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THE ALGEBRAIC FUNCTIONAL EQUATION OF
RIEMANN’S THETA FUNCTION

by Luca CANDELORI

Abstract. — We give an algebraic analog of the functional equation of Rie-
mann’s theta function. More precisely, we define a “theta multiplier” line bundle
over the moduli stack of principally polarized abelian schemes with theta charac-
teristic and prove that its dual is isomorphic to the determinant bundle over the
moduli stack. We do so by explicit computations involving the Picard group of the
moduli stack. This is all done over the ring R = Z[1/2, i]: passing to the complex
numbers, we recover the classical functional equation.
Résumé. — Nous donnons un analogue algébrique de l’équation fonctionnelle

de la fonction thêta de Riemann. Plus précisément, nous définissons un fibré en
droites « multiplicateur thêta » sur le champ de modules de schémas abéliens prin-
cipalement polarisés avec une caractéristique thêta et prouvons que son dual est
isomorphe au fibré déterminant sur le champ de modules. Nous le faisons par des
calculs explicites impliquant le groupe de Picard du champ de modules. Tout cela
se fait sur l’anneau R = Z[1/2, i] : en passant aux nombres complexes, on retrouve
l’équation fonctionnelle classique.

1. Introduction

In 1829 C.G.J Jacobi introduced the theta function ϑ(τ) =
∑
n∈Z e

πin2τ

and proved the remarkable transformation formula

(1.1) ϑ

(
−1
τ

)
=
√
τ

i
ϑ(τ), τ ∈ h := {z ∈ C : Im[z] > 0},

where
√
· is defined using the principal branch of the logarithm. Along with

the trivial identity ϑ(τ + 2) = ϑ(τ), equation (1.1) expresses the fact that
ϑ is a modular form of weight 1/2 on the theta group Γ+

1 (1, 2) ⊆ SL2(Z), a
level 2 congruence subgroup. Much effort has been devoted in recent years
to study the algebro-geometric nature of modular forms, which has led to
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810 Luca CANDELORI

great progress in understanding their Fourier coefficients and their rela-
tion to Galois representations. Yet despite all this success, statements such
as (1.1) have remained rather mysterious from an algebro-geometric point
of view, their algebraic nature obscured by the use of analytic techniques
such as Poisson summation. Given the importance of theta functions and
of modular forms of half-integral weight in general, this has to be viewed
as a serious gap in our understanding of the theory. It is the aim of this
paper to fill this gap.
The natural geometric framework to study this problem is the moduli

space of principally polarized abelian varieties of dimension g with theta
characteristic. Over the complex numbers this moduli space is given by
the analytic quotient stack A ±g,an :=

[
Γ±g (1, 2)\hg

]
, where hg is the g-

dimensional Siegel upper half-space and, according to whether the char-
acteristic is even (+) or odd (−), the subgroups Γ±g (1, 2) ⊆ Sp2g(Z) are the
theta groups, generalizing Γ+

1 (1, 2) above (e.g. [7, VIII, §3.4.1, §3.4.2]). For
example, in the even case we have

(1.2) Γ+
g (1, 2) :=

{(
A B
C D

)
∈ Sp2g(Z) : ABt and CDt have even diagonal

}
,

which is the group of transformations of the Riemann theta function ϑg(τ).
This is the analytic function of τ ∈ hg given by

ϑg(τ) :=
∑
n∈Zg

eπi n
tτn,

a higher-dimensional generalization of ϑ(τ). In this geometric setting, the
theta function ϑg(τ) is the value at zero of a section of a certain relatively
ample, normalized, symmetric line bundle Θ of degree 1 over the universal
abelian variety π : A → Γ+

g (1, 2)\hg, whose isomorphism class is deter-
mined by the theta characteristic. In particular, ϑg is a section of the dual
(π∗Θ)−1 of the line bundle π∗Θ. A similar theta function and corresponding
geometric analog can be obtained in the case of odd theta characteristics.
Theta functions such as ϑg(τ) have well-known functional equations anal-

ogous to the g = 1 case (1.1). In this article, we would like to explain the
relationship between these transformation laws and the moduli problem at
hand. Moreover, we want to do this algebraically: namely, we work over the
algebraic moduli stack A ±g of principally polarized abelian schemes with
theta characteristic. This is an algebraic stack which is smooth over Z[1/2]
([7, §VIII.3.2.4]), and whose analytification is the analytic stack A ±g,an defi-
ned above. The formation of ϑg can be carried out in this algebraic setting
as well. However, any analytic statement such as (1.1) seems now meaning-
less, since ϑg is no longer an analytic function on hg, but rather a section
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RIEMANN’S THETA FUNCTION 811

of an algebraic line bundle over an algebraic stack. Our goal then is to
translate the functional equation into a statement which makes sense over
any commutative ring, and not just over the complex numbers.
The first results in this direction have been obtained in [7, App. 1 (the

“canonical key formula”)], where the Grothendieck–Riemann–Roch Theo-
rem is employed to show that the determinant bundle

∆(Θ) := (π∗Θ)⊗2 ⊗ ω,

where ω is the Hodge bundle of π, is a canonical torsion element in Pic(A ±g ).
This fact alone shows that some high power r of the algebraic Riemann
theta function ϑg is an algebraic Siegel modular form of weight r/2, i.e. a
section of ωr/2. This result was later improved by [3, Thm. I.5.1], who show
that the smallest such r is 8 and essentially that ∆(Θ) has the structure of
a µ4-torsor over A ±g . Moreover, it was shown in [8] that the trivialization
of ∆(Θ)⊗4 can be computed analytically using the functional equation
of Riemann’s theta function. In fact, the functional equation (1.1) and
its higher-dimensional analogs, together with the above-mentioned results,
suggest that there must exist a natural “theta multiplier bundle”M(Θ), a
µ4-torsor over A ±g , and an isomorphism

(1.3) ∆(Θ) '−→M(Θ)−1

of the underlying line bundles over A ±g . Over C, M(Θ) must correspond
to the character

λ : Γ(1, 2)±g → µ4 ⊆ C×

giving the 4-th roots of unity appearing in the transformation laws of ϑ2
g(τ).

We construct the theta multiplier bundleM(Θ) in Section 3 and prove the
isomorphism (1.3) in Section 5. Moreover, we show in Section 6 that (1.3)
is given analytically by the functional equation. The current article can
thus be viewed as a refinement of [3, Thm. I.5.1], who give a canonical
trivialization of ∆(Θ)⊗4, and [8], where such trivialization is computed in
terms of the functional equation.
Our construction of theta multiplier bundles is based on a geometric

interpretation of λ, which could be of independent interest. This interpre-
tation is due to Pierre Deligne (private communication), and is given in
Section 2. In the even case, a different geometric interpretation of λ had
been already given in the beautiful paper [5]: that construction was also
one of the original inspirations for this article and the relation with our λ
is given at the end of Section 2.
There are many other interesting modular forms on levels other than

Γ±g (1, 2), whose algebraic construction can be similarly worked out. Indeed,
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812 Luca CANDELORI

the isomorphism (1.3) can be generalized to the case when Θ is replaced by a
relatively ample line bundle of higher degree, in which case (1.3) is replaced
by an isomorphism of vector bundles. This level of generality requires the
machinery of Heisenberg groups ([7], [11, §5], and [15]) and is contained in
the sequel of the present paper [1]. This sequel gives algebraic definitions
of modular form (of integral and half-integral weight) taking values in Weil
representations: in particular, it provides algebraic counterparts to modular
forms of half-integral weight in the classical sense, that of Shimura. It
should also be possible to employ similar ideas to obtain analogous results
for non-degenerate line bundles of higher index, although this direction has
not yet been pursued.

Acknowledgments. I would like to acknowledge the guidance that I
have received from Pierre Deligne while drafting this paper. The ideas of
Sections 2 and 3 are entirely due to him, along with many corrections he
suggested from earlier drafts. I must also thank Cameron Franc, Clement
Gomez, William J. Hoffman and Ling Long for their comments, and James
Parson for his corrections to an earlier draft. I would also like to thank the
referee for many helpful comments.

2. Symplectic 4-groups with theta characteristic

In this section we study free Z/4Z-modules V equipped with a symplectic
form, together with a quadratic form on the reduction of V modulo 2 whose
associated bilinear form is the reduction of the symplectic form modulo 2.
For these objects we construct a type of “determinant” λ (Theorem 2.4),
which lies at the heart of the construction of the theta multiplier bundles
appearing in the isomorphism 1.3 in the Introduction (Theorem 5.1 below).
The construction of λ was inspired by [5], and is due to Pierre Deligne
(private communication).

Definition 2.1. — A symplectic 4-group is a free Z/4Z-module V of
rank 2g together with a non-degenerate alternating bilinear form

ψ : V × V −→ Z/4Z.

Let V := V/2V be the free Z/2Z-module of rank 2g obtained from V by
reducing the coordinates of V modulo 2. The bilinear form 2ψ descends
to the quotient V to give a non-degenerate alternating (thus symmetric)
bilinear form ψ on V . Suppose then we are given a function

q : V −→ Z/2Z

ANNALES DE L’INSTITUT FOURIER



RIEMANN’S THETA FUNCTION 813

which is a quadratic form for ψ, i.e.

q(v1 + v2)− q(v1)− q(v2) = ψ(v1, v2), for all v1, v2 ∈ V .

Definition 2.2. — The triple (V, ψ, q) is called a symplectic 4-group
with theta characteristic. The group Γ := Aut(V, ψ, q), of Z/4Z-linear au-
tomorphisms ϕ : V → V such that ϕ preserves ψ and ϕ preserves q, is
called the theta group of (V, ψ, q) (cf. [5]).

Up to isomorphism, there are only two quadratic forms q for each g. We
say that q is even if there exists a subspace L ⊆ V such that q(L) = 0
and dimL = g (i.e. L is maximal isotropic), and odd otherwise. We say
that the symplectic 4-group (V, ψ) with theta characteristic q is even or
odd, according to the parity of q. In terms of the Arf invariant, q is even
if Arf(q) = 0 and odd otherwise. Accordingly, the isomorphism class of the
theta group of (V, ψ, q) is entirely determined by g and by the parity of q.
There are special elements of this group which are essential to understand
its structure.

Definition 2.3 ([5, §1]). — A anisotropic transvection is any linear
map tv ∈ Γ of the form

tv(x) = x+ ψ(v, x) v,

where v is a vector such that q(v) 6= 0.

Note that any such anisotropic transvection tv satisfies
(i) t2v(x) = x+ 2ψ(v, x) v,
(ii) γtvγ−1 = tγv, γ ∈ Γ.

In particular, (i) implies that t2v reduces to the identity modulo 2 and (ii)
implies that all anisotropic transvections are conjugates of each other.

2.1.

Given a symplectic 4-group with theta characteristic (V, ψ, q), denote
by Γ(2) the kernel of the “reduction modulo 2” homomorphism GL(V )→
GL(V ), and let O(V , q) be the orthogonal group of the quadratic module
(V , q) modulo 2. The theta group Γ is then a group extension

(2.1) 0→ Γ(2)→ Γ γ 7→γ−→ O(V , q)→ 0.

Each flanking term in this exact sequence is endowed with a natural non-
trivial homomorphism to a cyclic group of order 2, which we now describe.

TOME 70 (2020), FASCICULE 2



814 Luca CANDELORI

First, we have the Dickson invariant (e.g. [2, §3])

Dq : O(V , q) −→ Z/2Z,

defined by the action of O(V , q) on Z(Cliff+(V , q)). Given an isomorphism
O(V , q) ' O±(2g, 2), there are explicit formulas for Dq(t) which are qua-
dratic in the entries of the matrix t. Alternatively, Dq is given by the
formula ([16, §3.8.1])

(2.2) Dq(t) = rk(id + t) mod 2.

Second, there is a homomorphism

q : Γ(2) −→ Z/2Z,

canonically induced by q, defined as follows. There is an isomorphism

Γ(2) '−→ sp(V , ψ)
id +2β 7−→ β,

as Z/2Z-vector spaces of rank g(2g + 1), and the symmetric bilinear form
ψ induces a canonical isomorphism

gl(V , ψ) ' End(V ) ' V ∗ ⊗ V
ψ
' V ⊗ V ,

under which sp(V , ψ) corresponds to the subspace of symmetric 2-tensors
Σ2(V ). Therefore Γ(2) and Σ2(V ) are canonically isomorphic as Z/2Z-
vector spaces. The quadratic form q now induces a linear form q : Σ2(V ) −→
Z/2Z, by the universal property of Σ2(V ) with respect to degree 2 maps.
It turns out that the two homomorphisms Dq and q can be combined to

construct a remarkable Z/4Z-valued character on Γ := Aut(V, ψ, q), whose
existence implies the existence of the theta multiplier bundle appearing in
our main Theorem 5.1.

Theorem 2.4. — Let (V, ψ, q) be a symplectic 4-group with theta char-
acteristic, and let Γ = Aut(V, ψ, q) be its theta group. Then there is a
unique group homomorphism

λ : Γ −→ Z/4Z,

such that
(1) λ|Γ(2) = 2 · q, where Z/2Z 2·→ Z/4Z is the canonical injection,
(2) λ(γ) ≡ Dq(γ) mod 2, for all γ ∈ Γ,
(3) λ(tv) = 1, for any anistropic transvection tv.
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Proof. — The orthogonal group O(V , q), by definition, preserves the
quadratic form q and therefore it preserves ker(q : Γ(2) → Z/2Z) under
the outer action given by (2.1). The group ker(q) is thus normal in Γ, and
the quotient is a central extension

(2.3) 0→ Γ(2)/ ker(q)→ Γ/ ker(q) p→ O(V , q)→ 0.

Indeed, Γ(2)/ ker(q) = {± id + ker(q)} since q(− id) = det(ψ) and ψ is
non-degenerate.
Next, consider Ω(V , q) := ker(Dq), the “special orthogonal group” in

characteristic 2. The central extension

0→ Γ(2)/ ker(q)→ p−1(Ω(V , q)) p→ Ω(V , q)→ 0,

deduced from (2.3), has a unique splitting σ for all g > 5. In fact, for such
g the group Ω(V , q) is simple with trivial Schur multiplier ([16, §3.8.2]).
We may thus form the quotient G := (Γ/ ker(q)) /σ(Ω(V , q)), a central
extension of Γ(2)/ ker(q)

q
' Z/2Z by O(V , q)/Ω(V , q)

Dq' Z/2Z.
We now claim that there is an isomorphism of G with Z/4Z. To find this

isomorphism, let tv be any anisotropic transvection. Clearly Dq(tv) = 1
from (2.2), so tv 6= 0 ∈ G. Moreover, t2v ∈ Γ(2) so that

λ(t2v) = q(t2v) = q(v ⊗ v) = q(v) 6= 0,

thus tv gives an element of exact order 4 in G.
To summarize, for g > 5 we have a commutative diagram

0 Γ(2) Γ O(V , q) 0

0 Γ(2)/ ker(q) Γ/ ker(q) O(V , q) 0

0 Γ(2)/ ker(q) G O(V , q)/Ω(V , q) 0

0 Z/2Z Z/4Z Z/2Z 0.

id

id

q ' tv Dq

2· mod 2

We define λ : Γ → Z/4Z to be the homomorphism given by compo-
sing the arrows in the middle vertical column. Properties (1) and (2)
are then clear from the definition. Property (3), and uniqueness, follow
by requiring one (all) anisotropic transvection tv to map to 1 under
the isomorphism G ' Z/4Z. If g < 5, we may choose an embedding

TOME 70 (2020), FASCICULE 2



816 Luca CANDELORI

(V, ψ, q) ↪→ (V ⊕ V ′, ψ ⊕ ψ′, q ⊕ q′) into a symplectic 4-group V ⊕ V ′ with
large enough g, in which case there is a canonical injection

Aut(V, ψ, q) ↪→ Aut(V ⊕ V ′, ψ ⊕ ψ′, q ⊕ q′),

and we may define λ on Γ = Aut(V, ψ, q) by restriction. �

By construction, λ satisfies the following important compatibility, whose
proof we omit since it follows from an elementary computation.

Proposition 2.5. — For any two symplectic 4-groups with theta char-
acteristic (V, ψ, q), (V ′, ψ′, q′), the diagram

Γ(V )× Γ(V ′) Γ(V ⊕ V ′)

Z/4Z Z/4Z

λ(V )+λ(V ′) λ(V⊕V ′)

=

is commutative.

We now compute the character λ explicitly in the g = 1 case. These
computations will later be used in the proof of our main Theorem 5.1.

2.2. Case g = 1, q even

By choosing a basis for V we may assume that V ' Z/4Z⊕2, ψ is the
standard symplectic form

ψ(x1, y1, x2, y2) = x1y2 − y1x2,

and q(x, y) = xy. In this case O(V , q) ' O+(2, 2),

O+(2, 2) =
{(

1 0
0 1
)
,
(

0 1
1 0
)}
' Z/2Z,

and Γ(2) ' Z/2Z⊕3. The theta group Γ is generated by S =
( 0 −1

1 0
)
and

T 2 =
(

1 2
0 1
)
. Now T 2 ∈ Γ(2) and it corresponds to the symmetric 2-tensor

v1 ⊗ v1, where v1 = (1, 0). Thus λ(T 2) = q(v1 ⊗ v1) = q(1, 0) = 0. On
the other hand Dq(S) = 1, thus λ(S) = ±1. The sign can be fixed by
choosing an anisotropic transvection. For example, the vector (1, 1) ∈ V

reduces mod 2 to the unique anisotropic vector of V , and the corresponding
transvection tv is given by the matrix

( 0 1
−1 2

)
. Setting λ(tv) = 1 then forces

λ(S) = −1, since S tv = T 2.

ANNALES DE L’INSTITUT FOURIER
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2.3. Case g = 1, q odd

Again let V = Z/4Z⊕2, ψ as above and q now given by q(x, y) = x2 +
y2 + xy. We have O(V , q) ' O−(2, 2) ' S3 and Γ(2) ' Z/2Z⊕3. The theta
group Γ is isomorphic to SL2(Z/4Z) and is generated by S and T =

(
1 1
0 1
)
.

Now T = tv1 is the anisotropic transvection of the vector v1 = (1, 0), thus
λ(T ) = 1. On the other hand λ(S) = ±1 as before. To fix the sign, let
v = (1, 1) as before and apply λ to S tv = T 2 to obtain λ(S) = 1.

2.4. Case g > 3, q even

By Proposition 2.5, in order to compute λ explicitly it suffices to find a
formula for it in the case of q even and g large (say g > 3). In this case,
a different construction of λ has already been given in [5], together with a
remarkably simple algorithm to compute it. We now recall this construction
and show how it is a special case of ours.

Definition 2.6. — Let (V, ψ, q) be a symplectic 4-group of rank 2g
with even theta characteristic. A free Z/4Z-submodule L ⊆ V is called an
isotropic lagrangian submodule if it is a direct summand of V of rank g,
with ψ = 0 on L × L and q(L) = 0, where L ⊆ V is the reduction of L
modulo 2.

Let L be any isotropic lagrangian, and let {vi}gi=1 be a Z/4Z-basis for
it. Any two such bases differ by a uniquely defined element of GL(L), of
determinant ±1. We may thus define an equivalence relation on the set of
all bases for L by declaring {vi}gi=1 ∼ {v′i}

g
i=1 if they differ by an element

of determinant 1. There are only 2 such equivalence classes, which we call
orientations of L.

Definition 2.7. — A pair (L, [{vi}gi=1]) of an isotropic lagrangian L

and a choice of orientation [{vi}gi=1] is called an oriented isotropic la-
grangian. The set of all such pairs is denoted by Λ0(V ).

The authors of [5] define the function mJM : Λ0(V )×Λ0(V )→ Z/4Z by

(L1, L2) 7−→ σ(L1, L2) + (g − dimL1 ∩ L2)− 1 mod 4,

where σ(L1, L2) ∈ {±1} is a sign function, depending on the orientations,
defined as follows: if L1 ∩ L2 = {0} (i.e. L1 and L2 are transversal), then
ψ : L1 → L∗2 is an isomorphism, and σ is the determinant of the matrix of
this isomorphism with respect to the orientations given. If L1 = L2, then

TOME 70 (2020), FASCICULE 2



818 Luca CANDELORI

we choose an isotropic lagrangian D which is transversal to both L1 and
L2 and set σ(L1, L2) = σ(L1, D)σ(L2, D). All other cases can be reduced
to these two ([5, §2]). To define a character Γ → Z/4Z, fix an oriented
isotropic lagrangian L0 and let

λJM (γ) := mJM (L0, γL0).

This is a homomorphism satisfying λJM (tv) = 1 ([5, §3]) for any anisotropic
transvection tv, thus λJM = λ since the abelianization of Γ is equal to
Z/4Z, generated by the conjugacy classes of anisotropic transvections
([5, Thm. 1.1.(i)]).
Conversely, the function mJM is entirely determined by the charac-

ter λJM , since this is trivial on commutators. In particular, mJM can be
recovered from our definition of λ. To see this, note that the theta group
Γ = Aut(V, ψ, q) acts transitively on Λ0(V ), and we may define a function

m : Λ0(V )× Λ0(V ) −→ Z/4Z
(L1, L2) 7−→ λ(γ1,2),

by choosing γ1,2 ∈ Γ so that γ1,2L1 = L2.

Lemma 2.8. — The function m is well-defined, and m = mJM .

Proof. — Choose an oriented isotropic lagrangian L and a splitting
V = L ⊕ M compatible with ψ and q. Let Γ(L) be the stabilizer of L
under the action of Γ on Λ0(V ), i.e. the subgroup of all γ ∈ Γ which pre-
serve L, along with its orientation. We need to show that λ factors through
Γ(L). Now any element of Γ(L), with respect to the chosen orientation,
has the form

(
A B
0 A−1,t

)
, where A ∈ SL(L). In other words, Γ(L) is a group

extension
0→ T −→ Γ(L) γ 7→A−→ SL(L)→ 0,

where elements of T are of the form
(
I B
0 I

)
. Since SL(L) has no non-trivial

characters, it suffices to show that λ factors through T . Indeed, T is a group
extension

0→ T (2) −→ T
mod 2−→ T → 0,

where elements of T (2) ⊆ Γ(2) are of the form
(
I B
0 I

)
= I + 2

(
0 B′
0 0

)
. These

elements map under ψ to symmetric 2-tensors in Σ2(L), where the value
of λ = q is always 0 since L is isotropic. Thus λ factors through T (2). But
λ(γ) ≡ Dq(γ) mod 2, and clearly the elements of T have even rank mod 2,
thus λ factors through all of T . Now the value of m is entirely determined
by λ = λJM , and the same is true for mJM . �
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Remark 2.9. — For q odd, note that Λ0(V ) = ∅ and the geometric con-
struction of [5] cannot be applied directly.

3. Theta multiplier bundles

Let now S be a scheme over Z[1/2, i], where i denotes a choice of prim-
itive 4th root of unity. Let K → S be a finite étale commutative group
scheme with geometric fibers isomorphic to Z/4Z⊕2g, together with a non-
degenerate symplectic pairing

eK : K ×K −→ µ4,

where µN is the finite flat S-group scheme of N -th roots of unity. We
call (K, eK) a symplectic 4-group scheme of rank 2g. The group scheme
K := K/2K is endowed with the alternating (thus symmetric) pairing
eK := e2

K . Let
eK∗ : K −→ µ2

be a quadratic character for eK .

Definition 3.1. — The triple (K, eK , eK∗ ) is called a symplectic 4-group
scheme with theta characteristic. The theta group of (K, eK , eK∗ ) is the
finite étale group scheme ΓS representing the functor

Aut(K, eK , eK∗ )(T → S) := Aut(K ×S T, eK , e∗K).

The character λ of Theorem 2.4, composed with [i] : Z/4Z
S
' µ4, gives

by descent a group scheme homomorphism

(3.1) λ : ΓS −→ µ4,

which is compatible under taking direct sums, as in Proposition 2.5.

3.1.

Given a symplectic 4-group scheme with theta characteristic (K, eK , eK∗ ),
consider the constant triple (Z/4Z2g

S
, e4, e

±
∗ ) of rank 2g, equipped with the

standard symplectic form e4 and a theta characteristic e±∗ of the same type
(i.e. even or odd) as that of eK∗ . The functor on S-schemes given by

{T → S} 7→ Isom
(

(K ×S T, eK , eK∗ ), (Z/4Z2g
S
, e4, e

±
∗ )
)

TOME 70 (2020), FASCICULE 2



820 Luca CANDELORI

is representable by a ΓS-torsor IsomS

(
(K, eK , eK∗ ), (Z/4Z2g

S
, e4, e

±
∗ )
)
. De-

fine
M(K, eK , e∗) := λ∗ Isom

(
(K, eK , eK∗ ), (Z/4Z2g

S
, e4, e

±
∗ )
)
,

a µ4-torsor over S, whose formation is compatible under base-change.

Definition 3.2. — Given a symplectic 4-group scheme (K→S, eK , e
K
∗ )

with theta characteristic, the µ4-torsorM(K, eK , eK∗ ) over S is called the
theta multiplier bundle associated to (K, eK , e∗).

By Proposition 2.5, the formation of theta multiplier bundles is compat-
ible with direct sums. More precisely, given any two symplectic 4-group
schemes (K, eK , eK∗ ), (K ′, eK′ , eK

′

∗ ) with theta characteristic over S, there
is a µ4-torsor isomorphism

(3.2) M(K⊕K ′, eK⊕eK′ , eK∗ ⊕eK
′

∗ ) '→M(K, eK , eK∗ )⊗M(K ′, eK′ , eK
′

∗ ).

4. Determinant line bundles on abelian schemes

Having described in Section 3 the term on the right-hand side of the
isomorphism (1.3), we now turn to the left-hand side, the so called “de-
terminant bundle”. We assume from now on that all schemes are locally
noetherian and that all abelian schemes are projective, as in [13, §6.2].

4.1.

Let π : A→ S be an abelian scheme of relative dimension g with identity
section e : S → A. Let L be an invertible OA-module which has been
normalized at the identity, i.e. we have chosen an OS-module isomorphism
e∗L ' OS . Any such invertible OA-module defines a canonical morphism
ϕL : A −→ At to the dual abelian scheme. Let

K(L) := kerφL,

a commutative group scheme over S. When L is relatively ample, K(L)
is finite flat over S and it is canonically endowed with a non-degenerate
symplectic pairing

eL : K(L)×K(L) −→ Gm.
In this case, rk(K(L)) = d2, where d is the degree of L, so that K(L) is
étale over S[1/d] ([10, §1], [11, §6]).
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Suppose next that S is a scheme where 1/2 ∈ OS and suppose that the
(relatively ample, normalized) invertible sheaf L is symmetric. This means
that there is a (unique) isomorphism of normalized invertible OA-modules
ιL : [−1]∗L '−→ L, where [−1] : A → A is the inversion morphism. In this
situation the isomorphism ιL, restricted to the fixed locus A[2] of [−1]∗, is
multiplication by ±1 and thus it defines a function

eL∗ : A[2] −→ µ2.

This function is quadratic for the symmetric pairing eL2 ([10, §2, Cor. 1]).

Proposition 4.1. — Let Θ be a normalized, relatively ample, symmet-
ric invertible sheaf of degree d = 1 over an abelian scheme A→ S of relative
dimension g. Then (K(Θ4), eΘ4 , eΘ

∗ ) is a symplectic 4-group of rank 2g with
theta characteristic.

Proof. — The invertible sheaf Θ2 (resp. Θ4) is also relatively ample and
of degree 2g (resp. 4g), so that K(Θ2) (resp. K(Θ4)) is finite étale of rank
22g (resp. 42g). In fact, since ϕL is additive in L, there is a canonical
isomorphism

K(Θ2) = ker 2ϕL ' A[2]

and similarly K(Θ4) = ker 4ϕL ' A[4]. In particular, the function eΘ
∗ is a

theta characteristic on the symplectic 4-group scheme (K(Θ4), eΘ4). �

Suppose additionally that S is over Z[1/2, i]. Given Θ as in Proposi-
tion 4.1, we can form the corresponding theta multiplier bundle (Defini-
tion 3.2)

(4.1) M(Θ) :=M(K(Θ4), eΘ4 , eΘ
∗ ),

which is a µ4-torsor over S.

Proposition 4.2. — The formation ofM(Θ) is compatible under base-
change; that is, given any two pairs (A,Θ) and (A′,Θ′) as in Proposi-
tion 4.1, a base-change morphism of abelian schemes

A′
φ
' A×S S′ A

S′ S,
ϕ

together with an OS′ -module isomorphism ψ : φ∗Θ ' Θ′, then there is a
canonical isomorphism ϕ∗M(Θ) 'M(Θ′) as µ4-torsors.
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Proof. — This is clear, since the formation of the symplectic 4-group
(K(Θ4), eΘ4) and the theta characteristic eΘ

∗ are all compatible under such
base-change. �

In addition, the formation of M(Θ) is compatible under taking direct
products, i.e. for any two pairs (A1,Θ1), (A2,Θ2) there is a canonical µ4-
torsor isomorphism

(4.2) M(Θ1 �Θ2) 'M(Θ1)⊗M(Θ2),

as follows from (3.2).

4.2.

There is another µ4-torsor that can be canonically attached to the pair
(A,Θ) of Proposition 4.1. Namely, let

(4.3) ∆(Θ) := (π∗Θ)⊗2 ⊗ ωA/S
be the determinant bundle, where ωA/S := det(π∗Ω1

A/S) is the Hodge bun-
dle of π : A→ S. Since Θ is relatively ample of degree 1, the determinant
bundle is an invertible sheaf over S ([7, VIII.1.0]), and its formation is com-
patible with base-change ([7, VIII.1.1.1]). Moreover, there is an OS-module
isomorphism ([3, Thm. I.5.1])

(4.4) ∆(Θ)⊗4 ' OS
which is compatible under base-change ([14, Remark after Thm. 0.2]) giving
∆(Θ) a canonical µ4-torsor structure over S.

Remark 4.3. — The right level of generality in which to study determi-
nant bundles is that of a non-degenerate symmetric line bundle L over A
of arbitrary degree d > 0, in which case ∆(L) := (detRπ∗L)⊗2 ⊗ ωA/S is
a “true” determinant ([3], [6], [7], [14]). Note that the cohomology of non-
degenerate line bundles is concentrated in degree i(L), the index of L ([12,
§16]). Therefore, the complex Rπ∗L is concentrated in the term Ri(L)π∗L,
by [12, §II.5], so that

∆(L) = (detRi(L)π∗L)⊗(−1)i(L)·2 ⊗ ωA/S .

By the Künneth formula, determinant bundles are also compatible under
direct products, i.e. for any two pairs (A1,Θ1), (A2,Θ2) there is a canonical
µ4-torsor isomorphism

(4.5) ∆(Θ1 �Θ2) ' ∆(Θ1)⊗∆(Θ2).
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We now “compute” determinants in the genus 1 case, following [14, §5.1].
These computations will later be used in the proof of our main Theorem 5.1.

4.3. Case g = 1, e∗ even

Let π : E → S be an elliptic curve over a scheme S with 1/2 ∈ OS , and let
e : S → E be its identity section. Let P : S → E be a non-trivial section
of order 2. Then we claim that Θ := OE(P ) is a normalized, relatively
ample, symmetric invertible sheaf of degree 1 over E with even eΘ

∗ . Indeed
e∗Θ ' OS (since P 6= e), OE(P ) is ample of degree 1 on geometric fibers
and OE(P ) ' OE([−P ]) since P is 2-torsion. The theta characteristic is
even, since eΘ

∗ is given by the formula ([10, §2, Prop. 2])

eΘ
∗ (x) = (−1)multx(P )−multe(P )

where x ∈ E[2]. We claim that there is an isomorphism

(4.6) ∆(Θ) ' ωE/S ,

induced by the isomorphism π∗OE(P ) ' OS . The latter can be deduced
from the adjunction exact sequence

0 −→ OE −→ OE(P ) −→ P∗P
∗OE(P ) −→ 0.

Indeed, taking right-derived functors of π∗ we get a long exact sequence

0→ π∗OE → π∗OE(P )→ P ∗OE(P )→ R1π∗OE → R1π∗OE(P )→ . . .

But R1π∗OE(P ) = 0, as can be checked on the geometric fibers, and all
the other sheaves in the exact sequence are locally free of rank 1, thus
π∗OE(P ) ' π∗OE ' OS .

4.4. Case g = 1, e∗ odd

In this case, let
Θ := OE(e)⊗ Ω1

E/S .

Note that e∗OE(e) ' R1π∗OE ' ω−1
E/S , as can be deduced as above by

taking right-derived functors of π∗ applied to the adjunction exact sequence

0 −→ OE −→ OE(e) −→ e∗e
∗OE(e) −→ 0.

Therefore Θ is normalized. It is also symmetric, relatively ample of degree 1
as before. The characteristic is now odd, and there is an isomorphism

(4.7) ∆(Θ) ' ω⊗3
E/S ,
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which follows from the isomorphism π∗OE(e) ' OE and by the projection
formula applied to Ω1

E/S = π∗ωE/S .

5. The canonical key formula

Let (A,Θ) be a pair of an abelian scheme π : A→ S of relative dimension
g, where S is a scheme over R = Z[1/2, i], together with a normalized,
relatively ample, symmetric invertible sheaf Θ of degree d = 1. We have
two canonical µ4-torsors over S attached to this pair:

(i) the theta multiplier bundle

M(Θ) :=M(K(Θ4), eΘ4 , eΘ
∗ )

of (4.1), and
(ii) the determinant bundle

∆(Θ) := π∗Θ⊗2 ⊗ ωA/S
of (4.3).

This section is devoted to showing the “canonical key formula” below
(Theorem 5.1, cf. the weaker FCCab(Spec(R), g, 1) of [7, VIII.1.2]), com-
paring the image ofM(Θ) and ∆(Θ) under the natural map{

iso. classes of
µ4-torsors over S

}
= H1

ét(S, µ4)→ H1
ét(S,Gm)[4] = Pic(S)[4].

The key observation in the proof of the formula is that the Picard groups
of the classifying stacks Ãg of pairs (A,Θ) as above are very small ([14,
Thm. 5.6]). Therefore to compare the two invertible sheaves it suffices to
consider the case g = 1 and then use the respective compatibilities under
direct products.

Theorem 5.1 (Canonical Key Formula). — For each pair (A→ S,Θ) as
above, there is a functorial (i.e. compatible under base-change) OS-module
isomorphism

∆(Θ) 'M(Θ)−1

between the underlying invertible sheaves.

Proof. — Consider the algebraic stack Ãg over R classifying all pairs
(A,Θ) as above (morphisms as in Proposition 4.2), and let ∆g,Mg be the
µ4-torsors defined over Ãg by the functors (A,Θ) 7→ ∆(Θ) and (A,Θ) 7→
M(Θ), respectively. To prove Theorem 5.1, it suffices to show that there
exists an isomorphism ∆g ' M−1

g as invertible sheaves over Ãg. Now the
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stack Ãg is smooth ([7, VIII.3.2.4]) with two irreducible components A ±g ,
each classifying pairs (A,Θ) with eΘ

∗ even (+) or odd (−) ([8, Prop. 1.1.4].
For each g1, g2 > 1, there is a map

mg1,g2 : Ãg1 × Ãg2 −→ Ãg1+g2

((A1,Θ1), (A2,Θ2)) 7−→ (A1 ×A2,Θ1 �Θ2)

and µ4-torsor isomorphisms ((4.5) and (4.2))

m∗g1,g2
∆g1+g2 ' ∆g1 ⊗∆g2

m∗g1,g2
Mg1+g2 'Mg1 ⊗Mg2 .

Moreover, the map mg1,g2 sends A −g1
×A −g2

to A +
g1+g2

, A +
g1
×A +

g2
to A +

g1+g2

and so on ([8, §1.3]). It suffices then to prove ∆g ' M−1
g over A −1 and

over A +
g , g > 3.

First, consider A −1 . Following a technique of Mumford ([9, §6]), we are
going to construct an explicit isomorphism

α−1 : Pic(A −1 )[4] '−→ Z/4Z,

and then show that the images of ∆1,M−1
1 under α−1 are equal. To do so,

let k be an algebraically closed field of characteristic not 2, and consider
the elliptic curve E/k given by the Weierstrass equation y2 = x3 − x. Let
Θ−1 := OE(e)⊗Ω1

E/k. The pair (E,Θ−1 ) is classified by a point (Section 4.4)

κ−1 : Spec(k) −→ A −1 .

The curve E has a special automorphism of order 4 defined by

(5.1) [i](x) = −x, [i](y) = i y,

where i ∈ k× is a choice of primitive 4-th root of unity. Under a suitable
choice of basis for E[4] ' (Z/4Z)2, we may assume that the action of [i]
is given by the matrix

( 0 −1
1 0

)
and that eΘ−1

∗ (a, b) = (−1)a+b+ab. Thus [i]
extends to an automorphism of the pair (E,Θ−1 ), since it preserves e∗. Now
given an invertible sheaf L on A −1 , we may uniquely define a 4-th root of
unity α−1 (L) by

α−1 (L) := [i]∗ ∈ Aut(κ−∗1 L) ' k×,

which gives a homomorphism α−1 : Pic(A −1 ) −→ Z/4Z. If we let L = ∆1,
then κ−∗1 ∆1 ' ω⊗3

E/k by (4.7). Now ωE/k is the 1-dimensional k-vector
space generated by the regular differential dxy and thus

α−1 (∆1) = i3 = i−1,
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as follows from the explicit formulas (5.1) defining [i]. Since i is primitive,
α−1 is surjective. Moreover, since there is only one odd, normalized, sym-
metric, relatively ample invertible sheaf of degree 1 on an elliptic curve, we
have A −1 = M1,1[1/2, i], where M1,1 is the moduli stack of elliptic curves,
for which we have (e.g. [4])

Pic(M1,1[1/2, i])[4] ' Z/4Z.

Therefore α−1 is an isomorphism when restricted to Pic(A −1 )[4]. To show
that ∆1 'M−1

1 , note that

α−1 (M−1
1 ) = λ−1( 0 −1

1 0
)

= i−1,

as follows from the computations of Section 2.3.
Next, we employ the same technique for the case g > 3 even. In partic-

ular, we are going to construct an explicit isomorphism

α+
g : Pic(A +

g )[4] '−→ Z/4Z

for all g > 3, and then prove that α+
g (∆g) = α+

g (M−1
g ). To do so, consider

again the elliptic curve E/k. Let Θ+
1 := OE(P ), where P is the unique non-

trivial point of order 2 fixed by Aut(E/k). The pair (E,Θ+
1 ) is classified by

a point (Section 4.3) κ+
1 : Spec(k)→ A +

1 . If g is odd, consider the point

κ+
g : Spec(k) −→ A +

g

classifying (E×g, (Θ+
1 )�g). The special automorphism [i] preserves the

characteristic and it extends to an automorphism [i]×g of the pair
(E×g, (Θ+

1 )�g). Given an invertible sheaf L on A +
g , the action of [i]×g on

κ+ ∗
g (L) gives a homomorphism α+

g : Pic(A +
g ) −→ Z/4Z. This is surjective,

since (4.6) shows that

κ+ ∗
g (∆g) ' ωgE/k = k

(
dx

y

)⊗g
and therefore α+

g (∆g) = ig, a primitive 4-th root of unity. If g is even, apply
the same argument with the automorphism [i]×g−1 × id replacing [i]×g. In
both cases, there is an isomorphism ([14, Thm. 5.6])

Pic(A +
g )[4] ' Z/4Z

thus α+
g restricts to the desired isomorphism on 4-torsion.

To prove that ∆g 'M−1
g , note that for g odd

α+
g (M−1

g ) = λ−g
( 0 −1

1 0
)

= ig,
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as follows from the computations of Section 4.3 and by the compatibility
of λ under direct sums. Similarly, for g even we have

α+
g (M−1

g ) = λ−g+1( 0 −1
1 0

)
= ig−1,

which shows that ∆g 'M−1
g in all cases. �

Remark 5.2. — Theorem 5.1 can also be proved using the classical
transformation laws of theta functions. The advantage of using the
“theta-function-free” approach above is that we can now use Theorem 5.1
to give a new proof of the transformation laws of theta functions (this is
done in Section 6.1 below).

Remark 5.3. — Any two choices of isomorphism ∆g 'M−1
g must differ

by an element of Γ(A ±g ,Gm). The same arguments as in [8, §1], show that
Γ(A ±g ,Gm) = R×, thus the isomorphism of Theorem 5.1 is unique up to
multiplication by a constant in R×.

6. Algebraic and analytic functional equations

We now explain how the canonical key formula (Theorem 5.1, or rather
its refinement (6.1) below) can be viewed as the algebraic analog of the
functional equation of Riemann’s theta function. For simplicity, we only
treat the case of even theta characteristic, the odd case differing only in the
explicit analytic formulas for the theta function. Thus let (π : A → A +

g ,Θ)
be the universal pair over A +

g → Spec(R). The canonical key formula gives
by duality an isomorphism

(π∗Θ)−2 'M(Θ)⊗ ω,

where M(Θ) = Mg and ω is the Hodge bundle of π : A → A +
g . The

bundle of half-forms
ω

1/2
Θ :=

√
M(Θ)⊗ ω,

a square-root which a priori can only be defined over a µ2-gerbe over
A +
g , descends to a well-defined invertible sheaf over A +

g , together with
an isomorphism

(6.1) ιalg : (π∗Θ)−1 '→ ω
1/2
Θ .

The algebraic Riemann theta function is a section of (π∗Θ)−1, defined
as follows (e.g. [3, §I.5]): since Θ is normalized, there is a well-defined
“evaluation-at-the-identity” map ev : e∗Θ −→ OA +

g
which by adjunction

gives a section ϑg of (π∗Θ)−1 = Hom(π∗Θ,OA +
g

). By (6.1), we know that
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ϑg maps isomorphically to a section of ω1/2
Θ , an “algebraic modular form”

of weight 1/2 over A +
g .

6.1.

Over the category of analytic spaces, isomorphism classes of line bundles
over the analytic quotient stack

[
Γ+
g (1, 2)\hg

]
= A +

g,an are in 1-1 corre-
spondence with group cohomology classes in H1(Γ+

g (1, 2),O×hg
), since hg is

a Stein manifold. In particular, let pr : hg → A +
g,an be the projection map,

classifying the universal abelian variety

Ag := Cg × hg/Λg, Λg = {(z, τ) ∈ Cg × hg : z ∈ Zg + τZg},

together with the symmetric line bundle Th over Ag → hg defined by the
divisor of the (2-variable) Riemann theta function

∑
n∈Zg eπi n

tτn+2πintz.
The line bundle pr∗ω1/2

Θ is trivialized over hg by the section

sg :=
√
cdz1 · · · dzg,

where c is a constant section of M(Th), the theta multiplier bundle over
the universal abelian variety Ag, and z = (z1, . . . , zg) are coordinates
on Cg. This choice of trivialization corresponds to the 1-cocycle j1/2 ∈
Z(Γg(1, 2)+,Oh×g

) given by

j1/2 : γ =
(
A B
C D

)
7−→

√
λ(γ) · det(Cτ +D),

where λ : Γ+
g (1, 2)→ µ4 is the character obtained from the λ of Section 2 by

factoring through the principal congruence subgroup Γg(4) (technically, this
is a 1-cocycle of the metaplectic cover Γ̃+

g (1, 2), but formula (6.1) shows that
the square-roots can be chosen in a compatible way so that the resulting co-
cycle descends to Γ+

g (1, 2)). On the other hand, the line bundle pr∗(π∗Θ)−1

is trivialized over hg by Riemann’s theta function ϑg(τ) =
∑
n∈Zg eπi n

tτn,
giving rise to a 1-cocycle

γ 7−→ ϑg(γτ)ϑg(τ)−1.

By the classical functional equation of Riemann’s theta function, the com-
position of the two trivializations sg and ϑg is a Γ+

g (1, 2)-invariant isomor-
phism

ιan : pr∗(π∗Θ)−1 '−→ pr∗ω1/2
Θ ,

and so it must descend to an isomorphism over the quotient A +
g,an. An-

other such isomorphism is given by the base-change ιalg,C of (6.1) from
R = Z[1/2, i] to C. The composition ιalg,C ◦ ι−1

an is then a non-vanishing
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analytic function on A +
g,an (compatible under products of abelian varieties)

and is thus equal to a constant c0 ∈ C ([8, 1.4.1]). Therefore

ιalg,C = c0 ιan.

In this sense, the isomorphism ιalg of (6.1) can be viewed as the algebraic
analog to the functional equation of Riemann’s theta function, just as the
classical, analytic functional equation is equivalent to the existence of the
Γ+
g (1, 2)-invariant isomorphism ιan.
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