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GEOMETRIC INEQUALITIES FOR MANIFOLDS WITH
RICCI CURVATURE IN THE KATO CLASS

by Gilles CARRON

Abstract. — We obtain Euclidean volume growth results for complete Rie-
mannian manifolds satisfying a Euclidean Sobolev inequality and a spectral type
condition on the Ricci curvature. We also obtain eigenvalue estimates, heat kernel
estimates, and Betti number estimates for closed manifolds whose Ricci curvature
is controlled in the Kato class.
Résumé. — On démontre qu’une variété riemannienne complète vérifiant une

inégalité de Sobolev euclidienne et dont la courbure de Ricci est petite dans une
classe de Kato et à croissance euclidienne du volume. On obtient aussi des estima-
tions spectrales, du noyau de la chaleur et du premier nombre de Betti des variétés
riemanniennes compactes dont la courbure de Ricci est controlée dans une classe
de Kato.

1. Introduction

1.1. Volume growth

1.1.1. Motivation

One of our motivations was a quest for a higher dimensional analogue of
the following beautiful result of P. Castillon ([11]):

Theorem 1.1. — Let (M2, g) be a complete noncompact Riemannian
surface with nonnegative Laplacian ∆, Gaussian curvature Kg and Rie-
mannian measure dAg. Assume that there is some λ > 1

4 such that the
Schrödinger operator

∆ + λKg

Keywords: Sobolev inequalities, volume growth, Green kernel, Doob transform.
2020 Mathematics Subject Classification: 53C21, 58J35, 58C40, 58J50.
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is nonnegative, i.e.,

∀ ψ ∈ C∞0 (M) :
∫
M

(
|dψ|2g + λKgψ

2) dAg > 0.

Then, for all R > 0 and all x ∈M ,

Areag (B(x,R)) 6 c(λ)R2,

where c(λ) is a constant which only depends on λ.

In fact, P. Castillon has shown that such a surface is either conformally
equivalent to the plane or to the cylinder:

(M2, g) '
conf.

C or (M2, g) '
conf.

C∗.

More generally, when the operator ∆+λKg is only assumed to have finitely
many negative eigenvalues for some λ > 1/4, then the same conclusion
holds but in this case supR

Areag(B(x,R))
R2 depends on M and λ.

The purpose of this paper is to investigate a possible higher dimensional
analogue of Theorem 1.1. Indeed, it is sometimes crucial to get a Euclidean
volume growth estimate, recall that we say that a complete Riemannian
manifold (Mn, g) has Euclidean volume growth, if

(EVG) ∀ R > 0 : volB(x,R) 6 CRn

where the constant C may depend on the point x or not ; for instance this
kind of estimate was one of the difficult results obtained by G. Tian and
J. Viaclovsky ([53]), and this was a key point toward the description of the
moduli spaces of critical Riemannian metrics in dimension four ([54]).

1.1.2. Definitions

According to the Bishop–Gromov comparison theorem, a complete Rie-
mannian manifold (Mn, g) with nonnegative Ricci curvature has at most
Euclidean volume growth,

∀ x ∈M, R > 0 : volB(x,R) 6 ωnRn,

where ωn is the Euclidean volume of the unit Euclidean n−ball.
If (M, g) is a Riemannian manifold, we introduce the function Ric− de-

fined by
Ric−(x) := max{−κ(x), 0}

where
κ(x) := inf

~v∈TxM,gx(~v,~v)=1
Riccix(~v,~v);

so that we have Riccix > −Ric−(x)gx.

ANNALES DE L’INSTITUT FOURIER
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We are looking for a spectral condition on the Schrödinger operator

Lλ = ∆− λRic−
that would imply a Euclidean volume growth. We do not think that it is
possible to prove a result similar to Theorem 1.1 in higher dimension, under
the sole assumption that Lλ is nonnegative in L2.

Recall that Lλ is nonnegative on L2 if and only if there is a positive
function h on M such that Lλh = 0. We introduce a stronger condition:

Definition 1.2. — The Schrödinger operator Lλ is said to be gaugeable
if there is a function h : M → R and a constant γ such that 1 6 h 6 γ and
Lλh = 0. The constant γ is called the gaugeability constant of Lλ.

The behavior of the heat semigroup associated with the Schrödinger
operator Lλ can be quite different on L2 and on Lp. For instance the fact
that the heat semigroup is uniformly bounded on L∞:

sup
t>0

∥∥e−tLλ∥∥
L∞→L∞ < +∞

implies the nonnegativity of the Schrödinger operator Lλ on L2. It may hap-
pen that a Schrödinger operator is nonnegative on L2 but the associated
semigroup is not uniformly bounded on L∞ ([23]). The uniform bound-
edness of the semigroup

(
e−tLλ

)
t>0 on L∞ is strongly related to the fact

that the Schrödinger operator Lλ is gaugeable (see [57] and Theorem 2.14).
Hence the gaugeability condition could be interpreted as an L∞ spectral
condition.
It is well known that a Sobolev inequality is useful in order to control

the behavior of the heat semigroup e−t∆.

Definition 1.3. — We say that a complete Riemannian manifold
(Mn, g) satisfies the Euclidean Sobolev inequality with Sobolev constant
µ if

(Sob) ∀ ψ ∈ C∞0 (M) : µ

(∫
M

ψ
2n
n−2 dvg

)1− 2
n

6
∫
M

|dψ|2g dvg

According to a celebrated result of J. Nash and N. Varopoulos ([45, 55]),
the Euclidean Sobolev inequality is equivalent to a Euclidean type upper
bound on the heat kernel:

(EUB) ∀ t > 0, x, y ∈M : H(t, x, y) 6 C t−n2 e−
d(x,y)2
Ct .

That is to say, given the Sobolev constant µ and the dimension n, there is
a constant C = C(n, µ) such that the Euclidean type upper bound on the
heat kernel (EUB) holds. Conversely, if the Euclidean type upper bound
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on the heat kernel (EUB) holds for some constant C, then (Mn, g) satisfies
the Sobolev inequality (Sob) with some constant µ = µ(n,C).

1.1.3. Main result

Theorem 1.4. — Let (Mn, g) be a complete Riemannian manifold of
dimension n > 2. Assume that

• (Mn, g) satisfies the Euclidean Sobolev inequality (Sob) with
Sobolev constant µ.

• There is a δ > 0 such that the Schrödinger operator ∆− (n− 2)×
(1 + δ) Ric− is gaugeable with gaugeability constant γ.

Then, there is a constant θ depending only on n, δ, γ and µ, such that for
all x ∈M and R > 0:

1
θ
Rn 6 volB(x,R) 6 θRn.

In fact, we already know that the Sobolev inequality (Sob) implies a
lower bound on the volume of geodesic balls ([2, 7]): there is a constant cn
such that for all x ∈M and R > 0,

cnµ
n
2 Rn 6 volB(x,R).

The log-Sobolev inequality ([46, Proposition 5.1]) also yields the same con-
clusion. Hence, the crucial point in the proof of Theorem 1.4 is to get the
upper bound.

Remark 1.5. — If (Mn, g) satisfies the Euclidean inequality (Sob) with
constant µ then any of the following conditions implies that Lλ is gaugeable
for some λ > (n− 2):

(1) There is some ε ∈ (0, 1) such that Ric− ∈ L
n
2 (1−ε) ∩ Ln

2 (1+ε) and
the Schrödinger operator ∆− (n− 2)(1 + ε) Ric− is nonnegative in
L2.

(2) There is some ε ∈ (0, 1) such that Ric− ∈ L
n
2 (1−ε) ∩ Ln

2 (1+ε) and∫
M

Ric
n
2
− dvg 6

(
µ

n− 2

)n
2

(1− ε).

(3) sup
x∈M

∫ ∞
0

1
rn−1

(∫
B(x,r)

Ric−(y) dvg(y)
)

dr < εnµ
n
2 ,

where εn is a computable constant depending only on n.
The first two conditions are due to B. Devyver ([25]). The last one is an easy
consequence of Green kernel estimates (see for instance [20, Theorem 3.1]).
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1.1.4. Overview of the proof (see Section 4 for more details)

Following T. Colding ([14]), when (Mn, g) is a nonparabolic manifold,
we introduce bo(x) = G(o, x)−

1
n−2 where G(o, · ) is the Green kernel with

pole at o ∈ M , normalized so that b(x) 'x→o d(o, x). When (Mn, g) has
nonnegative Ricci curvature, T. Colding has shown that

|dbo| 6 1.

The crucial point in the proof of Theorem 1.4 is to prove a uniform bound
on the gradient of bo:

|dbo| 6 Γ.
Hence B(o,R) ⊂ {x ∈M, bo(x) 6 ΓR}, and using [7, Proposition 1.14], we
know that

volg{x ∈M, bo(x) 6 ΓR} 6 C(µ, n)ΓnRn.

1.1.5. Other definitions

Definition 1.6. — A complete Riemannian manifold (Mn, g) is said
to be doubling if there is a constant θ such that

(D) ∀ x ∈M, R > 0 : volB(x, 2R) 6 θ volB(x,R).

Definition 1.7. — A complete Riemannian manifold (Mn, g) satisfies
the Poincaré inequality if there is a constant γ such that for any geodesic
ball B of radius r, we have

(PI) ∀ ψ ∈ C1(B) :
∫
B

(ψ − ψB)2 dvg 6 γr2
∫
B

|dψ|2g dvg .

Here and thereafter, for an arbitrary O ⊂M with 0 < volg O < +∞,

ψO = 1
volO

∫
O
ψ dvg .

Recall that the heat kernel of (M, g) is the Schwartz kernel of the heat
operator e−t∆. It is the positive function H : (0,+∞)×M ×M → R such
that for any f ∈ L2(M,dvg):(

e−t∆f
)

(x) =
∫
M

H(t, x, y)f(y) dvg(y).

Definition 1.8. — We say that the heat kernel of (Mn, g) satisfies the
Li–Yau estimates if there are positive constants c, C such that

(LY) c

volB(x,
√
t)
e−

d(x,y)2
ct 6 H(t, x, y) 6 C

volB(x,
√
t)
e−

d(x,y)2
Ct .

TOME 69 (2019), FASCICULE 7
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Definition 1.9. — We say that the heat kernel of (Mn, g) admits a
Gaussian upper bound if there is a positive constant C such that

(GUB) H(t, x, y) 6 C

volB(x,
√
t)
e−

d(x,y)2
Ct .

Remark that if (M, g) has nonnegative Ricci curvature, then the Bishop–
Gromov comparison theorem implies that it is doubling. According to
P. Buser ([6]), (M, g) satisfies the Poincaré inequality (PI) and, according
to a famous result of P. Li and S-T. Yau [42], its heat kernel satisfies the
Li–Yau estimates. Furthermore, the estimates (LY) are equivalent to the
conditions (D and PI) ([29, 51]). Moreover, according to a nice observation
by T. Coulhon ([16]), we note that the lower bound

∀ t > 0, x, y ∈M : H(t, x, y) > c t−n2 e−
d(x,y)2
ct

yields a Euclidean upper bound on the volume of geodesic balls.

1.1.6. Consequences of Theorem 1.4

Theorem 1.10. — If (M, g) is a complete Riemannian manifold which
satisfies the conditions of Theorem 1.4, then:

• (M, g) is doubling and satisfies the Poincaré inequality (PI).
• The heat kernel of (M, g) satisfies the Li–Yau estimates (LY).
• For any p∈(1,+∞), the Riesz transform d∆− 1

2 :Lp(M)→Lp(T ∗M)
is a bounded operator.

Remark 1.11. — According to D. Bakry ([4]), on a complete Riemann-
ian manifold with nonnegative Ricci curvature, the Riesz transform is a
bounded operator on Lp for any p ∈ (1,+∞).

1.1.7. Gaugeability and the Kato constant

The gaugeability of the Schrödinger operator ∆− λRic− is strongly re-
lated to Kato constants. These constants measure the size of the potential
Ric− relative to ∆. For a nice introduction to Kato constants, we recom-
mend [34, Chapter 6].

Definition 1.12. — Let G( · , · ) be the positive minimal Green kernel
of (Mn, g). The Kato constant of Ric− is defined by

K(Ric−) := sup
x∈M

∫
M

G(x, y) Ric−(y) dvg(y) .
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Definition 1.13. — Let {H(t, x, y)}(t,x,y)∈R+×M×M be the heat kernel
of (Mn, g). The parabolic Kato constant of Ric− at time T is defined by

kT (Ric−) = sup
x∈M

∫ T

0

∫
M

H(t, x, y) Ric−(y) dvg(y)dt.

As we have G(x, y) =
∫∞

0 H(t, x, y)dt, we easily deduce that

lim
T→+∞

kT (Ric−) = K(Ric−).

The observation is as follows.

Lemma 1.14. — Assume that K(Ric−) < 1
n−2 , and that λ > n − 2 is

such that λK(Ric−) < 1. Then, the Schrödinger operator ∆ − λRic− is
gaugeable with gaugeability constant

γ = λK(Ric−)
1− λK(Ric−) .

The conditions for gaugeabily given in Remark 1.5 imply an estimate of
the Kato constant of Ric−.

1.1.8. Localization at infinity

It is possible to get a slightly weaker result, if we only get a control of
the Ricci curvature outside a compact set.

Theorem 1.15. — Let (M, g) be a complete Riemannian manifold
which satisfies the Euclidean Sobolev inequality (Sob). Assume that there
is a compact subset K ⊂M such that

sup
x∈M\K

∫
M\K

G(x, y) Ric−(y) dvg(y) < 1
16n.

Then,
• there is a constant θ such that, for all x ∈M, R > 0,

1
θ
Rn 6 volB(x,R) 6 θRn.

• (Mn, g) is doubling,
• its heat kernel satisfies (GUB),
• for n > 4 and p ∈ (1, n), the Riesz transform d∆− 1

2 : Lp(M) →
Lp(T ∗M) is a bounded operator.

TOME 69 (2019), FASCICULE 7
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Remarks 1.16.
• The value 1

16n is not optimal but quite explicit.
• The constant θ depends on (M, g). It cannot be estimated from the
dimension, the Sobolev constant. Indeed the geometry of (M, g) on
a neighborhood of the compact set K has some influence on this
constant θ.

According to [25], the assumptions of Theorem 1.15 are satisfied by com-
plete Riemannian manifolds satisfying a Euclidean Sobolev inequality, and
such that for some ε ∈ (0, 1), Ric− ∈ L

n
2 (1−ε) ∩ Ln

2 (1+ε).

1.2. The case of closed manifolds

Recents papers have emphasized how a control on the Kato constant
of the Ricci curvature can be useful in order to control some geometrical
quantities for closed or complete Riemannian manifolds ([5, 17, 20, 25, 47,
48, 49, 58, 59]). For a closed Riemannian manifold (M, g), we will explain
how the works of Qi S. Zhang and M. Zhu [59], together with some classical
ideas, can be used in order to obtain geometric and topological estimates
based on the Kato constant of the Ricci curvature. Recently C. Rose has
also obtained similar results based on this idea ([48]).

Definition 1.17. — Let (Mn, g) be a closed Riemannian manifold of
diameter D. The scale invariant geometric quantity ξ(M, g) is the smallest
positive real number ξ such that, for all x ∈M ,∫ D2

ξ2

0

∫
M

H(t, x, y) Ric−(y) dvg(y)dt 6 1
16n.

If T (M, g) > 0 is the largest time, such that kT (Ric−) 6 1
16n then, we have

ξ(M, g)
√
T (M, g) = D.

For instance if the Ricci curvature is bounded from below, Ricci >
−(n − 1)κ2g, then ξ(M, g) 6 4κD. In this case, it is well known that
the geometry of (Mn, g) is well controlled by the geometrical quantity κD.
We obtain almost the same results in terms of the new quantity ξ(M, g).

Theorem 1.18. — Let (M, g) be a closed Riemannian manifold of di-
mension n and diameter D. Then there is a constant γn, which depends
only on n, such that

ANNALES DE L’INSTITUT FOURIER
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(1) the first nonzero eigenvalue λ1 of the Laplacian satisfies

λ1 >
γ
−1−ξ(M,g)
n

D2 ;

(2) the first Betti number of M satisfies

b1(M) 6 n+ 1
4 + ξ(M, g)γ1+ξ(M,g)

n .

In particular, there exists εn > 0 such that if ξ(M, g) < εn then

b1(M) 6 n.

(3) (M, g) is doubling: for any x ∈M and 0 6 R 6 D/2,

volB(x, 2R) 6 γ1+ξ(M,g)
n volB(x,R);

(4) for all t > 0 and x ∈M ,

H(t, x, x) 6 γ
1+ξ(M,g)
n

volB(x,
√
t)
.

We can get a slight improvement of the previous theorem with a stronger
control on the Ricci curvature.

Proposition 1.19. — Let (M, g) be a closed Riemannian manifold of
dimension n and diameterD. Let p > 1, and assume that for some T,Λ > 0,

D2p−2 sup
x∈M

∫ T

0
H(s, x, y) Ricp−(y) dvg ds 6 Λp.

Then (with q the exponent dual to p: pq = p+ q),

ξ(M, g) 6 α(n,D,Λ, T, p) := max
{
D√
T
, (16nΛ )q/2

}
.

Moreover, there is a constant θ, depending only on α(n,D,Λ, T, p) and n,
such that for any x ∈M and 0 6 r 6 R 6 D,

volB(x,R)
Rn

6 θ
volB(x, r)

rn
6 θ2.

A quick comparison between Theorem 1.4 and Theorem 1.18 naturally
leads to the question whether the Euclidean Sobolev inequality is necessary
in Theorem 1.4. According to Qi S. Zhang and M. Zhu in [59], the results
obtained in Theorem 1.18 could be generalized to complete Riemannian
manifold provided one has good approximations of the distance function:
there exists c > 0 such that, for all o ∈ M , there exists χo : M → R+
satisfying

d(o, x)/c 6 χo(x) 6 cd(o, x),
|dχo|2 + |∆χo| 6 c.

TOME 69 (2019), FASCICULE 7
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This is a very strong hypothesis. Our proof of Theorem 1.4 and Theo-
rem 1.15 yields a comparison between the level sets of the Green kernel
and geodesic spheres. As a consequence, we prove the existence of such an
approximation of the distance function.
Our estimates on the first Betti number is a generalization of the one ob-

tained by M. Gromov under a lower bound on the Ricci curvature. Accord-
ing to T. Colding [12, 13], one knows that there exists an ε(n) > 0 such that
if (Mn, g) is a closed n-dimensional manifold with Ric− diam2(M) < ε(n)
and b1(M) = n, then M is diffeomorphic to a torus Tn. A natural question
is then to ask what can be said on a closed Riemannian manifold satisfying
ξ(M, g) << 1 and b1(M) = n. We believe that such a manifold should be
close to a torus Tn in the Gromov–Hausdorff topology. In order to say more,
it would need to understand spaces which are Gromov–Hausdorff limits of
Riemannian manifolds (Mn, g), with ξ(M, g) 6 Ξ and diamM 6 D. Note
that our results yield a precompactness result in the Gromov–Hausdorff
topology for these class of spaces. We hope that the results of this paper
will turn out useful to give some answers to a question of G. Tian and J. Vi-
aclosky about critical metrics in higher dimension (see [54, Section 8.2]).
A lower bound on the Ricci curvature also yields some isoperimetric

inequalities. In [10], we have shown that a bound on the Kato constant of
the Ricci curvature yields some isoperimetric inequality.

In the pioneering paper ([27]), S. Gallot proved isoperimetric inequali-
ties, eigenvalue and heat kernel estimates for closed Riemannian manifold
(Mn, g), under a control of Ric− in Lp (for p > n/2). It would be interest-
ing to know whether one can directly get a control of the Ricci curvature
in some Kato class from a control of Ric− in Lp (for p > n/2), without
using Gallot’s isoperimetric inequality.

1.3. Localization in a geodesic ball

Our ideas can be adapted to understand the geometry of a geodesic ball
under some stronger control on the Ricci curvature.

Theorem 1.20. — Let (Mn, g) be a Riemannian manifold. Assume that
B(o, 3R) ⊂ M is a relatively compact geodesic ball. Let p > 1 and let
q := p/(p − 1). The Green kernel for the Laplacian ∆ on B(o, 3R) for the
Dirichlet boundary condition is denoted G3R. Define the constant Λ by

Λp := R2p−2 sup
x∈B(o,3R)

∫
B(o,3R)

G3R(x, y) Ric−(y)p dvg(y).

ANNALES DE L’INSTITUT FOURIER
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Assume that
(1) for some δ > (q(n−2)−2)2

8q(n−2) , the operator ∆ − (1 + δ)(n − 2) Ric− is
nonnegative on B(o, 3R),

(2) the ball B(o, 3R) satisfies the Sobolev inequality (Sob) with con-
stant µ.

Then, there exist constants θ and γ, which only depend on n, p, δ,Λ, µ
and on the volume density volB(o,3R)

Rn , such that for any x ∈ B(o,R) and
any r ∈ (0, R),

• 1
θ
rn 6 volB(x, r) 6 θrn,

• ∀ ψ ∈ C1(B(x, r)) :
∫
B(x,r)(ψ−ψB(x,r))2 dvg 6 γr2 ∫

B(x,r) |dψ|
2
g dvg .

1.4. Organization of the paper

In the next section, we review and collect some analytical tools which
will be used in the paper. For instance, we describe Agmon’s type volume
estimate which are mainly due to P. Li and J. Wang ([40, 41]). These
estimates will be crucial in the proof of Theorem 1.4. We also prove a
new elliptic estimate based on a variation of the De Giorgi–Nash–Moser
iteration scheme which will be useful in the proof of Theorem 1.20. The
third section is devoted to the proof of Theorem 1.18. Theorem 1.4 and the
first part of Theorem 1.15 are proved in the fourth section. The last sections
are devoted to the end of the proofs of Theorem 1.15 and Theorem 1.20.
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2. Preliminaries

In this section we review some classical results which will be used
throughout the paper. We consider (M, g) a Riemannian manifold, and
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a measure dm = Φ dvg where dvg is the Riemannian measure and Φ a
positive Lipschitz function; the Lp norm associated with this measure will
be noted ‖ · ‖p or ‖ · ‖m,p.

2.1. Laplacians

2.1.1.

The Laplacian ∆m or ∆Φ is the differential operator defined by the Green
formula:

∀ ψ ∈ C∞0 (M) :
∫
M

|dψ|2g dm =
∫
M

(∆mψ)ψ dm .

It is associated with the quadratic form:

(QF) ψ ∈ C∞0 (M) 7−→ q(ψ) :=
∫
M

|dψ|2g dm .

The geometric Laplacian will be noted ∆ = ∆1 and we have the formula

∆mψ = ∆ψ − 〈d log Φ,dψ〉g.

The Friedrichs realization of the operator ∆m is associated with the
minimal extension of the above quadratic form. We introduce D(q) to be
the completion of C∞0 (M) with respect to the norm,

ψ 7→
√
q(ψ) + ‖ψ‖22.

The domain of the operator ∆m is given by

D (∆m) = {v ∈ D(q), ∃ C such that ∀ ϕ∈C∞0 (M) : |〈v,∆mϕ〉|6C‖ϕ‖2}.

Remarks 2.1.
• If (M, g) is geodesically complete, then

∆m : C∞0 (M) −→ L2(M,dm)

has a unique selfadjoint extension.
• If M is the interior of a compact manifold with boundary M =
X \ ∂X and if g and Φ have Lipschitz extensions to X then the
Friedrichs realization of the operator ∆m is the Laplacian associated
with the Dirichlet boundary condition.
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2.1.2. Chain rule

When v ∈ C∞(M) and f ∈ C∞(R,R), by a direct computation, we have

∆mf(v) = f ′(v) ∆mv − f ′′(v)|dv|2g.

In particular if f is nondecreasing, convex and if ∆mv 6 V where V is a
nonnegative function then ∆mf(v) 6 f ′(v)V . By approximation, this can
be generalized to weak solutions and nonsmooth convex functions. Recall
that if v ∈ L1

loc we say that

∆mv 6 V weakly

if for any nonnegative ϕ ∈ C∞0 (M):∫
M

v∆mϕdm 6
∫
M

V ϕ dm .

When v ∈W 1,2
loc then

∆mv 6 V weakly
if and only if for any nonnegative ϕ ∈ C∞0 (M) (or ϕ ∈ D(q)):∫

M

〈dv,dϕ〉g dm 6
∫
M

V ϕ dm .

Then it is classical to get the following (where for x ∈ R: x+ = max{x, 0})

Lemma 2.2. — Let v ∈W 1,2
loc ∩ C0 and let V ∈ L1

loc be such that V > 0
and ∆mv 6 V . Then for any α > 1, we get:

∆mv
α
+ 6 αV v

α−1
+ .

∆m(v − 1)α+ 6 αV (v − 1)α−1
+ .

2.1.3. Integration by parts formula

The formula

(2.1) |d(χv)|2g = |dχ|2gv2 + 〈dv,d(χ2v)〉g,

implies the following integration by parts inequality.

Lemma 2.3. — Let v ∈ W 1,2
loc , and let V ∈ L1

loc be a nonnegative func-
tion such that:

∆mv 6 V weakly.
Then, for every Lipschitz function χ with compact support,∫

M

|d(χv)|2g dm 6
∫
M

|dχ|2gv2 dm +
∫
M

χ2vV dm .
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We would like to make sure that this inequality is also valid for Lips-
chitz functions which are constant at infinity. The notion of parabolicity is
precisely what is needed.

Definition 2.4. — A Borel measure dµ on a Riemannian manifold is
called parabolic if there is a sequence (χk) of smooth functions with com-
pact support such that,

• 0 6 χk 6 1,
• χk → 1 uniformly on compact sets,
• limk→∞

∫
M
|dχk|2gdµ = 0.

Then we have the following refinement of Lemma 2.3.

Lemma 2.5. — Let v ∈ W 1,2
loc , and let V ∈ L1

loc be a nonnegative func-
tion such that

∆mv 6 V weakly.
If the measure v2dm is parabolic then, for every Lipschitz function χ which
is constant outside a compact set and such that

∫
M
χ2vV dm <∞,∫

M

|d(χv)|2g dm 6
∫
M

|dχ|2gv2 dm +
∫
M

χ2vV dm .

Remark 2.6. — If (M, g) is geodesically complete and if M(r) :=∫
B(o,r) v

2 dm satisfies

M(r) = O
(
r2) or

∫ ∞
1

rdr
M(r) = +∞

then the measure v2 dm is parabolic (see [31]).

2.2. Sobolev inequalities

Definition 2.7. — We say that a weighted complete Riemannian man-
ifold (Mn, g,m) satisfies the Euclidean Sobolev inequality with Sobolev
constant µ if

(Sobm) ∀ ψ ∈ C∞0 (M) : µ

(∫
M

ψ
2n
n−2 dm

)1− 2
n

6
∫
M

|dψ|2g dm

We recall here some classical results which hold in the presence of the
Sobolev inequality.

Theorem 2.8. — Let (M, g,m) be a weighted Riemanian manifold. As-
sume it satisfies the Euclidean Sobolev inequality (Sobm) with Sobolev
constant µ. Then there is a positive constant cn, such that the following
properties hold.
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(1) The heat kernel associated with the Laplacian ∆m satisfies:

∀ x ∈M,∀ t > 0: Hm(t, x, x) 6 cn

(µt)
n
2
.

(2) The associated positive minimal Green kernel satisfies:
(a) ∀ x, y ∈M : Gm(x, y) 6 cn

µ
n
2

1
dn−2(x,y) .

(b) ∀ x ∈M,∀ t > 0: m ({y ∈M ;Gm(x, y) > t}) 6 (µt)−
n
n−2 .

(c) If α ∈ (0, n/(n− 2)) and if Ω ⊂M has finite m-measure, then(∫
Ω
Gαm(x, y) dm(y)

)1
α

6

(
n

(n− 2)α− n

)1
α 1
µ

(m(Ω))
1
α−1+ 2

n .

(3) If B(x, r) ⊂ M is a relatively compact geodesic ball in M , and if
v ∈W 1,2

loc (B(x, r)) satisfies

∆mv 6 0

then, for p > 2, there is a positive constant cn,p such that:

|v(x)|p 6 cn,p(√
µ r
)n ∫

B(x,r)
|v|p(y) dm(y).

(4) If B(x, r) ⊂M is a relatively compact geodesic ball in M , then
1

c(n)µ
n
2 rn 6 m (B(x, r)) .

Remarks 2.9.
• The upper bound on the heat kernel comes essentially from an adap-
tation in this setting of old ideas of J. Nash ([45]). In fact both
properties are equivalent ([55]).

• The estimate on the heat kernel implies a Gaussian upper bound
for the heat kernel ([21]):

∀ x, y ∈M, ∀ t > 0: Hm(t, x, y) 6 cn

(µt)
n
2
e−

d2(x,y)
5t ,

and the formula

Gm(x, y) =
∫ +∞

0
Hm(t, x, y)dt

yields the estimate (2a) on the Green kernel.
• The property (2b) is equivalent to the Sobolev inequality ([7]).
• The elliptic estimate (3) is proved by a classical De Giorgi–Nash–
Moser iteration method. The lower bound (4) on the volume is a
consequence of this elliptic estimate applied to the constant function
1 (see [2, 7]).
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2.3. Schrödinger operators and the Doob transform

2.3.1. Schrödinger operators

Assume that V ∈ L∞loc is a nonnegative function such that the quadratic
form

ψ ∈ C∞0 (M) 7−→ qV (ψ) :=
∫
M

[
|dψ|2g − V ψ2]dm,

is bounded from below; i.e., there is a constant Λ such that

∀ ψ ∈ C∞0 (M) : qV (ψ) > −Λ
∫
M

ψ2 dm .

With the Friedrichs extension procedure, we get a self-adjoint operator
which will be denoted:

L := ∆m − V.
An easy consequence of the maximum principle, or of its weak formulation,
is that

∀ x, y ∈M, ∀ t > 0: Hm(t, x, y) 6 HL(t, x, y),
where HL denotes the heat kernel of the operator L.

Definition 2.10. — The operator L is said to be subcritical, if L has
a positive minimal Green kernel GL.

Remark 2.11 ([31]). — The weighted Laplacian is subcritical if and only
if the measure dm is not parabolic in the sense of Definition 2.4. In that case,
we say that the weighted Riemannian manifold (M, g,m) is nonparabolic.

When L is subcritical, we have

∀ x, y ∈M : Gm(x, y) 6 GL(x, y).

2.3.2. The Doob Transform

Assume that (M, g) is complete noncompact, and that the operator L is
nonnegative,

∀ ψ ∈ C∞0 (M) :
∫
M

[
|dψ|2g − V ψ2] dm > 0.

Then, the Agmon–Allegretto–Piepenbrink theorem ([1, 26, 44]) implies that
there is a positive function h ∈W 1,2

loc such that

Lh = 0.
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Remark that because V is assumed to be locally bounded, we also have
h ∈W 2,p

loc for any p <∞.
Using the formula (2.1) and integrating by parts, we get that for any

ψ ∈ C∞0 (M) :

(2.2)
∫
M

[
|d(hψ)|2g − V h2ψ2] dm =

∫
M

|dψ|2gh2 dm .

Hence the Schrödinger operator L and the Laplacian ∆h2m are conjugate :

L(hψ) = h∆h2mψ

and we have:
HL(t, x, y) = h(x)h(y)Hh2m(t, x, y).

This conjugacy is called the Doob transform (or Doob h-transform) and it
is the key point in order to get estimates on the Green and heat kernels of
the Schrödinger operator L.

2.3.3. The Kato condition and uniform boundedness in L∞

The Laplacian ∆m is sub-Markovian, that is to say,

(2.3) ∀ t > 0,∀ x ∈M :
∫
M

Hm(t, x, y) dm(y) 6 1.

An equivalent formulation is that

‖e−t∆m‖L∞→L∞ 6 1.

We are interested in similar properties for Schrödinger operators. The
nonnegativity of L implies that the semigroup

{
e−tL

}
t
is uniformly

bounded on L2; but it is not necessarily uniformly bounded on L∞. How-
ever the above Doob transform guarantees that if the Schrödinger operator
L has a zero eigenfunction h satisfying

1 6 h 6 γ,

then the semigroup
{
e−tL

}
t
is uniformly bounded on L∞.

Definition 2.12. — We say that the Schrödinger operator L = ∆m−V ,
with nonnegative potential V , is uniformly stable if any of the following
equivalent conditions is satisfied.

(1) supt>0
∥∥e−tL∥∥

L∞→L∞ <∞.
(2) supt>0

∥∥e−tL∥∥
L1→L1 <∞.

(3) There is a constant γ such that, for all t > 0 and all x ∈M ,(
e−tL1

)
(x) =

∫
M

HL(t, x, y) dm(y) 6 γ.

TOME 69 (2019), FASCICULE 7



3112 Gilles CARRON

The equivalences follow from the study of Qi S. Zhang and Z. Zhao ([57],
see also [60]).

Definition 2.13. — Assume that V > 0 is not identically zero. We say
that the Schrödinger operator L = ∆m − V is gaugeable with gaugeability
constant γ > 1 if any of the following equivalent conditions is satisfied.

(a) There is an h ∈W 1,2
loc such that

Lh = 0 and 1 6 h 6 γ.

(b) L is subcritical, i.e., it has a positive minimal Green kernel GL, and
there is a constant γ such that

∀ x ∈M :
∫
M

GL(x, y)V (y) dm(y) 6 γ − 1.

Proof of the equivalences in Definition 2.13. — If we assume that prop-
erty (b) holds, then

h(x) = 1 +
∫
M

GL(x, y)V (y) dm(y)

is a bounded solution of the equation Lh = 0 such that h > 1, hence the
property (a) holds.
If we assume that property (a) holds, the Doob transform implies that L

is nonnegative. We have assumed that V is not identically zero, hence the
nonnegativity of L implies that ∆m is subcritical, now the Doob transform
and the fact that h is bounded insure that the operator L is subcritical.
For a relatively compact domain Ω ⊂ M , we consider the solution of the
Dirichlet boundary problem:{

∆mhΩ = V hΩ on Ω,
hΩ = 1 on ∂Ω.

Let GL( · , · ; Ω) denote the Green function of the operator L on Ω, with the
Dirichlet boundary condition. Then we have hΩ = 1 + vΩ where

vΩ =
∫
M

GL(x, y; Ω)V (y) dm(y).

The maximum principle implies that
h

γ
6 hΩ 6 h,

and that Ω 7→ hΩ is increasing, hence we can define

h̃(x) = lim
Ω→M

hΩ(x)
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and we have
h̃(x) 6 γ,

and
h̃(x) = 1 +

∫
M

GL(x, y)V (y) dm(y).

Hence the property (b) holds. �

Theorem 2.14 ([57], see also [60]). — Let L be a Schrödinger operator
with nonnegative potential V . The following relations hold.

(a) The gaugeability condition implies the uniform stability condition.
(b) If (M, g,m) is stochastically complete, i.e., ∀ t > 0:

(
e−t∆m1

)
= 1,

then the gaugeability condition is equivalent to the uniform stability
condition.

(c) If the operator ∆m is subcritical and if the Kato constant of V is
smaller than 1,

K(V ) := sup
x∈M

∫
M

Gm(x, y)V (y) dm(y) < 1,

then L = ∆m − V is gaugeable

Remark 2.15. — According to [31], (M, g,m) is stochastically complete
provided that there is some o ∈M and some positive constant c such that
for any R > 0:

m (B(o,R)) 6 cecR
2
.

Proof of Theorem 2.14. — Let’s explain why under the stochastically
completeness assumption, the uniform stability implies the gaugeability.
The stochastic completeness condition implies that for all x ∈ M , the

function t 7→
∫
M
HL(t, x, y) dm(y) is nondecreasing. Indeed, the semigroup

property implies that if t, τ > 0 then∫
M

HL(t+ τ, x, y) dm(y) =
∫
M×M

HL(t, x, z)HL(τ, z, y) dm(z) dm(y).

Using HL(τ, z, y) > Hm(τ, z, y) and
∫
M
Hm(τ, z, y) dm(y) = 1, one gets:∫

M

HL(t+ τ, x, y) dm(y) >
∫
M

HL(t, x, y) dm(y).

Hence if the condition (c) is satisfied then we can define

h(x) = sup
t>0

∫
M

HL(t, x, y) dm(y) = lim
t→+∞

∫
M

HL(t, x, y) dm(y).

We have 1 6 h 6 γ and for all τ > 0:∫
M

HL(τ, x, y)h(y) dm(y) = h(x).
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Hence Lh = 0. �

Remark 2.16. — The set

{λ > 0,∆m − λV is gaugeable (resp. uniformly stable)}

is an interval of the type [0, ω) or [0, ω].

2.3.4. Subcriticality, Green kernel and parabolicity

The subcriticality of a Schrödinger operator L is a strengthening of the
nonnegativity property.

Proposition 2.17 ([60]). — For a Schrödinger operator L with non-
negative potential V , we have the following equivalent properties:

(1) L is subcritical.
(2) There is a non-empty open set Ω ⊂ M and a positive constant κ

such that

∀ ψ ∈ C∞0 (M) : κ
∫

Ω
ψ2 dm 6

∫
M

[
|dψ|2g − V ψ2]dm .

(3) For all relatively compact open subset Ω ⊂ M , there is a positive
constant κ such that

∀ ψ ∈ C∞0 (M) : κ
∫

Ω
ψ2 dm 6

∫
M

[
|dψ|2g − V ψ2]dm .

(4) There is a positive Green kernel for L.
(5) If h ∈ W 1,2

loc is a positive solution of the equation Lh = 0, then
(M, g, h2m) is nonparabolic (see Remark 2.11).

(6) If h ∈ W 1,2
loc is a positive solution of the equation Lh = 0, then the

operator ∆h2m has a positive Green kernel.

2.3.5. Elliptic estimates for Schrödinger operators

The Euclidean Sobolev inequality and the gaugeability property imply
good estimates on the Green kernel of the operator L.

Theorem 2.18. — Let (M, g,m) be a weighted Riemannian manifold
and assume that it satisfies the Euclidean Sobolev inequality (Sobm) with
constant µ. Let L = ∆m − V be a Schrödinger operator with nonnegative
potential V and assume that L is gaugeable with gaugeability constant γ.
Then there is a positive constant cn such that the following properties hold:
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(1) The heat kernel associated with the Laplacian ∆L satisfies

∀ x ∈M, ∀ t > 0: HL(t, x, x) 6 cnγ
n

(µt)
n
2
.

(2) The associated positive minimal Green kernel satisfies:

∀ x, y ∈M : GL(x, y) 6 cn
µ
n
2

γn

dn−2(x, y) .

(3) Let B(x, r) ⊂ M be a relatively compact geodesic balls in M , and
Assume that v ∈W 1,2

loc (B(x, r)) satisfies

Lv 6 0.

Then, for p > 2 there is a positive constant C(n, p) such that

|v(x)|p 6 C(n, p)(√
µ r
)n γn−2+p

∫
B(x,r)

|v|p(y) dm(y).

All these results follow from the Doob transform and the fact that the
new measure dm̃ = h2 dm satisfies the Sobolev inequality:

∀ ψ ∈ C∞0 (M) : µγ−
2
n (n−2)

(∫
M

|ψ|
2n
n−2 dm̃

)1− 2
n

6
∫
M

|dψ|2dm̃.

2.3.6. Estimate on the gaugeability constant

In [25], B. Devyver has studied conditions under which a nonnegative
Schrödinger operator is gaugeable. One of his results is the following.

Theorem 2.19. — Let (Mn, g,m) be a complete weighted Riemannian
manifold and V ∈L∞loc a nonnegative function. Assume that the Schrödinger
operator L = ∆m − V is strongly positive: there is some δ > 0 such that
the operator ∆m − (1 + δ)V is nonnegative:

∀ ψ ∈ C∞0 (M) : (1 + δ)
∫
M

V ψ2 dm 6
∫
M

|dψ|2g dm .

Assume moreover that the Kato constant of V is small at infinity: there is
a compact subset K ⊂M and some ε ∈ (0, 1) such that

∀ x 6∈ K :
∫
M\K

Gm(x, y)V (y) dm(y) 6 1− ε,

then L is gaugeable.

Moreover [24], B. Devyver has shown:
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Theorem 2.20. — Let (M, g,m) be a weighted Riemannian manifold
and assume that it satisfies the Euclidean Sobolev inequality (Sobm). Let
V ∈ L∞loc be a nonnegative function such that

• for some ε ∈ (0, 1), V ∈ L(1±ε)n2 ,
• ker

L
2n
n−2

L =
{
v ∈ L

2n
n−2 (M,dm) : Lv = 0

}
= {0} .

Then, L is gaugeable.

For geometric applications, it is sometimes useful to obtain explicit
bounds on the function h used in the Doob transform. The second hy-
pothesis in Theorem 2.20 is satisfied whenever∫

M

V
n
2 dm 6 (1− ε)µ,

and in this case we can follow the argument given in [24] in order to get
an estimate of ‖h‖∞ which only depends on n, µ, ε,

∫
M
V (1−ε)n2 dm and∫

M
V (1+ε)n2 dm. The next proposition gives such a local estimate.

Proposition 2.21. — Let (Mn, g,m) be a weighted Riemannian mani-
fold and B(x, 2R) ⊂M be a relatively compact geodesic ball. Let V ∈ L∞loc
be a nonnegative function. Assume that for some constant µ, δ > 0, p > 1
and Λ > 0, the following conditions hold.

• The ball B(x, 2R) satisfies the Euclidean Sobolev inequality (Sobm)
with Sobolev constant µ.

• The Schrödinger operator L is strongly positive:

∀ ψ ∈ C∞0 (B(x, 2R)) : (1 + δ)
∫
B(x,2R)

V ψ2 dm 6
∫
B(x,2R)

|dψ|2g dm .

• If Gm(z, y) is the Dirichlet Green kernel of the Laplacien ∆m on
B(x,R), then :

R2(p−1) sup
z∈B(x,R)

∫
B(x,R)

Gm(z, y)V p(y) dm(y) 6 Λp.

Then there is a constant γ depending only on n, p,Λ, δ, m(B(x,2R))
µ
n
2 Rn

such that
the solution of the Dirichlet boundary problem:{

∆mh− V h = 0 on B(x,R)
h = 1 on ∂B(x,R)

satisfies
1 6 h 6 γ.
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Proof. — By scaling, we can suppose that R = 1 and let B := B(x, 1)
and 2B := B(x, 2).
We first get an integral estimate on v := h− 1. If W 1,2

0 (B) is the closure
of C∞0 (B) for the norm ψ 7→ ‖dψ‖2 + ‖ψ‖2, we have v ∈W 1,2

0 (B) and

∆mv − V v = V,

hence ∫
B

[
|dv|2g − V v2] dm =

∫
B

V v dm 6 ‖v‖∞
∫
B

V dm .

We let
L := ‖v‖∞.

Using the strong positivity and the function

ξ(y) = min {2− d(x, y), 1} ,

we get ∫
B

V dm 6
∫

2B
V ξ2 dm 6 1

1 + δ

∫
2B
|dξ|2g dm 6 m(2B).

Using again the strong positivity and the Sobolev inequality we get:

µδ

1 + δ

(∫
B

v
2n
n−2 dm

)1− 2
n

6
δ

1 + δ

∫
B

|dv|2g dm 6
∫
B

[
|dv|2g − V v2] dm .

So that we get

(2.4)
(∫

B

v
2n
n−2 dm

)1− 2
n

6 L
m(2B)
µδ

.

The function v is a solution of the integral equation:

(2.5) v(z) =
∫
B

Gm(z, y)V (y) dm(y) +
∫
B

Gm(z, y)V (y)v(y) dm(y).

Let q = p/(p − 1), using Hölder inequality and the integral estimate (2c)
in Theorem 2.8, we estimate the first term in the RHS of (2.5)∫

B

Gm(z, y)V (y) dm(y) 6 Λ
(∫

B

G(z, y) dm(y)
) 1
q

6 Λ
(
m(B)
µ
n
2

) 2
nq

.

Introducing

I = Λ
(
m(2B)
µ
n
2

) 2
nq

,

we get

(2.6)
∫
B

Gm(z, y)V (y) dm(y) 6 I.
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For the second term in the RHS of (2.5), we introduce:

ψ(z) :=
∫
B

Gm(z, y)v(y) dm(y).

Then using again the Hölder inequality, we get:

(2.7)
∫
B

Gm(z, y)V (y)v(y) dm(y)

6

(∫
B

Gm(z, y)V p(y)v(y) dm(y)
) 1
p

ψ
1
q (z)

6 ΛL
1
pψ

1
q (z).

If β is such that

β >
n

2 and β > 2n
n− 2

then with α = β/(β − 1) and the integral estimate (2c) in Theorem 2.8
we get:

ψ(z) 6
(

n

(n− 2)α− n

) 1
α 1
µ

(m(B))
1
α−1+ 2

n ‖v‖β

6

(
n

(n− 2)α− n

) 1
α 1
µ

(m(2B))
1
α−1+ 2

n ‖v‖β .

The estimate (2.4) implies that:

‖v‖β 6 L1− n
n−2

1
β

(
m(2B)
δµ

) n
n−2

1
β

.

After a bit of arithmetic, we get that:

(2.8)
∫
B

Gm(z, y)V (y)v(y) dm(y)

6 IL1− n
n−2

1
qβ

(
m(2B)
(δµ)n2

) 2
n−2

1
qβ
(

n

(n− 2)α− n

) 1
qα

.

With (2.4) and (2.8), we get

L 6 I + CκL1−κ

where κ = n
n−2

1
qβ and

Cκ = I
(
m(2B)
(δµ)n2

) 2
n−2

1
qβ
(

n

(n− 2)α− n

) 1
qα

.
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In order to conclude, we distinguish two cases:
• The first one being when I 6 1

2 . Because the Kato constant of V is
smaller than I, we know that 1 6 h 6 2.

• The second case is when I > 1
2 . The above inequality implies that

L 6 max{2I, 2 1
κC}.

But

2 1
κC = c(n, p, β)Iqβ

n−2
n
m

2
n (2B)
δµ

,

and recall that by Theorem 2.8(4), the Sobolev inequality implies
that m

2
n (2B)
µ is bounded from below by a constant which depends

only of n and that qβ n−2
n > 1, hence there is a constant c such that

C > cI and we get:

L 6 c(n, p, β)Iqβ
n−2
n

m
2
n (2B)

min{δ, 1}µ. �

2.4. Kato constants

In this section, we compare the parabolic and elliptic Kato constants.
This comparison already appears in [33]. Let (Mn, g,m) be a weighted
Riemannian manifold and V ∈ L∞loc be a nonnegative function. For λ > 0,
we define the elliptic Kato constant

(2.9) Kλ(V ) =
∥∥∥(∆m + λ)−1

V
∥∥∥
∞
.

If Gm,λ(x, y) is the Green kernel of the operator (∆m + λ), then

Kλ(V ) = sup
x∈M

∫
M

Gm,λ(x, y)V (y) dm .

If T > 0, the parabolic Kato constant of V is defined by

(2.10) kT (V ) = sup
x∈M

∫ T

0

∫
M

Hm(t, x, y)V (y) dvg(y)dt

=

∥∥∥∥∥
∫ T

0
e−t∆mV dt

∥∥∥∥∥
∞

.

We always have
K0(V ) = k+∞(V )

and
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Lemma 2.22. — For any T > 0:

e−1 kT (V ) 6 K 1
T

(V ) 6 e

e− 1 kT (V ).

Proof. — We have the relationship:

(∆m + λ)−1
V =

∫ +∞

0
e−λte−t∆mV dt.

Hence

(∆m + λ)−1
V >

∫ T

0
e−λT e−t∆mV dt,

it is then easy to deduce the lower bound:

e−1 kT (V ) 6 K 1
T

(V ).

We also have

(∆m + λ)−1
V =

∞∑
k=0

∫ (k+1)T

kT

e−λte−t∆mV dt

=
∞∑
k=0

e−λkT e−kT∆m

∫ T

0
e−λte−t∆mV dt.

Recall that the heat semigroup is sub-Markovian:∥∥e−kT∆m
∥∥
L∞→L∞ 6 1,

hence ∥∥∥(∆m + λ)−1
V
∥∥∥
∞
6
∞∑
k=0

e−λkT

∥∥∥∥∥
∫ T

0
e−t∆mV dt

∥∥∥∥∥
∞

6
∞∑
k=0

e−λkT kT (V ) = 1
1− e−λT kT (V ). �

2.5. Agmon’s volume estimate

In this subsection, we review Agmon’s volume estimates. These estimates
are due to S. Agmon [1] and P. Li and J. Wang [40, 41]). We give a slightly
different proof, as well as a new Hardy type estimate (Proposition 2.26).
This new result will be crucial in the proof of Theorem 1.4. The starting
result is the following.
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Proposition 2.23. — Let m be a locally finite positive measure on R+.
Assume that it satisfies the following spectral gap estimate,

(SG) ∀ ψ ∈ C∞0
(
R∗+
)

: h2

4

∫
R+

ψ2(t) dm(t) 6
∫
R+

ψ′2(t) dm(t).

Then, we have the dichotomy:
(1) Either m(R+) < +∞, and m ([R,+∞)) = O

(
e−hR

)
.

(2) Or m(R+) = +∞, and there is some positive constant C such that,
for all R > 1,

m ([0, R]) > CehR.

Remark 2.24. — In the proof, we can always assume that m is a smooth
measure

dm = L(t)dt.
Indeed, let ρ be a smooth nonnegative function with compact support in
(0, 1) which satisfies

∫ 1
0 ρ(t)dt = 1. Define the family of smooth measures

mε by
mε(f) =

∫
R+×R

f(τ − εt)ρ(t) dm(τ)dt.

We have that mε converges weakly to m when ε→ 0+, and each mε satisfies
the spectral gap inequality (SG) with the same constant.

Proof. — Let’s first consider the case where the measure m is parabolic.
This implies that the spectral gap estimate (SG) is valid for any smooth
function with support in R∗+ and constant outside some compact set, in
particular:

m(R+) < +∞.
We introduce the cut-off function:

ξ(t) =


0 if t 6 1,
t− 1 if 1 6 t 6 2,
1 if 2 6 t.

We test the spectral gap estimate (SG) on the function

ψR(t) = ξ(t) eh
min{t,R}

2 ,

and when R > 2, we get the estimate
h2

4

∫ 2

1
ψ2
R(t) dm(t) + h2

4 e
hRm ([R,+∞)) 6

∫ 2

1
ψ′2R(t) dm(t).

Hence
h2

4 e
hRm ([R,+∞)) 6 (1 + h)2e2hm ([1, 2]) .
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In the second case, the measure m is nonparabolic and necessarily

m (R+) = +∞.

According to the Remark 2.24, we can always assume that m is smooth:
dm = L(t)dt. We introduce the function

g(t) =
∫ ∞
t

ds
L(s) .

The measure m being nonparabolic, we know that g is well defined. More-
over g is a harmonic function for the Laplacian

∆m = − 1
L(t)

d
dtL(t) d

dt .

Hence the spectral gap estimate (SG) implies that∫
R+

g2(t) dm(t) < +∞

Indeed if we test the spectral gap estimate (SG) on the function

gR(t) =
{
ξ(t)

∫ R
t

ds
L(s) if t 6 R

0 if t > R

then we get that:

h2

4

∫ R

2
g2
R(t) dm(t) 6 c+ gR(2),

for some constant c independent of R.
Using the Doob transform with the function g (cf the formula 2.2), we

get for any function ψ ∈ C∞0
(
R∗+
)
:∫ ∞

0
((ψg)′)2 dm =

∫ ∞
0

(ψ′)2
g2 dm +

∫ ∞
0

ψ2g(Lg) dm

=
∫ ∞

0
(ψ′)2

g2 dm .

Hence we get the spectral gap estimate (SG):

∀ ψ ∈ C∞0
(
R∗+
)

: h2

4

∫
R+

ψ2(t)g2(t) dm(t) 6
∫
R+

ψ′2(t)g2(t) dm(t).

The new measure g2 dm is finite hence we already know that there is a
constant c such that for all R > 0 then,∫ ∞

R

g2(t) dm(t) 6 ce−hR.
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Choosing ψ(t) = ξ(t−R+ 1), we get∫ R+1

R

(g′)2 (t) dm(t) 6
∫ ∞
R−1

g2(t) dm(t) 6 ce−hR.

It follows that ∫ R+1

R

ds
L(s) 6 ce

−hR,

and the Cauchy–Schwarz inequality yields

1 6
(∫ R+1

R

ds
L(s)

)(∫ R+1

R

L(s)ds
)
6 ce−hRm ([R,R+ 1]) . �

Let us now give some consequences of Proposition 2.23. The following
corollary is borrowed from [40].

Corollary 2.25. — Let (M, g,m) be a complete weighted Riemannian
manifold. Let K ⊂ M be a compact set, U ⊂ M \ K be an unbounded
connected component of M \K satisfying the spectral gap condition,

∀ ψ ∈ C∞0 (U) : λ2
0

4

∫
U
ψ2 dm 6

∫
M

|dψ|2 dm .

Assume that f : U → R and λ < λ0 satisfy:

∆mf 6 λf.

Let h = 2
√
λ− λ0. We have the dichotomy:

(1) Either f ∈ L2 and
∫
U\B(o,R) f

2 dm = O
(
e−hR

)
, when R→ +∞.

(2) Or there is some positive constant C such that for all R > 1:∫
U∩B(o,R)

f2 dm > CehR.

Proof. — We test the above spectral gap for radial function

ψ(x) = f(d(K,x))

and with the measure

µ([0, R]) = m ({x ∈ U , d(x,K) < R}) ,

we get

∀ ψ ∈ C∞0
(
R∗+
)

: h2

4

∫
R+

f2(t)dµ 6
∫
R+

f ′(t)2dµ

The corollary is then a direct consequence of Proposition 2.23. �

A logarithmic change of variables yields the following consequence for a
Hardy type inequality.
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Proposition 2.26. — Let m be a locally finite positive measure on
[1,∞). Assume that the following Hardy type inequality holds,

∀ ψ ∈ C∞0 ((1,∞)) : (ν − 2)2

4

∫ +∞

1

ψ2(t)
t2

dm(t) 6
∫ +∞

1
ψ′2(t) dm(t).

Then, we have the dichotomy:
(1) Either

∫ +∞
1

dm(t)
t2 < +∞ and∫ +∞

R

dm(t)
t2

= O
(

1
Rν−2

)
when R→ +∞,

(2) or there is some positive constant C such that for all R > 1:∫
[1,R]

dm(t) > CRν .

2.6. Asymptotics of the Green kernel

2.6.1. Near the pole

Let L = ∆m − V be a Schrödinger operator on a weighted smooth Rie-
mannian manifold (M, g,m) of dimension n > 2, with a smooth potential.
If G is a positive solution of the equation

LG = δo,

then according to [37, Section 17.4] G has a polyhomogeneous expansion
near o whose first term is

G(x) ' cn
dn−2(x, o) ,

where cn =
(
(n− 2) vol Sn−1)−1

. More precisely, letting r(x) := d(x, o),
there is some function ψ ∈ C1(M) such that

G = ψ

rn−2 and ψ(o) = cn.

In particular, defining b : M → R+ by G = cnb
2−n, then b(o) = 0 and

|db|(x) = 1 +O (d(o, x)) .

In general if V is not smooth but only locally bounded, we get that

G(x) ' c(n)
dn−2(x, o) .
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2.6.2. Near infinity

Let (M, g,m) be a nonparabolic weighted Riemannian manifold, with
minimal positive Green kernel Gm. Let o ∈ M and let K be a compact
subset of M containing o in its interior. Then,∫

M\K
|dxGm(o, x)|2 dm(x) <∞.

Indeed, we can always assume that the boundary of K is smooth. When Ω
is a relatively compact open subset of M , containing K, we let GΩ

m denote
the minimal positive Green kernel of (Ω, g,m). We know that

lim
Ω→M

GΩ
m(o, x) = Gm(o, x)

where the convergence is in C∞(M \ {o}). But the Green formula yields
that ∫

M\K
|dxGΩ

m(o, x)|2 dm(x) =
∫
∂K

GΩ
m(o, x)∂G

Ω
m

∂~νx
(o, x)dσ(x),

where ~ν : ∂K → TM is the unit normal inward normal to K. Hence∫
M\K

|dxGm(o, x)|2 dm(x) 6
∫
∂K

Gm(o, x)∂Gm

∂~νx
(o, x)dσ(x).

We are now interested in the equality case in the above inequality.

Proposition 2.27. — Assume that limx→∞G(o, x) = 0 then

(2.11)
∫
M\K

|dxGm(o, x)|2 dm(x) =
∫
∂K

Gm(o, x)∂Gm

∂~νx
(o, x)dσ(x).

Moreover the measure Gm(o, x)2 dm(x) is parabolic on M \K.

Proof. — Let ` > 0, our hypothesis implies that the set {x ∈ M,

Gm(o, x) > 1
` } ∪ {o} is compact. Let u be a smooth function on R+ such

that |u′| 6 2, u = 0 on [0, 1] and u = 1 on [2,+∞). We introduce the cut-off
function defined by:

ξ`(x) = u (`Gm(o, x) )
Let ε := infx∈∂K Gm(o, x). If `ε > 1 then the maximum principle guarantees
the inclusion: {

x,Gm(o, x) 6 1
`

}
⊂M \K.

The Green formula yields:∫
M\K

|dx (ξ`(x)Gm(o, x))|2 dm(x) =
∫
M\K

|dξ`|2Gm(o, x)2 dm(x).
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If we introduce

Ω` =
{
x ∈M,

1
`
6 Gm(o, x) 6 2

`

}
then we get∫

M\K
|dξ`|2Gm(o, x)2 dm(x) 6 4`2

∫
Ω`
|dxGm(o, x)|2Gm(o, x)2 dm(x)

6 16
∫

Ω`
|dxGm(o, x)|2 dm(x).

Hence
lim

`→+∞

∫
M\K

|dξ`|2Gm(o, x)2 dm(x) = 0,

and the equality (2.11) holds. Moreover the sequence (ξ`) satisfies the re-
quired properties of Definition 2.4 which show the parabolicity of the mea-
sure Gm(o, x)2 dm(x) on M \K. �

With the Doob transform, we have a similar result for Schrödinger op-
erators.

Proposition 2.28. — Let (M, g,m) be a nonparabolic weighted Rie-
mannian manifold, and V a locally bounded nonnegative function. Assume
that the Schrödinger operator L = ∆m−V is gaugeable and that for some
p ∈ M , the Green kernel of L satisfies limx→∞GL(p, x) = 0. Then, the
measure G2

L(p, y) dvg(y) is parabolic on M \B(o, 2).

A last but useful property of the Green kernel, is the following very
general Hardy type inequality [8].

Proposition 2.29. — Let (M, g,m) be a nonparabolic weighted
Riemannian manifold of dimension n > 2. If o ∈ M , we let b(x) =
Gm(o, x)−

1
n−2 , then

∀ ψ ∈ C∞0 (M) : (n− 2)2

4

∫
M

|db|2

b2
ψ2 dm 6

∫
M

|dψ|2 dm .

In fact when G is any positive harmonic function, the above inequality
holds for b = G−

1
n−2 .

2.7. Some formulas for the gradient of the Green kernel

The inequality (2.12) below is due to T. Colding and W. Minicozzi ([15,
Corollary 2.13]).
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Let G be a positive harmonic function on a Riemannian manifold (Mn, g)
and b := G−

1
n−2 . Then, for all p > n−2

n−1 ,

(2.12) ∆ (G|db|p) 6 pRic− (G|db|p) .

This inequality can also be proved from Yau’s inequality [56, Lemma 2]

|∇|dG||2 6 n− 1
n
|∇dG|2 .

This inequality classically implies that

(2.13) ∆|dG|
n−2
n−1 − n− 2

n− 1 Ric− |dG|
n−2
n−1 6 0.

Define b by G = b2−n. Then,

|dG|
n−2
n−1 = (n− 2)

n−2
n−1G |db|

n−2
n−1 .

The Doob transform yields that u := |db|
n−2
n−1 satisfies

∆G2u 6
n− 2
n− 1 Ric− u.

According to (2.1.2), we get that for all α > 1:

∆G2uα 6 α
n− 2
n− 1 Ric− uα.

Using the Doob transform again, we get ∆G2uα = G−1∆
(
G |db|α

n−2
n−1
)
and

the inequality (2.12) follows.

2.8. An elliptic estimate

In this subsection, we obtain a new estimate for the gradient of a positive
harmonic function; our result is based on a new variation on the De Giorgi–
Nash–Moser iteration scheme.

Proposition 2.30. — Let (Mn, g) be a Riemannian manifold which
satisfies the Euclidean Sobolev inequality (Sob) with Sobolev constant µ,
and assume that the Schrödinger operator L = ∆− n−2

n−1 Ric− is gaugeable,
with gaugeability constant γ. Let G : M −→ R∗+ be a positive harmonic
function and define b : M −→ R∗+ by

G = 1
bn−2 .

TOME 69 (2019), FASCICULE 7



3128 Gilles CARRON

Assume moreover that R > 0 is such that the set Ω#
R = {x ∈ M ; R2 6

b(x) 6 5
2R} is compact and let ΩR = {x ∈ M ;R 6 b(x) 6 2R}. Then, for

any p > n,

sup
ΩR
|db|p−n 6 C1+p

n γp
n−1
n−2 +n−2

µ
n
2 Rn

∫
Ω#
R

|db|p dvg .

Remark 2.31. — The second hypothesis is satisfied when we have the
following bound on the Kato constant of the Ricci curvature:

K (Ric−) 6 n− 1
n− 2

(
1− 1

γ

)
.

Proof. — We let
f := G |db|

n−2
n−1 .

Yau’s inequality (2.13) implies that

∆f − n− 2
n− 1 Ric− f 6 0.

Let h : M −→ [1, γ] be such that Lh = 0. Then the function F = f/h

satisfies ∆h2F 6 0 and for all α > 1 we have:

∆h2Fα 6 0.

So that if ξ ∈ C∞0 (Ω#
R), we have:

(2.14)
∫
M

|d(ξFα)|2 h2 dvg 6
∫
M

|dξ|2 F 2αh2 dvg .

Moreover the Sobolev inequality and the fact that 1 6 h 6 γ imply that
for µ̂ := µγ

4
n−2, we have:

(2.15) µ̂

(∫
M

(ξFα)
2n
n−2 h2 dvg

)1− 2
n

6
∫
M

|d(ξFα)|2 h2 dvg .

We now define dm = h2 dvg, κ := n
n−2 ,

Rk = 2R+
∞∑
`=k

R

2`+2 and rk = R−
∞∑
`=k

R

2`+2 and Ωk = {b ∈ [rk, Rk]}.

We are going to use the inequalities (2.14), (2.15) with

ξk = ρk(b)

where

ρk =
{

1 on [rk+1, Rk+1]
0 outside [rk, Rk]
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and
|ρ′k| 6

2k+2

R
.

We get

µ̂

(∫
Ωk+1

(Fα)
2n
n−2 dm

)1− 2
n

6
4k+2

R2

∫
Ωk
|db|2F 2α dm .

But
|db|2F 2α = F 2α+2n−1

n−2

( g
h

)−2n−1
n−2

.

On Ωk we have: ( g
h

)−2n−1
n−2
6 γ2n−1

n−2

(
5R
2

)2n−2
.

We now introduce

βk+1 = κ2αk and βk = 2αk + 2n− 1
n− 2 ,

where
βk = κk

(
β0 − n

n− 1
n− 2

)
+ n

n− 1
n− 2 .

We have proved the estimate:

(2.16)
(∫

Ωk+1

F βk+1 dm
)1− 2

n

6
γ2n−1

n−2 4k+2

µ̂R2

(
5R
2

)2n−2 ∫
Ωk
F βk dm .

Hence for p = n−2
n−1β0, by iteration we get

lim
k→∞

(∫
Ωk+1

F βk+1 dm
)κ−n

6 Γ
∫

Ω#
R

F 2α0 dm,

where

Γ =
(

16γ2n−1
n−2

µ̂R2

(
5R
2

)2n−2
)∑∞

`=0
κ−`

4
∑∞

`=0
`κ−` .

But

lim
k→∞

(∫
Ωk+1

F βk+1 dm
)κ−n

= sup
ΩR

F β0−nn−1
n−2

= sup
ΩR

h−(p−n)n−1
n−2 b−(p−n)(n−1)|db|p−n

> γ−(p−n)n−1
n−2 (2R)−(p−n)(n−1) sup

ΩR
|db|p−n

and
Γ = c(n)γn

n−1
n−2 µ̂−

n
2 Rn(n−2).
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Moreover ∫
Ω#
R

F 2α0 dm =
∫

Ω#
R

h−p
n−1
n−2 b−p(n−1)|db|ph2 dvg

6

(
2
R

)p(n−1) ∫
Ω#
R

|db|p dvg .

Hence after a bit of arithmetic, we obtain:

sup
ΩR
|db|p−n 6 c(n)4pγp

n−1
n−2 +n−2

µ
n
2 Rn

∫
Ω#
R

|db|p dvg . �

3. Case of closed manifolds

In this section, we elaborate on a recent result of Qi S. Zhang and
M. Zhu [59] in order to obtain geometric and topological estimates based
on the Kato constant of the Ricci curvature.

3.1. A differential inequality

In [59, p. 486], the authors prove the following:

Proposition 3.1. — Let (Mn, g) be a complete Riemannian manifold,
let u : [0, T ]×M → R be a positive solution of the heat equation,

∂u

∂t
+ ∆u = 0,

and J : [0, T ]×M → R an auxiliary positive function. The function

Q := αJ |d log u|2 − ∂

∂t
log u

satisfies(
∂

∂t
+ ∆

)
Q− 2〈d log u,dQ〉

6 α|d log u|2
(
∂J

∂t
+ ∆J + 5

δ

|dJ |2

J
− 2 Ric− J

)
− (2− δ)αJ |∇d log u|2 + δαJ |d log u|4 .
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3.2. Finding a good gauge function

We are now looking for a solution of the equation

(3.1)
{

∂
∂tJ + ∆J + 5

δ
|dJ|2
J − 2 Ric− J = 0,

J(0, x) = 1.

If we let

I := J−
5−δ
δ or J = I−

δ
5−δ ,

the equation is equivalent to{
∂
∂tI + ∆I = 2 5−δ

δ Ric− I,
I(0, x) = 1.

Using Duhamel’s formula, this equation can be converted into the integral
equation

I(t, x) = 1 + 25− δ
δ

∫ t

0

∫
M

H(t− s, x, y) Ric−(y)I(s, y) dvg(y)ds.

Recall the definition of the (parabolic) Kato constant of the function Ric−:

kT (Ric−) = sup
x∈M

∫ T

0

∫
M

H(t, x, y) Ric−(y) dvg(y)dt

=

∥∥∥∥∥
∫ T

0
e−t∆ Ric− dt

∥∥∥∥∥
∞

.

An easy application of the fixed point theorem in L∞([0, T ] ×M) yields
that if δ ∈ (0, 1) and kT (Ric−) 6 δ

16 then the above integral equation has
a unique solution I ∈ L∞([0, T ]×M) with

1 6 I(t, x) 6 1 + 45− δ
δ

kT (Ric−) 6 e4 5−δ
δ kT (Ric−).

Hence, we have proved

Lemma 3.2. — If δ ∈ (0, 1) and kT (Ric−) 6 δ
16 , then the equation (3.1)

has a unique positive solution J and this solution satisfies:

e−4 kT (Ric−) 6 J(t, x) 6 1.
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3.3. The gradient estimate of Li and Yau

We now assume that M is closed, and we use the gauging function J

given by Lemma 3.2. Let (t0, x0) be a point where the function tQ reaches
its maximum on [0, T ]×M . We get:

Q(t0, x0)
t0

6

(
∂

∂t
+ ∆

)
Q− 2〈d log u, dQ〉

6 −(2− δ)αJ |∇d log u|2 + δαJ |d log u|4.

Let α ∈ (0, 1) and assume that Q(t0, x0) > 0. We get at (t0, x0):

|∇d log u|2 > 1
n

(∆ log u)2 = 1
n

(
|d log u|2 − ∂

∂t
log u

)2
,

= 1
n

(
Q+ (1− αJ)|d log u|2

)2
,

>
1
n
Q2 + (1− αJ)2

n
|d log u|4.

(3.2)

So that

0 6 Q(t0, x0)
t0

(
1− (2− δ)αJ

n
t0Q(t0, x0)

)
+
(
δ − (2− δ) (1− αJ)2

n

)
αJ |d log u|4.

Because 0 6 J 6 1, we have

−(1− αJ)2 6 −(1− α)2.

Assuming that
δ <

2
n+ 1 ,

we choose α = 1−
√

nδ
2−δ , and get

t0Q(t0, x0) 6 n

(2− δ)αJ .

We now make several choices: Assuming that kT (Ric−) 6 1
16n , we let δ =

16 kT (Ric−) and α = 1−
√

nδ
2−δ . With these choices, we have

αJ > e−4 kT (Ric−)
(

1− 4
√
n kT (Ric−)

)
> e−8

√
n kT (Ric−),

and
(2− δ)αJ > 2

(
1− δ

2

)
αJ > 2e−12 kT −4

√
n kT (Ric−).
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Since

12 kT (Ric−) + 4
√
n kT (Ric−) 6 4

√
kT (Ric−)

(
3

4
√
n

+
√
n

)
6 8
√
n kT (Ric−),

we have shown the following proposition.

Proposition 3.3. — Let (Mn, g) be a closed Riemannian manifold.
Assume that, for some T > 0,

kT (Ric−) = sup
x∈M

∫ T

0

∫
M

H(t, x, y) Ric−(y) dvg(y)dt 6 1
16n.

Let u : [0, T ]×M → R be a positive solution of the heat equation
∂u

∂t
+ ∆u = 0.

Then, on [0, T ]×M , we have

e−8
√
n kT (Ric−) |du|2

u2 − 1
u

∂u

∂t
6

n

2te
8
√
n kT (Ric−),

and
e−2 |du|2

u2 − 1
u

∂u

∂t
6

n

2te
2.

3.4. Heat kernel estimate

Throughout the remaining part of this section, we make the following
general assumptions

(?) (Mn, g) is a closed Riemannian manifold
with diameter D := diam(M, g).

We define
• T (M, g) to be the largest time T such that

kT (Ric−) 6 1
16n,

• the scale invariant geometric quantity ξ(M, g) by ξ2(M, g) ×
T (M, g) = D2,

• ν := e2n.

For instance, if we have Riccig > −(n− 1)κ2g, then ξ(M, g) 6 4nκD.
Following the arguments of P. Li and S-T. Yau [42], we easily get:

TOME 69 (2019), FASCICULE 7



3134 Gilles CARRON

Lemma 3.4. — Assume (?). Let u : [0, T (M, g)]×M → R be a positive
solution of the heat equation. For 0 6 s 6 t 6 T (M, g) and x, y ∈M ,

u(s, x) 6
(
t

s

) ν
2

u(t, x),

and

u(s, x) 6
(
t

s

) ν
2

e2 d
2(x,y)
t−s u(t, y).

Proof. — The first assertion is a direct consequence of Proposition 3.3,
indeed we have

e−2 |du|2

u
6
∂u

∂t
+ ν

2tu = t−
ν
2
∂

∂t

(
t
ν
2 u
)
.

Concerning the second statement, we introduce γ : [0, t − s] → M a mini-
mizing geodesic joining y to x and we define

φ(τ) = log u (t− τ, γ(τ)) ,

so that φ(0) = log u (t, y) and φ(t− s) = log u (s, x). We have

φ̇(τ) = − 1
u

∂u

∂t
+ 〈γ̇,du〉

6
ν

2(t− τ) − e
−2 |du|2

u2 + 〈γ̇,du〉

6
ν

2(t− τ) + e2

4 |γ̇|
2 = ν

2(t− τ) + e2d2(x, y)
4(t− s)2

6
ν

2(t− τ) + 2d2(x, y)
(t− s)2 .

(3.3)

Integrating this, we get

u(s, x)
u(t, y) 6

(
t

s

) ν
2

e2 d2(x,y)
t−s . �

This result leads to heat kernel estimates.

Theorem 3.5. — Assume (?). There is a constant cn such that, for
0 6 s 6 t 6 T (M, g)/2 and y ∈ B(x,

√
t),

H(s, y, y) 6
(
t

s

) ν
2 cn

volB(x,
√
t)
.

Moreover for any s > T (M, g)/2 and x, y ∈M , we have:

H(s, x, y) 6 c
1+ξ(M,g)
n

volM .
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Proof. — We let T = T ((M, g) and ξ = ξ(M, g). Let γn = 2 ν2 e2. Using
Lemma 3.4, we know that if d(x, y) 6

√
t and t 6 T/2, then

H(t, x, x) 6 γnH(2t, x, y) 6 γ2
nH(3t, x, x).

The function t 7→ H(t, x, x) is nonincreasing, hence

γ−1
n H(t, x, x) 6 H(2t, x, y) 6 γnH(t, x, x),

and
γ−2
n H(t, x, x) 6 H(t, y, y) 6 γ2

nH(t, x, x).
Integrating the inequality, H(t, x, x) 6 γnH(2t, x, y), over y ∈ B(x,

√
t)

and using that∫
B(x,

√
t)
H(2t, x, y) dvg(y) 6

∫
M

H(2t, x, y) dvg(y) = 1,

we get
H(t, x, x) 6 γn

volB(x,
√
t)
,

and, for y ∈ B(x,
√
t),

H(t, y, y) 6 γ3
n

volB(x,
√
t)
.

The first part of the Lemma 3.4 implies the first assertion.
Concerning the second assertion: let t 6 T/2 and let y, z ∈ M be such

that d(z, y) 6
√
t. Then, for any σ > 0,

H(σ + t, x, y) 6 γnH(σ + 2t, x, z).

Assume now s > T/2.
If D 6

√
T/2, using t = D2 and σ = s− t, we get for all y, z ∈M :

H(s, x, y) 6 γnH(s+ t, x, z).

Integrating this inequality over z ∈M , we get

H(s, x, y) 6 γn
volM .

Assume now that
√
T/2 6 D, and let N ∈ N be such (N −1)

√
T/2 6 D 6

N
√
T/2, that is to say

(N − 1) 6
√

2ξ 6 N.

Then we can find y0 = y, y1, . . . , yN = z with

d(yi, yi+1) 6
√
T/2.

The inequalities

H(s+ iT/2, x, yi) 6 γnH(s+ (i+ 1)T/2, x, yi+1), i ∈ {0, . . . , N − 1}
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yield
H (s, x, y) 6 γNn H(s+NT/2, x, z).

Integrating over z ∈M , we get

H (s, x, y) 6 γNn
volM .

Recall that N 6 1 +
√

2ξ(M, g), the second assertion of Theorem 3.5
follows. �

3.5. Geometric consequences

3.5.1. Eigenvalue estimate

Proposition 3.6. — Assume (?). There is a positive constant cn such
that the first nonzero eigenvalue of the Laplacian on (M, g) satisfies

λ1 >
c
−1−ξ(M,g)
n

D2 .

Proof. — We still let ξ = ξ(M, g). Let f : M → R be a L2 normalized
eigenfunction associated with λ1:

∆f = λ1f and ‖f‖2 = 1.

Then (t, x) 7→ e−λ1tf(x) is a solution of the heat equation and according
to the Bochner formula, the function

u(t, x) := e−λ1t|df |(x)

satisfies:
∂u

∂t
+ ∆u 6 Ric− u.

Let τ = min
{
T (M,g)

2 , D2
}
. The function

U(s, x) =
∫
M

H(τ − s, x, y)u(s, y) dvg(y)

satisfies
∂U

∂s
(s, x) =

∫
M

H(τ − s, x, y)
(
∂u

∂s
+ ∆u

)
(s, y) dvg(y)

6
∫
M

H(τ − s, x, y) Ric−(y)u(s, y) dvg(y).
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Hence integrating this inequality, we get:

U(τ, x)− U(0, x) = u(τ, x)−
∫
M

H(τ, x, y)u(0, y) dvg(y)

6
∫

[0,τ ]×M
H(τ − s, x, y) Ric−(y)u(s, y) dvg(y)ds.

If we let
L := ‖df‖∞,

then using the estimate on the heat kernel Theorem 3.5, we have

Le−τλ1 6
1

16nL+
∫
M

H(τ, x, y)u(0, y) dvg(y)

6
1

16nL+ cne
cnξ(M,g)

volM

∫
M

u(0, y) dvg(y)

6
1

16nL+ cne
cnξ(M,g)
√

volM
‖u‖2

6
1

16nL+ cne
cnξ(M,g)
√

volM

√
λ1.

We have to distinguish two cases.
• First case: e−τλ1 6 1

8n , i.e.,

λ1 >
log(8n)

τ
>

log(8n)
D2 .

• Second case: e−τλ1 > 1
8n , then we get that

L 6 16ncne
cnξ(M,g)
√

volM

√
λ1.

As
∫
M
f(y) dvg(y) = 0, we can find o ∈ M such that f(o) = 0 and

then we have for any x ∈M :

|f(x)|2 6 |f(x)− f(o)|2 6 L2D2.

Hence

1 6 L2D2 vol(M) 6 256n2c2ne
2cnξ(M,g)D2λ1. �

3.5.2. Sobolev inequality

Proposition 3.7. — Assume (?). There is a constant cn such that we
have the following Sobolev inequality: ∀ ψ ∈ C∞(M),

vol
2
ν (M)‖ψ‖22ν

ν−2
6 c1+ξ(M,g)

n D2‖dψ‖22 + ‖ψ‖22.
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Proof. — We have already shown that if x ∈M and t ∈ [0, τ ], then

H(t, x, x) 6
(τ
t

) ν
2 cne

cnξ(M,g)

volM .

Defining

Γ :=
( ν

2e

)ν τ ν2 cnecnξ(M,g)

volM ,

we can conclude that, for all t > 0 and x ∈M ,

H(t, x, x)e− t
τ 6 Γ t− ν2 .

According to N. Varopoulos ([55]), there is a constant c which depends only
on n, such that we have the Sobolev inequality: ∀ ψ ∈ C∞(M),

‖ψ‖22ν
ν−2
6 cΓ 2

ν

(
‖dψ‖22 + 1

τ
‖ψ‖22

)
.

If ψ ∈ C∞(M) is such that
∫
M
ψ(y) dvg(y) = 0 then we have

‖ψ‖22 6 λ−1
1 ‖dψ‖22.

But
cΓ 2

ν
1
τ
λ−1

1 6 cn
D2ecnξ(M,g)

vol
2
ν M

,

hence
max{cΓ 2

ν , cΓ 2
ν

1
τ
λ−1

1 } 6 cn
D2ecnξ(M,g)

vol
2
ν M

.

We finally get that, for all ψ ∈ C∞(M),∥∥∥∥ψ − 1
volM

∫
M

ψ

∥∥∥∥2

2ν
ν−2

6 cn
D2ecnξ(M,g)

vol
2
ν M

‖dψ‖22. �

3.5.3. The doubling condition

Proposition 3.8. — Assume (?). There is a constant cn such that if
x ∈M and 0 < r < R 6 D, then

volB(x,R)
Rν

6 c1+ξ(M,g)
n

volB(x, r)
rν

.

Proof. — When 0 < s 6 t 6 τ and y ∈ B(x,
√
t), we have already shown

that

H(s, y, y) 6
(
t

s

) ν
2 γn

volB(x,
√
t)
.

Hence, when Ω ⊂ B(x,
√
t), we have

e−λ1(Ω)s 6
∫

Ω
HΩ(s, y, y)dy 6

∫
Ω
H(s, y, y)dy 6

(
t

s

) ν
2 γn vol Ω

volB(x,
√
t)
.
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Assuming that

vol Ω 6 1
2γn

volB(x,
√
t),

one gets

e−λ1(Ω)t 6
1
2 .

Choosing s = ln(2)/λ1(Ω) 6 t, we obtain(1)

1
2 6 γn (t λ1(Ω))

2
ν

vol Ω
volB(x,

√
t)
.

Let 0 < r 6 R 6
√
τ , we distinguish two cases.

• First case: volB(x, r) > 1
2γn volB(x,R).

• Second case: volB(x, r) 6 1
2γn volB(x,R). In this case, we have

shown that, for all Ω ⊂ B(x, r),

λ1(Ω) > 1
R2

(
vol Ω

2γn volB(x,R)

)− 2
ν

.

From [7], we know that the following Sobolev inequality holds,

∀ ψ ∈ C∞0 (B(x, r)) : ‖ψ‖22ν
ν−2
6 cn

R2

(volB(x,R))
2
ν

‖dψ‖22,

and according to Theorem 2.8, we get the lower bound

volB(x, r) > cn
volB(x,R)

Rν
rν .

We have shown that if ρ =
√
τ , then for all 0 < r < R 6 ρ,

volB(x, r)
volB(x,R) > min

{
1

2γn
, cn

rν

Rν

}
> min

{
cn,

1
2γn

}
rν

Rν
.

In fact this local doubling condition implies a global one: we claim that
there is a constant cn such that if θ > 1 and r ∈ (0, ρ), then

volB(x, θr) 6 c1+θ
n volB(x, r)

This follows for instance from [36, Subsection 2.3] (however look for in-
stance at the hypothesis of [3, Theorem 1.5]). Because we need an explicit
estimate, we explain the proof of that fact.

(1)where γn is a constant which only depends on the dimension and whose value can
change from one line to another.
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Lemma 3.9. — Assume that (X, d, µ) is a measure metric space which
satisfies the local doubling condition: for some r0 > 0, γ > 0 and for all
r ∈ [0, r0],

µ(B(x, 2r)) 6 γµ(B(x, r)).

Then for every θ > 1 and r ∈ [0, r0]:

µ(B(x, θr)) 6 γ50+50θµ(B(x, r))

Proof of Lemma 3.9. — By scaling we can assume that r0 = 1. Let
R > 0, we have

B

(
x,R+ 1

20

)
=

⋃
p∈B(x,R)

B

(
p,

1
20

)
.

Using Vitali’s covering lemma, we can find a family of pairwise disjoint
balls B(pα, 1/20) such that

B (x,R+ 1/20) ⊂
⋃
α

B (pα, 1/4) .

Hence, using the doubling condition,

µ((B (x,R+ 1/20)) 6
∑
α

µ((B (pα, 1/4))

6 γ3
∑
α

µ((B (pα, 1/32)) .

But the balls B (pα, 1/32) are disjoints and included in B
(
x,R+ 1

32
)
; recall

that each pα ∈ B (x,R), hence

µ((B (x,R+ 1/20)) 6 γ3µ((B (x,R+ 1/32)) .

So that if N ∈ N \ {0}:

µ((B (x,N)) 6 γ3µ((B (x,N − 1/10))

6 γ30µ((B (x,N − 1))

6 γ30N−30µ((B (x, 1)) . �

End of the proof of Proposition 3.8. —

volM
Dν

6 c
1+D

ρ
n

ρν

Dν

volB(x, ρ)
ρν

6 c1+2ξ(M,g)
n

volB(x, ρ)
ρν

. �

Note that Proposition 3.8 yields the following global bound on the heat
kernel.
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Corollary 3.10. — Assume (?). There is a constant cn such that, if
x ∈M and t > 0, then

H(t, x, x) 6 c
1+ξ(M,g)
n

volB(x,
√
t)
.

3.5.4. Poincaré inequality

Proposition 3.11. — Assume (?). There is a constant cn such that any
ball B of radius r 6 min{D, (T (M, g)/2)2} satisfies the Poincaré inequality:

∀ ψ ∈ C∞(B) , ‖ψ − ψB‖2 6 cnr ‖dψ‖2 .

Furthermore, for any ball B of radius r:

∀ ψ ∈ C∞(B) ,
∥∥∥∥ψ − ∫

B

ψ
dvg

volB

∥∥∥∥
2
6 c1+ξ(M,g)

n r ‖dψ‖2 .

Proof. — According to the results of L. Saloff-Coste and A. Grigor’yan
[29, 51, 52], we only need to find a positive constant εn such that, for t 6 τ
and all y ∈ B(x,

√
t),

εn

volB(x,
√
t)
6 H(t, x, y).

But we already know that if t 6 τ and y ∈ B(x,
√
t), then

c−1
n H(t, x, y) 6 H(t, x, x) 6 cnH(t, x, y).

Hence for all δ ∈ (0, 1) :

cn volB(x,
√
t)H(t, x, y) > volB(x,

√
t)H(t, x, x)

>
∫
B(x,

√
t)
H(t, x, z) dvg(z)

>

(
δ

2

)ν ∫
B(x,

√
t)
H (δt/2, x, z) dvg(z)

=
(
δ

2

)ν (
1−

∫
M\B(x,

√
t)
H(δt/2, x, z) dvg(z)

)
.

Our Harnack type estimate (Lemma 3.4) yields that if ξ ∈ B(x,
√
δt) then

H(δt/2, x, z) 6 CnH(δt, ξ, z),
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so that we get the estimate:∫
M\B(x,

√
t)
H(δt/2, x, z) dvg(z)

6 C
∫
B(x,

√
δt)×(M\B(x,

√
t))
H(δt, ξ, z)dvg(ξ) dvg(z)

volB(x,
√
δt)

.

Moreover∫
B(x,

√
δt)×(M\B(x,

√
t))
H(δt, ξ, z) dvg(ξ) dvg(z)

=
∞∑
k=1

∫
B(x,

√
δt)×(B(x,(k+1)

√
t)\B(x,k

√
t))
H(δt, ξ, z) dvg(ξ) dvg(z).

Assume that A and B are two Borel sets in M , with finite volume, and
such that, for some R > 0 and all (x, y) ∈ A × B, d(x, y) > R > 0. Then,
Davies–Gaffney estimate [22] yields that∫

A×B
H(t, ξ, z) dvg(ξ) dvg(z) 6

√
volg A volg B e−

R2
4t .

So that when k2 > δ, we get∫
B(x,

√
δt)×(B(x,(k+1)

√
t)\B(x,k

√
t))
H(δt, ξ, z) dvg(ξ) dvg(z)

6 e−
(k−
√
δ)2

4δ

(
volB(x,

√
δt)× volB(x, (k + 1)

√
t)
) 1

2
.

Lemma 3.9 implies that

volB(x, (k + 1)
√
t) 6 ecn+cn k+1√

δ volB(x,
√
δt),

and, one gets∫
B(x,

√
δt)×(M\B(x,

√
t))
H(δt, ξ, z) dvg(ξ) dvg(z) 6

∞∑
k=1

e
cn+cn k+1√

δ
− (k−

√
δ)2

4δ .

We can choose δ = δn to be small enough so that this sum is small enough,
and then we get

cn volB(x,
√
t)H(t, x, y) >

(
δn
2

)ν
. �
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3.5.5. First Betti number

Proposition 3.12. — Assume (?). There is a constant cn such that
b1(M) 6 n+ 1

4 + ξ(M, g)cξ(M,g)
n . Moreover there is a constant εn > 0 such

that if ξ(M, g) < εn, then b1(M) 6 n.

Proof. — This result relies on an improvement of the upper bound on
the heat kernel. We have shown that∥∥∥e−T (M,g)

2 ∆
∥∥∥
L2→L∞

6
c
1+ξ(M,g)
n√

volM
.

Hence if P is the L2-projection on the vector space of constant function
then∥∥∥e−T (M,g)∆ − P

∥∥∥
L2→L∞

=
∥∥∥e−T (M,g)

2 ∆
(
e−

T (M,g)
2 ∆ − P

)∥∥∥
L2→L∞

6
∥∥∥e−T (M,g)

2 ∆
∥∥∥
L2→L∞

∥∥∥(e−T (M,g)
2 ∆ − P

)∥∥∥
L2→L2

6
c
1+ξ(M,g)
n√

volM
λ
− 1

2
1

∥∥∥d
(
e−

T (M,g)
2 ∆

)∥∥∥
L2→L2

6
c
1+ξ(M,g)
n√

volM
λ
− 1

2
1

1√
T (M, g)

Recall our lower bound on λ1, that T (M, g)ξ2 = D2 and that

‖P‖L2→L∞ = 1√
volM

.

Then ∥∥∥e−T (M,g)∆
∥∥∥
L2→L∞

6
∥∥∥e−T (M,g)∆ − P

∥∥∥
L2→L∞

+ ‖P‖L2→L∞

6
1 + ξc

1+ξ(M,g)
n√

volM
.

If α ∈ C∞(T ∗M) satisfies dα = d∗α = 0, then the Bochner formula implies
that

∆|α| 6 Ric− |α|.
Hence

|α|(x) 6
(
e−T (M,g)∆|α|

)
(x) +

∫ T (M,g)

0

(
e−s∆ Ric− |α|

)
(x)ds

6
1 + ξc

1+ξ(M,g)
n√

volM
‖α‖2 + kT (M,g)(Ric−)‖α‖∞

6
1 + ξc

1+ξ(M,g)
n√

volM
‖α‖2 + 1

16n‖α‖∞.
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Finally we obtain that for any α ∈ H1(M, g) = {α ∈ C∞(T ∗M) : dα =
d∗α = 0}:

‖α‖∞ 6
1

1− 1
16n

1 + ξ(M, g)c1+ξ(M,g)
n√

volM
‖α‖2.

The Grothendieck theorem [50, Theorem 5.1] (see also [39, Lemma 11]
or [28, Théorème 4]) yields that

b1(M) = dimH1(M, g) 6 n
(

1 + ξ(M, g)c1+ξ(M,g)
n

1− 1
16n

)2

.

Then a bit of arithmetic implies the proposition. �

3.6. Euclidean type estimate

3.6.1. Improvement

We now assume that

(3.4) kT (Ric−) 6 1
16n and

∫ T

0

√
ks(Ric−)
s

ds 6 Λ.

According to Proposition 3.3, if u : [0, T ]×M → R+ is a positive solution
of the heat equation, then

− 1
u

∂u

∂t
6

n

2t + Cn

√
kt(Ric−)
t

.

Hence if 0 < s < t 6 T , then

u(s, x) 6
(
t

s

)n
2

eΛCnu(t, x).

In particular, if 0 < s < t 6 T and x ∈M , then the heat kernel satisfies

s
n
2 H(s, x, x) 6 eΛCnt

n
2 H(t, x, x).

And looking at the behavior when s→ 0+, we get
e−ΛCn

t
n
2
6 H(t, x, x).

Using the upper bound of (3.5), we get that, for 0 < t 6 τ and x ∈M ,

H(s, x, x) 6 eΛCn

t
n
2

cne
cnξ(M,g)

volM ,

and
volB

(
x,
√
t
)
6 cne

ΛCnt
n
2 .

As a consequence we can improve Propositions (3.7) and (3.8).
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Proposition 3.13. — Let (Mn, g) be a closed Riemannian manifold,
such that, for some T > 0, the parabolic Kato constant of Ricci− satis-
fies (3.4). Then,

• The Euclidean Sobolev inequality holds,

∀ ψ ∈ C∞(M) : vol
2
n (M)‖ψ‖22n

n−2
6 c1+ξ(M,g)+Λ

n D2‖dψ‖22 + ‖ψ‖22.

• There is a constant cn such that, for x ∈M and 0 < r 6 D,

c1+ξ(M,g)+Λ
n

volM
Dn

6
volB(x, r)

rn
6 c2+ξ(M,g)+Λ

n .

3.6.2. Conditions insuring the estimate (3.4)

If p > 1 and T > 0, we assume that I is such that

(3.5) (diamM)2p−2 sup
x∈M

∫ T

0
H(s, x, y) Ricp−(y) dvg ds 6 Ip.

Let q = p/(p − 1). For 0 6 T 6 T and x ∈ M , using Hölder’s inequality,
we get∫ T

0
H(s, x, y) Ric−(y) dvg ds 6 T

1
q

(∫ T

0
H(s, x, y) Ricp− dvg ds

) 1
p

6 I
(
T

D2

) 1
q

.

Hence for
T = min

{
T, (16nI)−qD2

}
,

one gets

kT (Ric−) 6 1
16n and

∫ T

0

√
ks(Ric−)
s

ds 6 q/(2
√
n).

Hence one gets the following

Theorem 3.14. — Let (Mn, g) be a closed Riemannian manifold of
dimension n and let p > 1 and q = p/(p− 1). There is a constant γ, which
depends only of n, p, such that if (3.5) holds for some I, and ξ is defined by

ξ = max
{
D√
T
, (16nI)q/2

}
,

then the following properties hold.
(1) The first nonzero eigenvalue of the Laplacian satisfies

λ1 >
γ−1−ξ

D2 ,
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(2) b1(M) 6 γ1+ξ,
(3) for any 0 < r 6 R 6 D:

volB(x,R)
Rn

6 γ1+ξ volB(x, r)
rn

6 γ2+ξ,

(4) the Euclidean Sobolev inequality,

∀ ψ ∈ C∞(M) : vol
2
n (M)‖ψ‖22n

n−2
6 γ1+ξD2‖dψ‖22 + ‖ψ‖22,

is satisfied.

3.7. Q-curvature and bound on the Kato constant

It turns out that the Q−curvature gives a natural control on the Kato
constant of the Ricci curvature. Recall that when (M, g) is Riemannian
manifold of dimension n > 4, the Q−curvature is defined by:

Qg = 1
2(n− 1)∆ Scalg −

2
(n− 2)2 |Ricci |2 + cn Scal2g,

where cn = n3−4n2+16n−16
8n(n−1)2(n−2)2 . Recall that the Paneitz operator describes the

conformal change of the Q-curvature. It is a differential operator of or-
der 4. Recently, M. Gursky and A. Machioldi ([35]) have discovered some
new maximum principles for the Paneitz operator when the Q-curvature
is nonnegative and the scalar curvature is positive. It turns out that these
hypotheses yield a bound on the L2 Kato constant of Ric−.

Proposition 3.15. — Let (Mn, g) be a closed Riemannian manifold of
dimension n > 4 such that:

0 6 Qg and 0 6 Scalg 6 κ2/D2.

Then the conclusion of Theorem 3.14 are satisfied for ξ = εn κ.

Proof. — Indeed if T > 0, as Qg > 0, we get:
2

(n− 2)2

∫
[0,T ]×M

H(s, x, y)|Ricci |2(y)dsdvg(y)

6
1

2(n− 1)
(
Scalg(x)−

(
eT∆ Scalg

)
(x)
)

+ cn
κ4T

D4

6
1

2(n− 1)
κ2

D2 + cn
κ4T

D4 .

If we choose T = εnD
2/κ2, one gets

D2 sup
x∈M

∫ T

0
H(s, x, y) Ricp−(y) dvg ds 6 αnκ2
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and
(kT (Ric−))2 6 αnεn. �

3.8. Localization

It follows from ([58, Proof of Theorem 1.1]), that the results of this
section can be localized on a geodesic ball provided one gets a good cut-off
function:

Proposition 3.16. — Let (Mn, g) be a closed Riemannian manifold of
dimension n and let B(x,R) ⊂ Ω be a geodesic ball included in a relatively
compact open subset Ω. Assume that there is a smooth function ξ with
compact support in Ω such that ξ = 1 on B(x,R) and

|dξ|2 + |∆ξ| 6 c/R2.

Let HΩ be the heat kernel on Ω with the Dirichlet boundary condition.
Consider the assumptions,

(A) For all x ∈ Ω:∫
[0,ηR2]×Ω

HΩ(s, x, y) Ric−(y) dvg(y)ds 6 1
16n.

(B) For some p > 1, Λ ∈ R+ and for all x ∈ Ω:∫
[0,ηR2]×Ω

HΩ(s, x, y) Ricp−(y) dvg(y)ds 6 ΛR2p−1.

Under the condition (A) or (B), there is a constant γ which depends only
on n, c, η or on n, c, p,Λ such that

(1) For any x ∈ B(p,R/2) and 0 < t 6 R2 then

H(t, x, x) 6 γ

volB(x,
√
t)
.

(2) For any x ∈ B(p,R/2) and 0 6 r 6 R/2:

volB(x, r) 6 γ volB(x, 2r)

(3) For any x ∈ B(p,R/2) and 0 6 r 6 R/2, the ball B = B(x, r)
satisfies the Poincaré inequality:

∀ ψ ∈ C∞(B(x, r)) , ‖ψ − ψB‖L2(B) 6 γr ‖dψ‖L2(B) .

Moreover if the condition (B) is satisfied then, for any x ∈ B(p,R/2) and
0 6 s 6 r 6 R/2,

volB(x, r)
rn

6 γ
volB(x, s)

sn
6 γ2ωn.
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4. Volume growth estimate: global results

4.1. The setting

Thourough this section, (Mn, g) is a complete manifold with dimension
n > 3. We also assume

(i) that (Mn, g) satisfies the Euclidean Sobolev inequality (Sob) with
constant µ ,

(ii) that there is some δ > 0 and γ > 1 such that the Schrödinger
operator ∆ − (1 + δ)(n − 2) Ric− is gaugeable with gaugeability
constant γ.

According to Remark 2.16, we can assume that

0 < δ <
(n− 2)2

n(3n− 4) and δ <
1

n− 2

so that

2 6 2n− 1
n− 2

1
1 + δ

and 2(n− 1) δ

1 + δ
< (n− 2)

√
δ

1 + δ
.

We fix o ∈M , and consider the Green kernel with pole at o and the function
b such that

G(o, x) =: 1
b(x)n−2 ,

where we choose the normalization

∆xG(o, x) = (n− 2) vol Sn−1δo,

so that b(x) ' d(o, x), near o.
For p 6 (1 + δ)(n − 2), we denote the Green kernel of the Schrödinger

operator ∆− pRic− by Gp.

4.2. A preliminary result

Proposition 4.1. — With the above notation,

|db|(1+δ)(n−2)(x)
bn−2(x) 6 G(1+δ)(n−2)(o, x).
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4.3. Proof of Theorem 1.4, assuming Proposition 4.1

Proof. — The gaugeability of the Schrödinger operator ∆ − (1 + δ) ×
(n−2) Ric− and the Sobolev inequality, together with Theorem 2.18 imply
that

G(1+δ)(n−2)(o, x) 6 cnγ
n

µ
n
2

1
d(o, x)n−2 .

Let r(x) := d(o, x) so that we have

(4.1) |db|(x)
b

1
1+δ (x)

6

(
cnγ

n

µ
n
2

) 1
(1+δ)(n−2) 1

r
1

1+δ (x)
.

Integrating along a minimizing geodesic joining o and x, we get

b(x)
δ

1+δ 6

(
cnγ

n

µ
n
2

) 1
(1+δ)(n−2)

r(x)
δ

1+δ ,

and
b(x) 6 Γ r(x),

where

Γ =
(
cnγ

n

µ
n
2

) 1
δ(n−2)

.

Hence the geodesic ball B(o,R) is included in the sub-level set {b 6 ΓR}
and from Theorem 2.8(2b), we have

volB(o,R) 6 Γnµ−
n
n−2 Rn. �

Remark 4.2. — By the estimate (4.1), we also have ‖db‖∞ 6 Γ.

In order to prove Proposition 4.1, we need the following lemma.

Lemma 4.3. — Let n−2
n−1 6 p 6 (1 + δ)(n− 2) and α > 2. If∫
M\B(o,1)

(
|db|p

bn−2

)α
dvg <∞

then
|db|p(x)
bn−2(x) 6 Gp(o, x).

Proof of Lemma 4.3. — Indeed by (2.12), we know that

(∆− pRic−) |db|
p

bn−2 6 0 on M \ {o}.
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The function x 7→ |db|p(x)
bn−2(x) is (∆ − pRic−)-subharmonic on the ball

B(x, d(o, x)/2). The gaugeability of the operator ∆ − pRic− and Theo-
rem 2.18(3) imply that if x ∈M \ {o}, then

|db|p(x)
bn−2(x) 6

C

d(o, x)nα

(∫
B(x,d(o,x)/2)

(
|db|p

bn−2

)α
dvg

) 1
α

.

Hence
lim
∞

|db|p

bn−2 = 0.

According to what we said in Subsection 2.6.1, there is some τ(ε) such that
limε→0 τ(ε) = 0, and

|db|p(x)
bn−2(x) 6 (1 + τ(ε))Gp(o, x) on ∂B(o, ε).

The Maximum principle implies then
|db|p(x)
bn−2(x) 6 (1 + τ(ε))Gp(o, x) + sup

z∈∂B(o,R)

|db|p(z)
bn−2(z) on B(o,R) \B(o, ε).

Letting ε→ 0 and R→∞, the Lemma 4.3 is proved. �

The next step is a bound on the log derivative of the Green kernel.

Lemma 4.4. — For any x ∈M :

|db|n−2(x)
bn−2(x) 6 Gn−2(o, x).

Proof of Lemma 4.4. — Let p0 = n−2
n−1 . We have already noticed that∫

M\B(o,1)
|dxG(o, x)|2 dvg(x) <∞,

hence ∫
M\B(o,1)

(
|db|p0

bn−2

)2n−1
n−2

dvg <∞

According to Lemma 4.3, we have
|db|p0(x)
bn−2(x) 6 Gp0(o, x).

Our main tool is the very general Hardy inequality (Proposition 2.29):
∀ ψ ∈ C∞0 (M),

(n− 2)2

4

∫
M

|db|2

b2
ψ2 dvg 6

∫
M

|dψ|2 dvg .
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The Schrödinger operator ∆− (1 + δ)(n− 2) Ric− is gaugeable hence non-
negative, and we have the following Hardy type inequality, ∀ ψ ∈ C∞0 (M),

(n− 2)2

4
δ

1 + δ

∫
M

|db|2

b2
ψ2 dvg 6

∫
M

[
|dψ|2 − (n− 2) Ric− ψ2]dvg .

When p ∈ [p0, n − 2], using the function ψ = ξ |db|
p

bn−2 where ξ is a Lipschitz
function with compact support in M \ {o} one gets

(4.2) (n− 2)2

4
δ

1 + δ

∫
M

|db|2+2p

b2(n−1) ξ
2 dvg 6

∫
M

|dξ|2 |db|
2p

b2(n−2) dvg .

Assume that for some p ∈ [p0, n− 2], we have

|db|p(x)
bn−2(x) 6 Gp(o, x).

The operator ∆−pRic− being gaugeable, we know that limx→∞Gp(o, x) =
0. Hence the measure Gp(o, x)2 dvg(x) is parabolic on M \ B(o, 1) (see
Proposition 2.28), so that the inequality (4.2) is valid for ξ a Lipschitz
function that is zero in B(o, 1/2) and is equal to 1 outside B(o, 1). In
particular, one gets ∫

M\B(o,1)

|db|2+2p

b2(n−1) dvg <∞.

If p̄ = (1 + p)n−2
n−1 one gets∫

M\B(o,1)

(
|db|p̄

bn−2

)2n−1
n−2

dvg <∞

and with Lemma 4.3, one gets

|db|p̄(x)
bn−2(x) 6 Gp̄(o, x).

If we let pk = (n − 2) −
(
n−2
n−1

)k
(n− 2− p0) = (1 + pk−1) n−2

n−1 , our argu-
mentation yields that for all k ∈ N:

|db|pk(x)
bn−2(x) 6 Gpk(o, x) 6 Gn−2(o, x).

Hence letting k →∞, we obtain the following estimate on the log derivative
of the Green kernel:

|db|n−2(x)
bn−2(x) 6 Gn−2(o, x). �
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4.4. Proof of Proposition 4.1

Proof. — We use again the inequality (4.2), for p = (n − 2). This in-
equality is still valid when ξ is a Lipschitz function that is zero in near o
and is equal to 1 outside a compact set, we use it with

ξ(x) = f(b)

where f : (0,∞)→ R is a smooth function that is 1 outside a compact set
and 0 near o:

(n− 2)2

4
δ

1 + δ

∫
M

|db|2(n−1)

b2(n−1) f2(b) dvg 6
∫
M

|db|2(n−1)

b2(n−2) (f ′(b))2 dvg .

We introduce the measure m on [1,∞] defined by

m([1, R]) =
∫

16b6R

|db|2(n−1)

b2(n−2) dvg .

and we get the Hardy type inequality:
(n− 2)2

4
δ

1 + δ

∫ ∞
1

1
t2
f2(t) dm(t) 6

∫ ∞
1

(f ′(t))2 dm(t),

for any smooth function f that is 0 near 0 and constant outside a compact
set. Using Proposition 2.26, we get:∫ ∞

R

1
t2

dm(t) =
∫
R6b

|db|2n−2

b2(n−1) dvg 6
C

R
(n−2)

√
δ

1+δ

.

Hence for all r < (n− 2)
√

δ
1+δ , with p = n−2

1− r
2(n−1)

, one gets∫
M\B(o,1)

(
|db|p

bn−2

)2n−1
n−2−

r
n−2

<∞

Our prior restriction on δ allows us to choose r = (n − 1) 2δ
1+δ and p =

(n− 2)(1 + δ). Then according to the Lemma 4.3, we have proved Propo-
sition 4.1. �

4.5. Proof of Theorem 1.10

In fact, once the Euclidean volume growth has been proved, the prop-
erties in Theorem 1.10 immediately follow. Indeed, (M, g) is doubling and
satisfies the upper (LY) bound

∀ t > 0, x, y ∈M : H(t, x, y) 6 ce−
d2(x,y)

5t

volB(x,
√
t)
.
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Moreover, according to (Remark 2.16-b), the operator L := ∆ − Ric− is
gaugeable and its heat kernel satisfies the same upper (LY) bound. Let ~H
be the heat kernel associated with the Hodge-deRham Laplacian ~∆ acting
on 1-forms

~∆ = ∇∗∇+ Ricci .
By domination, we know that

∀ t > 0, x, y ∈M :
∣∣ ~H(t, x, y)

∣∣ 6 HL(t, x, y) 6 ce−
d2(x,y)

5t

volB(x,
√
t)
.

The results and the proof of [19, Theorem 5.5] imply that
• the heat kernel of (M, g) satisfies the (LY) estimates, hence (M, g)
also satisfies the Poincaré inequalities (PI),

• the Riesz transform d∆− 1
2 is Lp → Lp is bounded for every p > 2.

According to [18], the Riesz transform is also Lp → Lp bounded for every
p ∈ (1, 2].

4.6. Localization at infinity

When the Schrödinger operator ∆ − (n − 2)(1 + δ) Ric− is gaugeable
outside a compact set, the arguments of the proof of Theorem 1.4 only
lead to an estimate for centered balls.

Proposition 4.5. — Let (M, g) be a complete Riemannian manifold
which satisfies the Euclidean Sobolev inequality (Sob). Assume that there
is a compact subset K ⊂M , some δ > 0, and a bounded positive function
h : M \K → R+ such that

∆h− (n− 2)(1 + δ) Ric− h = 0 and 1 6 h 6 γ.

Then, for each o ∈M , there is a constant θ such that for all R > 0:
1
θ
Rn 6 volB(o,R) 6 θRn.

Remark 4.6. — A priori, the constant θ in the conclusion may depend
on the point o. Theorem 1.15 gives conditions under which the constant θ
can be chosen uniformly.

Proof. — In the setting of Proposition 4.5, we can always assume that
δ < (n− 2)/(n(3n− 4)).

We can find W ∈ C∞0 (M) nonnegative such that the Schrödinger oper-
ator

L := ∆ +W − (n− 2)(1 + δ) Ric−
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is gaugeable. Indeed if h̄ : M → [1/2, 2γ] is an extension of h, then there is
a bounded function q with compact support such that

∆h̄+ qh̄− (n− 2)(1 + δ) Ric− h̄ = 0.

Hence the Schrödinger operator P := ∆+q−(n−2)(1+δ) Ric− is gaugeable
and by [25, Theorem 3.2], for any nonnegative function V with compact
support, the operator P + V is gaugeable.

We will note GL the Green kernel of the operator L. Let o ∈M , we still
define

G(o, x) = 1
bn−2
o (x)

.

Our previous argument can be used to show the following.

Lemma 4.7. — Let ρ > 0 such that suppW ⊂ B(o, ρ) and (n − 2)/
(n− 1) 6 p 6 (n− 2)(1 + δ). Assume that

lim
∞

|dbo|p

bn−2
o

= 0.

Then,
(1) on M \B(o, 2ρ):

|dbo|p(x)
bn−2
o (x)

6
A

a
GL(o, x)

where A = supx∈∂B(o,2ρ)
|dbo(x)|p

bn−2
o (x) and a = infx∈∂B(o,2ρ)GL(o, x).

(2) If x ∈M \ {o} then

|dbo|p(x)
bn−2
o (x)

6 GL(o, x) +
∫

suppW
GL(x, y)W (y) |dbo|

p(y)
bn−2
o (y)

dvg(y).

The same argumentation yields that the hypothesis of the lemma is sat-
isfied for p = (n− 2)(1 + δ).

Proposition 4.8. — Assume that (M, g) is a complete Riemannian
manifold which satisfies the Euclidean Sobolev inequality, and assume that
for some δ > 0, the Schrödinger operator ∆−(n−2)(1+δ) Ric− is gaugeable
at infinity. Let o ∈ M . There are positive constants c, ε which depend on
(M, g) and o such that

(1) For all R > 0: volB(o,R) 6 cRn.
(2) For any x ∈M , the Green kernel satisfies(

ε

d(o, x)

)n−2
6 G(o, x) 6 1

(εd(o, x))n−2
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(3) If b is defined by

G(o, x) = b(x)2−n

then
|db| 6 c.

5. Volume growth estimate: local results

5.1. Proof of Theorem 1.15

We are going to improve Proposition 4.8 with the result of Proposi-
tion 3.16. We assume that (M, g) is a complete Riemannian manifold which
satisfies the Euclidean Sobolev inequality and that there is some compact
set K such that

sup
x∈M\K

∫
M\K

G(x, y) Ric−(y) dvg(y) 6 1
16n.

We know that this estimate on the Kato constant, implies that for every
λ < 16n, the Schrödinger operator ∆ − λRic− is gaugeable on M \ K.
Hence the conclusion of Proposition 4.8 holds.
Let o ∈ M be a fixed point and define r(x) := d(o, x) and b(x) :=

G(o, x)−
1

n−2 . We know that

|db| 6 1
ε

and εr(x) 6 b(x) 6 1
ε
r(x).

We already know that geodesics balls centered at o are doubling. More-
over according to the lower Euclidean volume estimate of any geodesic ball,
we have

volB(o, r(x)) 6 Cr(x)n 6 volB (x, r(x)/4) .
This property is called volume comparison by A. Grigor’yan and L. Saloff-
Coste and according to [32, Proposition 4.7], the doubling condition is
satisfied provided there is some ρ > 0 such that, for every x ∈ M with
r(x) > ρ and any r 6 r(x)/4,

volB(x, 2r) 6 θ volB(x, r).

Choose ρ > 0 such that

K ⊂ B
(
o,

ε2

1000ρ
)
.

Let x ∈ M be such that r(x) > ρ. Let R = r(x)/2. One can define ξR =
u
(
b
R

)
where u : R → R is a smooth function with compact support in
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[ε/4, 4ε] such that u = 1 on [ε/2, 2ε]. Then we have ξR = 1 on B(o, 2R) \
B(o,R/2) and the support of ξR is included in B

(
o, 4ε−2R

)
\ B(o, 1

4ε
2R).

Since
dξR = 1

R
u′
(
b

R

)
db,

and

∆ξR = 1
R
u′
(
b

R

)
∆b− 1

R2u
′′
(
b

R

)
|db|2

= −(n− 1) 1
R
u′
(
b

R

)
|db|2

b
− 1
R2u

′′
(
b

R

)
|db|2,

there is some constant c (depending only on ε and u) such that

|dξR|2 + |∆ξR| 6
c

R2 .

By construction, we have supp ξR ⊂M \K and ξR = 1 on B(x, r(x)/2).
Hence we can use Proposition 3.16 and get that there is a constant γ such
that, for all r ∈ (0, r(x)/4),

volB(x, 2r) 6 γ volB(x, r) and H(r2, x, x) 6 γ

volB(x, r) .

We have shown that (M, g) is doubling.
It remains to show the heat kernel estimate. According to [30], the con-

junction of the doubling property and of the heat kernel estimates, for all
t > 0 and all x, y ∈M ,

H(t, x, y) 6 Ce−
d2(x,y)

5t

volB(x,
√
t)

is equivalent to the so called relative Faber–Krahn inequality: there are
positive constants C, µ such that for any x ∈ M and R > 0 and any open
domain(2) Ω ⊂ B(x,R):

λD1 (Ω) > C

R2

(
vol Ω

volB(x,R)

)− 2
µ

.

But our heat kernel estimates for remote balls imply that the above Faber–
Krahn inequality is satisfied for remote balls and the volume estimate and
the Sobolev inequality insure that the above Faber–Krahn inequality is

(2)We have denoted by λD
1 (Ω) the lowest eigenvalue of the Dirichlet Laplacian on Ω:

λD
1 (Ω) = inf

ϕ∈C∞0 (Ω)

∫
Ω |dϕ|

2∫
Ω |ϕ|

2
.
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satisfied for balls centered at o. By [9, Proof of Theorem 2.4], the relative
Faber–Krahn inequality holds on (M, g).
Once these properties has been shown, the results of [24] imply that when

n > 4, then the Riesz transform is Lp bounded for any p ∈ (1, n). �

5.2. Proof of Theorem 1.20

5.2.1. The setting

Our hypothesis and conclusion being invariant by scaling, we assume
R = 1. We consider (Mn, g) a Riemannian manifold and B(o, 3) ⊂ M a
relatively compact geodesic ball. Let p > 1 and q = p/(p− 1). We assume
that there are µ > 0, δ > (q(n−2)−2)2

8q(n−2) and Λ > 0 such that
• the ballB(o, 3) satisfies the Euclidean Sobolev inequality (Sob) with
Sobolev constant µ,

• the operator ∆− (1 + δ)(n− 2) Ric− is nonnegative on B(o, 3),
• supx∈B(o,3)

∫
B(o,3)G(x, y) Ric−(y)p dvg(y) 6 Λp, where G is the

Green kernel for the Laplacian ∆ with the Dirichlet boundary con-
dition of B(o, 3).

We are going to prove that there is a constant ϑ which depends only on
n, p, δ,Λ, the Sobolev constant µ and vol(B(o, 3)), such that, for all x ∈
B(o, 1) and all r ∈ (0, 1],

volB(x, r)
rn

6 ϑ.

Our objectif is to get an L∞ bound on the gradient of the Dirichlet Green
kernel. Let p ∈ B(o, 1) and consider

G(p, · ) = 1
bn−2

the Green kernel of the Laplacian on B(p, 1) for the Dirichlet boundary
conditions and with pole at p. We let B := B(p, 1).

5.2.2. L2-estimate

Let ν − 2 = (n − 2)
√

δ
1+δ , the strong positivity and the very general

Hardy inequality yield: ∀ ψ ∈ C∞(B(o, 1))
(ν − 2)2

4

∫
B

|db|2

b2
ψ2 dvg 6

∫
B

[
|dψ|2 − (n− 2) Ric− ψ2] dvg .
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If ξ is a Lipschitz function with compact support in B \ {p}, we use the
test function

ψ = ξ
|db|α

bn−2 ,

with α 6 n − 2. Using the integration by parts formula (2.5) and the
inequality (2.12),

∆ |db|
α

bn−2 − (n− 2) Ric−
|db|α

bn−2 6 0

we get
(ν − 2)2

4

∫
B

|db|α2+2

b2n−2 ξ2 dvg 6
∫
B

|db|α2

b2n−4 |dξ|
2 dvg .

Let Ω ⊂ B be such that

Ωr = {x ∈M,d(x,Ω) < r} ⊂ B \ {p},

with ξ(x) := max{1− d(x,Ω)/r, 0}, we get

(ν − 2)2

4

∫
Ω

|db|α2+2

b2n−2 dvg 6
1
r2

∫
Ωr

|db|α2

b2n−4 dvg .

Using Hölder’s inequality, we get∫
Ω

|db|α+1n−2
n−1

b2n−4 dvg 6 (vol Ω)
1

n−1

(
4

(ν − 2)2r2

)n−2
n−1

(∫
Ωr

|db|α2

b2n−4 dvg
)n−2
n−1

.

We are going to iterate this inequality: assume Ωr ⊂ B \ {p} and r =
r1 + · · ·+ rk and let κ = n−2

n−1

αk = (n− 2) + κk (α0 − (n− 2))

and

vk =
k−1∑
i=0

κi.

∫
Ω

|db|2αk
b2n−4 dvg

6 (vol Ωr)
vk
n−1

(
4

(ν − 2)2

)n−2
n−1 vk k∏

i=1

(
1
r2
i

)κi (∫
Ωr

|db|2α0

b2n−4 dvg
)κk

.

If we choose r/2i+2 6 ri 6 r/2i and if we let k → +∞, we get that
Ωr ⊂ B \ {p}, then

(5.1)
∫

Ω

|db|2n−4

b2n−4 dvg 6
c(n)

(ν − 2)2n−4r2n−4 vol Ωr.
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5.2.3. An integral estimate

We now introduce the function

ψ :=
(|db| − 1)n−2

+
bn−2 .

We know that ψ is bounded (see 2.6.1) and satisfies:

∆ψ − (n− 2) Ric− ψ 6 (n− 2) Ric−
(|db| − 1)n−3

+
bn−2 .

Let τ ∈ (1/2, 1) and let ξ be a Lipschitz function with compact support in
B. We have∫

B

|d(ξψτ )|2 dvg = τ

∫
B

∆ψ ψ2τ−1ξ2 dvg

+
∫
B

|dξ|2ψ2τ dvg +
(

1
τ
− 1
)∫

B

|dψτ |2ξ2 dvg .

A priori, this holds only if ξ has compact support in B\{p}, but because ψ is
bounded near p, the inequality holds more generally. And for all ε ∈ (0, 1):∫

B

|d(ξψτ )|2 dvg > (1− ε)
∫
B

ξ2|dψτ |2 dvg −
(

1
ε
− 1
)∫

B

|dξ|2ψ2τ dvg,

so that∫
B

ξ2|dψτ |2 dvg 6
1

1− ε

∫
B

|d(ξψτ )|2 dvg +1
ε

∫
B

|dξ|2ψ2τ dvg .

And we get

(5.2)
(

1− 1− τ
τ(1− ε)

)∫
B

|d(ξψτ )|2 dvg

6 τ
∫
B

∆ψ ψ2τ−1ξ2 dvg +
(

1 + 1
ε

(
1
τ
− 1
))∫

B

|dξ|2ψ2τ dvg .

According to our assumptions on δ, we can choose τ ∈ (1/2, 1), ε ∈ (0, 2−
1/τ) such that

(5.3) 2τ − 1 < 2
q(n− 2) and κ := 2τ − 1− ετ

τ(1− ε) − τ

1 + δ
> 0.
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Let c :=
(
1 + 1

ε

( 1
τ − 1

))
, we get:

κ

∫
B

|d(ξψτ )|2 dvg

6

(
1− 1− τ

τ(1− ε)

)∫
B

|d(ξψτ )|2 dvg −τ(n− 2)
∫
B

Ric− ψ2τξ2 dvg

6 τ
∫
B

[∆ψ − (n− 2) Ric− ψ] ψ2τ−1ξ2 dvg +c
∫
B

|dξ|2ψ2τ dvg

6 τ(n− 2)
∫
B

Ric−
(|db| − 1)2τ(n−2)−1

+
b2τ(n−2) ξ2 dvg +c

∫
B

|dξ|2ψ2τ dvg .

We now choose
ξ(x) = max

{
1− 2d(p, x), 1

2

}
.

Using the L2 estimate (5.1), we get

c

∫
B

|dξ|2ψ2τ dvg 6 4c
∫
B(p,1/2)\B(p,1/4)

ψ2τ dvg 6 C volB(p, 1).

Let Q = 2τ(n− 2), the Hölder inequality yields∫
B

Ric−
(|db| − 1)2τ(n−2)−1

+
b2τ(n−2) ξ2 dvg

6

(∫
B

Ric− ψ2τξ2 dvg
)1− 1

Q
(∫

B

Ric−
ξ2

bQ
dvg
) 1
Q

6 λ
∫
B

Ric− ψ2τξ2 dvg +λ1−Q
∫
B

Ric−
ξ2

bQ
dvg

6 λ
∫
B

|d(ξψτ )|2 dvg +λ1−Q
∫
B

Ric−
ξ2

bQ
dvg .

We now choose λ such that τ(n− 2)λ = κ/2, and we get
κ

2

∫
B

|d(ξψτ )|2 dvg 6 C
∫
B

Ric−
ξ2

bQ
dvg +C volB(p, 1).

Using Hölder’s inequality again, we have:∫
B

Ric−
ξ2

b2τ(n−2) dvg

6

(∫
B

Ricp−
1

bn−2 dvg
) 1
p
(∫

B

1
b((2τ−1)q+1)(n−2) dvg

) 1
q

6 ΛC
(

1
µ

)2τ−1+ 1
q

(volB)1−2τ+ 2
n (2τ−1+ 1

q ) .
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Defining

I := Λ
(

volB(o, 3)
µ
n
2

) 2
nq

,

we get∫
B

Ric−
ξ2

b2τ(n−2) dvg 6 cI
(

(volB(o, 3))
2
n

µ

)2τ−1

(volB(o, 3))1−2τ
.

Recall that according to Theorem 2.8-iv, we have

volB(o, 3) > cnµ
n
2 ,

hence ∫
B

Ric−
ξ2

b2τ(n−2) dvg 6 cI
(

(volB(o, 3))
2
n

µ

)2τ−1

µn(τ−1/2).

Using the very general Hardy inequality:

(n− 2)2

4

∫
B

|db|2

b2
(ξψτ )2 dvg 6

∫
B

|d(ξψτ )|2,

one gets

(5.4)
∫
B(p,1/4)

|db|2(|db| − 1)2τ(n−2)
+

b2τ(n−2)+2 dvg 6 Γ,

with

Γ = c

(
volB(o, 3) + I

(
(volB(o, 3))

2
n /µ

)2τ−1
µn(τ−1/2)

)
.

5.2.4. Bound on the gradient

Recall that
1

bn−2(x) 6
cn

µ
n
2 d(p, x)n−2

Hence, if R 6 εnµ
n

2(n−2) ,

Ω#
R =

{
R

2 6 b 6
5
2R
}
⊂ B(p, 1/4).

By the coarea formula, we have∫
Ω#
R

|db|2 dvg =
∫ 5R/2

R/2

(∫
b=t
|db|
)
dt
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and by the Green formula
∫
b=t

|db|
bn−1 = cn, hence we obtain∫

Ω#
R

|db|2 dvg = cnR
n.

Using the inequality x2τ(n−2) 6 22τ(n−2)
(

1 + (x− 1)2τ(n−2)
+

)
, we deduce

that ∫
Ω#
R

|db|2+2τ(n−2) dvg 6 cRn + cΓR2+2τ(n−2).

Our hypothesis and Proposition 2.21 yield that there is some γ depend-
ing only on the constants δ, n, p, I and (volB(o, 3))

2
n /µ, such that the

Schrödinger operator L = ∆− n−2
n−1 Ric− is gaugeable on B(p, 1) with con-

stant γ. We let
ρ := εnµ

n
2(n−2)

and using Proposition 2.30, we get that for b 6 ρ,

|db|(2τ−1)(n−2) 6 B(2τ−1)(n−2)

where

B(2τ−1)(n−2) := c
(

1 + Γρ(2τ−1)(n−2)
) γ2+2τ(n−2)n−1

n−2 +n−2

µ
n
2

.

5.2.5. Volume upper bound

If d(p, x) 6 ρ/B then we have

b(x) 6 Bd(p, x)

and hence for r 6 ρ, we get
volB(p, r)

rn
6

vol{b 6 Br}
rn

6 Bnµ−
n
n−2 .

Whereas for ρ 6 r 6 1, one gets
volB(p, r)

rn
6

volB(o, 3)
ρn

.

5.2.6. Further consequence

It remains to show how one can get the Poincaré inequalities. It is a
direct consequence of the following proposition which could have been used
in order to prove Theorem 1.10.
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Proposition 5.1. — Assume that B(x, 2R) is a relatively compact ge-
odesic ball in a Riemannian manifold, and assume that

• B(x, 2R) satisfies the Euclidean Sobolev inequality (Sob) with con-
stant µ,

• the Schrödinger operator ∆ − Ric− is gaugeable on B(x, 2R) with
constant γ.

Then, letting

λ := cnγ
n volB(x, 2R)

µ
n
2 Rn

,

we have the Poincaré type inequality,

∀ ψ ∈ C1(B(x, 2R)) :
∫
B(x,R)

(ψ − ψB(x,R))2 dvg 6 λR2
∫
B(x,2R)

|dψ|2g dvg .

Proof. — Let ψ ∈ C1(B(x, 2R)) and let ϕ be the harmonic extension of
ψ|∂B(x,2R) . The Sobolev inequality implies that

(5.5) ‖ψ − ϕ‖22 6
(volB(x, 2R))

2
n

µ
‖dψ − dϕ‖22.

The function |dϕ| satisfies

∆|dϕ| 6 Ric− |dϕ|,

hence with Theorem 2.18(3), one gets

sup
z∈B(x,R)

|dϕ|2(z) 6 cnγ
n

µn/2Rn

∫
B(x,2R)

|dϕ|2 dvg .

In particular with c = ϕ(x), one gets:

‖ϕ− c‖22 6 R2 volB(x,R) sup
z∈B(x,R)

|dϕ|2(z)

6 cnR
2γn

volB(x, 2R)
µn/2Rn

∫
B(x,2R)

|dϕ|2 dvg .(5.6)

The conclusion now follows from the inequalities (5.5) and (5.6) and the
fact that the ratio

volB(x, 2R)/(µn/2Rn)
is bounded from below by a constant which depends only on n. �

In the setting of Subsection (5.2), we have proved that there is a positive
constant θ such that for all x ∈ B(o, 1) and any r ∈ (0, 1) then

rn

θ
6 volB(x, r) 6 θrn.
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Note that by monotonicity of r 7→ volB(x, r), the same kind of inequality is
true for all r ∈ (0, 2). Using Proposition 5.1, we get that there is a constant
λ such that for any x ∈ B(o, 1) and any r ∈ (0, 1):

∀ ψ ∈ C1(B(x, 2r)) :
∫
B(x,r)

(ψ − ψB(x,r))2 dvg 6 λr2
∫
B(x,2r)

|dψ|2g dvg .

A now classical result of D. Jerison ([38, 43]) implies the announced Poincaré
inequalities.
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