply Theorems 6.2 and 7.11 to
relate certain stable tilting complexes on them.

We explain the relation between X(4, 4, 2) and X(2, 2, 2, 2;−1) in some
detail. The dualizing element ~ω in L(4, 4, 2) has order 4. We consider the
cyclic group Z(2~ω) of order two, which has a strict action on coh -X(4, 4, 2)
by the degree-shift. We will consider the category (coh -X(4, 4, 2))Z(2~ω) of
Z(2~ω)-equivariant sheaves. We identify C2 with the character group Ẑ(2~ω).
Thus we obtain the dual C2-action on (coh -X(4, 4, 2))Z(2~ω); see Subsec-
tion 4.3. Recall the C2-action on coh -X(2, 2, 2, 2;−1) determined by the
graded automorphism (g1, ψ1).

Proposition 8.1. — Keep the notation as above. Then the following
statements hold.

(1) There is an equivalence of categories

coh -X(2, 2, 2, 2;−1) ∼−→ (coh -X(4, 4, 2))Z(2~ω),

which is equivariant with respect to the above two C2-actions.
(2) There is an equivalence of categories

(coh -X(2, 2, 2, 2;−1))C2 ∼−→ coh -X(4, 4, 2).

(3) There is a bijection between the sets of isoclasses{
τ2-stable tilting complexes

on X(4, 4, 2)

}
ι−→

{
g1-stable tilting complexes

on X(2, 2, 2, 2;−1)

}
Moreover, for two τ2-stable tilting complexes T1 and T2, there is a trian-
gle autoquivalence F on Db(coh -X(4, 4, 2)) with the property F (T1) ' T2
if and only if there is a triangle autoequivalence F ′ on Db(coh -X(2, 2, 2, 2;
−1)) satisfying that F ′(ι(T1)) ' ι(T2) and that F ′ commutes with g1(−).
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Here, a tilting complex T on X(4, 4, 2) is τ2-stable provided that τ2(T )
' T ; see [20]. This is equivalent to being Z(2~ω)-stable, since τ is given
by (~ω). Similarly, a tilting complex T ′ on X(2, 2, 2, 2;−1) is g1-stable if
T ′ ' g1T ′, that is, it is C2-stable with respect to the C2-action determined
by (g1, ψ1).

Proof. — In this proof, we set X = X(2, 2, 2, 2;−1) and Y = X(4, 4, 2).
We denote by OX and OY their structure sheaves.

The equivalence in (1) is obtained explicitly in [7, Proposition 3.2],
which will be denoted by G. We observe that G(OX) = Ind(OY), where
Ind: coh -X(4, 4, 2) → (coh -X(4, 4, 2))Z(2~ω) is the induction functor; con-
sult the proof of [7, Proposition 2.4]. In particular, the dual C2-action fixes
Ind(OY); see Subsection 4.3.
Transporting the dual C2-action on (coh -X(4, 4, 2))Z(2~ω) via a quasi-

inverse of G, we obtain the C2-action on coh -X(2, 2, 2, 2;−1). It follows
that the transported action fixes OX, that is, given by an automorphism of
X; see [23, Proposition 3.1].
By investigating the action on simple sheaves, it is not hard to see that

the transported action coincides with the one determined by (g1, ψ1), prov-
ing (1). More precisely, by the same argument, we infer that the transported
action fixes the simple sheaves concentrated on the ideals (x1) and (x2),
respectively. Moreover, it swaps the simple sheaves on (x3) and (x4); com-
pare [23, Proposition 3.1].
The statement (2) follows from (1) and Theorem 4.6. We mention that

the equivalences in (1) and (2) extend naturally to their bounded de-
rived categories and the corresponding equivariantizations; see [10, Propo-
sition 4.5]. Moreover, as the Auslander–Reiten translation, the degree-shift
automorphism (~ω) lies in the center of AutM(Db(coh -Y)). It follows that
AutZ(2~ω)

M (Db(coh -Y)) = AutM(Db(coh -Y)). In view of Remark 7.4, (3) fol-
lows immediately from Theorem 7.11. �

There is a similar relation between X(2, 2, 2, 2; ε) and X(6, 3, 2). The du-
alizing element ~ω = ~c−~u1−~u2−~u3 in L(6, 3, 2) has order 6. The cyclic sub-
group Z(2~ω) has order 3, which strictly acts on coh -X(6, 3, 2) by the degree-
shift. We consider the category (coh -X(6, 3, 2))Z(2~ω) of Z(2~ω)-equivariant
sheaves. Identifying C3 as the character group Ẑ(2~ω), we have the dual C3-
action on (coh -X(6, 3, 2))Z(2~ω). On the other hand, we have the C3-action
on coh -X(2, 2, 2, 2; ε) determined by the graded automorphism (g2, ψ2).
The following result is analogous to Proposition 8.1. We omit the details.
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Proposition 8.2. — Keep the notation as above. Then the following
statements hold.

(1) There is an equivalence of categories

coh -X(2, 2, 2, 2; ε) ∼−→ (coh -X(6, 3, 2))Z(2~ω),

which is equivariant with respect to the above two C3-actions.
(2) There is an equivalence of categories

(coh -X(2, 2, 2, 2; ε))C3 ∼−→ coh -X(6, 3, 2).

(3) There is a bijection between the sets of isoclasses{
τ2-stable tilting complexes

on X(6, 3, 2)

}
ι−→

{
g2-stable tilting complexes

on X(2, 2, 2, 2; ε)

}
Moreover, for two τ2-stable tilting complexes T1 and T2, there is a triangle
autoquivalence F on Db(coh -X(6, 3, 2)) with the property F (T1) ' T2 if
and only if there is a triangle autoequivalence F ′ on Db(coh -X(2, 2, 2, 2; ε))
satisfying that F ′(ι(T1)) ' ι(T2) and that F ′ commutes with g2(−).

In L(6, 3, 2), the cyclic group Z(3~ω) has order two. Identifying C2 as
the character group Ẑ(3~ω), we obtain the dual C2-action on (coh -X(6, 3,
2))Z(3~ω). On the other hand, we have the C2-action on coh -X(3, 3, 3) de-
termined by the graded automorphism (g3, ψ3).

Proposition 8.3. — Keep the notation as above. Then the following
statements hold.

(1) There is an equivalence of categories

coh -X(3, 3, 3) ∼−→ (coh -X(6, 3, 2))Z(3~ω),

which is equivariant with respect to the above two C2-actions.
(2) There is an equivalence of categories

(coh -X(3, 3, 3))C2 ∼−→ coh -X(6, 3, 2).

(3) There is a bijection between the sets of isoclasses{
τ3-stable tilting complexes

on X(6, 3, 2)

}
ι−→

{
g3-stable tilting complexes

on X(3, 3, 3)

}
Moreover, for two τ3-stable tilting complexes T1 and T2, there is a triangle
autoquivalence F on Db(coh -X(6, 3, 2)) with the property F (T1) ' T2 if
and only if there is a triangle autoequivalence F ′ on Db(coh -X(3, 3, 3))
satisfying that F ′(ι(T1)) ' ι(T2) and that F ′ commutes with g3(−).
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Remark 8.4.
(1) In Propositions 8.1-8.3, the equivalences in (2) might be deduced from

a general result [22, Proposition 3]. Here, we emphasize that they are dual
to the equivalences in (1). This duality allows us to apply Theorems 6.2
and 7.11.

(2) Propositions 8.1 and 8.2 relate the classification of τ2-stable tilting
complexes in [20] to that of gi-stable tilting complexes on weighted projec-
tive lines of weight type (2, 2, 2, 2). Such a relation is implicitly indicated
in [20, p. 30] and [7, Remark 3.9(3)].
Indeed, based on the classification of tilting complexes for the tubu-

lar type (2, 2, 2, 2) in [25, Chapter 10] (see also [36, Example 3.3] and [5,
Figure 1]), these relation might provide a different approach to the classi-
fication of τ2-stable tilting complexes. In view of Corollary 7.9, the latter
classification boils down to certain elements in the outer automorphism
groups of algebras. Proposition 8.3 indicates that the classification of τ3-
stable tilting complexes on X(6, 3, 2) might also be of interest.

9. Forgetful and obstruction homomorphisms

In this section, we investigate when the forgetful homomorphism (5.1)
is surjective. It turns out that the obstruction homomorphism from the
autoequivalence group to the second cohomological group plays a role.

Throughout, we work over a fixed field k. Let C be a k-linear category
such that its center Z(C) = k. Let G be a group with a fixed k-linear
G-action {Fg, εg, h| g, h ∈ G} on C.

9.1. The obstruction homomorphism

Take a k-linear autoequivalence F : C → C with [F ] ∈ AutG(C), that
is, FFg is isomorphic to FgF for each g ∈ G. In general, this does not
give rise to a G-equivariant functor. We choose a natural isomorphism
δg : FFg → FgF for each g ∈ G.

For any g, h ∈ G, we claim that there is a unique nonzero scalar σF (g, h)
∈ k∗ satisfying

δgh ◦ Fεg,h = σF (g, h)εg, hF ◦ Fgδh ◦ δgFh.(9.1)

Indeed, we apply Lemma 5.5 to the automorphism

δgh ◦ Fεg,h ◦ (εg, hF ◦ Fgδh ◦ δgFh)−1
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of the autoequivalence FghF : C → C.
The following result implies that σF defines a 2-cocycle of G with values

in k∗.

Lemma 9.1. — Keep the notation and assumptions as above. Then we
have

σF (gh, f)σF (g, h) = σF (g, hf)σF (h, f)
for any g, h, f ∈ G.

Proof. — By (2.1) we have δghf ◦ Fεgh,f ◦ Fεg, hFf = δghf ◦ Fεg, hf ◦
FFgεh, f . Applying (9.1) twice to the left hand side, we obtain

σF (gh, f)σF (g, h) (εgh, fF ◦ εg, hFfF ) ◦ (FgFhδf ◦ FgδhFf ◦ δgFhFf ) .

Similarly, we have that the right hand side equals

σF (g, hf)σF (h, f)(εg, hfF ◦ Fgεh, fF ) ◦ (FgFhδf ◦ FgδhFf ◦ δgFhFf ).

Applying (2.1) again, we infer the required identity. �

The 2-cocycle σF depends on the choice of the isomorphisms δg’s. Take
another set of isomorphisms δ′g : FFg → FgF , which yields another 2-
cocycle σ′F . By Lemma 5.5 there is a unique λ(g) ∈ k∗ with δ′g = λ(g)δg
for each g ∈ G. By comparing (9.1) for σF (g, h) and for σ′F (g, h), we infer
that

σ′F (g, h) = σF (g, h)λ(gh)λ(g)−1λ(h)−1.(9.2)

It follows that the cohomological class [σF ] ∈ H2(G, k∗) is independent of
the choice of the isomorphisms δg’s. Moreover, the class [σF ] is trivial if
and only if F lifts to a G-equivariant endofunctor.

Lemma 9.2. — Keep the notation and assumptions as above. Then the
following two statements hold.

(1) Assume that γ : F → F ′ is a natural isomorphism between two
k-linear autoequivalences. Then [σF ] = [σF ′ ].

(2) For two k-linear autoequivalences F1, F2 on C, we have [σF1F2 ]
= [σF1σF2 ].

Proof.
(1) Take natural isomorphisms δg : FFg → FgF and set

δ′g = Fgγ ◦ δg ◦ γ−1Fg : F ′Fg −→ FgF
′.

It follows that

δ′gh ◦ F ′εg, h = σF (g, h)Fghγ ◦ εg, hF ◦ Fgδh ◦ δgFh ◦ γ−1FgFh,

= σF (g, h)εg, hF ′ ◦ Fgδ′h ◦ δ′gFh.
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Then we infer that σF ′(g, h) = σF (g, h).
(2) Write F = F1F2. For each g ∈ G, we take natural isomorphisms

δ1
g : F1Fg → FgF1 and δ2

g : F2Fg → FgF2. Set δg = δ1
gF2 ◦ F1δ

2
g : FFg →

FgF . It follows by direct calculation that σF (g, h) = σF1(g, h)σF2(g, h). �
The above Lemma 9.2 implies that the following group homomorphism

is well defined

σ : AutG(C) −→ H2(G, k∗), [F ] 7→ [σF ].

We will call σ the obstruction homomorphism of the given G-action.
We observe a group homomorphism

ρ : Ĝ −→ Aut(C;G)

sending χ to the G-equivariant functor [IdC , (χ(g)Fg)g ∈G]; compare Sub-
section 5.2.
The following result implies that the forgetful homomorphism (5.1) is

surjective if and only if σ is trivial. We mention that the result extends [28,
Theorem 6(1)].

Proposition 9.3. — Let {Fg, εg, h| g, h ∈ G} be a k-linear G-action on
C. Assume that Z(C) = k. Then there is an exact sequence of groups

1 −→ Ĝ
ρ−→ Aut(C;G) φ−→ AutG(C) σ−→ H2(G, k∗),(9.3)

where φ is the forgetful homomorphism and σ is the obstruction homomor-
phism of the given G-action, respectively.

Proof. — The homomorphism ρ is clearly injective. On the other hand,
if a G-equivariant endofunctor lies in the kernel of φ, then it is isomorphic
to (IdC , (γg)g ∈G). Now applying Lemma 5.5, we infer that γg = χ(g)Fg for
some character χ. This proves the exactness at Aut(C;G).

As mentioned above, the class [σF ] is trivial if and only if (F, (δg)g∈G)
is a G-equivariant functor for some natural isomorphisms δg’s. Then the
exactness at AutG(C) follows. �

9.2. An isomorphism of groups

In this subsection, we assume that the group G is finite abelian, and
splits over k. We assume further that Z(CG) = k. Applying Proposition 9.3
to the dual Ĝ-action on CG, we obtain an exact sequence

1 −→ G
ρ−→ Aut

(
CG; Ĝ

) φ̂−→ AutĜ
(
CG
) σ−→ H2(Ĝ, k∗).(9.4)
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Here, we identify by (4.7) G with the character group of Ĝ, and φ̂ denotes
the forgetful homomorphism.
From the given G-action, we have the group homomorphism G→ Aut(C)

sending g to [Fg], whose image lies in AutG(C). Moreover, its image is a
normal subgroup of AutG(C). The corresponding quotient group is denoted
by AutG(C)/G, where we abuse G with its image. For the dual Ĝ-action
on CG, we have the quotient group AutĜ(CG)/Ĝ.

Proposition 9.4. — Let G be a finite abelian group, which splits over
k. Assume that C is idempotent complete satisfying that Z(C) = k

= Z(CG). We assume further that the forgetful homomorphisms φ and
φ̂ are both surjective. Then there is a unique isomorphism

AutG(C)/G ∼−→ AutĜ
(
CG
)
/Ĝ

of groups, which fills into the following commutative diagram

Aut(C;G)

��

(−)G // Aut
(
CG; Ĝ

)
��

AutG(C)/G ∼ // AutĜ
(
CG
)
/Ĝ,

where the upper row is the equivariantization isomorphism in Theorem 5.3,
and the vertical homomorphisms are induced by the forgetful homomor-
phisms.

Proof. — By the very definition of Act(C;G) in Subsection 5.1, the for-
getful homomorphism induces an isomorphism

Aut(C;G)/Act(C;G) ∼−→ AutG(C)/G.

The same argument yields an isomorphism

Aut
(
CG; Ĝ

)
/Act

(
CG; Ĝ

) ∼−→ AutĜ
(
CG
)
/Ĝ.

Now the required isomorphism follows Theorem 5.3 and Proposition 5.6.
�

Remark 9.5.
(1) Let us mention a simple case where Proposition 9.4 applies. Let G

be a cyclic group of order d with d > 2. We assume that the field k has
a primitive dth root of unity, and each element has a dth root. Then G

splits over k, and H2(G, k∗) = 0 = H2(Ĝ, k∗). We obtain an isomorphism
between AutG(C)/G and AutĜ(CG)/Ĝ. Take F = Fg for a generator g of
G. Then AutG(C) is just the centralizer of [F ] in Aut(C).
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(2) There is a triangle version of Proposition 9.4. More precisely, let T
be a pre-triangulated category with a triangle G-action such that ZM(T )
= k = ZM(T G). Assume that the forgetful homomorphisms φ : AutM(T ;G)
→ AutGM (T ) and

φ̂ : AutM
(
T G; Ĝ

)
→ AutĜM

(
T G
)

are both surjective. Then we have an isomorphism

AutGM (T )/G ∼−→ AutĜM
(
T G
)
/Ĝ

of groups, which is compatible with the equivariantization isomorphism in
Theorem 6.2.

Appendix A. Identities for group actions

We collect some identities for an arbitrary group action, and provide
complete proofs.

Let G be a group, which is written multiplicatively and whose unit is
denoted by e. Let C be a category. We denote by IdC : C → C the identity
endofunctor.
For two functors F : C → C′ and F ′ : C′ → C′′, their composition is

denoted by F ′F : C → C′′. Let F ′1 : C′ → C′′ and F ′2 : C′ → C′′ be two
functors. We denote by Nat(F ′, F ′1) the class of natural transformations
from F ′ to F ′1. For two natural transformations η : F ′ → F ′1 and δ : F ′1
→ F ′2, we denote by δ ◦ η : F ′ → F ′2 their composition. Let η : F ′ → F ′1 be
a natural transformation and F ′′ : C′′ → C′′′ be a functor. We denote by
F ′′ηF : F ′′F ′F → F ′′F ′1F the induced natural transformation.

Lemma A.1. — Let η : F1 → F2 be a natural transformation between
functors from C to C′, and let η′ : F ′1 → F ′2 be a natural transformation
between functors from C′ to C′′. Then we have η′F2 ◦ F ′1η = F ′2η ◦ η′F1.

Proof. — The identity follows from the naturality of η′. �

The following fact is standard.

Lemma A.2. — Assume that F : C → C′ and F ′′ : C′′ → C′′′ are two
equivalences of categories. Then the map Nat(F ′, F ′1) → Nat(F ′′F ′F, F ′′
F ′1F ) sending η to F ′′ηF is bijective. Moreover, η is a natural isomorphism
if and only if so is F ′′ηF .

Recall that a G-action {Fg, εg, h| g, h ∈ G} on C consists of an au-
toequivalence Fg : C → C for each g ∈ G, and a natural isomorphism
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εg, h : FgFh → Fgh for each pair g, h of elements in G, which are subject to
the following conditions

εgh, k ◦ εg, hFk = εg, hk ◦ Fgεh, k(A.1)

for all g, h, k in G.
We deduce from Lemma A.2 that there is a unique isomorphism u : Fe

→ IdC such that Feu = εe, e. We call u the unit of this G-action.

Lemma A.3. — For a given G-action {Fg, εg, h| g, h ∈ G} on C, the
following statements hold.

(1) For each pair g, k in G, we have εg, eFk = Fgεe, k.
(2) For each k ∈ G, we have εe,k = uFk. In particular, we have εe, e

= uFe.
(3) For each g ∈ G, we have εg, e = Fgu.

Proof. — We take h = e in (A.1) and notice that εg, k is an isomorphism.
Then we infer (1). Taking g = e in (1), we have FeuFk = εe, eFk = Feεe, k.
Applying Lemma A.2, we infer (2). Taking k = e in (1) and applying (2), we
have εg, eFe = Fgεe, e = FguFe. We now deduce (3) from Lemma A.2. �

We will describe an extension of (A.1). For n > 3 and g1, g2, · · · , gn ∈ G,
we define inductively a natural isomorphism

εg1, g2, ··· , gn : Fg1Fg2 · · · Fgn −→ Fg1g2 ··· gn(A.2)

by εg1, g2, ··· , gn = εg1 ··· gn−1, gn ◦ εg1, g2, ··· , gn−1Fgn . In particular, we have
the following isomorphism

ε(n)
g = εg, g, ··· , g : Fng = FgFg · · · Fg −→ Fgn .(A.3)

Moreover, we define ε(2)
g = εg, g and ε

(1)
g = IdFg . By convention, we set

ε
(0)
g = u−1, where u is the unit of the G-action and F 0

g = IdC .
Recall from [15, Section 4] that a G-action on C is the same as a monoidal

functor from G to the category of endofunctors on C. Here, G is the cat-
egory whose objects are elements in G and whose morphisms are just the
identities on objects; it has a canonical monoidal structure induced from
the multiplication of G. Then the following proposition might be deduced
from the coherence theorem [17, Theorem 1.6]; compare [35, Theorem 5.4].

Proposition A.4. — Let n > 3, m > 1 and i > 2 satisfying m+ i 6 n.
Then we have

εg1, g2, ··· , gn = εg1, ··· , gm, gm+1 ··· gm+i, gm+i+1, ··· , gn

◦ Fg1 · · · Fgmεgm+1, ··· , gm+i Fgm+i+1 · · · Fgn .
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Proof. — We use induction on n. The case that n = 3 is due to (A.1).
Assume that n > 4. We divide into three cases.
For the first case, we assume that m+ i < n, that is, Fgn does appear in

the right hand side. Then we are done by the following identity:

εg1, ··· , gm, gm+1 ··· gm+i, gm+i+1, ··· , gn

◦ Fg1 · · · Fgm εgm+1, ··· , gm+iFgm+i+1 · · · Fgn
= εg1 ··· gn−1, gn ◦ εg1, ··· , gm, gm+1 ··· gm+i, gm+i+1, ··· , gn−1Fgn◦

Fg1 · · · Fgmεgm+1, ··· , gm+iFgm+i+1 · · · Fgn
= εg1 ··· gn−1, gn ◦ εg1, ··· , gn−1Fgn

= εg1, g2, ··· gn .

Here, the second equality uses the induction hypothesis.
For the second case, we assume that m+ i = n and m > 2. Then we are

done by the following identity:

εg1, ··· , gm,gm+1 ··· gn ◦ Fg1 · · · Fgmεgm+1, ··· , gn

= εg1 ··· gm, gm+1 ··· gn ◦ εg1, ··· , gmFgm+1 ··· gn ◦ Fg1 · · · Fgmεgm+1, ··· , gn

= εg1 ··· gm, gm+1 ··· gn ◦ Fg1 ··· gmεgm+1, ··· , gn ◦ εg1, ··· , gmFgm+1 · · · Fgn
= εg1 ··· gm, gm+1, ··· , gn ◦ εg1, ··· , gm Fgm+1 · · · Fgn
= εg1, g2, ··· , gn .

Here, the second equality uses Lemma A.1, and the third uses the fact that
m > 2 and then the induction hypothesis. The last equality uses the first
case.
For the final case, we assume that m + i = n and m = 1. By definition

we have εg2, g3, ··· , gn = εg2 ··· gn−1, gn ◦ εg2, ··· gn−1 Fgn . Then we are done by
the following identity:

εg1, g2 ··· gn ◦ Fg1εg2, g3, ··· , gn

= εg1, g2 ··· gn ◦ Fg1εg2 ··· gn−1, gn ◦ Fg1εg2, ··· gn−1 Fgn

= εg1 ··· gn−1, gn ◦ εg1,g2 ··· gn−1Fgn ◦ Fg1εg2, ··· gn−1 Fgn

= εg1 ··· gn−1, gn ◦ εg1, ··· , gn−1Fgn

= εg1,g2, ··· , gn .

Here, the second equality uses (A.1) and the third uses the induction hy-
pothesis. We are done. �

Remark A.5. — Hideto Asashiba observes that a G-action on a small
category C coincides with a pseudo-functor X from G to the 2-category
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formed by small categories such that X(∗) = C; compare [2, p. 135 and
Definitions 2.1 and 6.1(3)]. Here, G denotes the category with only one ob-
ject ∗ and the Hom-set G. For pseudo-functors, we refer to [6, Section 7.5].
Then the above result also follows from the general result in [30].

Lemma A.6. — Let g ∈ G, i, j > 0 and d > 1. The following statements
hold.

(1) We have ε(i+j)
g = εgi, gj ◦ Fgiε

(j)
g ◦ ε(i)

g F jg .

(2) Assume that gd = e and that i+ j > d. Then we have

ε(i+j−d)
g ◦ F i+j−dg u ◦ F i+j−dg ε(d)

g = εgi, gj ◦ Fgiε(j)
g ◦ ε(i)

g F jg .

Proof. — (1) follows by applying Proposition A.4 twice. We mention that
if i = 0 or j = 0, one needs Lemma A.3(2) and (3).

For (2), we have the following identity

ε(i+j−d)
g ◦ Fgi+j−du◦F i+j−dg ε(d)

g

=Fgi+j−du ◦ ε(i+j−d)
g Fgd ◦ F i+j−dg ε(d)

g

=εgi+j−d,gd ◦ ε(i+j−d)
g Fgd ◦ F i+j−dg ε(d)

g

=ε(i+j)
g .

Here, the first equality uses Lemma A.1 and the assumption that gd = e,
the second uses Lemma A.3(3), and the last one is obtained by applying
Proposition A.4 twice. Now the required identity follows by combining the
above identity with (1). �

Appendix B. Strongly K-standard categories

We recall from [12] basic facts on strongly K-standard additive cate-
gories, which plays a subtle role in the study of stable tilting objects in
Section 7.
Throughout, let k be a field. All categories and functors are assumed to

be k-linear.
Let A be a k-linear additive category. Denote by Kb(A) the bounded

homotopy category, whose translation is denoted by Σ. For each object M
in A and integer n, we denote by Σn(M) the stalk complex concentrated
on degree −n. Those complexes form a full subcategory Σn(A) of Kb(A).
In particular, A is identified with Σ0(A).
For an additive endofunctor F on A, we denote by Kb(F ) : Kb(A)

→ Kb(A) its natural extension on complexes, which is a triangle functor
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with a trivial connecting isomorphism. Similarly, a natural transformation
η : F → F ′ extends to a natural transformation Kb(η) : Kb(F ) → Kb(F ′)
between triangle functors.
Recall that Z(A) is the center of A and ZM(Kb(A)) is the triangle center

of Kb(A). There is an algebra homomorphism

ZM(Kb(A)) −→ Z(A), λ 7→ λ|A,(B.1)

where λ|A denotes the restriction. This homomorphism admits a section,
which sends µ ∈ Z(A) to Kb(µ).
The following notions are introduced in [12, Sections 3 and 4]. By [12,

Lemmas 4.2 and 4.3], the definition in (2) is equivalent to the original
one [12, Definition 4.1].

Definition B.1.
(1) Let (F, ω) : Kb(A) → Kb(A) be a triangle endofunctor. We say

that (F, ω) is a pseudo-identity provided that F (X) = X for each
complex X and its restriction F |Σn(A) : Σn(A)→ Σn(A) equals the
identity for each n.

(2) The additive category A is K-standard, provided that each pseudo-
identity on Kb(A) is isomorphic to IdKb(A), the genuine identity
functor. If in addition, the homomorphism (B.1) is injective, then
A is called strongly K-standard.

The following observation is due to [12, Lemma 4.4].

Lemma B.2. — Let A be a K-standard category with two autoequiva-
lences F1 and F2. The following statements hold.

(1) Assume that (F, ω) is a triangle autoequivalence on Kb(A) satis-
fying F (A) ⊆ A. If A is idempotent complete, then there is an
isomorphism (F, ω) ' Kb(F |A) of triangle functors.

The following is an immediate consequence.

Corollary B.3. — Assume that A is strongly K-standard and idem-
potent complete. Let G be a group. Then there is a bijection between the
sets of isoclasses

{G-actions on A}/ ' ←→ {triangle G-actions on Kb(A) fixing A}/ '

sending a G-action {Fg, εg, h| g, h ∈ G} on A to {Kb(Fg),Kb(εg, h)| g, h
∈ G}, its natural extension on Kb(A).
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Here, the action is said to fix A, provided that each autoequivalence F
involved satisfying F (A) = A, that is, F (A) and A coincide up to the
isomorphism closure in Kb(A).
For a finite dimensional algebra A, we denote by proj -A the category

of finitely generated projective right A-modules. Examples of strongly K-
standard categories are proj -A, provided that A is triangular, that is, its
Gabriel quiver has no oriented cycles; see [12, Proposition 4.6].

Proposition B.4. — Let A and B be two finite dimensional algebras.
Assume that there is a triangle equivalence Kb(proj -A) → Kb(proj -B).
Then proj -A is (strongly) K-standard if and only if so is proj -B.

Proof. — The same argument as in [12, Lemma 5.12] works in this situa-
tion. We mention that there is an analogue of [12, Proposition 5.8 and The-
orem 5.10] for the bounded homotopy category of projective modules. �
We do not know whether Proposition B.4 still holds if we replace the

categories of projective modules by arbitrary additive categories. On the
other hand, we conjecture that proj -A is K-standard for any finite dimen-
sional algebra A. Indeed, by applying [12, Sections 5 and 6], this conjecture
implies that any derived equivalence between finite dimensional algebras is
standard. The latter is a well-known open question in [32, Section 3].
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