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Abstract. — Let M denote a finite volume, non-compact hyperbolic surface
without elliptic points, and let B denote the Lax–Phillips scattering operator.
Using the superzeta function approach due to Voros, we define a Hurwitz-type zeta
function ζ±

B (s, z) constructed from the resonances associated to zI − [(1/2)I ±B].
We prove the meromorphic continuation in s of ζ±

B (s, z) and, using the special
value at s = 0, define a determinant of the operators zI − [(1/2)I ±B]. We obtain
expressions for Selberg’s zeta function and the determinant of the scattering matrix
in terms of the operator determinants.
Résumé. — Soit M une surface hyperbolique non compacte à volume fini sans

points elliptiques, et soit B l’opérateur de diffusion de Lax–Phillips. En utilisant
l’approche due à Voros sur la fonction superzeta, nous définissons une fonction
zêta de type Hurwitz ζ±

B (s, z) construite à partir des résonances associées à zI −
[(1/2)I ± B]. Nous prouvons le prolongement méromorphe en le paramètre s de
ζ±

B (s, z) et, en utilisant la valeur spéciale à s = 0, définissons un déterminant des
opérateurs zI − [(1/2)I ±B]. Nous obtenons des expressions pour la fonction zêta
de Selberg et le déterminant de la matrice de diffusion en termes de déterminants
d’opérateurs.
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1. Introduction

1.1. Determinant of the Laplacian and analytic torsion

To begin, let M denote a compact, connected Riemannian manifold of
real dimension n with Laplace operator ∆M . Following the seminal arti-
cle [24], one defines the determinant of the Laplacian, which we denote by
det∗∆M , as follows. Let e−t∆M be the heat operator associated to ∆M .
Since M is compact, the operator e−t∆M is a Hilbert–Schmidt type oper-
ator with the kernel KM (t;x, y), the heat kernel associated to ∆M . More-
over, using the semi-group property of e−t∆M one can show that e−t∆M

is actually of trace-class. Therefore, we can consider the trace of the oper-
ator e−t∆M , which we refer to as the trace of the heat kernel(1) which is
defined by

(1.1) Tr(e−t∆M ) = TrKM (t) :=
∫
M

KM (t;x, x)dµM (x),

where dµM (x) is the volume form on M . As shown in [24], the parametrix
construction of the heat kernel implies that its trace TrKM (t) admits a
certain asymptotic behavior as t approaches zero, and separately one can
prove that TrKM (t) is continuous in t and bounded as t tends to infinity.
As a result, one can define and study various integral transforms of the
heat kernel. In particular, for s ∈ C with real part Re(s) sufficiently large,
the spectral zeta function ζM (s) is defined from the Mellin transform of
the trace of the heat kernel. Specifically, one sets

ζM (s) = 1
Γ(s)

∫ ∞
0

(TrKM (t)− 1) ts dt
t

where Γ(s) is the classical Gamma function. The asymptotic expansion of
TrKM (t) as t approaches zero allows one to prove the meromorphic contin-
uation of ζM (s) to all s ∈ C which is holomorphic at s = 0. Subsequently,
the determinant of the Laplacian is defined by

(1.2) det∗∆M := exp (−ζ ′M (0)) .

There are several generalizations of the above considerations. For exam-
ple, let E be a flat vector bundle onM , metrized so that one can define the
action of a Laplacian ∆E,k which acts on k-forms that take values in E.
Analogous to the above discussion, one can use properties of an associated
heat kernel and obtain a definition of the determinant of the Laplacian

(1)When M is non-compact, the operator e−t∆M is not even Hilbert–Schmidt type.
See [11, Theorem 3.7] for more details.
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det∗∆E,k. Going further, by following [29] and [30], one can consider lin-
ear combinations of determinants yielding, for example, the analytic torsion
τ(M,E) of E on M which is given by

(1.3) τ(M,E) := 1
2

n∑
k=1

(−1)kk det∗∆E,k.

At this time, one understands (1.3) to be a spectral invariant associated
to the de Rham cohomology of E on M . If instead one considers compact,
connected complex manifolds with metrized holomorphic vector bundles,
one obtains a similar definition for analytic torsion stemming from Dol-
beault cohomology.
There are many manifestations of the determinant of the Laplacian, and

more generally analytic torsion, throughout the mathematical literature.
For the sake of space, we will not survey some of the ways in which deter-
minants of the Laplacian have been studied.

1.2. Non-compact hyperbolic Riemann surfaces

If M is a non-compact Riemannian manifold, then it is often the case
that the integral (1.1) is divergent for any value of t > 0. Hence, the above
approach to define a determinant of the Laplacian does not get started.
This assertion is true in the case when M is a finite volume, connected,
hyperbolic Riemann surfaces, which will be the setting considered in this
article. The first attempt to define a determinant of the Laplacian for non-
compact, finite volume, hyperbolic Riemann surfaces is due to I. Efrat
in [4, 5]. Efrat’s approach began with the Selberg trace formula, which
in the form Efrat employed does not connect directly with a differential
operator. In [17] the authors defined a regularized difference of traces of heat
kernels, which did yield results analogous to theorems proved in the setting
of compact hyperbolic Riemann surfaces. In [27], W. Müller generalized the
idea of a regularized difference of heat traces to other settings. Following
this approach, J. Friedman in [11] defined a regularized determinant of the
Laplacian for any finite-volume three-dimensional hyperbolic orbifolds with
finite-dimensional unitary representations, which he then related to special
values of the Selberg zeta-function.
The concept of a regularized quotient of determinants of Laplacian has

found important applications. For example, the dissertation of T. Hahn [13]
studied Arakelov theory on non-compact finite volume Riemann surfaces

TOME 70 (2020), FASCICULE 3
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using the regularized difference of heat trace approach due to Jorgenson–
Lundelius and Müller; see also [10] where the study is approached differ-
ently and somewhat more generally. In [6] the authors used the regularized
difference of determinants together with the metric degeneration concept
from [18] in their evaluation of the sum of Lyapunov exponents of the
Kontsevich–Zorich cocycle with respect to SL(2,R) invariant measures.

1.3. Our results

It remains an open, and potentially very important, question to define
determinants of Laplacians, or related spectral operators, on non-compact
Riemannian manifolds.

In the present article we consider a general finite volume hyperbolic Rie-
mann surface without fixed points. Scattering theory, stemming from work
due to Lax and Phillips (see [22] and [23]), provides us with the definition
of a scattering operator, which we denote by B. The scattering operator is
defined using certain Hilbert space extensions of the so-called Ingoing and
Outgoing spaces; see Section 3 below. Lax and Phillips have shown that B
has a discrete spectrum; unfortunately, one cannot define a type of heat
trace associated to the spectrum from which one can use a heat kernel type
approach to defining the determinant of B. Instead, we follow the superzeta
function technique of regularization due to A. Voros in order to define and
study the zeta functions ζ±B (s, z) constructed from the resonances associ-
ated to zI − [(1/2)I ±B]. We prove the meromorphic continuation in s of
ζ±B (s, z) and, using the special value at s = 0, define a determinant of the
operators zI − [(1/2)I ±B].

Our main results are as follows. First, we obtain expressions for the
Selberg zeta function and the determinant of the scattering matrix in terms
of the special values of ζ±B (s, z) at s = 0; see Theorem 6.2. Furthermore,
we express the special value Z ′(1) of the Selberg zeta function in terms of
the determinants of the operator −B + (1/2)I; see Theorem 6.7.
Regarding Theorem 6.7, it is important to note the structure of the con-

stants which relate the regularized determinant of −B+ (1/2)I and Z ′(1).
Specifically, we now understand the nature of the corresponding constant
from [31] in terms of the R-class of Arakelov theory. As it turns out, the
multiplicative constant which appears in Theorem 6.7 has a similar struc-
ture. Finally, one should note that Müller [26] was the first to study the
regularized determinant, and associated zeta function of the Lax–Phillips

ANNALES DE L’INSTITUT FOURIER
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operator. He studied the function ζ+
B (s, z) for Re(z) > 1 and gave a mero-

morphic extension to s ∈ C. The method of proof in [26] utilizes the zeta
regularization approach from [4, 5], whereas we develop an alternative ap-
proach to define a regularized product, see Section 4 below.

1.4. Outline of the paper

The article is organized as follows. In Section 2 we recall various back-
ground material from the literature and establish the notation which will be
used throughout the paper. This discussion continues in Section 3 where we
recall results from Lax–Phillips scattering theory. In Section 4 we establish
the meromorphic continuation of superzeta functions in very general con-
text. From the general results from Section 4, we prove in Section 5 that
the superzeta functions ζ±B (s, z) admit meromorphic continuations, with
appropriate quantifications. Finally, in Section 6, we complete the proof of
the main results of the paper, as cited above.

Acknowledgement

The authors wish to thank the anonymous referee for providing helpful
suggestions and comments on a first draft of this article. We also thank
Daniel Garbin for his support in preparing a final version of the manuscript;
his help was indispensable.

2. Background material

2.1. Basic notation

Let Γ ⊆ PSL2(R) be torsion free Fuchsian group of the first kind acting
by fractional linear transformations on the upper half-plane H := {z ∈ C |
z = x + iy , y > 0}. Let M be the quotient space Γ\H and g the genus of
M . Denote by c number of inequivalent cusps of M .

We denote by ds2
hyp(z) the line element and by µhyp(z) the volume form

corresponding to the hyperbolic metric on M which is compatible with the
complex structure of M and has constant curvature equal to −1. Locally
on M , we have

ds2
hyp(z) = dx2 + dy2

y2 and µhyp(z) = dx ∧ dy
y2 .

TOME 70 (2020), FASCICULE 3



920 Joshua S. FRIEDMAN, Jay JORGENSON & Lejla SMAJLOVIĆ

We recall that the hyperbolic volume volhyp(M) of M is given by the
formula

vol(M) = 2π(2g − 2 + c).

Let VΓ denote the space of Γ−invariant functions ϕ : H −→ C. For
ϕ ∈ VΓ, we set

‖ϕ‖2 :=
∫
F
|ϕ(z)|2µhyp(z),

whenever it is defined, where F is a fundamental domain of M , which we
may assume is constructed as described in detail within Chapter 9 of [3].
We then introduce the Hilbert space

H(Γ) :=
{
ϕ ∈ VΓ ∣∣ ‖ϕ‖ <∞}

equipped with the inner product

〈ϕ1, ϕ2〉 :=
∫
F
ϕ1(z)ϕ2(z)µhyp(z) (ϕ1, ϕ2 ∈ H(Γ)).

The Laplacian

∆ := −y2
(
∂2

∂x2 + ∂2

∂y2

)
acts on the smooth functions of H(Γ) and extends to an essentially self-
adjoint linear operator acting on a dense subspace of H(Γ).

For f(s) a meromorphic function, we define the null set, N(f) = {s ∈ C |
f(s) = 0} counted with multiplicity. Similarly, P (f) denotes the polar set.

2.2. Gamma function

Let Γ(s) denote the gamma function. Its poles are all simple and located
at each point of −N, where −N = {0,−1,−2, . . .}. For |arg s| 6 π − δ and
δ > 0, the asymptotic expansion [2, p. 20] of log Γ(s) is given by

(2.1) log Γ(s) = 1
2 log 2π +

(
s− 1

2

)
log s− s

+
m−1∑
j=1

B2j

(2j − 1)2j
1

s2j−1 + gm(s).

Here Bi are the Bernoulli numbers and gm(s) is a holomorphic function
in the right half plane Re(s) > 0 such that g(j)

m (s) = O(s−2m+1−j) as
Re(s)→∞ for all integers j > 0, and where the implied constant depends
on j and m.

ANNALES DE L’INSTITUT FOURIER
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2.3. Barnes double gamma function

The Barnes double gamma function is an entire order two function
defined by

G (s+ 1) = (2π)s/2 exp
[
−1

2
[
(1 + γ) s2 + s

]] ∞∏
n=1

(
1 + s

n

)n
exp

[
−s+ s2

2n

]
,

where γ is the Euler constant. Therefore, G(s+1) has a zero of multiplicity
n, at each point −n ∈ {−1,−2, . . .}.
For s /∈ −N, we have that (see [8, p. 114])

(2.2) G′(s+ 1)
G(s+ 1) = 1

2 log(2π) + 1
2 − s+ sψ(s),

where ψ(s) = Γ′
Γ (s) denotes digamma function. For Re(s) > 0 and as

s → ∞, the asymptotic expansion of logG(s + 1) is given in [7] or(2)
[1, Lemma 5.1] by

(2.3) logG(s+ 1) = s2

2

(
log s− 3

2

)
− log s

12 − s ζ
′(0)

+ ζ ′(−1) −
n∑
k=1

B2k+2

4 k (k + 1) s2k + hn+1(s).

Here, ζ(s) is the Riemann zeta-function and

hn+1(s) = (−1)n+1

s2n+2

∫ ∞
0

t

exp(2πt)− 1

∫ t2

0

yn+1

y + s2 dy dt.

By a close inspection of the proof of [1, Lemma 5.1] it follows that hn+1(s)
is holomorphic function in the right half plane Re(s) > 0 which satisfies the
asymptotic relation h(j)

n+1(s) = O(s−2n−2−j) as Re(s)→∞ for all integers
j > 0, and where the implied constant depends upon j and n.
Set

(2.4) G1(s) =
(

(2π)s(G(s+ 1))2

Γ(s)

) vol(M)
2π

It follows that G1(s) is an entire function of order two with zeros at points
−n ∈ −N and corresponding multiplicities vol(M)

2π (2n+ 1).

(2)Note that (2.1) is needed to reconcile these two references.

TOME 70 (2020), FASCICULE 3
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2.4. Hurwitz zeta function

The Hurwitz zeta-function ζH(s, z) is defined for Re(s) > 1 and z ∈
C \ (−N) by the absolutely convergent series

ζH(s, z) =
∞∑
n=0

1
(z + n)s .

For fixed z, ζH(s, z) possesses a meromorphic continuation to the whole
s−plane with a single pole at s = 1 of order 1 and with residue 1.

For fixed z, one can show that

ζH(−n, z) = −Bn+1(z)
n+ 1 ,

where n ∈ N, and Bn denotes the n−th Bernoulli polynomial.
For integral values of s, the function ζH(s, z) is related to derivatives of

the digamma function in the following way:

ζH(n+ 1, z) = (−1)n+1

n! ψ(n)(z), n = 1, 2, . . .

2.5. Automorphic scattering matrix

Let φ(s) denote the determinant of the hyperbolic scattering matrix Φ(s),
see [32, Section 3.5]. The function φ(s) is meromorphic of order two [32,
Theorem 4.4.3]. It is regular for Re(s) > 1

2 except for a finite number of
poles σ1, σ2, . . . σm ∈ (1/2, 1]; each pole has multiplicity no greater than c,
the number of cusps of M .
We let ρ denote an arbitrary pole of φ(s). Since φ(s)φ(1−s) = 1, the set of

zeros and poles are related byN(φ) = 1−P (φ), hence 1−σ1, 1−σ2, . . . 1−σm
are the zeros in [0, 1/2).
Each pole σi ∈ (1/2, 1] corresponds to a ∆−eigenspace, A1(λi), with

eigenvalue λi = σi(1 − σi), i = 1, . . . ,m, in the space spanned by the
incomplete theta series. For all i = 1, . . . ,m we have [14, Equation 3.33 on
p. 299]

(2.5) [The multiplicity of the pole of φ(s) at s = σi]
6 dimA1(σi(1− σi)) 6 c.

For Re(s) > 1, φ(s) can be written as an absolutely convergent general-
ized Dirichlet series and Gamma functions; namely, we have that

(2.6) φ(s) = π
c
2

(
Γ
(
s− 1

2
)

Γ (s)

)c ∞∑
n=1

d(n)
g2s
n

ANNALES DE L’INSTITUT FOURIER
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where 0 < g1 < g2 < . . . and d(n) ∈ R with d(1) 6= 0.
We will rewrite (2.6) in a slightly different form. Let c1 = −2 log g1 6= 0,

c2 = log d(1), and let un = gn/g1 > 1. Then for Re(s) > 1 we can write
φ(s) = L(s)H(s) where

(2.7) L(s) = π
c
2

(
Γ
(
s− 1

2
)

Γ (s)

)c

ec1s+c2

and

(2.8) H(s) = 1 +
∞∑
n=2

a (n)
u2s
n

,

where a(n) ∈ R and the series (2.8) converges absolutely for Re(s) > 1.
From the generalized Dirichlet series representation (2.8) of H(s) it follows
that

(2.9) dk

dsk logH(s) = O(β−Re(s)
k ) when Re(s)→ +∞,

for some βk > 1 where the implied constant depends on k ∈ N.

2.6. Selberg zeta-function

The Selberg zeta function associated to the quotient space M = Γ\H is
defined for Re(s) > 1 by the absolutely convergent Euler product

Z(s) =
∏

{P0}∈P (Γ)

∞∏
n=0

(
1−N(P0)−(s+n)

)
,

where P (Γ) denotes the set of all primitive hyperbolic conjugacy classes in
Γ, and N(P0) denotes the norm of P0 ∈ Γ. From the product representation
given above, we obtain for Re(s) > 1

logZ(s) =
∑

{P0}∈P (Γ)

∞∑
n=0

(
−
∞∑
l=1

N(P0)−(s+n)l

l

)

= −
∑

P∈H(Γ)

Λ(P )
N(P )s logN(P ) ,

(2.10)

where H(Γ) denotes the set of all hyperbolic conjugacy classes in Γ, and
Λ(P ) = logN(P0)

1−N(P )−1 , for the (unique) primitive element P0 conjugate to P .

TOME 70 (2020), FASCICULE 3



924 Joshua S. FRIEDMAN, Jay JORGENSON & Lejla SMAJLOVIĆ

Let P00 be the primitive hyperbolic conjugacy class in all of P (Γ) with
the smallest norm. Setting α = N(P00) 1

2 , we see that for Re(s) > 2 and
k ∈ N the asymptotic

(2.11) dk

dsk logZ(s) = O(α−Re(s)) when Re(s)→ +∞.

Here the implied constant depends on k ∈ N.
The Selberg zeta function admits a meromorphic continuation to all s ∈

C, and its divisor can be determined explicitly, as follows (see [33, p. 49]
and [14, p. 499]):

(1) Zeros at the points sj on the line Re(s) = 1
2 symmetric rela-

tive to the real axis and in (1/2, 1]. Each zero sj has multiplicity
m(sj) = m(λj) where sj(1−sj) = λj is an eigenvalue in the discrete
spectrum of ∆;

(2) Zeros at the points sj = 1 − σj ∈ [0, 1/2) (see Section 2.5). Here,
by (2.5), the multiplicity m(sj) is

[multiplicity of the eigenvalueλj = σj(1− σj)]
− [order of the pole of φ(s) at s = σj ] > 0;

(3) If λ = 1
4 is an eigenvalue of ∆ of multiplicity d1/4, then s = 1

2 is a
zero (or a pole, depending on the sign of the following) of Z(s) of
multiplicity

2d1/4 −
1
2

(
c− tr Φ

(
1
2

))
;

(4) Zeros at each s = ρ, where ρ is a pole of φ(s) with Re(ρ) < 1
2 ;

(5) Trivial Zeros at points s = −n ∈ −N, with multiplicities vol(M)
2π ×

(2n+ 1);
(6) Poles at s = −n− 1

2 , where n = 0, 1, 2, . . . ,each with multiplicity c.

2.7. Selberg zeta function of higher order

For Re(s) > 1 and r ∈ N, following [21, Section 4.2.], we define the
Selberg zeta function of order r, or the poly-Selberg zeta function of degree
r, by the relation

Z(r)(s) = exp

− ∑
P∈H(Γ)

Λ(P )
N(P )s (logN(P ))r

 .

ANNALES DE L’INSTITUT FOURIER
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This definition is consistent with the case r = 1 (see (2.10)), namely
Z(1)(s) = Z(s).
Following [21, Section 4.2], it is easy to show that

Z(r)(s) =
∏

{P0}∈P (Γ)

∞∏
n=0

Hr

(
N(P0)−(s+n)

)(logN(P0))−(r−1)

,

for Re(s) > 1, where Hr(z) = exp(Lir(z)), and

Lir(z) =
∞∑
k=1

zk

kr
(|z| < 1)

is the polylogarithm of a degree r.
The meromorphic continuation of Z(r)(s) follows inductively for r ∈ N

from the differential ladder relation
dr−1

dzr−1 logZ(r)(s) = (−1)r−1 logZ(s).

See [21, Proposition 4.9] for more details. Note that [21] deals with com-
pact Riemann surfaces, so one must modify the region ΩΓ defined in [21,
Proposition 4.9] by excluding the vertical lines passing through poles ρ of
the hyperbolic scattering determinant φ; the other details are identical.

2.8. Complete zeta functions

In this subsection we define two zeta functions Z+(s) and Z−(s) associ-
ated with Z(s) which are both entire functions of order two.

Set

Z+(s) = Z(s)
G1(s)(Γ(s− 1/2))c ,

where G1(s) is defined by (2.4). Note that we have canceled out the trivial
zeros and poles of Z(s), hence the set N(Z+) consists of the following:

• At s = 1
2 , the multiplicity of the zero is a, where

a = 2d1/4 + c− 1
2

(
c− tr Φ(1

2)
)

= 2d1/4 + 1
2

(
c + tr Φ(1

2)
)
> 0;

• Zeros at the points sj on the line Re(s) = 1
2 symmetric rela-

tive to the real axis and in (1/2, 1]. Each zero sj has multiplicity
m(sj) = m(λj) where sj(1−sj) = λj is an eigenvalue in the discrete
spectrum of ∆;

TOME 70 (2020), FASCICULE 3
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• Zeros at the points sj = 1 − σj ∈ [0, 1/2) (see Section 2.5). Here,
by (2.5), the multiplicity m(sj) is

[multiplicity of the eigenvalue λj = σj(1− σj)]
− [order of the pole of φ(s) at s = σj ] > 0;

• Zeros at each s = ρ, where ρ is a pole of φ(s) with Re(ρ) < 1
2 .

Set
Z−(s) = Z+(s)φ(s).

Then it follows that N(Z−) = 1 −N(Z+). That is, s is a zero of Z+ iff
1− s is a zero (of the same multiplicity) of Z−.

3. Lax–Phillips scattering operator on M

Following [22] and [28] we will introduce the scattering operator B onM
and identify its spectrum. Let u = u(z, t) be a smooth function on H× R.
Consider the hyperbolic wave equation for −∆,

utt = Lu = −∆u− u

4 ,

with initial values f = {f1, f2} ∈ H(Γ)×H(Γ), where

u(z, 0) = f1(z) and ut(z, 0) = f2(z).

Recall that 〈 · , · 〉 is the inner product on H(Γ). The energy form (norm)
for the wave equation is

E(u) = 〈u, Lu〉+ 〈∂tu, ∂tu〉 .

The energy form is independent of t, so in terms of initial values, an inte-
gration by parts yields

E(f) =
∫
F

(
y2 |∂f1|2 −

|f1|2

4 + |f2|2
)

dxdy
y2 ,

where F denotes the Ford fundamental domain of Γ.
In general, the quadratic form E is not positive definite. To overcome

this difficulty we follow [28] and modify E in the following manner: Choose
a partition of unity {ψj | j = 0, . . . , c} with ψ0 of compact support and
ψj = 1 in the jth cusp (transformed to ∞) for y > a, where a is fixed and
sufficiently large. Set

Ej(f) =
∫
F

ψj

(
y2 |∂f1|2 −

|f1|2

4 + |f2|2
)

dxdy
y2 ,
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so that E =
∑
j Ej . There exists a constant k1 and a compact subset

K ⊂ F so that

G(f) := E(f) + k1

∫
K

|f1|2
dxdy
y2

is positive definite(3) .
Define the Hilbert space H(Γ)G as the completion with respect to G of

C∞ data f = {f1, f2} ∈ C∞0 (F)× C∞0 (F) with compact support.
The wave equation may be written in the form ft = Af where

A =
(

0 I

L 0

)
,

defined as the closure of A, restricted to C∞0 (F) × C∞0 (F). The operator
A is the infinitesimal generator a unitary group U(t) with respect to the
energy norm E.
The Incoming and Outgoing subspaces of H(Γ)G are defined as follows.
• The Incoming subspace D− is the closure in H(Γ)G of the set of

elements of the form {y1/2ϕ(y), y3/2ϕ′(y)}, where ϕ is a smooth
function of y which vanishes for y 6 a, and ϕ′ = d

dyϕ.
• The Outgoing subspace D+ is defined analogously as the closure of
{y1/2ϕ(y),−y3/2ϕ′(y)}.

The subspaces D− and D+ are G orthogonal. Let K denote the orthogonal
complement of D−⊕D+ in H(Γ)G and let P denote the G-orthogonal (and
E-orthogonal(4) ) projection of H(Γ)G onto K and set

Z(t) = PU(t)P, for t > 0.

The operators Z(t) form a strongly continuous semigroup of operators
on K with infinitesimal generator B. For every λ in the resolvent set of
B, (B − λI)−1 is a compact operator [23, Section 3]. Hence, B has a pure
point spectrum of finite multiplicity and (B−λI)−1 is meromorphic in the
entire complex plane. See also [22, Theorem 2.7].
Following [28], we define the singular set σ(Γ). First, we define the mul-

tiplicity function m(r) as follows:
(1) If Im(r) 6 0 and r 6= 0, the multiplicity m(r) is the dimension

of the eigenspace for λ = 1
4 + r2 for ∆ on M = Γ \ H. Hence for

Im(r) 6 0,m(r) = 0 outside of (−∞,∞) ∪ −i(0, 1
2 ].

(3) [28, p. 4] and [23, p. 265] differ in the y−2 term.
(4)Since the functions φ(y) are zero outside of the cusp sectors, the E and G forms
agree.
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(2) If Im(r) > 0, m(r) is the multiplicity of the eigenvalue 1
4 + r2 plus

the order of the pole (or negative the order of the zero) of φ(s) at
s = 1

2 + ir.
(3) For r = 0, m(r) is twice the multiplicity of the cusp forms (with

eigenvalue λ = 1/4) plus (c + Tr(Φ(1/2))/2.
Then, the singular set σ(Γ) is defined to be the set of all r ∈ C with

m(r) > 0, counted with multiplicity. The singular set σ(Γ) is closely related
to the spectrum Spec(B) of the operator B by the equation Spec(B) =
iσ(Γ), see [28].
Therefore, by setting s = 1

2 + ir and referring to Section 2.8, we have

(3.1) Spec
(

1
2I +B

)
= N(Z+).

and

(3.2) Spec
(

1
2I −B

)
= N(Z−).

4. Process of zeta regularization

In the mathematical literature, there exist mainly three different ap-
proaches to zeta regularization. In the abstract approach, as in [15, 16, 19,
20] the authors start with a general sequence of complex numbers (general-
ized eigenvalues) and define criteria for the zeta regularization process. For
example, in [16], a theta series is introduced and, under suitable conditions
at zero and infinity, a possibly regularized zeta function is defined as the
Laplace–Mellin transform of the theta series.

The second approach is based on a generalization of the Poisson summa-
tion formula or explicit formula. Starting with the truncated heat kernel,
one defines a regularized zeta function as the Mellin transform of the trace
of the truncated heat kernel modulo the factor 1

Γ(s) . Variants of the second
approach can be found in [4, 5, 11, 25, 26, 27, 30, 31], and many others.
The third approach, formulated by A. Voros in [34, 35, 36, 37] is based

on the construction of the so-called superzeta functions, meaning zeta func-
tions constructed over a set of zeros of the primary zeta function. In this
setting, one starts with a sequence of zeros, rather than the sequence of
eigenvalues, of a certain meromorphic function and then induces zeta regu-
larization through meromorphic continuation of an integral representation
of this function, valid in a certain strip. In this section we give a brief
description of this methodology.
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Let R− = (−∞, 0] be the non-positive real numbers. Let {yk}k∈N be the
sequence of zeros of an entire function f of order 2, repeated with their
multiplicities. Let

Xf = {z ∈ C | (z − yk) /∈ R− for all yk}.

For z ∈ Xf , and s ∈ C (where convergent) consider the series

(4.1) Zf (s, z) =
∞∑
k=1

(z − yk)−s,

where the complex exponent is defined using the principal branch of the
logarithm with arg z ∈ (−π, π) in the cut plane C \ R−.

Since f is of order two, Zf (s, z) converges absolutely for Re(s) > 2. The
series Zf (s, z) is called the zeta function associated to the zeros of f , or
the simply the superzeta function of f .
If Zf (s, z) has a meromorphic continuation which is regular at s = 0, we

define the zeta regularized product associated to f as

Df (z) = exp
(
− d

ds Zf (s, z)|s=0

)
.

Hadamard’s product formula allows us to write

f(z) = ∆f (z) = eg(z)zr
∞∏
k=1

((
1− z

yk

)
exp

[
z

yk
+ z2

2yk2

])
,

where g(z) is a polynomial of degree 2 or less, r is the order of a zero of
f at z = 0, and the other zeros yk are listed with multiplicity. A simple
calculation shows that when z ∈ Xf ,

(4.2) Zf (3, z) = 1
2 (log ∆f (z))′′′ .

The following proposition is due to Voros ([34, 36, 37]). For completeness,
we give a different proof.

Proposition 4.1. — Let f be an entire function of order two, and for
k ∈ N, let yk be the sequence of zeros of f . Let ∆f (z) denote the Hadamard
product representation of f . Assume that for n > 2 we have the following
asymptotic expansion:

(4.3) log ∆f (z) = ã2z
2
(

log z − 3
2

)
+ b2z

2 + ã1z (log z − 1)

+ b1z + ã0 log z + b0 +
n−1∑
k=1

akz
µk + hn(z),
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where 1 > µ1 > · · · > µn → −∞, and hn(z) is a sequence of holomorphic
functions in the sector |arg z| < θ < π, (θ > 0) such that h(j)

n (z) =
O(|z|µn−j), as |z| → ∞ in the above sector, for all integers j > 0.
Then, for all z ∈ Xf , the superzeta function Zf (s, z) has a meromorphic

continuation to the half-plane Re(s) < 2 which is regular at s = 0.
Furthermore, the zeta regularized product Df (z) associated to Zf (s, z)

is related to ∆f (z) through the formula

(4.4) Df (z) = e−(b2z
2+b1z+b0)∆f (z).

Proof. — For any z ∈ Xf , the series

(4.5) Zf (3, z + y) =
∞∑
k=1

(z + y − yk)−3,

which is obtained by setting s = 3 in (4.1), converges uniformly for y ∈
(0,∞). Furthermore, an application of [12, Formula 3.194.3], with µ = 3−s,
ν = 3 and β = (z − yk)−1 yields, for all yk,∫ ∞

0

y2−s dy
(z + y − yk)3 = 1

2(z − yk)−sΓ(3− s)Γ(s).

Absolute convergence of the series (4.1) for Re(s) > 2 implies that

Zf (s, z) = 2
Γ(3− s)Γ(s)

∫ ∞
0
Zf (3, z + y)y2−sdy,

for 2 < Re(s) < 3. From the relation
1

Γ(s)Γ(3− s) = 1
Γ(s)Γ(1− s)(1− s)(2− s) = sin πs

π(1− s)(2− s) ,

(which is obtained by the functional equation and the reflection formula
for the gamma function) we obtain

(4.6) Zf (s, z) = 2 sin πs
π(1− s)(2− s)

∫ ∞
0
Zf (3, z + y)y2−sdy,

for 2 < Re(s) < 3.
Next, we use (4.6) together with (4.3) in order to get the meromorphic

continuation of Zf (s, z) to the half plane Re(s) < 3. We start with (4.2)
and differentiate equation (4.3) three times to get

Zf (3, z + y) = ã2

(z + y) −
ã1

2(z + y)2 + ã0

(z + y)3

+
n−1∑
k=1

akµk(µk − 1)(µk − 2)
2(z + y)3−µk

+ 1
2h
′′′
n (z + y),

for any n > 2.
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Since µk ↘ −∞, for an arbitrary µ < 0 there exists k0 such that µk 6 µ
for all k > k0, hence we may write

Zf (3, z + y)y3 = y3

(
ã2

(z + y) −
ã1

2(z + y)2 + ã0

(z + y)3

+
k0−1∑
k=1

akµk(µk − 1)(µk − 2)
2(z + y)3−µk

)
+ gµ(z + y),

where gµ(z + y) = 1
2y

3h′′′k0
(z + y).

Note that

(4.7) gµ(z+ y) = O(yµ) as y →∞, and gµ(z+ y) = O(y3) as y ↘ 0.

Application of [12, Formula 3.194.3] yields

∫ ∞
0
Zf (3, z + y)y2−sdy(4.8)

= ã2z
2−sΓ(3−s)Γ(s−2)− ã1

2 z
1−sΓ(3−s)Γ(s−1)+ ã0

2 Γ(3−s)Γ(s)

+
k0−1∑
k=1

akµk(µk − 1)(µk − 2)Γ(3− s)Γ(s− µk)
2Γ(3− µk) zµk−s

+
∫ ∞

0
gµ(z + y)y−s−1dy.

The integral on the right hand side of (4.8) is the Mellin transform of
the function gµ. By (4.7) this integral represents a holomorphic function in
s for all s in the half strip µ < Re(s) < 3. The other terms on the right
hand side of (4.8) are meromorphic in s, hence the right-hand side of (4.8)
provides meromorphic continuation of integral

∫∞
0 Zf (3, z+y)y2−sdy from

the strip 2 < Re(s) < 3 to the strip µ < Re(s) < 3. Since µ < 0 was chosen
arbitrarily, we can let µ→ −∞ and obtain the meromorphic continuation
of this integral to the half plane Re(s) < 3.
Formula (4.8), together with (4.6), after multiplication with 2

Γ(s)Γ(3−s) ,

now yields the following representation of Zf (s, z), for an arbitrary, fixed
z ∈ Xf , valid in the half plane µ < Re(s) < 3:

TOME 70 (2020), FASCICULE 3



932 Joshua S. FRIEDMAN, Jay JORGENSON & Lejla SMAJLOVIĆ

(4.9) Zf (s, z) = 2ã2

(s− 1)(s− 2)z
2−s − ã1

(s− 1)z
1−s

+ ã0z
−s −

k0−1∑
k=1

ak
Γ(s− µk)

Γ(s)Γ(−µk)z
µk−s

+ 1
Γ(s)Γ(3− s)

∫ ∞
0

h′′′k0
(z + y)y2−sdy.

From the decay properties of h′′′k0
(z+y), it follows that Zf (s, z) is holomor-

phic at s = 0. Furthermore since 1
Γ(s) has a zero at s = 0, the derivative of

the last term in (4.9) is equal to(
d
ds

1
Γ(s)

∣∣∣∣s=0

)
1

Γ(3)

∫ ∞
0

h′′′k0
(z + y)y2dy

= −1
2

∫ ∞
0

h′′′k0
(z + y)y2dy = hk0(z),

where the last equality is obtained from integration by parts two times, and
using the decay of hk0(z + y) and its derivatives as y → +∞, for µk0 < 0.
Moreover, since

d
ds

Γ(s− µk)
Γ(s)

∣∣∣∣
s=0

= lim
s→0

Γ(s− µk)
Γ(s) · Γ′

Γ (s) = −Γ(−µk),

elementary computations yield

− d
dsZf (s, z)

∣∣∣∣
s=0

= ã2z
2
(

log z − 3
2

)
+ ã1z (log z − 1)

+ ã0 log z +
k0−1∑
k=1

akz
µk + hk0(z),

for z in the sector |arg z| < θ < π, (θ > 0). Finally, (4.4) follows from the
uniqueness of analytic continuation. �

5. Polar structure of superzeta functions associated to Z+
and Z−

Recall the definitions of Z+, Z−, G1, and the null sets N(Z±).
Set X± = XZ± , and for z ∈ X±, set ζ±B (s, z) := ZZ±(s, z), the superzeta

functions of Z±.
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In this section we prove that ζ±B (s, z) has a meromorphic continuation
to all s ∈ C, with simple poles at s = 2 and s = 1, and we determine the
corresponding residues.
Let G1(s, z) be the superzeta function associated to the G1(s), defined

for z ∈ XG1 = C \ R−, and Re(s) > 2 by

(5.1) G1(s, z) = vol(M)
2π

∞∑
n=0

(2n+ 1)
(z + n)s

= vol(M)
π

[ζH(s− 1, z)− (z − 1/2)ζH(s, z)].

Equation (5.1) and the meromorphic continuation of ζH(s, z) immedi-
ately yield

Proposition 5.1. — For for z ∈ C \ R−, function G1(s, z) admits a
meromorphic continuation (in the s variable) to C with simple poles at
s = 2 and s = 1, with corresponding residues vol(M)

π and −vol(M)
2π (2z − 1),

respectively.

Recall the divisor of the Selberg zeta-function Z(s) in Section 2.6 and
note that {z ∈ C | (z − wk) /∈ R− for all wk} = X+, where wk is a zero
or a pole of Z(s). Analogously, the set {z ∈ C | (z − wk) /∈ R− for all yk},
where yk is a zero or a pole of ZH(s) is equal to X−. The polar structure
of the superzeta function ζ+

B (s, z) is given as follows:

Theorem 5.2. — Fix z ∈ X+. The superzeta function ζ+
B (s, z) has

meromorphic continuation to all s ∈ C, and satisfies

(5.2) ζ+
B (s, z) = −G1(s, z) + cζH

(
s, z − 1

2

)
+ sin πs

π

∫ ∞
0

(
Z ′

Z
(z + y)

)
y−sdy.

Furthermore, the function ζ+
B (s, z) has two simple poles at s = 1 and s = 2

with corresponding residues vol(M)
π (z − 1/2) + c and −vol(M)

π respectively.
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Proof. — For z ∈ X+ and 2 < Re(s) < 3, we apply (4.2) and (4.6) to get

(5.3) ζ+
B (s, z) + G1(s, z)

= 2 sin πs
π(1− s)(2− s)

∫ ∞
0

[
ζ+
B (3, z + y) + G1(3, z+y)

]
y2−sdy

= sin πs
π(1− s)(2− s)

∫ ∞
0

(logF (z + y))′′′ y2−sdy

= sin πs
π(1− s)(2− s)

∫ ∞
0

y2−sd
(
(logF (z + y))′′

)
,

where we put F (x) = Z+(x)G1(x), hence, according to Section 2.8

log(F (x)) = logZ(x)− c log
(

Γ
(
x− 1

2

))
,

and
(logF (z + y))′′ = −cψ′(z + y − 1/2) +

(
Z ′(z + y)
Z(z + y)

)′
.

For fixed z ∈ X+, it follows from (2.11) and (2.1) that

(logF (z + y))′′ = O

(
1
y

)
, as y →∞

and
(logF (z + y))′′ = O(1), as y ↘ 0.

Therefore, for 1 < Re(s) < 2 we may integrate by parts and obtain

(5.4) sin πs
π(1− s)(2− s)

∫ ∞
0

y2−sd
(
(logF (z + y))′′

)
= − sin πs

π(1− s)

∫ ∞
0

(
Z ′(z + y)
Z(z + y)

)′
y1−sdy

+ c sin πs
π(1− s)

∫ ∞
0

ψ′(z + y − 1/2)y1−sdy

= I1(s, z) + I2(s, z).

First, we deal with I1(s, z). By (2.11), Z
′(z+y)
Z(z+y) = O(y−n), for any positive

integer n, as y → ∞. Also, Z′(z+y)
Z(z+y) = O(1), for fixed z ∈ X+, as y → 0.

Hence we may apply integration by parts to the integral I1(s, z) and obtain,
for 0 < Re(s) < 1 and z ∈ X+,

I1(s, z) = − sin πs
π(1− s)

∫ ∞
0

y1−sd
(
Z ′(z + y)
Z(z + y)

)
= sin πs

π

∫ ∞
0

Z ′(z + y)
Z(z + y) y

−sdy.
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The integral I1(s, z), for z ∈ X+ is actually a holomorphic function
in the half plane Re(s) < 1. To see this, let µ 6 0 be arbitrary. Since
(logZ(z+y))′ = O(N(P0)−Re(z+y)/2), as y → +∞, we have that (logZ(z+
y))′ = O(y−2+µ), as y → +∞, where the implied constant may depend
upon z and µ. Hence, (logZ(z + y))′y−s = O(y−2), as y → +∞, for all s
such that µ < Re(s) 6 0. Moreover, the bound Z′(z+y)

Z(z+y) = O(1), for fixed
z ∈ X+ implies that (logZ(z + y))′y−s = O(1), as y → 0, for all s in
the half plane Re(s) 6 0. This shows that for z ∈ X+ the integral I1(s, z)
is absolutely convergent in the strip µ < Re(s) 6 0, hence represents a
holomorphic function for all s in that strip. Since µ 6 0 was arbitrarily
chosen, we have proved that I1(s, z), for z ∈ X+, is holomorphic function
in the half plane Re(s) 6 0.

Next, we claim that I1(s, z), for z ∈ X+, can be continued to the half-
plane Re(s)> 0 as an entire function. For z ∈X+ and 0<Re(s)< 1 we put

I1(s, z) =
∫ ∞

0

(
Z ′

Z
(z + y)

)
y−sdy

and show that for z ∈ X+ the integral I1(s, z) can be meromorphically
continued to the half-plane Re(s) > 0 with simple poles at the points
s = 1, 2, . . . and corresponding residues

(5.5) Ress=n I1(s, z) = − 1
(n− 1)! (logZ(z))(n).

Since the function sin(πs) has simple zeros at points s = 1, 2, . . . this would
prove that I1(s, z), for z ∈ X+ is actually an entire function of s.

Let µ > 0 be arbitrary, put n = bµc to be the integer part of µ and let
δ > 0 (depending upon z ∈ X+ and µ) be such that for y ∈ (0, δ) we have
the Taylor series expansion

(logZ(z + y))′ =
n∑
j=1

(logZ(z))(j)

(j − 1)! yj−1 +R1(z, y),

where R1(z, y) = O(yn), as y → 0. Then, for 0 < Re(s) < 1 we may write

I1(s, z) =
n∑
j=1

(logZ(z))(j)

(j − 1)!
δj−s

j − s

+
∫ δ

0
R1(z, y)y−sdy +

∫ ∞
δ

(
Z ′

Z
(z + y)

)
y−sdy.

The bound on R1(z, y) and the bound (2.11) imply that the last two in-
tegrals are holomorphic functions of s for Re(s) ∈ (0, µ). The first sum
is meromorphic in s, for Re(s) ∈ (0, µ), with simple poles at s = j,
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j ∈ {1, . . . , n} and residues equal to −(logZ(z))(j)/(j − 1)!. Since µ > 0 is
arbitrary, this proves the claim. Therefore, we have proved that I1(s, z) is
holomorphic function in the whole complex s−plane.
In order to evaluate integral I2(s, z) we use the fact that ψ′(w) = ζH(2, w)

and that, for 1 < Re(s) < 2
∞∑
k=0

∫ ∞
0

∣∣∣∣∣ y1−sdy
(z + k − 1/2 + y)2

∣∣∣∣∣�
∞∑
k=0

1
|z + k − 1/2|Re(s) <∞.

For z − p /∈ R−, and 0 < Re(s) < 2, applying [12, Formula 3.194.3.] we
get ∫ ∞

0

y1−sdy
(z + y − p)2 =

∫ ∞
0

ys−1dy
(1 + y [z − p])2 = 1

(z − p)s
· Γ(s)Γ(2− s)

Γ(2)

= (1− s)Γ(s)Γ(1− s)
(z − p)s

= π(1− s)
sin πs ·

1
(z − p)s

,

hence the dominated convergence theorem yields

I2(s, z) = c sin πs
π(1− s)

∞∑
k=0

∫ ∞
0

y1−sdy
(z + k − 1/2 + y)2 = c

∞∑
k=0

1
(z + k − 1/2)s

= cζH(s, z − 1/2).

This, together with the representation (5.1) of G1(s, z) and formula (5.3)
proves (5.2) for z ∈ X+. Moreover, for z ∈ X+, the function I2(s, z) is
meromorphic in the whole s−plane, with a single simple pole at s = 1,
with residue c, hence the function I1(s, z) + I2(s, z) is also meromorphic in
the whole s−plane, with a single simple pole at s = 1, with residue c.
Combining this with Proposition 5.1 completes the proof. �

The polar structure of the superzeta function ζ−B (s, z), in the s−plane,
for z ∈ X− is determined in the following theorem.

Theorem 5.3. — For z ∈ X− the superzeta function ζ−B (s, z) can be
represented as

(5.6) ζ−B (s, z) = −G1(s, z)+cζH(s, z)+sin πs
π

∫ ∞
0

(
(ZH)′

ZH
(z + y)

)
y−sdy.

Moreover, the superzeta function ζ−B (s, z), for z ∈ X−, is a meromorphic
function in variable s, with two simple poles at s = 1 and s = 2 with
corresponding residues vol(M)

π (z − 1/2) + c and −vol(M)
π .

Proof. — The proof is very similar to the proof of Theorem 5.2. We start
with

(5.7) Z−(s)G1(s) = πc/2 exp(c1s+ c2)Γ(s)−c(ZH)(s),
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where the left-hand side of the equation is entire function of order two.
Proceeding analogously as above, for 2 < Re(s) < 3 we get

ζ−B (s, z) + G1(s, z)

= 2 sin πs
π(1− s)(2− s)

∫ ∞
0

[
ζ−B (3, z + y) + G1(3, z + y)

]
y2−sdy

= sin πs
π(1− s)(2− s)

∫ ∞
0

y2−sd
(
(log T (z + y))′′

)
,

where
(log T (z + y))′′ = −cψ′(z + y) +

(
(ZH)′(z + y)
ZH(z + y)

)′
.

Bounds (2.9) and (2.11) imply that, for an arbitrary µ > 0, positive
integer k and z ∈ X− we have

dk

dyk (log(ZH)(z + y)) = O(y−µ), as y → +∞,

where the implied constant depends upon z and k. Moreover, from the series
representation of Z(s) andH(s) it is evident that (log(ZH)(z+y))′ = O(1),
as y → 0.

Therefore, repeating the steps of the proof presented above we deduce
that (5.6) holds true and that the superzeta function ζ−B (s, z), for z ∈ X−,
possesses meromorphic continuation to the whole complex s−plane with
simple poles at s = 1 and s = 2 with residues vol(M)

π (z − 1/2) + c and
−vol(M)

π , respectively. �

6. Regularized determinant of the Lax–Phillips operator B

After identifying the polar structure of the zeta functions ζ±B , we are in
position to state and prove our main results.
First, we express the complete zeta function Z+(z) as a regularized de-

terminant of the operator zI − ( 1
2I + B), modulo the factor of the form

exp(α1z + β1), where α1 = vol(M) log(2π)/π and β1 = vol(M)
4π (4ζ ′(−1) −

log(2π)) + c
2 log(2π) and obtain an analogous expression for the complete

zeta function Z−(z), see Theorem 6.2. below.
Moreover, we prove that the scattering determinant φ(z) is equal to the

product of exp(c1z + c2 + c
2 log π) and the quotient of regularized determi-

nants of operators zI − ( 1
2I −B) and zI − ( 1

2I +B).
Then, we define the higher depth regularized determinant, i.e. the regu-

larized determinant of depth r ∈ {1, 2, . . .} and show that the determinant
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of depth r of the operator zI − ( 1
2I + B) can be expressed as a product

of the Selberg zeta function of order r and the Milnor gamma functions of
depth r, see Theorem 6.4. below.
Finally, we express Z ′(1) in terms of the (suitably defined) regularized

determinant of 1
2I −B.

6.1. Regularized product associated to G1, Z+, and Z−

A simple application of Proposition 4.1 yields expressions for regularized
products associated to G1, Z+, and Z−. We start with G1(s, z), which is
regular at s = 0, hence we have the following proposition.

Proposition 6.1. — For all z ∈ C\ (−∞, 0], the zeta regularized prod-
uct of G1(s, z) is given by

DG1(z) = exp
(
−vol(M)

2π

[
2z log(2π) + (2ζ ′(−1)− log(

√
2π))

])
G1(z).

Proof. — From (2.4) we get

logG1(z) = vol(M)
2π (z log(2π) + 2 logG(z + 1)− log Γ(z)) ,

upon applying (2.3) (2.1), (and ζ ′(0) = − 1
2 log(2π)), and after a straight-

forward computation we obtain

logG1(z) = vol(M)
2π

[
z2
(

log z − 3
2

)
− z(log z − 1) + (2 log(2π))z

+1
3 log z −

(
1
2 log(2π)− 2ζ ′(−1)

)]
+
m−1∑
j=1

cj
zj

+ hm(z),

where cj and hm(z) can be explicitly determined from (2.3) and (2.1) as
Re(z) → ∞ in the sector |arg z| < π

2 − δ, where δ > 0. Applying Proposi-
tion 4.1 with

ã2 = vol(M)
2π , b2 = 0, ã1 = −vol(M)

2π , b1 = vol(M)
π

log(2π),

ã0 = vol(M)
6π , b0 = vol(M)

2π (2ζ ′(−1)− log(
√

2π))

we obtain

(6.1) exp
(
− d

dsG1(s, z)
∣∣∣∣
s=0

)
= exp

(
−vol(M)

2π

[
2z log(2π) + (2ζ ′(−1)− log(

√
2π))

])
G1(z) �
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Recall that Spec
( 1

2I +B
)

= N(Z+) and Spec
( 1

2I −B
)

= N(Z−), hence
Spec

(
zI − ( 1

2I +B)
)

= {z−yk | yk ∈ N(Z+)} and Spec
(
zI − ( 1

2I −B)
)

=
{z − yk | yk ∈ N(Z−)}.
Therefore, for z ∈ X± we define

det
(
zI − (1

2I +B)
)

= DZ+(z) = exp
(
− d

dsζ
+
B (s, z)

∣∣∣∣
s=0

)
,

respectively

det
(
zI − (1

2I −B)
)

= DZ−(z) = exp
(
− d

dsζ
−
B (s, z)

∣∣∣∣
s=0

)
.

Our main result is

Theorem 6.2. — For z ∈ X±, the regularized product of Z±(z) is
given by

(6.2) det
(
zI − (1

2I ±B)
)

= exp
(
− d

dsζ
±
B (s, z)

∣∣∣∣
s=0

)
= Υ±(z)Z±(z),

where

Υ+(z) = exp
[

vol(M)
2π

(
2zlog(2π)+2ζ ′(−1)− 1

2 log(2π)+ cπ
vol(M) log(2π)

)]
and

Υ−(z) = exp
[(

vol(M)
π

log(2π)− c1
)
z

+ vol(M)
2π (2ζ ′(−1)− log(

√
2π))− c2 + c

2 log 2
]
.

Moreover, for z ∈ X+ ∩X−

(6.3) φ(z) = (π) c
2 ec1z+c2

det
(
zI − ( 1

2I −B)
)

det
(
zI − ( 1

2I +B)
) .

Proof. — As z →∞, in Re(z) > 0, upon applying (2.3) and (2.1) we get

(6.4) logZ+(z) = logZ(z)− logG1(z)− c log Γ
(
z − 1

2

)
= logZ(z)− vol(M)

2π

[
z2
(

log z − 3
2

)
− z(log z − 1) + 2z log(2π)

+1
3 log z −

(
1
2 log(2π)− 2ζ ′(−1)

)]
− c

(
1
2 log(2π) + (z − 1) log z − z

)
+
m−1∑
j=1

cj
zj

+ hm(z),
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where the cj and hm(z) can be calculated explicitly (with the help of Le-
gendre’s duplication formula). By (2.11), logZ(z) and its derivatives are of
rapid decay, so it can be grouped with the last terms on the right.
Applying Proposition 4.1 with

ã2 = − vol(M)
2π , b2 = 0, ã1 = vol(M)

2π − c, b1 = − vol(M)
π

log(2π),

ã0 = − vol(M)
6π + c, b0 = vol(M)

2π (log(
√

2π)− 2ζ ′(−1))− c
2 log(2π),

gives us the first part of (6.2).
Next, to study ζ−B , recall that Z− = φZ+. By (2.7), (2.9) and expansion

logL(z) = c
2 log π + c1z + c2 + c log Γ(z − 1

2)− c log Γ(z),

we have, as z →∞, in Re(z) > 0,

(6.5)
logZ−(z) = logZ(z)−logG1(z)−c log Γ(z)+ c

2 log π+c1z+c2+logH(z)

= −vol(M)
2π

[
z2(log z − 3

2)− z(log z − 1) + 2z log(2π)

+1
3 log z − (1

2 log(2π)− 2ζ ′(−1))
]
− c

(
1
2 log(2π) + (z − 1

2) log z − z
)

+ c
2 log π + c1z + c2 + logZ(z) + logH(z) +

m−1∑
j=1

cj
zj

+ hm(z)

Note that we can group logZ(z) + logH(z) with the rapidly decaying
remainder terms in (6.5). Applying Proposition 4.1 with

ã2 = −vol(M)
2π , b2 = 0,

ã1 = vol(M)
2π − c, b1 = −vol(M)

2π · 2 log(2π) + c1,

ã0 = −vol(M)
6π + c

2 , b0 = −vol(M)
2π (2ζ ′(−1)− log(

√
2π)) + c2 −

c
2 log 2.

gives us the second part of (6.2).
It is left to prove (6.3). It follows after a straightforward computation

from the relation φ(z) = Z−(z)/Z+(z) combined with (6.2). �

Remark 6.3. — Equation (6.3) shows that the function

φ(z) · exp
(
−c1z − c2 −

c
2 log π

)
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is equal to a regularized determinant of the operator(
B +

(
z − 1

2

)
I

)(
R(z− 1

2 )(B)
)
,

for z ∈ X+ ∩ X−, where Rλ(B) denotes the resolvent of the operator B.
This result is reminiscent of [9, Theorem 1], once we recall that B is the
infinitesimal generator of the one-parameter family Z(t). Namely, the right
hand side represents the quotient of regularized determinants of operators
with infinitely many eigenvalues, while the left hand side is a determinant
of a matrix operator.

Remark 6.4. — Since the Selberg zeta function Z(s) possesses a non-
trivial, simple zero at s = 1, it is obvious that z = 1/2 /∈ X+. However,
inserting formally z = 1/2 into (6.3) and recalling the fact that exp(c1/2 +
c2) = d(1)/g1, we conclude that (6.3) suggests that φ(1/2) = sgn(d(1)),
where sgn(a) denotes the sign of a real, nonzero number a.

Remark 6.5. — It is possible to relate the determinant det(zI−( 1
2I+B))

and the determinant det (∆ + z(z − 1)I) associated to the Laplacian. To do
so, one considers the square of the expression (6.2) with plus signs. Observe
that, in the notation of [4, 5, formula 1.6], one has the formula

Z+(z) = Z(z)Z∞(z) exp
(
−vol(M)

π
z log(2π)

)
.

By comparing the main theorem in [4, 5] with (6.2) we immediately deduce
that

det 2
(
zI − (1

2I +B)
)

= det 2 (∆ + z(z − 1)I)
(
z − 1

2

)c+tr Φ( 1
2 )

· exp
(

vol(M)
4π (2z − 1) + c log 2(2z + 1)

)
.

6.2. Higher-depth Determinants

By Theorems 5.2 and 5.3 functions ζ+
B (s, z) and ζ−B (s, z) are holomorphic

at s = 0,−1,−2, . . . , hence it is possible to define higher-depth determi-
nants of the operators

(
zI − ( 1

2I +B)
)
and

(
zI − ( 1

2I −B)
)
, as in [21].

The determinant of the depth r (where r = 1, 2, . . . ) is defined for z ∈
X± as
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(6.6) detr
(
zI −

(
1
2I +B

))
= exp

(
−(ζ+

B )′(s, z)
∣∣
s=1−r

)
and

detr
(
zI −

(
1
2I −B

))
= exp

(
−(ζ−B )′(s, z)

∣∣
s=1−r

)
,

respectively. When r = 1, we obtain the classical (zeta) regularized deter-
minant.
The higher depth determinants of the operator

(
zI − ( 1

2I +B)
)
can be

expressed in terms of the Selberg zeta function Z(r)(s) of order r > 1 and
the Milnor gamma function of depth r, which is defined as

Γr(z) := exp
(

∂

∂w
ζH(w, z)

∣∣∣∣
w=1−r

)
.

We have the following theorem

Theorem 6.6. — For z ∈ X+, and r ∈ N one has

detr
(
zI − (1

2I +B)
)

=
(

Γr
(
z − 1

2

))−c
(

Γr+1(z)
Γr(z)(z−

1
2 )

) vol(M)
π

·
[
Z(r)(z)

][(−1)r−1(r−1)!]
.

Proof. — From Theorem 5.2, for z ∈ X+ one has

ζ+
B (s, z) = −vol(M)

π

[
ζH(s− 1, z)−

(
z − 1

2

)
ζH(s, z)

]
+ cζH(s, z − 1/2) + sin πs

π

∫ ∞
0

(
Z ′

Z
(z + y)

)
y−sdy

The right hand side is holomorphic, at s = 0,−1,−2, . . . .
Differentiating the above equation with respect to the variable s, insert-

ing the value s = 1− r, where r ∈ N and having in mind the definition of
the Milnor gamma function of depth r we get

(6.7) ∂

∂s
ζ+
B (s, z)

∣∣∣∣
s=1−r

= −vol(M)
π

[
log Γr+1(z)−

(
z − 1

2

)
log Γr(z)

]
+ c log Γr

(
z − 1

2

)
+ (−1)r−1

∫ ∞
0

(
Z ′

Z
(z + y)

)
yr−1dy

for z ∈ X+.
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Assume for the moment that Re(z) > 1. Then, for y > 0

Z ′

Z
(z + y) =

∑
P∈H(Γ)

Λ(P )
N(P )z+y .

The absolute and uniform convergence of the above sum for Re(z) > 1 and
y > 0 imply that, for r ∈ N∫ ∞

0

(
Z ′

Z
(z + y)

)
yr−1dy =

∑
P∈H(Γ)

Λ(P )
N(P )z

∫ ∞
0

yr−1 exp(−y logN(P ))dy

= (r − 1)!
∑

P∈H(Γ)

Λ(P )
N(P )z (logN(P ))r

.

Equation (6.7), together with the above relation yield the formula

− ∂

∂s
ζ+
B (s, z)

∣∣∣∣
s=1−r

= vol(M)
π

log
(

Γr+1(z)
Γr(z)(z−

1
2 )

)
− c log Γr

(
z − 1

2

)
+ (−1)r−1(r − 1)! · logZ(r)(z),

for Re(z) > 1. The statement of theorem follows by (6.6) and uniqueness
of meromorphic continuation. �

6.3. An expression for Z ′(1) as a regularized determinant

Recall that for z ∈ X+ we have

det
(
zI −

(
1
2I +B

))
= DZ+(z) = exp

(
− d

dsζ
+
B (s, z)

∣∣∣∣
s=0

)
.

The above regularized product is not well defined at z = 1, since z = 1
corresponds to the constant eigenfunction (λ = 0) of ∆ of multiplicity one,
hence it does not belong to X+. Therefore, for Re(s) > 2 we define

(ζ+
B )∗(s, z) = ζ+

B (s, z)− (z − 1)−s =
∑

η∈N(Z+)\{1}

1
(z − η)s .

Meromorphic continuation of (ζ+
B )∗(s, z) for z ∈ X+ ∪ {1} to the whole

s−plane is immediate consequence of Theorem 5.2 which implies that
(ζ+
B )∗(s, z) is holomorphic at s = 0. Moreover,

− d
ds (ζ+

B )∗(s, z) = − d
dsζ

+
B (s, z)− log(z − 1)

(z − 1)s ,
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hence

(6.8) det∗
(
I −

(
1
2I +B

))
= lim
z→1

exp
(
− d

ds (ζ+
B )∗(s, z)

∣∣∣∣
s=0

)
= lim
z→1

1
z − 1DZ+(z),

We give a direct proof of the following:

Theorem 6.7. — With the notation as above

det∗
(
−B + 1

2I
)

= 2 c
2 exp

[
vol(M)

2π

(
2ζ ′(−1) + 3

2 log(2π)
)]

Z ′(1).

Proof. — From (6.8) and Theorem 6.2 it follows that

det∗
(

1
2I −B

)
= exp

[
vol(M)

2π

(
2 log(2π) + 2ζ ′(−1)− 1

2 log(2π)

+ cπ
vol(M) log(2π)

)]
· lim
z→1

Z+(z)
z − 1

= exp
[
vol(M)

2π

(
3
2 log(2π)+2ζ ′(−1)+ cπ

vol(M) log(2π)
)]

Z ′(1)
G1(1)(Γ(1/2))c

= 2 c
2 exp

[
vol(M)

2π

(
2ζ ′(−1) + 3

2 log(2π)
)]

Z ′(1). �

Remark 6.8. — The above corollary may be viewed as a generalization
of the result of [31, Corollary 1], for the determinant D0 to the case of the
non-compact, finite volume Riemann surface with cusps. Here, the role of
the Laplacian is played by the operator −B + 1

2I. In the case when c = 0,
the spectrum of −B + 1

2I consists of points s = 1
2 + irn, s = 1

2 − irn,
rn 6= 0, with multiplicities m(λn) and the point s = 1

2 with multiplicity
2d1/4. Therefore, formally speaking∏

λn 6=0

(
1
2 + irn

)(
1
2 − irn

)
=
∏
λn 6=0

λn = det′(∆0),

in the notation of Sarnak. For c = 0, Corollary 3 may be viewed as the
statement

′
det det′(∆0) = exp

[
vol(M)

2π

(
2ζ ′(−1) + 3

2 log(2π)
)]

Z ′(1).

This agrees with [31], the only difference being a constant term
exp(−vol(M)

8π ). It appears due to a different scaling parameter we use.
Namely, in [31, Theorem 1], parameter is a (natural for the trace formula
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setting) parameter s(s−1), while we use s instead. This yields to a slightly
different asymptotic expansion at infinity and produces a slightly different
renormalization constant.

BIBLIOGRAPHY

[1] V. S. Adamchik, “Contributions to the theory of the Barnes function”, Int. J.
Math. Comput. Sci. 9 (2014), no. 1, p. 11-30.

[2] G. E. Andrews, R. Askey & R. Roy, Special functions, Encyclopedia of Mathe-
matics and Its Applications, vol. 71, Cambridge University Press, 1999.

[3] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics,
vol. 91, Springer, 2012.

[4] I. Efrat, “Determinants of Laplacians on surfaces of finite volume”, Commun.
Math. Phys. 119 (1988), no. 3, p. 443-451.

[5] ———, “Erratum Determinants of Laplacians on surfaces of finite volume”, Com-
mun. Math. Phys. 138 (1991), no. 3, p. 607-607.

[6] A. Eskin, M. Kontsevich & A. Zorich, “Sum of Lyapunov exponents of the Hodge
bundle with respect to the Teichmüller geodesic flow”, Publ. Math., Inst. Hautes
Étud. Sci. 120 (2014), no. 1, p. 207-333.

[7] C. Ferreira & J. L. López, “An asymptotic expansion of the double gamma
function”, J. Approximation Theory 111 (2001), no. 2, p. 298-314.

[8] J. Fischer, An approach to the Selberg trace formula via the Selberg zeta-function,
Lecture Notes in Mathematics, vol. 1253, Springer, 1987, iv+184 pages.

[9] R. Forman, “Functional determinants and geometry”, Invent. Math. 88 (1987),
no. 3, p. 447-493.

[10] G. Freixas Montplet, “An arithmetic Riemann–Roch theorem for pointed stable
curves”, Ann. Sci. Éc. Norm. Supér. 42 (2009), no. 2, p. 335-369.

[11] J. S. Friedman, “Regularized determinants of the Laplacian for cofinite Kleinian
groups with finite-dimensional unitary representations”, Commun. Math. Phys. 275
(2007), no. 3, p. 659-684.

[12] I. S. Gradshteyn & I. M. Ryzhik, Table of integrals, series, and products, Aca-
demic Press Inc., 1965, fourth edition prepared by Ju. V. Geronimus and M. Ju.
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