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ALMOST NON-NEGATIVE CURVATURE AND
RATIONAL ELLIPTICITY IN COHOMOGENEITY TWO

by Karsten GROVE,
Burkhard WILKING & Joseph YEAGER (*)

With an appendix by Steve HALPERIN

In memory of Marcel Berger

Abstract. — An extension of a fundamental conjecture by R. Bott suggests
that all simply connected closed almost non-negatively curved manifolds M are
rationally elliptic, i.e., all but finitely many homotopy groups of such M are finite.
We confirm this conjecture when in addition M supports an isometric action with
orbits of codimension at most two. Our proof uses the geometry of the orbit space
to control the topology of the homotopy fiber of the inclusion map of an orbit in
M , and is applicable to more general contexts.
Résumé. — D’après une extension d’une conjecture fondamentale de R. Bott,

toute variété compacte (sans bord) simplement connexe M à courbure positive
est rationellement elliptique, i.e., seul un nombre fini de groupes d’homotopie de
M sont infinis. On montre cette conjecture dans le cas où M admet une action
par isométries dont l’orbite principale a codimension au plus est de deux. Notre
preuve utilise la géométrie de l’espace quotient pour contrôler la topologie de la
fibre homotopique de l’inclusion d’une orbite dans M , et s’applique à des contextes
plus généraux.

1. Introduction

Expressed in the language of rational homotopy theory a fundamental
conjecture attributed to Bott (cf. [9]) can be formulated as follows:

Conjecture. — Non-negatively curved simply connected closed man-
ifolds are rationally elliptic.

Keywords: Almost Non-negative Curvature, Rational ellipticity, Morse Theory,
Cohomogeneity.
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Here curvature of a manifold M refers to its sectional curvature, secM .
Moreover, a simply connected closed manifold M is said to be rationally
elliptic if and only if it has finite dimensional rational homotopy, dim π∗M⊗
Q <∞, i.e., all but finitely many homotopy groups of M are finite (in fact
πk(M) is finite for k > 2 dimM − 1, [4]), and otherwise M is said to be
rationally hyperbolic (cf. [4]). It is a well-known simple consequence of
Sullivans minimal model that M being rationally elliptic is equivalent to
polynomial growth of the sequence of Betti numbers {βk(ΩM)} of its loop
space ΩM , the property Bott was focussed on.
Based on an iterated use of the Rauch comparison theorem for Jacobi

fields an estimate for the Betti numbers of ΩM for manifolds with 0 < δ 6
secM 6 1 was derived in [2]. Although, the estimate is given in terms of
the pinching, δ, its growth rate is exponential.
It is well known that simply connected homogeneous spaces G /H are

rationally elliptic. In [10] it was shown that simply connected manifolds M
of cohomogeneity one, i.e., with 1-dimensional orbit space, are rationally
elliptic as well. However, the typical cohomogeneity two manifold M is
rationally hyperbolic including, e.g., Sn × Sm#Sn × Sm.
Extending the thesis work in [28] for non-negative sectional curvature to

almost non-negative sectional curvature, we prove:

Theorem 1.1. — Any simply connected almost non-negatively curved
manifold M of cohomogeneity at most two is rationally elliptic.

Here a manifold M is said to have almost non-negative sectional curva-
ture if there is a sequence of Riemannian metrics gi on M with secgi

M >
−1 and diam(M, gi) → 0 as i → ∞. By rescaling gi so that diamMi = 1,
the lower bound for secMi approaches 0. Here we assume that all metrics
are invariant under a group action with principal orbits of codimension at
most two. One of the main results by Searle and Wilhelm in [26] shows that
it suffices to assume that the orbit space M/G is almost non-negatively
curved, since then such metrics can be lifted to G-invariant metrics on
M with almost non-negative curvature. This actually supports the overall
essence of the work presented here: The geometry of the obit space M/G
yields control of the horizontal geometry of M and in turn in our case
provides control of the homotopy fiber of the inclusion maps of orbits of G
into M .
Recall that any compact homogeneous space M = G /H admits a G

invariant metric with secM > 0. This is not the case for cohomogeneity
one G manifolds in general (cf. [11]). However, all closed cohomogeneity one
manifolds indeed support almost non-negative curvature [25]. The latter
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provides part of our motivation for analyzing almost non-negatively curved
manifolds. Another potentially more important reason is an extension of
the Bott conjecture itself to almost non-negatively curved manifolds. These
are expected to play a pivotal role in collapse with a lower curvature bound
analogous to that of almost flat manifolds [8] in the collapsing theory for
manifolds with bounded curvature [3]. Moreover, as our method here might
indicate, an approach towards such an extension of the Bott conjecture by
induction on dimension is intriguing.
The strategy in our proof of Theorem 1.1 is to determine the possible

structures of orbit spaces M/G for simply connected M with almost non-
negative curvature. Even without any curvature assumption the possible
structures fall into two types (Section 2): For one of them M is the union
of tubular neighborhoods of two orbits and we can appeal to the work
in [10] (that said, we will apply a more geometric strategy here, and thus
provide a uniform proof for all cases, including cohomogeneity 1). For the
other,M/G admits a metric so thatM/G tiles one of the hyperbolic plane,
the euclidean plan, or the unit two sphere S2 (whenM is almost negatively
curved only the non-negatively curved space forms appear here). Moreover,
this new metric comes from a G invariant metric on M (Section 3). A
Morse theoretic argument (as in [12]) based on the elliptic geometry of
M/G combined with the fact the orbits of G are elliptic then leads to a
proof for these types (Section 4).
Our investigations mentioned above combined with one of the main re-

sults from [26] and the classification of two-dimensional orbifolds [27] yield
the following:

Theorem 1.2. — A closed simply connected G manifold M of cohomo-
geneity at most two admits (an) invariant metric of almost non-negative
curvature if and only if M/G is not a polygon with more than 4 sides.

Here a polygon with 4 sides admits a metric isometric to the product
of two intervals. Special examples of this arise from the product of two
cohomogeneity one manifolds. A more subtle example is given by a polar
T2 action on CP2#CP2 with section a flat Klein bottle (the connected sum
is taken at a fixed point of the T2 action on the CP2’s). The orbit space of
CP2#CP2#CP2 by the T2 action is a pentagon, and that of Sn×Sm#Sn×
Sm by SO(n)× SO(m) is a hexagon (cf. Remark 2.5 and Problem 2.6).
As it turns out, all the geometric arguments we provide carry over to the

more general case of singular riemannian foliations, F , abbreviated SRF.
In particular, if the leaves L ∈ F (or rather some finite cover thereof) of a

TOME 69 (2019), FASCICULE 7
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SRF in a simply connected, almost non-negatively curved manifold M are
rationally elliptic nilpotent spaces, then M would be as well.

It is our pleasure to thank Marco Radeschi for insights and helpful sugges-
tions (including Lemma 4.3), and Steve Halperin for providing the Appen-
dix which combined with our geometric constructions provides the desired
conclusion of rational ellipticity under much weaker hypotheses than the
ones present in Theorem 1.1.

2. Orbit/leaf space structure

Although our focus in this paper is on isometric actions G×M →M of a
closed connected Lie group G on a closed riemannian manifold M , several
key results including the ones in this section carry over to the more general
case of singular riemannian foliations, (abbreviated as SRF) F with com-
pact leaves L ∈ F (the G-orbits in our case). For an excellent introduction
to the subject of SRF we refer to the lecture notes by M. Radeschi [24].
Since the projection M → M/F is a submetry, the leaf space M/F

(orbit space M/G) with its natural metric is an Alexandrov space with
lower curvature that of M . In addition, it is a Riemannian orbifold if and
only if F is infinitesimally polar [19]. In the G action case this means that
all isotropy representations are polar.
In general, observe that M/F is simply connected when M is. Since

SRF of codimension at most two automatically are infinitesimally polar,
we know that in our case M/F is a simply connected orbifold of dimension
at most two. When combined with Corollary 1.7 of [17] we have:

Theorem 2.1. — The leaf space M/F of a closed singular riemannian
foliation on a simply connected closed manifold M is topologically either
the 2-sphere or the 2-disc. In the first case, there are at most finitely many
non-principal leaves, all of which are exceptional, i.e., F is a regular folia-
tion. In the second case all boundary leaves are singular, and there are no
exceptional leaves.

Here, we recall that exceptional leaves are non-principal leaves of the
same dimension as the principal ones, whereas singular leaves are leaves of
lower dimension.
Our key results in this section is a strengthening of Theorem 2.1, in

part when our curvature assumption is made. The first, however, needs no
curvature assumption.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.2. — The leaf space M/F of a closed codimension two rie-
mannian foliation on a simply connected closed manifold M is a 2-sphere
riemannian orbifold with at most two singular points, corresponding to at
most two exceptional leaves.

Proof. — We first show that the orbifold fundamental group πorb1 (M/F)
of M/F is generated by at most one element.
Consider the oriented principal SO(2) frame bundle Fh(M)→M of the

horizontal distribution to the foliation F . We denote the canonical lift of
F to Fh(M) by Fh (cf. [22]). Then Fh(M)→ Fh(M)/Fh is a riemannian
submersion and the leaf space Fh(M)/Fh = F (M/F) is the oriented frame
bundle of the orbifold M/F . If E SO(2) → B SO(2) denotes the universal
classifying SO(2) bundle, then the orbifold fundamental group πorb1 (M/F)
is the fundamental group of the associated bundle E SO(2)×SO(2)F (M/F)
(cf. [13, 16, 18]).
Since M is simply connected π1(Fh(M)) is trivial or generated by one

element. It follows that π1(F (M/F)) is trivial or generated by one element,
and hence so is π1(E SO(2)×SO(2) F (M/F)).
On the other hand, the orbifold Euler characteristic of M/F is given by

χorb(M/F) = 2−
∑

(1− 1/mi),

where Zmi ,mi > 2 are the local orbifold groups at the non-smooth points of
M/F (see [27, Chapter 13]). Moreover, if χorb(M/F) < 0 or χorb(M/F) =
0, M/F has the hyperbolic plane, respectively the euclidean plane as an
orbifold cover (see [27, Chapter 13]). Also if χorb(M/F) > 0, M/F has S2

as an orbifold cover, unless it is a bad orbifold (cf. [27, Chapter 13]). In all
the cases, whereM/F has a simply connected space form as orbifold cover,
πorb1 (M/F) is simply the group of the cover (see, e.g. [27, Chapter 13]).
Since M/F is compact, this can only be a cyclic group when its cover is
S2, and in this case there are exactly two non-regular points. Also, when
the orbifold euler characteristic is positive andM/F is a bad orbifold there
are at most two exceptional orbits (see [27, Chapter 13]). �

When M/F is a 2-disc, an edge is the part of boundary between two
consecutive non-smooth points of (also referred to as vertices).

Lemma 2.3. — The leaf space M/F of a closed singular codimension
two riemannian foliation on a simply connected closed almost nonnegatively
curved manifold M with a singular leaf is an orbifolds 2-disc with at most
four edges. Moreover, when M/F has four edges, all angles are π/2, and
when it has three edges the sum of angles is at least π.

TOME 69 (2019), FASCICULE 7



2926 Karsten GROVE, Burkhard WILKING & Joseph YEAGER

Proof. — First observe that a singular leaf necessarily corresponds to a
boundary point of the leaf space M/F . In fact otherwise, the unit normal
sphere Sf of the singular leaf would fiber over S1 (the space of direction of
the leaf space), which is impossible as f > 2.
Since the principal leaves of the infinitesimal foliation for F restricted to

each normal sphere of a leaf corresponding to a vertex are isoparametric
hypersurfaces, the possible angles α satisfy α ∈ {π/2, π/3, π/4, π/6} by [23].
Suppose the orbifold M/F has k edges, and hence the same number of

vertices. Since the edges are geodesics, the Gauss–Bonnet Theorem yields∫
M/F

curv = 2π − kπ +
∑
i

αi,

where αi are the angles at the vertices ofM/F . But, secM > −1 and hence
curvM/F > −1, so ∫

M/F
curv > −Area(M/F).

Thus
Area(M/F) > (k − 2)π −

∑
i

αi > (k − 4)π/2

since αi 6 π/2. But, since M collapses to a point so does M/F and in
particular Area(M/F) approaches 0, i.e. k 6 4. Moreover, when k = 4 each
αi = π/2. When k = 3, the same reasoning combined with the inequality
Area(M/F) > (k − 2)π −

∑
i αi implies that

∑
i αi > π. �

This in particular yields the following:

Corollary 2.4. — Let M be a simply connected almost non-negative
curved closed manifold with a closed SRF of codimension two. Then either:

• M/F supports a constant curvature 1 or 0 metric with M/F tiling
the unit sphere S2 respectively the flat plane R2; or,

• M is a double disc bundle M = D(B−) ∪ D(B+) where B± are
leaves of F .

Proof. — When M/F is the 2-sphere pick p− 6= p+ ∈M/F so that any
singular point of M/F is in {p−, p+}. Clearly M = D(B−)∪D(B+) where
B± are the leaves corresponding to p±. The same reasoning applies to the
case where M/F is a 2-disc with 0, 1 or 2 vertex points on the boundary.
In all remaining cases M/F is a 2-disc with 3, or 4 vertex points on the

boundary. As we have seen, in the latter case all angles must be π/2, and
M/F is diffeomorphic to a flat square in R2. In the case of three vertex
points, the restrictions on the angles αi ∈ {π/2, π/3, π/4, π/6} leave only
the following configurations possible:

ANNALES DE L’INSTITUT FOURIER



ALMOST NON-NEGATIVE CURVATURE 2927

• When
∑
i αi = π: {π/2, π/3, π/6}, {π/2, π/4, π/4}, {π/3, π/3, π/3}

• When
∑
i αi>π: {π/2, π/2, π/2}, {π/2, π/2, π/k}, {π/2, π/3, π/3},

{π/2, π/3, π/4}
When

∑
i αi = π, M/F is diffeomorphic to a flat triangle with the given

angles, and this triangle tiles the flat plane R2. When
∑
i αi > π, M/F

is diffeomorphic to a constant curvature 1 triangle in S2 with the given
angles, and this triangle tiles S2. �

Remark 2.5. — It is interesting that all remaining 2 dimensional orbifolds
arising as M/G, with M simply connected are actually hyperbolic. Thus
these M /G support a constant curvature −1 metric tiling the hyperbolic
plane. Also in the geodesic sense suggested above they are also “geometri-
cally hyperbolic”, i.e., the number of billiard geodesics joining two points
in the tile grow exponentially with their length. In cases where for example
the orbits on all boundary strata have codimension at least three our proof
of Theorem 1.1 will imply that such M are rationally hyperbolic.

It would be interesting to pursue this and see if indeed

Problem 2.6. — Is it true that a simply connected closed manifold M
of cohomogeneity two is rationally hyperbolic if and only if its orbit space
M/G is an orbifold of hyperbolic type?

3. Adapting the metric on M

In this section we will modify the metric on M to properly reflect the
two scenarios exhibited in Corollary 2.4.
We begin with a general discussion of manifolds having the structure of

a double disc bundle.
It is well known that a closed manifold M decomposes as the union of

tubular neighborhoods D(B±) of two submanifolds B± ⊂ M , i.e., M =
D(B−) ∪D(B+) if and only if M supports a Morse–Bott function f with
exactly two critical values, i.e., min f and max f .
Here we exhibit a metric characterization of this property exactly as

observed by Weinstein in the case of pointed Blaschke manifolds (see [1,
Example 5.20 (5.21)]):

Lemma 3.1. — A closed manifold M admits a decomposition M =
D(B−) ∪ D(B+) if and only if M admits a riemannian metric such that
R = dist(B−, B+) = distH(B−, B+), cut locus cut(B±) = B∓ and
inj⊥(B±) = R.

TOME 69 (2019), FASCICULE 7
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Proof. — Let E± → B± be the normal bundles of the submanifolds
B± ⊂M relative to some Riemannian metric on M . The assumption M =
D(B−) ∪ D(B+) is equivalent to the statement that the corresponding
sphere bundles SE± are diffeomorphic.
Identify DE±−B± with (0, `)×SE± and equip DE− with a riemannian

metric gE− whose restriction to (0, `)×SE− has the form dt2+gE−,t, where
gE−,t is a smooth family of Riemannian metrics on SE−. Similarly provide
DE+ with a riemannian metric gE+ whose restriction to (0, `)× SE+ has
the form ds2+gE−,s, where gE−,s is a smooth family of Riemannian metrics
on SE+.
Let F : SE− → SE+ be the diffeomorphism with M = DE− ∪F DE+,

the identification given explicitly via

DE− −B− 3 (t, x) = (`− t, F (x)) ∈ DE+ −B+

Let χ : R→ R be a smooth monotone function with χ(t) = 1 for t 6 `/3
and χ(t) = 0 for t > 2`/3. Then we obtain a smooth Riemannian metric g
on M by letting g = gE− near B−, g = gE+ near B+ and

g = χ(t)(dt2 + gE−,t) + (1− χ(t))(ds2 + gE+,`−t)

= dt2 + χ(t)gE−,t + (1− χ(t))gE+,`−t

on M − (B− ∪B+), where we note that ds = ds(t) = −dt.
With this metric, the t-lines are minimal unit speed geodesics starting

perpendicularly at B− and ending perpendicularly at B+. �

Remark 3.2. — Note that if Sd is the set of points at distance d from B−
(and distance `− d from B+), then Sd is a smooth submanifold of M and
any geodesic c(t) which is perpendicular to one Sr (including r = 0 and
r = `) will be remain perpendicular to all Sd, as t ∈ R.

The map P : M → [0, `] given by the distance function to B−, i.e.,
P (Sd) = d is a submetry. Moreover, the geodesics above are horizontal lifts
of geodesics on [0, `], where the latter bounce back and forth between the
end points. In fact, the family of level sets form a SRF F of codimension
one on M .

Metrically this is the same situation as in the case of an action of coho-
mogeneity one with orbit space an interval.

We now turn to the case where M/G admits a metric of constant curva-
ture. In order to treat this case as the one discussed in the above remark
the following is key:

Lemma 3.3 (Lifting). — The constant curvature metric on a tile M/G
lifts to a G invariant metric on M .

ANNALES DE L’INSTITUT FOURIER
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Proof. — Let M/G be equipped with a metric so as to be one of the
possible euclidean or spherical tiles. Since for each p ∈ M the slice repre-
sentation of Gp is polar, an easy application of the slice theorem yields a
Riemannian metric gp in an εp tube Dp of G p with Dp/G isometric to the
εp ball at G p ∈M/G.

Let {Dα} be an open cover of M/G by such balls (relative to the tile
metric) and let {fα} be a partition of unity subordinate to this cover. Let
gα be the corresponding lifted metrics on tubes in M and let {fα} denote
also the corresponding lifted partition of unity on M . If g is the original
G invariant metric on M then gα(u, v) = g(Sαu, v). Consider the bundle
isomorphism

S : TM → TM defined by S−1 =
∑
α

fαS
−1
α

The metric g̃ defined by g̃(u, v) := g(Su, v) is then the desired G invariant
lift of the constant curvature metric onM/G. In fact, the orbit map projec-
tion restricted to the regular partM0 consisting of principal orbits inM is a
Riemannian submersion onto M0/G equipped with the constant curvature
metric according to the Lemma below where only P = id is used. �

Lemma 3.4. — Let 〈 · , · 〉 denote the usual inner product on Rn and
consider the orthogonal projection π : Rn = Rk × Rn−k → Rk. Let P and
S be symmetric positive operators on Rk and Rn respectively, and define
new inner products on these spaces by gP (u, v) := 〈Pu, v〉 and gS(u, v) :=
〈Su, v〉.
The π : (Rn, gS) → (Rk, gP ) is a Riemannian submersion if and only if

S and P are related by

S−1 =
[
P−1 ∗
∗ ∗

]
Proof. — Assume π is a Riemannian submersion with horizontal sub-

space say

H = {(x,Ax) |x ∈ Rk and A : Rk → Rn=k linear}

and vertical subspace V = {0} × Rn−k. Since 〈SH, V 〉 = gS(H,V ) = 0,
S(x,Ax) ∈ Rk × {0}. Now with (x,Ax) and (y,Ay) being horizontal lifts
of x and y respectively, we therefore have

〈Px, y〉 = gP (x, y) = gS((x,Ax), (y,Ay))
= 〈S(x,Ax), (y,Ay)〉 = 〈S(x,Ax), y〉.

TOME 69 (2019), FASCICULE 7
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It follows that S(x,Ax) = (Px, 0) and hence (x,Ax) = S−1(Px, 0). If

S−1 =
[
U ∗
W ∗

]
this means UP = idRk and WP = A, in particular U = P−1.
Conversely, suppose S−1 has the above form with U = P−1, and define

A by A = WP . Then for any x, y ∈ Rk we have

gS((x,Ax), (y,Ay)) = 〈S(x,Ax), (y,Ay)〉 = 〈S(UPx,WPx), (y,Ay)〉

= 〈SS−1(Px, 0), (y,Ay)〉 = 〈(px, 0), (y,Ay)〉 = 〈Px, y〉 = gP (x, y).

It follows that π is a Riemannian submersion with horizontal subspace
H = {(x,Ax) |x ∈ Rk}. �

Remark 3.5. — The arguments above combined with the work of
Mendes [20], actually show that if M/G is an orbifold (equivalently, the
G action on M is infinitesimally polar [19]), then any riemannian orbifold
metric on M/G lifts to a G invariant metric on M .

From the slice theorem for SRF due to Mendes and Radeschi [21], it
follows as in the proof above that also in the general case of a SRF F
which is infinitesimally polar, any riemannian orbifold metric on M/F lifts
to a metric on M relative to which F is a SRF.

4. Topology and Morse theory input

In the previous section we have established that M carries a metric
which projects to a base space B exhibiting geometrically elliptic behavior
(B is either an interval or a constant curvature tile in R2 or S2) in the
sense that the number of geodesics joining two points in it grows at most
polynomially as a function of their length. In M this is reflected in the
following topological property of the homotopy fiber F of the inclusion
map f : E →M of the inverse image E ⊂M of a point in B:

Proposition 4.1 (Homotopy fiber control). — Let M be an almost
non-negatively curved simply connected closed manifold with a SRF F of
codimension one or two. Then there is a leaf L ∈ F in M so that the Betti
numbers of the homotopy fiber F of the inclusion map L → M grows at
most polynomially.

Proof. — Recall that the space M I
L of paths c : I = [0, 1] → M with

c(0) ∈ L ⊂ M is homotopy equivalent to L, and M I
L → M , c → c(1)

ANNALES DE L’INSTITUT FOURIER
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is a fibration. Thus its fiber F over any point q ∈ M is the homotopy
fiber of L→M . By homotopy equivalence, we can assume that F consists
of curves sufficiently regular (piecewise smooth or of Sobolev class H1)
to apply Morse theory for the energy functional E : F → R, given by
E(c) = 1/2

∫
I
|c′|2.

If M/F is not a tile, let L be one of the leaves B± as chosen in the
proof of Lemma 2.4, and in the remaining cases any principal leaf in M

will do. Choose q ∈M −L and let F be the corresponding homotopy fiber
of L → M . Then the critical points for E on F are exactly the geodesics
starting orthogonally to L and ending at q. When M is equipped with a
metric as in Lemma 3.1, respectively Lemma 3.3 such geodesics are in 1−1
correspondence with billiard geodesics in the base B. When B = M/F is
a tile we make a generic choice of q so that the corresponding geodesics
in R2 or S2 never meet a vertex of a tile (as in [12]). The focal points
of these geodesics correspond to intersections with the edges of the tiles
when dimB = 2 and end points of B when dimB = 1. The multiplicity
of each focal locus corresponding to the crossing of an edge, is the co-
dimension −1 of the leaf strata of the edge in M , so at least 1. Similarly,
when B is an interval (tiling the real line) the multiplicity of each focal
locus corresponding to the crossing an end point, is the co-dimension −1
of the corresponding leaf in M , so also at least 1.

In all scenarios, it is clear that the number of critical points in F grows
at most polynomially as a function of the lengths of the geodesics, and the
fact that by the Morse Index Theorem, the index grows by at least 1 at
each focal points then shows that the Betti numbers of F grow at most
polynomially. �

Remark 4.2. — If we replace L in the Proposition above with a finite
cover L̂, and F by the homotopy fiber F̂ of the composed map L̂→ L→M ,
then clearly also the betti numbers of F̂ grow at most polynomially.

A result due to S. Halperin (Theorem A.1 in the appendix) then
shows in particular that if a finite cover L̂ of the leaf L is nilpotent and∑
k>2 dim πk(L̂)⊗Q <∞, then M is rationally elliptic.
This then completes the proof of Theorem 1.1, since for any compact

homogeneous space L = G /K, L̂ = G /K0 is a rationally elliptic nilpotent
space. More generally this also applies to the case where L = G //H is a
biquotient.
Below we provide an alternative short direct proof of Theorem 1.1 by

utilizing a trick (see Lemma 4.5 below) allowing us to assume that L̂ =
G /K0 is simply connected.

TOME 69 (2019), FASCICULE 7
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Recall that taking iterated loop spaces results in a sequence of maps

. . .ΩF → ΩL→ ΩM → F → L→M

each of which are fibrations up to homotopy (cf. e.g. [14]). Here we are
particularly interested in ΩM → F with fiber ΩL, where L is a leaf, or
more generally a finite cover L̂ of L in M . We claim that this fibration is
orientable, if L is simply connected. From the iterative construction of the
fibration sequence, the following possibly well known observation shown to
us by M. Radeschi will suffice:

Lemma 4.3. — Given a fibration p : E → B with fiber F . Then, the
associated fibration F → E with fiber ΩB is orientable if B is simply
connected.

Proof. — Given a loop γ based at e ∈ E, we will in fact see that the
induced homotopy equivalence Lγ : ΩB → ΩB of the fiber, the loops of B
at b = p(e) is represented by Lγ(α) = p(γ−1) · α, α ∈ ΩB. In particular,
Lγ is homotopic to the identity map when B is simply connected.
To see this, consider the fibration ev0 : F ′ → E, where F ′ = {c ∈

EI |c(1) ∈ F} is homotopy equivalent to F = p−1(b), and ev0(c) = c(0).
If γ ∈ EI is a path from p to q in E it is straightforward to see that
the induced transformation Tγ (cf. [14, Proposition 4.61]) from the fiber
ev−1

0 (p) over p to the fiber ev−1
0 (q) over q is represented by the map that

concatenates γ−1 with elements from ev−1
0 (p).

To complete the proof, observe that indeed P : ev−1
0 (e) → ΩbB defined

by P (c) = p ◦ c is a homotopy equivalence with inverse a lift ρ constructed
as follows: Let PbB = {c ∈ BI | c(o) = b} and consider the homotopy
ev : PbB × I → B given by ev(β, t) = β(t). Let êv : PbB × I → E be a lift
with êv(β, 0) = e, then ρ(α)(t) := êv(α, t) for any α ∈ ΩBb ⊂ PbB. Any
two such lifts result in homotopic inverses to P . Thus, if γ above is a loop
at e, the action on α ∈ ΩbB is given by p ◦ (γ−1 · ρ(α)) = (p ◦ γ−1) · α. �
From the Serre spectral sequence for the fibration ΩL → ΩM → F we

conclude from the above Proposition that

Corollary 4.4. — If L in the above Proposition has finite fundamen-
tal group, and its universal cover L̂ is topologically elliptic. Then M is
topologically elliptic when M is simply connected.

Here we use the terminology topologically elliptic for M if the Betti
numbers of its loop space relative to any field of coefficients grow at most
polynomially.
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Unfortunately, the assumption that L has finite fundamental group is
very restrictive, ruling out, e.g., the important case where, e.g., L = Tk is
a torus. The following easily proven general reduction trick will resolve this
issue when the SRF F is homogeneous at least over the field of rational
numbers Q, and hence establish Theorem 1.1 in the introduction:

Lemma 4.5 (Reduction). — Let M be a closed simply connected G
manifold and Ĝ a closed simply connected Lie group containing G. Let
M̂ = Ĝ×G M be the total space over Ĝ/G with fiber M associated to the
principal bundle Ĝ→ Ĝ/G. Then

• M̂ is simply connected
• M̂/Ĝ is isometric to M/G
• For p ∈M ⊂ M̂ , Ĝp = Ĝ/Gp has finite fundamental group.
• M is rationally elliptic if and only if M̂ is.

Since all orbits in M̂ have finite fundamental group and M̂/Ĝ = M/G
the above arguments show that M̂ is topologically elliptic when M/G is
almost non-negatively curved and dimM/G 6 2.

Remark 4.6. — Ĝ can be chosen as SU(n) for large enough n. It is clear
that M topologically elliptic implies that M̂ is topologically elliptic, but
the converse is what is needed (an oversight in the proof of Theorem 4.7
in [12]).

Remark 4.7. — Corollary 2.4 divides the possible leaf spaces in two cases.
With a bit of work one can show: Each possible leaf space that falls under
the second case (double disc boundle decomposition) is isomorphic, as an
orbifold, to the quotient of S3 by a one-dimensional isometric group action.
So in either case the orbit space has an elliptic orbifold metric, i.e., a metric
where the number of geodesics of between two points growth polynomially.
As far as we know the same could still be true for three dimensional non-
negatively curved orbit spaces.

Although the horizontal geometry of SRF resembles that of isometric
group actions, the vertical part can in general be completely arbitrary, in
contrast to being homogeneous in the group action case. However, when
the geometry of M is restricted, it is not clear how this may restrict the
leaves. For example the following problems are interesting and natural in
view of the work done here:
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Problem 4.8. — Let F be a closed SRF on a closed (simply connected)
Riemannian manifold M of almost nonnegative curvature. Are the leaves
of F finitely covered by a nilpotent space, which moreover is rationally
elliptic?

A related problem, that may well have a negative answer is the following

Problem 4.9. — Let F be a closed SRF on a closed (simply connected)
Riemannian manifold M . Is there a family of metrics on M keeping F a
SRF which collapses to the leaf space M/F with a lower curvature bound?

We mention that by work of Kapovitch, Petrunin and Tuschmann [15],
any closed manifold of almost non-negative curvature, is finitely covered by
a nilpotent almost non-negatively curved manifold. Moreover, such man-
ifolds arise naturally in the context of collapse of manifolds with a lower
sectional curvature bound.

Appendix. The rational cohomology of a fiber
(by Steve Halperin)

In this Appendix H(Y ) denotes the rational cohomology of a space Y ,
and the ground field is Q. A graded vector space T = T>0 has strong
exponential growth with respect to a constants N,α > 0 if there is a pair
of sequences (rk, pk) such that pk 6 rk < rk+1 6 rk + N , and for each
β < α dimT pk > eβrk if k is sufficiently large.

Theorem A.1. — Suppose in a fibration F → X → M of path con-
nected spaces that

• M is simply connected, dimH(M) <∞, and H>N (M) = 0.
• X is nilpotent, dimH1(X) <∞, and

∑
k>2 dim πk(X)⊗Q <∞.

If M is not rationally elliptic, then H(F ) has strong exponential growth.

The proof of this theorem relies on Sullivan models for path connected
spaces, S, for which the reader is referred to [5] and [7]. Sullivan mod-
els are commutative differential graded algebras (cdga’s for short) of the
form (ΛT, d) for which, in particular, H(ΛT, d) ∼= H(S). Here ΛT the
free commutative graded algebra on a graded vector space T = T>1. Then
ΛT =

⊕
m ΛmT with ΛmT denoting the linear span of monomials of length

m in T ; m is called the wedge degree. The differential in ΛT decomposes as
d = d0 +d′ with d0 : T → T and d′ : T → Λ>2T ; d0 is called the linear part
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of d and is itself a differential. Finally we identify ΛW ⊗ ΛZ = Λ(W ⊕ Z)
and thereby define a wedge degree in the tensor product.
The translation of the theorem to Sullivan models then proceeds as fol-

lows:
Standard rational homotopy theory gives a Sullivan model (ΛW,d) forM

in which W = W>2, each dimW k <∞, and d : W → Λ>2W . Moreover, in
the terminology of [6], X is an F−space and therefore has a Sullivan model
(ΛV, d) with d0 = 0 and dimV <∞. Finally, corresponding to the fibration
of the theorem, Theorem 5.1 in [7] yields a sequence of cdga morphisms,

(ΛW,d) λ→ (ΛW ⊗ ΛZ, d) ρ→ (ΛZ, dz), λΦ = Φ⊗ 1, ρ = Q⊗ΛW −

in which (ΛW⊗ΛZ, d) is also a Sullivan model for X, (ΛZ, dZ) is a Sullivan
model for F , and dz : Z → Λ>2Z. Thus the linear part of the differential
in ΛW ⊗ ΛZ satisfies

d0 : W → 0 and d0 : Z →W

Moreover, standard theory gives H(W ⊕ Z, d0) ∼= V and so dimH(W ⊕
Z, d0) <∞.
There follows for some K the following:

(A.1)

dimZk <∞, k > 1

d0 : Zk
∼=→W k+1, k > K

Im d ⊂W ⊕ Λ>2(W ⊕ Z)

Lemma A.2.

(1) The quotient differential in ΛZ>K (after division by Z<K) is zero.
(2) dZ : Zk → ΛZ<k, k > K.

Proof.
(1). — Division by both W6K and by Z<K produces a quotient cdga

(ΛW>K⊗ΛZ>K , d̄) with d̄0 : Z>K ∼=→W>K . Standard theory then implies
that d̄Z = 0.
(2). — If z ∈ Zk then

dz =
∑

ui ⊗ zi + Φ + Ψ

with ui ∈ Z1, zi linearly independent elements in Zk, Φ ∈ ΛZ<k and
Ψ ∈W ∧Λ(W ⊕Z). Since d2z = 0, the component of d2z in Z1⊗W k+1 is
also zero. But a straightforward computation using (A.1) shows that that
component, up to sign, is

∑
d0zi ⊗ ui. By (A.1), d0 is an injective map

from Zk to W k+1, and so each ui = 0. This establishes (2). �
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Next, choose a basis z1, . . . , zR of Z<K so that

(A.2) deg z1 > deg z2 > . . . > deg zR and dZzi ∈ Λ(zi+1, . . . , zR)).

Division by zi, . . . , zR yields quotient cdga’s Λ(zi−1, . . . , z1)⊗ΛZ>K and we
show by induction on i that the homology of each has strong exponential
growth. First, since dimZk = dimW k+1, k > K, Theorems 13.5 and 13.6
of [7] provide a number α > 1 and an infinite sequence K 6 r1 < . . . <

rk < . . . such that rk+1 − rk < N and for each β < α, dimZrk < eβrk if
k is sufficiently large. Thus the sequences (rk, rk) exhibit Z>K as having
strong exponential growth with respect to N and α. Since d̄Z = 0 in ΛZ>K

the same holds for H(ΛZ>K) = ΛZ>K .
For simplicity, denote Λ(zi−1, . . . , z1)⊗ΛZ>K by ΛZ(i), so that ΛZ(1) =

ΛZ>K . We show by induction on i that there is a sequence (pk) with pk 6 rk
and such that for any β < α, dimHpk (ΛZ(i)) > eβrk if k is sufficiently
large. When i = 1, this is established above.
Now assume by induction on i that there is an infinite sequence (qk)

with qk 6 rk and such that for any γ < α, dimHqk (ΛZ(i)) > eγrk if k is
sufficiently large. Then we use the equality ΛZ(i + 1) = Λzi ⊗ ΛZ(i) to
establish the sequence (pk) for ΛZ(i+ 1).
First suppose deg zi > 2 and extend ΛZ(i + 1) to a cdga ΛZ(i + 1) ⊗

Λx by setting dx = zi. Thus deg x > 1. Fix β < α and choose γ so
that β < γ < α. Then choose pk 6 qk so that dimHpk (ΛZ(i + 1)) =
max16n6qk

dimHn(ΛZ(i)). Division by zi and by x is a quasi-isomorphism
ΛZ(i+ 1)⊗ Λx w→ ΛZ(i). This with the obvious spectral sequence, gives

eγrk 6 dimHqk (ΛZ(i)) 6 dim(H(ΛZ(i+ 1))⊗ Λx)qk

6
∑

16n6qk

dimHn(ΛZ(i+ 1)).

It follows that

dimHpk (ΛZ(i+ 1)) > 1
qk
e(γ−β)rkeβrk > eβrk

if k is sufficiently large.
It remains to consider the case deg zi = 1. In this case let δ denote the

quotient differential in ΛZ(i + 1) and δ̄ the quotient differential in ΛZ(i).
Then for Φ ∈ ΛZ(i),

δ(1⊗ Φ) = 1⊗ δ̄Φ + zi ⊗Θ(Φ)

where Θ is a derivation of degree 0 in ΛZ(i) and Θδ̄ = δ̄Θ. In particular
division by zi induces a surjection H(ΛZ(i+ 1))→ kerH(Θ). Moreover, it
follows from the properties of Sullivan models that for each n, the restriction
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Θ(n) of Θ to [ΛZ(i)]n is nilpotent. The key fact, to be established now, is
that

(A.3) Θ(n)l(n) = 0, where l(n) = n(n+ 1)i.

For simplicity, let S be the linear span of z1, . . . , zi−1, so that dimS =
i−1, and denote Z>K by T . Thus ΛZ(i) = ΛS⊗ΛT . Then decompose Θ as
ΘS + ΘT , where ΘS is a derivation vanishing on T and ΘT is a derivation
vanishing on S. Because Λzi+1 ⊗ ΛS is preserved by δ it follows that ΘS

preserves S. But dim(ΛS)n 6 (n+ 1)i and ΘS is nilpotent, so that ΘS
`S(n)

vanishes in (ΛS)n where `S(n) = (n+ 1)i.
Further, we may take K > N > 2. Since dZ : Z → Λ>2Z and deg zi = 1

it follows that if z ∈ T then

δz ∈ zi ∧ [ΛZ(i)]>2 ⊕ ΛZ(i).

Thus ΘT (z) ∈ [ΛZ(i)]>2. Moreover, by Lemma A.2(2), if z ∈ Tn then
δz ∈ [ΛZ<n(i+ 1)]n+1. It follows that for z ∈ Tn

Θ(z) ∈ ((ΛS)>2 ⊗ (ΛT )6n−2)⊕ (S1 ⊗ (Λ>2T )n−1)⊕ (Λ>2T )n

Again for simplicity, set A = ΛZ(i) = ΛS ⊗ ΛT and decompose A as
A =

⊕
k A(k) with

A(k) = ΛS ⊗

 ⊕
n−p=k

(ΛpT )n
 .

Then A(k) = 0, k 6 0, and A(k)n = 0, k > n. Now the formula above for
Θ yields

ΘT : A(k)n →
⊕
j<k

A(j)n.

Since ΘS preserves each A(k)n this gives (A.3). In particular, H(Θ)`(n)

vanishes in Hn(ΛZ(i)). Therefore

dim kerH(Θ) ∩Hn(ΛZ(i)) > 1
`(n) dimHn(ΛZ(i)).

When n = qk this gives

dimHqk (ΛZ(i+ 1)) > dim kerH(Θ) ∩Hqk (ΛZ(i)) > 1
`(n)e

γrk > eβrk ,

the last inequality holding for k sufficiently large. Set pk = qk to close the
induction and complete the proof of Theorem A.1.
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