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AN ANALOGUE OF DUBROVIN’S CONJECTURE

by Fumihiko SANDA & Yota SHAMOTO

Abstract. — We propose an analogue of Dubrovin’s conjecture for the case
where Fano manifolds have quantum connections of exponential type. It includes
the case where the quantum cohomology rings are not necessarily semisimple. The
conjecture is described as an isomorphism of two linear algebraic structures, which
we call “mutation systems”. Given such a Fano manifold X, one of the structures
is given by the Stokes structure of the quantum connection of X, and the other
is given by a semiorthogonal decomposition of the derived category of coherent
sheaves on X. We also prove the conjecture for a class of smooth Fano complete
intersections in a projective space.
Résumé. — Nous proposons un analogue de la conjecture de Dubrovin pour

le cas où les variétés de Fano ont des connexions quantiques de type exponen-
tiel. Cela inclut le cas où les cohomologies quantiques ne sont pas nécessairement
semi-simples. La conjecture est décrite comme un isomorphisme de structures algé-
briques linéaires, que nous appelons systèmes de mutation. Étant donné une telle
variété de Fano X, l’une des structures est donnée par la structure de Stokes de
la connexion quantique de X, et l’autre est donnée par une décomposition semi-
orthogonale de la catégorie dérivées des faisceaux cohérents sur X. De plus, nous
prouvons la conjecture pour une classe d’intersections complètes lisses de Fano
dans un espace projectif.

1. Introduction

The purpose of this paper is to propose an analogue of Dubrovin’s con-
jecture [15] in a more general setting. We shall firstly recall the original
conjecture of Dubrovin in Section 1.1. We also review Gamma conjecture
of Galkin–Golyshev–Iritani [17], [18] in Section 1.2 since their result plays
a key role in this paper. Then we explain the outline of the formulation
and the main result in Section 1.3–1.6.

Keywords: mirror symmetry, Fano manifolds, quantum cohomologies, Stokes matrix.
2020 Mathematics Subject Classification: 14J33.



622 Fumihiko SANDA & Yota SHAMOTO

1.1. Dubrovin’s conjecture

LetX be a Fano manifold. B. Dubrovin predicted some relations between
the derived category Db(X) of bounded complexes of coherent sheaves on
X and the quantum cohomology ring of X. More precisely, he conjectured
that Db(X) has a full exceptional collection if and only if the quantum
cohomology ring of X is (generically) semisimple. This conjecture is proved
for many examples [2], [9], [10], [19], [22], [40], etc.
In the case where these two conjecturally equivalent conditions hold, he

also predicted a relationship between full exceptional collections of Db(X)
and the quantum connection associated to the quantum cup product. To be
more precise, let us roughly recall the definition of the quantum connection.
For simplicity, we take the quantum parameter τ to be 0.
LetHX := H•(X)⊗OCz be the trivial (Z/2Z-graded) OCz -module. Here,

Cz denotes the complex plane whose coordinate function is z, and OCz
denotes the sheaf of algebraic functions on Cz. The quantum connection
∇ : HX → HX ⊗ Ω1

Cz (log{0})⊗OCz ({0}) is defined by

∇ := d−
(

1
z

(c1(X)∗0)− µ
)

dz
z
,

where c1(X) is the first Chern class of X, ∗0 is the quantum cup product
with respect to the quantum parameter τ = 0, and µ is the grading operator
(see Definition 3.1 for details).
The quantum connection has a regular singularity at z =∞, and an ir-

regular singularity at z = 0. If the quantum cohomology ring is semisimple,
we have a matrix called a Stokes matrix. We consider the following form
of Dubrovin’s conjecture:

Conjecture 1.1. — If the quantum cohomology ring of X is semisim-
ple, then there exists a full exceptional collection E1, . . . , Em of Db(X)
such that the Stokes matrix of (HX ,∇) at z = 0 is equal to the matrix
(χ(Ei, Ej))i,j , where χ(E,F ) :=

∑
k(−1)k dim Hom(E,F [k]) for objects

E,F ∈ Db(X).

Conjecture 1.1 has been proved for some X with semisimple quantum
cohomology rings [13], [21], [29], [54], [55], etc.

1.2. Gamma conjectures

Gamma conjecture II proposed by Galkin–Golyshev–Iritani [17] refines
Conjecture 1.1. The conjecture is described as a coincidence of two kinds
of cohomology classes of X: Asymptotic classes and Gamma classes.
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AN ANALOGUE OF DUBROVIN’S CONJECTURE 623

Let CX be the set of eigenvalues of the linear operator c1(X)∗0 onH•(X).
Fix a real number θ◦ (for simplicity of notation, we assume 0 6 θ◦ <

2π). We assume that θ◦ is generic with respect to −CX in a certain sense
(see Section 2.1). Then we have an ordering τθ◦ : −CX

∼−→ {1, . . . ,m}. If
the quantum cohomology ring of X is semisimple, the space of solutions
on the sector {z | |arg z − θ◦| < π/2 + ε} with sufficiently small ε > 0
have a basis (yi)mi=1. The basis (yi)mi=1 is characterized by their asymptotic
growth as z → 0, and yi corresponds to exp(ci/z) where ci := τ−1

θ◦
(i).

Since the fundamental solution at infinity identifies this space of solutions
with H•(X) (see Proposition 3.3 or [17, Proposition 2.3.1]), the basis (yi)i
gives a basis (Ai)mi=1 of H•(X). The classes Ai are called asymptotic classes
(see [17, §4.5] for more precise).
The Gamma class [26], [30], [36] of X is defined by

Γ̂X :=
dimX∏
j=1

Γ(1 + δj)

where δ1, . . . , δdimX are the Chern roots of the tangent bundle of X and
Γ(x) is the Gamma function. Gamma conjecture II states that there exists
a full exceptional collection E1, . . . , Em of Db(X) such that

Ai = Γ̂X Ch(Ei)

for all i (under the semisimplicity of the quantum cohomology ring and the
existence of at least one full exceptional collection of Db(X)).

This conjecture refines Conjecture 1.1 in the following sense. Let

[ · , · )X : H•(X)⊗H•(X)→ C

be a non-symmetric linear map defined by

[α, β)X := 1
(2π)dimX

∫
X

eπiµe−πiρ
Xα ∪ β

where ρ
X

is the cup product c1(X)∪. Then, on the one hand, the Stokes
matrix coincides with ([Ai, Aj)X)i,j . On the other hand, we have

χ(Ei, Ej) =
[
Γ̂X Ch(Ei), Γ̂X Ch(Ej)

)
X
.

1.3. Mutation systems

The goal of this paper is to give an analogue of Conjecture 1.1 in the case
where the quantum cohomology ring is not necessarily semisimple. To do
this, we introduce a notion of mutation systems. For a finite dimensional
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624 Fumihiko SANDA & Yota SHAMOTO

vector space V over a field k, we call a pairing [ · , · 〉 : V ⊗V → k of V non-
degenerate if the induced map V 3 v 7→ (w → [v, w〉) ∈ V ∨ = Hom(V,k) is
isomorphic. We often assume non-degenerateness of the pairings without a
mention.
A mutation system is a tuple of a (finite dimensional) vector space V

with a pairing [ · , · 〉, a family of vector spaces with pairings (Vc, [ · , · 〉c)c∈C
indexed by C, a bijection τ : C → {1, . . . ,m}, and an isomorphism of
vector spaces f :

⊕
c Vc

∼−→ V with some conditions (see Definition 2.30 for
details).
Mutation systems admit a kind of mutation, that is, we have a series of

functors between categories of mutation systems with braid relations.
In the case where dimVc = 1 for all c ∈ C, similar structure has been

investigated in various contexts [3], [17], [34], [43], [56].

1.4. A-mutation systems

We can construct a mutation system from the quantum connection of X
under an assumption (Assumption 3.3). The construction has the following
steps.

(1) Apply the Riemann–Hilbert correspondence [38], [51] for the quan-
tum connection (around z = 0), we get a local system on S1 with
a filtration called a Stokes filtration. We use the assumption here.

(2) A reformulation of Stokes data by Hertling and Sabbah [23] gives
a mutation system (we also use the Poincaré pairing on H•(X)).
Here, we need to fix a real number θ◦ with a genericity condition.
We give this reformulation in Section 2.

(3) By using the fundamental solution at z = ∞, the vector space V
with a pairing [ · , · 〉 underlying the mutation system constructed
in (2) is identified with (H•(X), [ · , · )X).

The resulting mutation system is called an A-mutation system. Each step is
closely related to the construction of asymptotic classes in the semisimple
case. Although the resulting mutation system depends on the choice of θ◦,
they are all equivalent by mutations.

1.5. B-mutation systems

We can construct a mutation system for a semiorthogonal decomposi-
tion of Db(X) (see, for example, [32, Definition 2.3] for the definition of

ANNALES DE L’INSTITUT FOURIER



AN ANALOGUE OF DUBROVIN’S CONJECTURE 625

semiorthogonal decompositions). Put HHk(X) :=
⊕

p−q=kH
q(X,ΩpX) and

HH•(X) :=
⊕

k∈Z HHk(X). We have a pairing [ · , · 〉X defined by

[α, β〉X := 1
(2πi)dimX

∫
X

eπiρ
XW (α) ∪ β,

where W (α) = ip+qα for α ∈ Hq(X,ΩpX) (cf. [7], [44], [46], [47], [52]). Let
Db(X) = 〈A1, . . . ,Am〉 be a semiorthogonal decomposition. Then, by us-
ing a theorem of Kuznetsov [32], [33], we can define the subspace HH•(Ai)
of HH•(X), which we call the Hochschild homology of Ai (cf. [7], [32],
[45], [52]). They satisfies HH•(X) =

⊕
i HH•(Ai). Roughly speaking, this

decomposition defines a mutation system, which we call a B-mutation sys-
tem. The braid group action on the set of semiorthogonal decompositions
of Db(X) is compatible with the mutation on the B-mutation systems.

1.6. The formulation of the analogue and the main theorem

Using the Gamma class, we define an isomorphism

Γ : HH•(X) ∼−→ H•(X)

with [α, β〉X = [Γ(α),Γ(β))X . We define an analogue of Dubrovin’s con-
jecture by the existence of a semiorthogonal decomposition such that the
B-mutation system for the semiorthogonal decomposition is isomorphic to
the A-mutation system via Γ. We call the analogue “Dubrovin type conjec-
ture”. For more precise, see Definition 5.2. In the case where the quantum
cohomology ring is semisimple, Gamma conjecture II implies this conjec-
ture.
The main result of this paper is to give a class of examples such that this

Dubrovin type conjecture holds. More precisely, we have the following.

Theorem 1.2 (Theorem 7.9). — Let X be a smooth Fano complete
intersection in a projective space. If Fano index of X is larger than 1, then
X satisfies Dubrovin type conjecture.

1.7. Plan of the paper

In Section 2, we introduce the notion of mutation systems, and define
the mutation on mutation systems. We also relate it with Stokes filtered
local systems, and recall some general facts on the Riemann–Hilbert cor-
respondence for meromorphic connections on a germ of complex plane at
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626 Fumihiko SANDA & Yota SHAMOTO

the origin. In Section 3, we give a definition of A-mutation systems. In
Section 4, we give a definition of B-mutation systems. In Section 5, we
formulate an analogue of Dubrovin’s conjecture, which we call “Dubrovin
type conjecture”. In Section 6, we show some properties, which are used
to prove the main theorem, of quantum connections of Fano manifolds. In
Section 7, we show the main theorem, that is, we give a class of examples
which satisfies Dubrovin type conjecture.

2. Preliminary

2.1. Stokes filtrations and Stokes data

Recall the definition of Stokes filtrations on local systems over S1 =
{t ∈ C | |t| = 1} in the sense of [23] (see also [51]). Let k be a field. Let
Lock := Lock(S1) denote the category of (finite rank) k-local systems on
S1. We identify S1 with R/2πZ in the standard way and denote them
simply by S1 = R/2πZ. For θ ∈ S1 = R/2πZ, let 6θ be the partial order
on C defined by the following relation:

c 6θ c
′ ⇔ <(e−iθc) < <(e−iθc′) or c = c′.(2.1)

We also set c <θ c′ if and only if c 6θ c′ and c 6= c′.

Definition 2.1 ([23, 2.a]). — Let L be a k-local system on S1. A
family L• of subsheaves L6c ⊂ L (c ∈ C) is called a Stokes filtration if
the following conditions are satisfied:

(1) For each θ, the germs form an exhaustive increasing filtration of Lθ

with respect to the order defined by the equation (2.1) above.
(2) Set L<c,θ :=

∑
c′<c L6c′,θ. It defines a subsheaf L<c in L . The

second condition is that the sheaves grcL := L6c/L<c are in
Lock(S1).

(3) Set grL :=
⊕

c grcL . It has a natural filtration given by

(grL6c)θ :=
⊕
c′6θc

grc′Lθ.

The last condition is that near any point θ ∈ S1, there are local
isomorphisms η : L

∼−→ grL such that η(L6c) ⊂ grL6c for all
c ∈ C, and that the induced graded morphism is identity.

We call the pair (L ,L•) a Stokes filtered local system. Let (L i,L i
•) be

two Stokes filtered local systems (i = 0, 1). A morphism of local systems
λ : L 0 → L 1 is called a morphism of Stokes filtered local systems if it
preserves Stokes filtrations, i.e. λL 0

6c ⊂ L 1
6c for all c ∈ C.
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AN ANALOGUE OF DUBROVIN’S CONJECTURE 627

For example, we define a Stokes filtration on kS1 by kS1<0,θ = 0 and
kS160,θ = kS1 for all θ ∈ S1. For two Stokes structures (L i,L i

•) (i = 0, 1),
the tensor product L 0 ⊗L 1 is equipped with a natural Stokes filtration
by

(L 0 ⊗L 1)6c,θ :=
∑

c0+c16θc

L 0
6c0,θ ⊗L 1

6c1,θ.(2.2)

Let ι be a involution on S1 = R/2πZ defined by ι(θ) = θ+π. If (L ,L•)
is a Stokes structure, ι−1L has a natural Stokes filtration by

(ι−1L )6c,θ := L6−c,θ+π (c ∈ C, θ ∈ S1).(2.3)

The graded quotient grc(ι−1L ) is naturally identified with ι−1gr−cL ([23,
§3.a]). The dual local system L ∨ = H om(L ,kS1) also has a natural
filtration defined by

(L ∨)6c := (L<−c)⊥(2.4)

where (L<c)⊥ consists of local morphisms L → kS1 which send L<c to 0.
The graded quotient grc(L ∨) is naturally identified with (gr−cL )∨. Hence
DL = ι−1L ∨ has natural Stokes filtration by

(DL )6c = (L<c,θ+π)⊥ (c ∈ C, θ ∈ S1),(2.5)

whose graded quotient grc(DL ) is naturally identified with D(grcL ).
The category of Stokes filtered local systems on S1 defined above is

denoted by Stk(S1). In this paper we only consider Stokes filtered local
systems on S1. We abbreviate S1 and simply denote it by Stk. For each
(L ,L•) ∈ Stk, the set {c ∈ C | grcL 6= 0} is called exponents of (L ,L•).
For a finite subset C in C, StCk denote the full subcategory of Stokes fil-
tered local systems whose exponents are contained in C. We remark that
D defines a contravariant functor from StCk to itself.
For two distinct points c 6= c′ in C, the Stokes direction of the pair is

the set of points θ in S1 such that <(e−iθ(c − c′)) = 0. For a finite set
C ⊂ C, an open interval I ⊂ R is called C-good if the image in R/2πZ of
I contains exactly one Stokes direction for each pair c 6= c′ in C. We put
Iθ◦ := ]θ◦− π

2 − ε, θ◦+ π
2 + ε[ for fixed θ◦ ∈ R where ε is a sufficiently small

positive number. If Iθ◦ is C-good for sufficiently small ε > 0, θ◦ is called
C-generic. It is equivalent to the condition that θ◦ + π/2 is not the Stokes
direction of any pair c 6= c′ in C.

TOME 70 (2020), FASCICULE 2



628 Fumihiko SANDA & Yota SHAMOTO

Proposition 2.2 ([23, Proposition 2.2]).
(1) On any C-good open interval I ⊂ R, there exists a unique splitting

η[I] : L |[I]
∼−→ grL |[I] compatible with the Stokes filtrations where

[I] is the image of I in R/2πZ.
(2) Let λ : (L ,L•) → (L ′,L ′•) be a morphism in StCk . Then, for

any C-good open interval I ⊂ R, the restriction λ|[I] is graded
with respect to the splittings in (1). In other words, the induced
morphism λc,c′ : grcL → grc′L is zero for any pair c 6= c′ in C.

Let RepZ(k) be the category of finite dimensional representations of the
fundamental group π1(S1) ' Z over k. This category is considered as the
category of pairs (V, T ) of a finite dimensional k-vector space V and an
automorphism T on V . Let C be a finite set and τ : C ∼−→ {1, 2, . . . ,m} be
a bijection.

Definition 2.3. — Let (V, T ) be an object in RepZ(k). Stokes data
on (V, T ) of type (C, τ) are a family of objects (Vc, Tc)c∈C in RepZ(k),
isomorphisms f :

⊕
c∈C Vc → V , and f∗ : V ∼−→

⊕
c∈C Vc of vector spaces

with the following properties:
(1) Let fc : Vc → V be the composition of f and the natural inclusion

Vc ↪→
⊕

c′∈C Vc′ . Let f∗c : V → Vc be the composition of the pro-
jection

⊕
c′ Vc′ � Vc and f∗. Then, f∗c′ ◦ fc = 0 if τ(c′) < τ(c), and

f∗c ◦ fc = idVc for all c ∈ C.
(2) Set f !

c := T−1
c ◦ f∗c ◦ T for c ∈ C. Then f !

c′ ◦ fc = 0 for τ(c) < τ(c′),
and f !

c ◦ fc = idVc for all c ∈ C.
Let

(
(V (a), T (a)), (V (a)

c , T
(a)
c )c∈C , f (a), f∗(a)) (a = 0, 1) be two objects in

RepZ(k) with Stokes data of type (C, τ). A morphism

g : (V 0, T (0))→ (V (1), T (1))

is compatible with the Stokes data when the induced maps (f (1))−1◦g◦f (0)

and f∗(1) ◦ g ◦ (f∗(0))−1 are graded.

Remark 2.4. — We do not need to assume that f∗ is an isomorphism
since it is deduced from the condition (1) and the condition that f is an
isomorphism. Similarly, we can show that f ! :=

∏
c f

!
c : V →

⊕
c Vc is an

isomorphism.

Let Stdk(C, τ) denote the category of representations in RepZ(k) with
Stokes data of type (C, τ) defined above (a morphism in this category is
defined as a morphism in RepZ(k) compatible with the Stokes data). Fix
an m-point set C ⊂ C and C-generic point θ◦ ∈ R. Then we have a unique
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bijection τθ◦ : C ∼−→ {1, 2, . . . ,m} with the following property: when we put
ci := τ−1

θ◦
(i) for i = 1, 2, . . . ,m, we have

c1 <θ◦+π/2 c2 <θ◦+π/2 · · · <θ◦+π/2 cm.

In the rest of Section 2.1, we shall construct the functor Aθ◦ : StCk →
Stdk(C, τθ◦) and show that Aθ◦ gives an equivalence of categories.
To prepare for the construction of the functor, we recall the equivalence

Lock
∼−→ Repk of categories. Let p : R → S1 := R/2πZ be the quotient

map. This gives a universal covering of S1. For L ∈ Lock, set VL :=
Γ(R, p−1L ) and define the map TL : VL → VL by TL v(θ) := v(θ + 2π).
The correspondence L 7→ (VL , TL ) is functorial and we can construct the
quasi-inverse functor explicitly, this is an equivalence of categories.
By Proposition 2.2(1), we have a unique splitting

η[Iθ◦ ] : L |[Iθ◦ ]
∼−→ grL |[Iθ◦ ].

We put ηθ◦ := (p−1η[Iθ◦ ])|Iθ◦ : (p−1L )|Iθ◦
∼−→ (p−1grL )|Iθ◦ , which is an

isomorphism of sheaves on Iθ◦ ⊂ R.
For an object (L ,L•) ∈ StCk , we have (VL , TL ) and

(Vc, Tc) := (VgrcL , TgrcL )

for c ∈ C. Let rθgrL :
⊕

c Vc
∼−→ Γ(Iθ, p−1grL ) and rθL : VL

∼−→ Γ(Iθ, p−1L )
be the restriction maps for θ ∈ R. We define fθ◦ :

⊕
c∈C Vc

∼−→ V as a
composition:

fθ◦ := (rθ◦L )−1 ◦ Γ(Iθ◦ , η−1
θ◦

) ◦ rθ◦grL .

Similarly, we define f∗θ◦ : V ∼−→
⊕

c∈C Vc as a composition:

f∗θ◦ := (rθ◦−πgrL )−1 ◦ Γ(Iθ◦−π, ηθ◦−π) ◦ rθ◦−πL .

Then, f !
θ◦

:=
⊕

c T
−1
c ◦ f∗θ◦ ◦ T is described as a composition:

f !
θ◦ := (rθ◦+πgrL )−1 ◦ Γ(Iθ◦+π, ηθ◦+π) ◦ rθ◦+πL .

Proposition 2.5. — The data
(
(Vc, Tc)c∈C , fθ◦ , f∗θ◦

)
are Stokes data

on (VL , TL ) of type (C, τθ◦). Moreover, the correspondence

(L ,L•) 7→
(
(VL , TL ), (Vc, Tc)c∈C , fθ◦ , f∗θ◦

)
,

and λ 7→ Γ(R, p−1λ) (where λ is a morphism in StCk ) gives a fully faithful
functor Aθ◦ : StCk → Stdk(C, τθ◦).

Proof. — Let rθ,θ′ : VgrL → Γ(Iθ ∩ Iθ′ , grL ) be the restriction map for
θ, θ′ ∈ R. The composition f∗θ◦ ◦ fθ◦ can be described as the composition:

(rθ◦,θ◦−π)−1 ◦ Γ(Iθ◦ ∩ Iθ◦−π, ηθ◦−π) ◦ Γ(Iθ◦ ∩ Iθ◦−π, η−1
θ◦

) ◦ rθ◦,θ◦−π.
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630 Fumihiko SANDA & Yota SHAMOTO

The fact that ηθ◦−π and ηθ◦ are splitting implies f∗θ◦,c ◦ fθ◦,c = idVc . Since
ηθ◦−π and ηθ◦ are compatible with filtration, we have f∗θ◦,c′ ◦ fθ◦,c = 0 if
c <θ◦−π/2 c

′. This proves the condition (1) of the Definition 2.3 because
c <θ◦−π/2 c′ is equivalent to τθ◦(c′) < τθ◦(c). Similarly, the composition
f !
θ◦
◦ fθ◦ is described as the following composition:

(rθ◦,θ◦+π)−1 ◦ Γ(Iθ◦ ∩ Iθ◦+π, ηθ◦+π) ◦ Γ(Iθ◦ ∩ Iθ◦+π, η−1
θ◦

) ◦ rθ◦,θ◦+π.

Since c <θ◦+π/2 c′ is equivalent to τθ◦(c) < τθ◦(c′), we have the condi-
tion (2) of Definition 2.3.
Let (L ,L•) and (L ′,L ′•) be objects in StCk . Let λ : L → L ′ be a

morphism of local systems. It induces a morphism

g := Γ(R, p−1λ) : (VL , TL )→ (VL ′ , TL ′).

Proposition 2.2(2) implies that λ is compatible with Stokes filtration if and
only if g is compatible with Stokes data constructed above. This shows that
the correspondence gives a fully faithful functor

Aθ◦ : StCk → Stdk(C, τθ◦). �

We shall prove the essential surjectivity of Aθ◦ . We recall a classification
result of Stokes filtered local systems with a fixed graded Stokes structure.
For a Stokes filtered local system (L ,L•), E nd(L ) is equipped with a
natural Stokes filtration. We put

Aut<0(L ) := idL +E nd(L )<0 ⊂ E nd(L )60.

A local section of Aut<0(L ) is a local endomorphism λ : L → L of
the local system which is compatible with the Stokes filtration such that
the graded morphism gr(λ) is identity. For a set of local systems (Gc)c∈C
indexed by C, put G :=

⊕
c∈C Gc and define a Stokes filtration on G by

G6c,θ :=
⊕

c′6θc
Gc′ .

Lemma 2.6 ([51, Proposition 1.42]). — The set of isomorphism classes
of Stokes filtered local systems (L ,L•) with an isomorphism from the
graded part grL to G is identified with H1(S1;Aut<0(G )).

Proof. — The proof is standard and shown in more general contexts.
Here, we only give the construction of the Stokes filtered local system from
a class α ∈ H1(S1;Aut<0(G )). Let (Ik)`k=1 be a covering on S1 by open
intervals such that Ik ∩ Ik′ = ∅ if |k − k′| 6= 1, `− 1. Then α is represented
by a Čech cocycle (αk)`k=1 where αk ∈ H0(Ik ∩ Ik+1;Aut<0(G )) for k =
1, 2, . . . , ` − 1 and α` ∈ H0(I` ∩ I1;Aut<0(G )). Then, by gluing, there
exists a unique (up to isomorphisms) local system L with isomorphisms
βk : L |Ik

∼−→ G |Ik such that αk = βk+1(βk)−1 for k = 1, 2, . . . , ` − 1 and
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α` = β1 ◦ (β`)−1. The Stokes filtration on L is defined via βk and it is
well defined and its graded part grL is isomorphic to G since αk is a local
section of Aut<0(G ). �

Theorem 2.7. — The functor Aθ◦ : StCk → Stdk(C, τθ◦) constructed in
Proposition 2.5 is essentially surjective, and hence gives an equivalence of
categories.

Proof. — Let
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object in Stdk(C, τθ◦). Let

Gc be the local system corresponding to (Vc, Tc). Set G :=
⊕

c∈C Gc. Define
a local endomorphism λ∗ : G |p(Iθ◦−π∩Iθ◦ ) → G |p(Iθ◦−π∩Iθ◦ ) by the following
composition:

Γ(Iθ◦−π ∩ Iθ◦ , p−1G ) ∼←−
⊕
c

Vc
f∗◦f−−−→

⊕
c

Vc
∼−→ Γ(Iθ◦−π ∩ Iθ◦ , p−1G )

where the first and the third isomorphisms are the restriction maps re-
garding Vc as Γ(R, p−1Gc). By Definition 2.3(1), λ∗ is a local section of
Aut<0(G ) on p(Iθ◦−π ∩ Iθ). Similarly, we can define a local endomorphism
λ! : G |p(Iθ◦−π∩Iθ) → G |p(Iθ◦−π∩Iθ) by using f ! ◦ f and it defines a local
section of Aut<0(G ) on p(Iθ◦−π ∩ Iθ). The pair (λ∗, λ!) defines a class in
H1(S1;Aut<0(G )) as Čech cocycle for the covering S1 = p(Iθ◦)∪p (Iθ◦+π).
By Lemma 2.6, it defines a Stokes filtered local system (L ,L•). The fact
that Aθ◦(L ,L•) '

(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
is obvious by the construc-

tion of Aθ◦ and the proof of Lemma 2.6. �

Remark 2.8. — By this theorem, the notion of Stokes data introduced
here is equivalent to the notion of Stokes data introduced in [23].

2.2. Mutations on Stokes data

Definition 2.9. — Let
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object in the

category Stdk(C, τ). For each i ∈ {1, 2, . . . ,m}, we define the endomor-
phisms Ri, R∗i , Li, L!

i on V as follows:

Ri := idV −fτ−1(i) ◦ f∗τ−1(i),

R∗i := idV −T ◦ fτ−1(i) ◦ T−1
τ−1(i) ◦ f

∗
τ−1(i),

Li := idV −fτ−1(i) ◦ f !
τ−1(i),

L!
i := idV −T−1 ◦ fτ−1(i) ◦ Tτ−1(i) ◦ f !

τ−1(i).

We remark that T−1 ◦R∗i ◦ T = Li and T ◦L!
i ◦ T−1 = Ri. We also have

R∗i ◦Ri = Ri ◦Ri = Ri, and L!
i ◦ Li = Li ◦ Li = Li by easy computation.
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Proposition 2.10. — Let
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object in

Stdk(C, τ). For i ∈ {2, . . . ,m}, we define

(Rif)c :=
{
Ri ◦ fc (τ(c) = i− 1)
fc otherwise,

(Rif∗)c :=
{
f∗c ◦R∗i (τ(c) = i− 1)
f∗c otherwise.

Then the tuple
(
(V, T ), (Vc, Tc)c∈C ,Rif,Rif∗

)
is an object of the category

Stdk(C, (i, i− 1) ◦ τ). Similarly, for i ∈ {1, . . . ,m− 1}, we define

(Lif)c :=
{
Li ◦ fc (τ(c) = i+ 1)
fc otherwise,

(Lif∗)c :=
{
f∗c ◦ T ◦ L!

i ◦ T−1 (τ(c) = i+ 1)
f∗c otherwise.

Then the tuple
(
(V, T ), (Vc, Tc)c∈C ,Lif,Lif∗

)
is an object of the category

Stdk(C, (i, i+ 1) ◦ τ).

Proof. — We show the first half of the proposition. The second half is
shown similarly. Let c, c′ be two distinct elements of C. We only consider
the case where τ(c) = i − 1 and τ(c′) = i since the discussion is easier in
the other cases.
We first show that (Rif)c = Ri ◦ fc is injective. Let u be any vector in

Vc and assume Rifcu = 0. It implies fcu = fc′ ◦ f∗c′ ◦ fcu. Next, we show
that the intersection of the image (Rif)c(Vc) and fc′Vc′ is (0). Let v be
a vector in Vc such that Rifv ∈ Vc′ . It implies that fcv − fc′f∗c′fv ∈ Vc′ .
Hence fcv ∈ Vc′ , and it implies v = 0. The first and the second assertions
show that Rif defines an isomorphism of vector spaces.
Finally, we show that (Rif,Rif∗) satisfies the conditions (1) and (2) in

Definition 2.3. We only need to consider the case where τ(c) = i − 1 and
τ(c′) = i. We have

(Rif∗)c ◦ (Rif)c = (f∗c − f∗c Tfc′T−1
c′ f

∗
c′)(fc − fc′f∗c′fc)(2.6)

= f∗c fc − f∗c Tfc′T−1
c′ f

∗
c′fc + f∗c Tfc′T

−1
c′ f

∗
c′fc(2.7)

= idVc .(2.8)
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Here, we used f∗c fc′ = 0 from (2.6) to (2.7) and f∗c fc = id (f∗c′fc′ = id)
from (2.7) to (2.8). We also have

(Rif∗)c′ ◦ (Rif)c = f∗c′ ◦ (fc − fc′f∗c′fc)
= 0.

by using f∗c′fc′ = id. They show the condition (1). The condition (2) is
shown similarly, which proves the proposition (see Remark 2.4). �

We put σi : Stdk(C, τ) → Stdk(C, (i i + 1) ◦ τ) to be the functor(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
7→
(
(V, T ), (Vc, Tc)c∈C ,Ri+1f,Ri+1f

∗) and put
σ−1
i : Stdk(C, τ)→ Stdk(C, (i i+ 1) ◦ τ) to be the functor(

(V, T ), (Vc, Tc)c∈C , f, f∗
)
7→
(
(V, T ), (Vc, Tc)c∈C ,Lif,Lif∗

)
.

These functors act trivially on the morphisms. It can easily be checked that
σi, σ

−1
i actually define functors.

Proposition 2.11. — The functors {σi, σ−1
i }

m−1
i=1 satisfy the following

braid relations.
(1) σi ◦ σ−1

i = id, σi ◦ σ−1
i = id,

(2) σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1, and
(3) σi ◦ σj = σj ◦ σi ( |i− j| > 2 ).

In particular, by the relation (1), σi and σ−1
i are equivalences of categories.

Proof. — The component (LiRi+1f)c is the composition Li+1Ri+1fc if
τ(c) = i, otherwise fc. Easy calculation shows that Li+1Ri+1fc = fc. Sim-
ilarly, we have LiRi+1f

∗ = f∗. This implies σ−1
i ◦ σi = id. The relation

σi ◦ σ−1
i = id is shown similarly. Hence we get (1).

We shall prove (2). Let(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object of Stdk(C, τ). Then we have the following:

(Ri+1Ri+2Ri+1f)c =


Ri+2Ri+1fc τ(c) = i

Ri+1fc τ(c) = i+ 1
fc otherwise,

(Ri+2Ri+1Ri+2f)c =


R′i+2Ri+2fc τ(c) = i

Ri+1fc τ(c) = i+ 1
fc otherwise,
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where R′i+2 := idV −Ri+2fτ−1(i+1)f
∗
τ−1(i+1)R

∗
i+2. Put R′i+1 := Ri+2. Then

we have R′i+2 ◦ R′i+1 = Ri+2 ◦ Ri+1, which implies Ri+1Ri+2Ri+1f =
Ri+2Ri+1Ri+2f . Indeed, we have

R′i+2 ◦R′i+1 = (id−Ri+2 ◦ (id−Ri+1) ◦R∗i+2) ◦Ri+2

= Ri+2 −Ri+2 ◦ (id−Ri+1) ◦Ri+2

= Ri+2 ◦Ri+1 ◦Ri+2,

and

Ri+2 ◦Ri+1 ◦ (id−Ri+2)
= Ri+2 ◦ (id−fτ−1(i+1) ◦ f∗τ−1(i+1)) ◦ (fτ−1(i+2) ◦ f∗τ−1(i+2))
= Ri+2 ◦ (fτ−1(i+2) ◦ f∗τ−1(i+2))
= Ri+2 ◦ (id−Ri+2) = 0.

The relation Ri+2Ri+1Ri+2f
∗ = Ri+1Ri+2Ri+1f

∗ is shown similarly. The
relation (3) is obvious by the definition. �

Let Brm denote the braid group ofm-strands with the standard generator
σ1, . . . , σm−1. For an element σ ∈ Brm, let σ̄ denote the image of σ via the
quotient map Brm → Sm to the symmetric group of degreem. In particular,
si = σi are the permutations si = (i i+ 1), (i = 1, 2, . . . ,m− 1).

Definition 2.12. — For σ ∈ Brm, define a functor

Mσ : Stdk(C, τ) ∼−→ Stdk(C, σ̄ ◦ τ)

as the composition of mutations defined above.

2.3. Stokes factors and Mutations

Fix a finite subset C ⊂ C and a bijection τ : C ∼−→ {1, . . . ,m}. Let(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object of Std(C, τ).

Definition 2.13. — We define a map ( · )R : Sm → Brm by (s)R :=
σi1 · · ·σik for a reduced expression s = si1 · · · sik . This map is well defined
(see, for example, [5, Chapter 4, §1.5, Proposition 5], [41, Theorem 2]).

For s ∈ Sm, set Ii(s) := {j ∈ {1, . . . ,m} | i < j, s(i) > s(j)}, and I(s) :=
{(i, j) | j ∈ Ii(s)}.
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Notation 2.14. — Let A = {a1, a2, . . . , ak} be a finite ordered set with
a1 < a2 < · · · < ak. Let (ha)a∈A be a sequence of endomorphisms of V
indexed by A. Then, we use the following notation:

←∏
a∈A

ha := hak ◦ hak−1 ◦ · · · ◦ ha1 ,

→∏
a∈A

ha := ha1 ◦ ha2 ◦ · · · ◦ hak .

Recall that for σ ∈ Brm, we have Mσ : Stdk(C, τ) ∼−→ Stdk(C, σ̄ ◦ τ)
(Definition 2.12). Define σf and σf∗ by Mσ

(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
=(

(V, T ), (Vc, Tc)c∈C , σf, σf∗
)
.

Lemma 2.15. — For s ∈ Sm, we have the following formulas:

(
(s)Rf

)
c

=

 ←∏
i∈Iτ(c)(s)

Ri

 ◦ fc,(2.9)

(
(s)Rf∗

)
c

= f∗c ◦

 →∏
i∈Iτ(c)(s)

R∗i

 .(2.10)

Proof. — For s ∈ Sm, let `(s) be the length of s. We shall show the
lemma by induction on `(s). If `(s) = 0, s is identity and the lemma is
obvious. If `(s) > 0, then there exists some sj such that s = s′ · sj with
`(s) = `(s′) + 1. Set

f ′c :=
{
fc (τ(c) 6= j)
Rj+1 ◦ fc (τ(c) = j),

R′i :=


Ri (i 6= j, j + 1)
Rj+1 (i = j)
id−Rj+1 ◦ fcj ◦ f∗cj ◦R

∗
j+1 (i = j + 1),

where cj = τ−1(j). By induction hypothesis, we have

(
(s)Rf

)
c

=

 ←∏
i∈Isj◦τ(c)(s′)

R′i

 ◦ f ′c.
Since `(s) = `(s′) + 1, we have j + 1 /∈ Ij(s′), and

Ik(s) =
{
sj(Isj(k)(s′)) k 6= j

sj(Isj(k)(s′)) ∪ {j + 1} k = j.
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If j + 1 /∈ Isj◦τ(c)(s′), then
←∏

i∈Isj◦τ(c)(s′)

R′i =
←∏

i∈sj(Isj◦τ(c)(s′))

Ri,

hence we have (2.9). If j + 1 ∈ Isj◦τ(c)(s′), then j ∈ Isj◦τ(c)(s′) since
s′(j) < s′(j + 1) by j + 1 /∈ Ij(s′). By the proof of Proposition 2.11, we
have R′j+1 ◦ R′j = Rj+1 ◦ Rj . This implies (2.9). The equation (2.10) is
shown similarly. �

As a special case, we have the following.

Proposition 2.16. — Set ∆ := (w0)R ∈ Brm where w0 ∈ Sm is the
longest element, i.e.,

w0 =
(

1 2 · · · m

m m− 1 · · · 1

)
.

Then we have ∆f = (f∗)−1, and ∆f∗ = (
⊕

c Tc) ◦ f−1 ◦ T−1.

Proof. — Set ∆f ! := (
⊕

c Tc)−1 ◦∆f∗ ◦T . We show ∆f ◦f∗ ◦f = f , and
f ! ◦ f ◦∆f ! = f !. We use the notation ci = τ−1(i) (i = 1, . . . ,m). Then the
restriction ∆f ◦ f∗ ◦ f |Vci is∑

i6j

Rm ◦ · · · ◦Rj+1 ◦ fcj ◦ f∗cj ◦ fci

= Rm ◦ · · · ◦Ri+1 ◦ fci +
∑
i<j

Rm ◦ · · · ◦Rj+1 ◦ fcj ◦ f∗cj ◦ fci

= Rm ◦ · · · ◦Ri+1 ◦ fci +
∑

i<j6m

Rm ◦ · · ·Rj+1 ◦ fci

−
∑

i<j6m

Rm ◦ · · · ◦Rj ◦ fci

= fci .

We also see that the composition f !
ci ◦ f ◦∆f ! is∑

i6j

f !
ci ◦ fcj ◦ f

!
cj ◦ Lj+1 ◦ · · ·Lm

= f !
ci ◦ Li+1 ◦ · · · ◦ Lm +

∑
i<j6m

f !
ci ◦ Lj+1 ◦ · · · ◦ Lm

−
∑

i<j6m

f !
ci ◦ Lj ◦ · · · ◦ Lm

= f !
ci .
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This implies the proposition. �

For an endomorphism g ∈ End(
⊕

c Vc) and (c, c′) ∈ C×C, let gcc′ denote
the component Vc → Vc′ . Using this notation, we define

(2.11) End�
(⊕
c∈C

Vc

)
:=
{
g ∈ End

(⊕
c∈C

Vc

)∣∣∣∣∣ gcc = idVc for all c ∈ C
}
,

and

(2.12) Sfτ (s) :=
{
g ∈ End�

(⊕
c∈C

Vc

)∣∣∣∣∣ gcc′ = 0 for (τ(c), τ(c′)) /∈ I(s)
with c 6= c′

}
,

where s is a element of Sm, and τ is an isomorphism τ : C ∼−→ {1, . . . ,m}.

Remark 2.17. — If (i, j) ∈ I(s), then i < j. If (i, j), (j, k) ∈ I(s), then
(i, k) ∈ I(s). These properties imply Sfτ (s) is a group.

Lemma 2.18. — Take s ∈ Sm and put σ := (s)R, then (σf)−1 ◦ f ∈
Sfτ (s).

Proof. — Since Sfτ (s) is a group, it is enough to show f−1 ◦σf ∈ Sfτ (s).
We have

σf |Vc =

 ←∏
i∈Iτ(c)(s)

Ri

 ◦ fc
=

 ←∏
(τ(c),τ(c′)∈I(s))

(idV −fc′ ◦ f∗c′)

 ◦ fc.
This implies f−1 ◦ σf ∈ Sfτ (s). �

2.4. Stokes factors and mutations for Stokes filtered local
systems

Let C be a set of m-points in C. Let θ◦ be a C-generic real number.
Recall that we have the bijection τθ◦ : C ∼−→ {1, 2, . . . ,m} such that

τθ◦(c) < τθ◦(c′)⇔ c <θ◦+π/2 c
′.

We put ci := τ−1
θ◦

(i). We also have an equivalence of categories

Aθ◦ : StCk → Stdk(C, τθ◦).

We also recall that we have a functor

Mσ : Stdk(C, τθ◦)
∼−→ Stdk(C, σ̄ ◦ τθ◦)

for σ ∈ Brm. The purpose of Section 2.4 is to show the following:
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Theorem 2.19. — Let θ◦, θ′◦ be C-generic real numbers. Then there
exists an element σ ∈ Brm such that Mσ ◦Aθ◦ ' Aθ′◦ . Moreover, if we have
θ◦ > θ′◦ > θ◦ − π, then we can take σ = (τθ′◦ ◦ τ

−1
θ◦

)R.

Take an object (L ,L•) ∈ StCk and put
(
(V, T ), (Vc, Tc)c∈C , fθ, f∗θ

)
:=

Aθ(L ,L•) for a C-generic real number θ ∈ R.

Definition 2.20. — For a real number θ ∈ R, we define the following:

R(θ) := {(c, c′) ∈ C × C | =(e−iθ(c− c′)) = 0, and <(e−iθ(c− c′)) > 0},

Sf(θ) :=
{
g ∈ End�

(⊕
c∈C

Vc

)∣∣∣∣∣ gcc′ = 0 for (c, c′) /∈ R(θ) with c 6= c′

}
,

Sm(θ) :=
{
g ∈ End�

(⊕
c∈C

Vc

)∣∣∣∣∣ gcc′ = 0 for c′ <θ+π/2 c
}
,

where End� (
⊕

c Vc) is defined in (2.11). For a fixed c ∈ C, we also define
Rc(θ) as the subset of elements c′ of C such that (c, c′) is in R(θ).

For C-generic θ, θ′ ∈ R, set sθ,θ′ := τθ′ ◦ τ−1
θ ∈ Sm. For θ ∈ R, set

sθ := sθ+ε,θ−ε for 0 < ε� 1.

Lemma 2.21. — If θ > θ′ > θ − π, then we have

Iτθ(c)(sθ,θ′) = τθ

( ⊔
θ>θ′′>θ′

Rc(θ′′)
)
.(2.13)

Proof. — The condition c′ ∈ τ−1
θ (Iτθ(c)((sθ,θ′))) is equivalent to c <θ+π/2

c′, c′ <θ′+π/2 c. Consider the following function Im : ϕ 7→ =(e−iϕ(c −
c′)), ϕ ∈ [θ′, θ]. Then c′ ∈ τ−1

θ (Iτθ(c)((sθ,θ′))) is equivalent to Im(θ) <
0 < Im(θ′). Since θ > θ′ > θ − π, this is equivalent to the existence and
uniqueness of θ′′ ∈ ]θ′, θ[ such that Im(θ′′) = 0, and Im(θ′′ + ε′) < 0 <

Im(θ′′− ε′) for a sufficiently small positive number ε′. This is equivalent to
c′ ∈ Rc(θ′′). �

Corollary 2.22. — We have Sf(θ) = Sfτθ+ε(sθ) for (0 < ε � 1). If θ
is C-generic, then we have Sm(θ) = Sfτθ (w0).

Fix C-generic θ◦ ∈ R. Take θi (i = 1, . . . , `) so that θ◦ > θ1 > θ2 > · · · >
θ` > θ◦ − π, {θ1, . . . , θ`} = {θ ∈ R | θ◦ − π < θ < θ◦ and R(θ) 6= ∅}. Then
we have

{(c, c′) ∈ C × C | c <θ◦+π/2 c
′} =

⊔
i

R(θi).
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Lemma 2.23 ([1, Lemma 2]). — For all g ∈ Sm(θ◦), there exists a unique
element (gi)i ∈

∏
16i6` Sf(θi) such that

g = g` ◦ g`−1 ◦ · · · ◦ g1,(2.14)

i.e., Sf(θ`)× · · · × Sf(θ1) ∼−→ Sm(θ◦).

Proof. — For a pair (i, j), 1 6 i < j 6 m, let k(i, j) be the number such
that (ci, cj) ∈ R(θk(i,j)). Let gij be the (ci, cj)-component of gk(i,j). Then
the (ci, cj)-component of the right hand side of (2.14) is∑

i=i0<i1<···<ia=j
gia−1ia · · · gi0i1(2.15)

where i = i0 < i1 < · · · < ia = j runs so that

θk(i0,i1) < θk(i1,i2) < · · · < θk(ia−1,ia).

Since (2.15) is the sum of gij and products of gi′j′ with j′ − i′ < j − i, we
can uniquely determine gij by induction on (j − i) for given g. �

Set ∆θi := (sθi)R ∈ Brm, (f0, f
∗
0 ) := (fθ◦ , f∗θ◦), and

(fi, f∗i ) = (∆θifi−1,∆θif
∗
i−1).

We remark that f−1
i ◦ fi−1 = (∆θifi−1)−1fi−1 ∈ Sfτθi+ε(sθi) = Sf(θi).

Lemma 2.24. — ∆θ` ·∆θ`−1 · · · · ·∆θ1 = ∆.

Proof. — We have sθ` · · · sθ1 = τθ◦−π ◦ τ−1
θ◦

= w0, and
∑`
i=1 `(sθi) =∑`

i=1 # R(θi) = `(w0). This implies the lemma. �

Lemma 2.25. — Set Sfθi := f−1
θi−ε ◦ fθi+ε. Then Sfθi is an element of

Sf(θi).

Proof. — Since fθi−ε and fθi+ε preserve the filtration on Iθi−ε ∩ Iθi+ε,
(Sfθi)cc′ = 0 if there exists a ϕ ∈ Iθi−ε∩Iθi+ε such that c <ϕ c′. Therefore,
if (Sfθi)cc′ 6= 0 and c 6= c′, then θi − ε < arg(c− c′) < θi + ε which implies
(c, c′) ∈ R(θi). Since fθi+ε and fθi−ε are splitting, (Sfθi)cc = id, which
implies the lemma. �

Lemma 2.26. — We have ∆fθ◦ = fθ◦−π and ∆f∗θ◦ = f∗θ◦−π.

Proof. — By definition, we have (f∗θ◦)
−1 = fθ◦−π. Using Proposition 2.16,

we have the following:

(∆fθ◦ ,∆f∗θ◦) =
(

(f∗θ◦)
−1,

(⊕
c

Tc

)
◦ f−1

θ◦
◦ T−1

)
= (fθ◦−π, f−1

θ◦−2π)
= (fθ◦−π, f∗θ◦−π).
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�

Lemma 2.27. — We have fi = fθi−ε and f∗i = f∗θi−ε.

Proof. — For σ ∈ Brm, set σ̃f := (σf)−1 ◦ f . Then we have

Sfθ` · · · Sfθ1 = f−1
θ◦−π ◦ fθ◦

= ∆̃fθ◦

= ˜∆θ` · · ·∆θ1f0

= ∆̃θ`f`−1 ◦ · · · ◦ ∆̃θ1f0.

This implies Sfθi = ∆̃θifi−1. Hence we have fi = fθi−ε. Set θ′◦ := θ◦ − π,
θ′i := θi − π, (f ′0, f ′∗0 ) := (fθ′◦ , f

∗
θ′◦

), and (f ′i , f ′∗i ) := (∆θ′
i
f ′i−1,∆θ′

i
f ′∗i−1). By

the first part of this lemma, we have f ′i = fθ′
i
−ε. By Lemma 2.26, we see

that
(∆θ` · · ·∆θi+1fi,∆θ` · · ·∆θi+1f

∗
i ) = (fθ′◦ , f

∗
θ′◦

),
which implies f ′i = ∆θ′

i
· · ·∆θ′1

· ∆θ` · · ·∆θi+1fi = ∆fi. Combined with
Proposition 2.16, we have fθ′

i
−ε = (f∗i )−1, which proves the lemma. �

Corollary 2.28. — If θ, θ′ ∈ R are C-generic and θ > θ′ > θ−π, then

fθ′,c =

 ←∏
i∈Iτθ(c)(sθ,θ′ )

Ri

 ◦ fθ,c, f∗θ′,c = f∗θ,c ◦
→∏

i∈Iτθ(c)(sθ,θ′ )

R∗i .

Proof of Theorem 2.19. — In the case θ > θ′ > θ − π, Theorem 2.19 is
a direct consequence of Corollary 2.28. The general case can be reduced to
this case. �

2.5. Pairings on Stokes filtered local systems and Mutation
systems

For (V, T ) ∈ RepZ(k), a pairing [ · , · 〉 : V ⊗ V → k is called compatible
with T if

[v, w〉 = [Tw, v〉 for all v, w ∈ V.(2.16)

If the map [ · , · 〉 is non-degenerate, then the monodromy T is determined by
the compatibility condition. Here, non-degenerate means that the induced
map v 7→ (w 7→ [v, w〉) is an isomorphism. The condition is equivalent to
that the map v 7→ (w 7→ [w, v〉) is an isomorphism. A pair (V, [ · , · 〉) of a
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vector space V and a non-degenerate pairing [ · , · 〉 is called polarized vector
space.
We often assume that the pairing is non-degenerate without a mention.

For two polarized vector spaces (V, [ · , · 〉) and (V ′, [ · , · 〉′), a linear map f :
V → V ′ is called a morphism of polarized vector spaces if it is compatible
with the pairings: [v, w〉 = [fv, fw〉′.

Definition 2.29. — Let
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
be an object of the

category Std(C, τ). A pairing [ · , · 〉 on V compatible with T is called com-
patible with the Stokes data if the following conditions hold:

• The induced map [v, w〉c := [fcv, fcw〉 (v, w ∈ Vc) is non-degenerate
on Vc and compatible with Tc for all c ∈ C.

• For every c ∈ C, the map f∗c : V → Vc is left adjoint to fc in the
sense that [v, fcvc〉 = [f∗c v, vc〉c for all v ∈ V, vc ∈ Vc.

A representation (V, T ) equipped with Stokes data and a compatible
pairing is equivalent to the following structure, which we call “mutation
systems”.

Definition 2.30. — A mutation system is a tuple(
(V, [ · , · 〉), (Vc, [ · , · 〉c)c∈C , τ, f

)
consisting of

(1) a polarized vector space (V, [ · , · 〉),
(2) a family of polarized vector spaces (Vc, [ · , · 〉c)c∈C indexed by a

finite set C,
(3) a bijection τ : C ∼−→ {1, 2, . . . ,m} (the pair (C, τ) is called type of

the mutation system), and
(4) an isomorphism f :

⊕
c∈C Vc

∼−→ V of vector spaces
such that (τ, f) gives a semiorthogonal decomposition of (V, [ · , · 〉) with
respect to (Vc, [ · , · 〉c)c∈C in the sense that

(a) for every c ∈ C, the restriction fc := f |Vc is a morphism of polarized
vector spaces, and

(b) if v ∈ Vc, w ∈ Vc′ and τ(c) > τ(c′), then [fcv, fc′w〉 = 0.
We call the underlying pair (τ, f) the splitting data of the mutation system.
The category of mutation systems with fixed type (C, τ) (whose morphisms
are the morphisms of underlying Stokes data compatible with the pairings)
is denoted by Mutk(C, τ).

We remark that we can reconstruct the maps f∗c (resp. f !
c) for c ∈ C

by the condition [v, fcw〉 = [f∗c v, w〉c (resp. [fcw, v〉 = [w, f !
cv〉c) for all
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v ∈ V , w ∈ Vc. We also have [v,Riw〉 = [R∗i v, w〉, and [Liv, w〉 = [v, L!
iw〉.

The functor Mσ : Stdk(C, τ) ∼−→ Stdk(C, σ̄◦τ) defined in Definition 2.12 for
σ ∈ Brm can be extended to the functorMσ : Mutk(C, τ) ∼−→ Mutk(C, σ̄◦τ).

Let L be a local system on S1. A sesquilinear pairing on L is a morphism
h : ι−1L ⊗L → kS1 of local systems. It induces two morphisms

`h,D`h : L → DL .

Here, `h is defined by `ht(s) := h(s, t) where t ∈ L , s ∈ ι−1L , and D`h
is its dual. It is called non-degenerate if `h is an isomorphism. It is called
symmetric if ι−1h ◦ ex = h where ex : ι−1L ⊗ L

∼−→ L ⊗ ι−1L is the
exchanging operator. This is equivalent to the condition D`h = `h.

Lemma 2.31. — Let L be a local system on S1 and (V, T ) = (VL , TL )
be the corresponding object in Rep(S1). Then there is a natural one-to-one
correspondence between the set of non-degenerate symmetric sesquilinear
pairings on L and the set of pairings on V compatible with T .

Proof. — Let h be a non-degenerate symmetric sesquilinear pairing on
L . Then the pairing [ · , · 〉h on V is given by the formula

[s, t〉h := p−1h(τL s, t) (s, t ∈ VL = Γ(R, p−1L )).(2.17)

Here, τL : VL
∼−→ Vι−1L is given by τL s(θ) = s(θ−π) for θ ∈ R. Symmetry

of h implies compatibility of [ · , · 〉h with T and non-degeneracy of h implies
that of [ · , · 〉h. �

Definition 2.32. — Let (L ,L•) be a Stokes filtered local system. We
call a sesquilinear pairing h : ι−1L ⊗L → kS1 compatible with the Stokes
filtration L• if the induced morphism `h is a morphism of Stokes filtered
local systems. The category of Stokes filtered local systems with exponents
C with symmetric non-degenerate sesquilinear pairings compatible with
the Stokes filtration is denoted by StPCk . The morphism in this category is
the morphism in StCk such that the pairing is preserved.

Remark that h is compatible with the Stokes filtration if and only if
`h : L → DL is a morphism of Stokes filtered local systems.

Lemma 2.33. — We have a functorial isomorphism of Stokes data

Φθ◦(DL ,DL•)

'

(V ∨, (T∨)−1), (V ∨c , (T∨c )−1)c∈C , (f∗θ◦)
∨,

(⊕
c∈C

T∨c

)−1

f∨θ◦T
∨

 .
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Via this isomorphism, Φθ◦(`h) is identified with the map

V
∼−→ V ∨; v 7→ [ • , v〉h.

Proof. — The morphism τL (in the proof of Lemma 2.31) gives an iso-
morphism τ∨L : VDL

∼−→ V ∨L . The morphism Φθ◦(`h) : VL → VDL is
by definition identified with V

∼−→ V ∨; v 7→ [ • , v〉h. We also have the
isomorphism τ∨grcL : VgrcDL

∼−→ V ∨c . Via these isomorphisms, the pair
((f∨θ◦−π)−1, (f∗∨θ◦−π)−1) underlies the Stokes data Φθ◦(DL ,DL•). Since we
have fθ◦−π = (f∗θ◦)

−1, and f∗θ◦−π = T−1f−1
θ◦

(
⊕

c Tc), we have the conclu-
sion. �

Lemma 2.34. — Let
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
∈ Std(C, τ) be an object

of Std(C, τ). Then the tuple(V ∨, (T∨)−1), (V ∨c , (T∨c )−1)c∈C , (f∗)∨,
(⊕
c∈C

T∨c

)−1

f∨T∨

(2.18)

is also an object in Std(C, τ). A pairing [ · , · 〉 on V compatible with T is
compatible with the Stokes data if and only if the induced map

V
∼−→ V ∨; v 7→ [•, v〉

gives an isomorphism of Stokes data between
(
(V, T ), (Vc, Tc)c∈C , f, f∗

)
and

(2.18).

Proof. — Put g := (f∗)∨, and g∗ := (
⊕

c T
∨
c )−1

f∨T∨. We also put
g! := (

⊕
c T
∨
c )g∗(T∨)−1. Then we have g∗g =

(
(
⊕

c Tc)f !f(
⊕

c Tc)−1)∨,
and g!g = (f∗f)∨. This implies the first part of the lemma. Let ` : V → V ∨

be the map v 7→ [ • , v〉. We also define grc(`) : Vc → V ∨c by vc 7→ [fc•, fcvc〉.
The induced morphism

⊕
c Vc →

⊕
c V
∨
c is denoted by gr(`). The compo-

sition g−1`f is given by w 7→ [(f∗)−1•, fw〉. This map is graded if and
only if it is equal to gr(`). This condition is equivalent to the compatibility
condition of the pairing with the Stokes data. By (2.16), we have T∨` = `∨.
Hence the composition g∗`(f∗)−1 is given by

(
g−1`f(

⊕
c T
−1
c )

)∨. There-
fore, g∗`(f∗)−1 is graded if and only if g−1`f is graded. This completes the
proof. �

By these lemmas, the equivalence Aθ◦ : StCk
∼−→ Stdk(C, τθ◦) gives an

equivalence StPCk
∼−→ Mutk(C, τθ◦), which is also denoted by Aθ◦ . We re-

mark that the pairing [ · , · 〉c (c ∈ C) underlying Aθ◦(L ,L•, h) is canon-
ically identified with [ · , · 〉grc(h). In particular, it does not depend on the
choice of θ◦.
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Remark 2.35. — We also consider a Z/2Z-graded version of these struc-
tures. If V is a Z/2Z-graded vector space, the compatibility condition of
pairing [ · , · 〉 with T is defined by

[Tv,w〉 = (−1)deg v[w, v〉,

where v, w are homogeneous elements. The symmetry of pairings on local
systems is replaced by the graded-symmetry. For Z/2Z-graded local system
L = L 0 ⊕ L 1, h is graded symmetric if the following equalities hold:
h(L i,L j) = 0 for i 6= j, and ι−1h◦ex = (−1)ih on ι−1L i⊗L i for i = 0, 1.
The functor Aθ◦ : StPCk

∼−→ Mutk(C, τθ◦) enhanced to these categories is
also denoted by the same notation.

2.6. A generalization of the construction of Stokes data

We generalize the construction of Stokes data from Stokes filtered local
systems. This construction is only used in the proof of Lemma 6.14 and
Theorem 7.9.

Let (L ,L•) ∈ StCk be a Stokes filtered local system with exponents
C ⊂ C. Fix C-generic θ◦. A tuple of real numbers θ• = {θc}c∈C is called
C-generic if θc are C-generic for all c ∈ C. Set

L−θc :=
{
c− reiθc

∣∣ 0 6 r} ⊂ C.

Definition 2.36. — Let θ• be a C-generic tuple of real numbers with
θ◦ > θc > θ◦ − 2π for all c ∈ C. We define a binary relation <θ•+π/2 as
follows:

c <θ•+π/2 c
′ ⇔

{
θc > θc′ and L−θc ∩ L

−
θc′

= ∅ or
θc = θc′ and c <θc+π/2 c

′.

The next lemma gives another description of <θ•+π/2.

Lemma 2.37.

c <θ•+π/2 c
′ ⇔

{
c <θc+π/2 c

′or c <θc′+π/2 c
′ (θc > θc′ > θc − π),

c′<θc+π/2 c or c′<θc′+π/2 c (θc − π > θc′).

Proof. — Set

Lθc :=
{
c− reiθc

∣∣ r ∈ R
}
, L+

θc
:= Lθc \ L−θc .

If θc = θc′ or θc = θc′±π, then the lemma easily follows. Hence we consider
the following two cases:

(1) θc′ ∈ ]θc − π, θc[ (mod 2π).
(2) θc′ ∈ ]θc, θc + π[ (mod 2π).
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We first consider the case (1). In this case, we see that c <θc+π/2 c′ if and
only if Lθc ∩ Lθc′ ⊂ L+

θc′
and c <θc′+π/2 c

′ if and only if Lθc ∩ Lθc′ ⊂ L+
θc
.

Therefore c <θc+π/2 c′ or c <θc′+π/2 c
′ if and only if L−θc ∩ L

−
θc′

= ∅. The
lemma easily follows from this. The proof of the case (2) is similar. �

In general, the binary relation <θ•+π/2 is not a partial ordering.

Definition 2.38. — A tuple of real numbers θ• is said to be ordered if
θ• is C-generic, θ◦ > θc > θ◦ − 2π for all c ∈ C, and <θ•+π/2 gives a total
ordering.

For ordered θ•, we have the isomorphism of ordered sets

C
∼−→ {1, 2, . . . ,m},

where the order of C is given by <θ•+π/2. This isomorphism is denoted by
τθ• . Set

fθ• :=
∐
c∈C

fθc,c, f∗θ• :=
∏
c∈C

f∗θc,c,

where the symbol
∐

means the direct sum.

Proposition 2.39. — If θ• is ordered, then
(
(Vc, Tc)c∈C , fθ• , f∗θ•

)
are

Stokes data on (V, T ) = (VL , TL ) of type (C, τθ•).

Proof. — It is sufficient to show that f∗θc,c◦fθc′ ,c′ = 0 and f !
θc′ ,c

′◦fθc,c = 0
for c <θ•+π/2 c′. We first consider the case θc > θc′ > θc − π. In this case,
we see that

θc − π/2, θc′ − π/2 ∈ Iθc−π ∩ Iθc′ .
Combined with Lemma 2.37, we have f∗θc,c ◦ fθc′ ,c′ = 0 (see also the proof
of Proposition 2.5). By rotating π, we also see that

θc + π/2, θc′ + π/2 ∈ Iθc ∩ Iθc′+π,

which implies f !
θc′ ,c

′ ◦ fθc,c = 0. The case θc − π > θc′ is similar. Note that
in this case we have

θc − 3π/2, θc′ + π/2 ∈ Iθc−π ∩ Iθc′ . �

Similar to Proposition 2.5, this correspondence gives a fully faithful func-
tor

Aθ• : StCk → Stdk(C, τθ•).
The following is a direct consequence of the above proposition.

Corollary 2.40. — If (L ,L•, h) ∈ StPCk , then the corresponding
pairing [ · , · 〉 on (VL , TL ) is compatible with the Stokes data Aθ•(L ,L•).
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By the above corollary, we have a functor from StPCk to Mutk(C, τθ•). To
simplify notation, this functor is also denoted by Aθ• .

Remark 2.41. — We also consider a Z/2Z-graded version (see Rem-
ark 2.35). This generalized functor is also denoted by Aθ• .

2.7. A reminder for Riemann–Hilbert correspondence

We recall some fundamental results on Riemann–Hilbert correspondence
for meromorphic connections on the germ (C, 0) of a complex plane at
zero. A comprehensive reference is [51]. Let M be a finite dimensional
OC,0(∗{0})-vector space together with a C-linear map ∇ : M →M ⊗Ω1

C,0
satisfying the Leibniz rule: ∇(as) = a∇s+s⊗da, (a ∈ OC,0(∗{0}), s ∈M ).
We call such a pair (M ,∇) a meromorphic connection on (C, 0). We often
abbreviate ∇.
For c ∈ C, we define a meromorphic connection E c/z := (OC,0(∗{0}),

d+ d(c/z)).

Definition 2.42. — A meromorphic connection M is called of expo-
nential type with exponents C ⊂ C if there is an isomorphism of formal
meromorphic connections:

M ⊗ C((z)) '
(⊕
c∈C

E−c/z ⊗Rc

)
⊗ C((z)),(2.19)

where Rc is a regular singular meromorphic connection for each c. The cat-
egory of meromorphic connections on (C, 0) of exponential type is denoted
by Me. For a finite subset C ⊂ C, MeC denotes the full subcategory such
that the exponents of objects are contained in C.

Let $ : BlR0 (C) → C be the real blowing up of the complex plane C at
zero. We have natural inclusions jC∗ : C∗ ↪→ BlR0 (C) and

i∂ : S1 ' ∂ BlR0 (C) ↪→ BlR0 (C)

where ∂ BlR0 (C) is the boundary. We put Õ := (jC∗)∗OC∗ where OC∗ is
the sheaf of holomorphic functions on C∗. We define subsheaves A mod and
A rd of Õ as follows: For an open subset U in BlR0 (C), put U∗ := U ∩ C∗.
A section f of Õ(U) = O(U∗) is a section of A mod(U) if and only if for
any compact subset K ⊂ U , there exist a constant CK and a non-negative
integer NK such that |f(z)| 6 CK |z|−NK for all z ∈ U∗ ∩ K. A section
g ∈ O(U∗) is a section of A rd(U) if and only if for any compact subset
K ⊂ U , and for any non-negative integer N , there is a constant CK,N such
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that |g(z)| 6 CK,N |z|N for all z ∈ U∗ ∩ K. For c ∈ C, we also have the
subsheaves ec/zA mod, and ec/zA rd where ec/z is considered as a section
of Õ.
Using these sheaves as coefficients, we define various de Rham complexes

as follows:
• D̃R(M ) := {Õ ⊗$−1M → Õ ⊗$−1(Ω1 ⊗M )},
• DR6c(M ) := {ec/zA mod⊗$−1M → ec/zA mod⊗$−1(Ω1⊗M )},
• DR<c(M ) := {ec/zA rd ⊗$−1M → ec/zA rd ⊗$−1(Ω1 ⊗M )},

where D̃R(M ) has cohomology in degree 0 at most.
Then the pair

RH(M ) := (H 0D̃R(M ),H 0 DR6•(M ))

is considered as a Stokes filtered local system on S1 via i−1
∂ , where H 0 is

the cohomology of degree zero.

Theorem 2.43 ([38], [51, Theorem 5.7]). — The Riemann–Hilbert func-
tor RH : MeC → StCC is an equivalence of categories.

Remark 2.44. — Let (L ,L•) be the Stokes filtered local system corre-
sponding to (M ,∇) ∈ MeC via RH. Then the rank of grciL is equal to
the rank of Ri in (2.19). It is also equal to the dimension of Vci of the
corresponding Stokes data.

Let ι : (C, 0)→ (C, 0) be the involution z 7→ −z. Set

M∨ := H om
(
M ,O(∗{0})

)
.

Then we define D(M ) := ι−1M∨.

Proposition 2.45 ([51, Proposition 5.15]). — The Riemann–Hilbert
functor is compatible with duality, i.e. RH(DM ) ' DRH(M ).

Proof. — The compatibility with dual M 7→ M∨ is shown in [51,
Proposition 5.15]. The compatibility with the involution ι−1 is shown sim-
ilarly. �

Definition 2.46. — We define the category MeP of meromorphic con-
nections of exponential type with pairings as follows:

(1) An object in MeP is a pair (M ,Q) of a meromorphic connection
M ∈ Me and an isomorphism

Q : M
∼−→ DM(2.20)

of meromorphic connections such that DQ = Q.
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(2) Let (M ,Q) and (M ′,Q′) be objects in MeP. A morphism from
(M ,Q) to (M ′,Q′) is a morphism λ ∈ HomMe(M ,M ′) such that
Dλ ◦Q′ ◦ λ = Q.

For a finite set C ⊂ C, we also define MePC as a full subcategory of MeP
whose exponents are contained in C.

Corollary 2.47. — The Riemann–Hilbert functor RH : MePC →
StPCC is well defined and gives an equivalence of categories.

Remark 2.48. — As in Remark 2.35, we consider Z/2Z-graded meromor-
phic connections. The connections are assumed to be grade-preserving. The
only difference with non-graded case is the pairing. The pairing is defined
to be graded-symmetric so that the equivalence RH : MePC → StPCC is gen-
eralized to the Z/2Z-graded case. The generalized functor is also denoted
by RH.

3. A-mutation systems

3.1. Quantum connections of exponential type

Let X be a Fano manifold, that is, X is a smooth projective variety
whose anti-canonical bundle ω−1

X := detTX is ample. Let H•(X) denote
the Betti cohomology group of X over C. For α1, α2, . . . , αn ∈ H•(X),
let 〈α1, α2, . . . , αn〉X0,n,d denote the genus-zero n-points Gromov–Witten in-
variant of degree d ∈ H2(X,Z). The quantum cup product α1 ∗τ α2 of two
classes α1, α2 ∈ H•(X) with parameter τ ∈ H•(X) is given by

(3.1) (α1 ∗τ α2, α3)X =
∑

d∈Eff(X)

∞∑
n=0
〈α1, α2, α3, τ, . . . , τ〉X0,3+n,d

where (α, β)X :=
∫
X
α ∪ β is the Poincaré pairing and Eff(X) ⊂ H2(X;Z)

is the set of effective curve classes. It is not known if the quantum products
∗τ converge in general, however the quantum cup product for τ ∈ H2(X)
makes sense since X is a Fano manifold.

Definition 3.1 ([14]). — Consider the trivial vector bundle HX :=
H•(X)⊗OC over Cz. Define the meromorphic flat connection

∇ : HX → HX ⊗ Ω1
C(log{0})⊗OC({0})

called a quantum connection by

∇ := d−
(

1
z

(c1(X)∗0)− µ
)

dz
z
,(3.2)
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where z denotes the coordinate on C, µ ∈ End(H•(X)) is the grading opera-
tor defined by µ|Hp(X) := (p− dimCX)/2 · idHp(X), and c1(X) ∈ H2(X;Z)
is the first Chern class of X. We also set the meromorphic connection
MX := HX⊗OC,0. We define a Z/2Z-graded symmetric sesquilinear pairing
QX : ι∗HX ⊗HX → OC by QX(s, t)(z) := (s(−z), t(z))X where s, t ∈ HX .
The induced pairing on MX is denoted by QX .

We consider the following assumption [30, Conjecture 3.4]:

The meromorphic connection MX is of exponential type.(3.3)

Under this assumption, we have the following:

Corollary 3.2 (Corollary of assumption (3.3)). — Let CX be the set
of eigenvalues of c1(X)∗0. The set of exponents of MX coincide with −CX .
In other words, we have an isomorphism

MX ⊗ C((z)) '
(⊕
c∈CX

E c/z ⊗Rc

)
⊗ C((z))

where Rc is regular singular. The rank of the regular singular part Rc is
the dimension of the eigenspace of c1(X)∗0 associated with c.

Proof. — For the lattice HX , we have (z2∇∂z )|z=0 = −c1(X)∗0 identi-
fying the fiber of HX at z = 0 with H•(X). By Exercise 5.9 in [49, II],
we have a decomposition MX ⊗ C((z)) '

⊕
c∈CX Mc compatible with the

lattice and the generalized eigenvalue decomposition of c1(X)∗0. On the
other hand, by assumption (3.3), we have an isomorphism

MX ⊗ C((z)) ∼−→
(

m⊕
i=1

E ci/z ⊗Ri

)
⊗ C((z))

for some distinct complex numbers c1, . . . , cm. Consider the induced mor-
phism φ : Mc → (E ci/z ⊗Ri)⊗ C((z)) for some c ∈ CX and i = 1, . . . ,m.
We claim that φ = 0 if c 6= ci (This claim implies the corollary). Take a
frame v = (vk)k of Mc so that vk ∈ HX ⊗ C[[z]]. Then we have

∇z∂zv = v
(
− z−1(c · Id +N) +A(z)

)
where Id is the identity matrix, N is a nilpotent constant matrix, and A(z)
is a matrix with entries in C[[z]]. We also take a frame w in (E ci/z ⊗Ri)⊗
C((z)) so that ∇z∂zw = w(−z−1ci · Id +A′(z)) where A′(z) is a matrix
with entries in C[[z]]. If we take a matrix B = B(z) with entries in C((z))
so that φ(v) = wB, the flatness condition of φ is written as follows:

(3.4) z∂zB + (A′B −BA) = z−1B
(
(ci − c) · Id +N

)
.
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Since we assume that c 6= c′ and N is nilpotent, ((ci − c) · Id +N) is an
invertible constant matrix. By comparing orders of entries between both
sides of (3.4), we conclude that B = 0. �

3.2. Fundamental solutions, pairings, and A-mutation systems

Although the following proposition is proved for even degrees of the co-
homology, the same proof can be applied for the Z/2Z-graded case.

Proposition 3.3 ([16, Lemma 2.4, and Lemma 2.5], see also [17, Propo-
sition 2.3.1]). — There exists a unique holomorphic function

S : P1 \ {0} → End(H•(X))

with S(∞) = idH•(X) such that

∇(S(z)z−µzρXα) = 0 for all α ∈ H•(X),
T (z) := zµS(z)z−µ is regular at z =∞ and T (∞) = idH•(X),

where ρ
X

= (c1(X)∪) ∈ End(H•(X)) and we define z−µ := exp(−µ log z),
zρX := exp(ρ

X
log z).

Moreover, we have

(S(−z)α, S(z)β)X = (α, β)X for all α, β ∈ H•(X).

Let θ◦ be a real number generic with respect to −CX . Under assump-
tion (3.3), we have the mutation system Aθ◦ RH(MX ,QX). Denote the
underlying polarized vector space by (VMX

, [ · , · 〉QX
), which is indepen-

dent of a choice of θ◦.
Let BlR0 (C) be the real blowing up of C at 0. Let B̃lR0 (C) be its universal

covering. The universal covering C̃∗z of C∗z can be considered as an open
subset of B̃lR0 (C). Its complement is identified with R, which is universal
covering of S1. By construction, the vector space VMX

can be identified
with the space of flat section of p̃∗HX where p̃ : C̃∗z → Cz denotes the
composition of the universal covering and the inclusion. Namely, we can
canonically identify VMX

with{
s : C̃∗z → H•(X)

∣∣∣∇s = 0
}
.(3.5)

The first half of Proposition 3.3 gives an isomorphism H•(X) ' VMX
by

Φ(α) := (2π)− dimX/2S(z)z−µzρXα,
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where VMX
is identified with (3.5). By the second half of Proposition 3.3,

if we put

[α, β)X := 1
(2π)dimX

∫
X

eπiµe−πiρ
Xα ∪ β

for α, β ∈ H•(X), the isomorphism Φ is compatible with the pairings
[ · , · )X and [ · , · 〉QX

.

Definition 3.4. — The mutation system on (H•(X), [ · , · )X) defined
via the isomorphism

Φ : (H•(X), [ · , · )X) ∼−→ (VMX
, [ · , · 〉QX

)

described above is called an A-mutation system of X, which is also denoted
by Aθ◦ RH(MX ,QX). The pair (τθ◦ ,Afθ◦) denotes the underlying splitting
data.

We can describe this mutation system more concretely as follows:

Lemma 3.5. — Fix a hermitian metric ‖ · ‖ on H•(X). Let c be a com-
plex number in −CX . A class α ∈ H•(X) is in ImAfθ◦,c if and only if there
exists a non-negative integer N such that

‖e−c/zΦ(α)(z)‖ 6 O(|z|−N )(3.6)

for = log z ∈ Iθ◦ .

Proof. — In general, for (L ,L•) ∈ StC and C-generic θ◦ ∈ R, we have

Im fθ◦,c =
{
s ∈ VL

∣∣ sθ ∈ (p−1L6c)θ for θ ∈ Iθ◦
}
.

In the case (L ,L•) = RH(MX), the germ (p−1L6c)θ can be identified
with the space of α ∈ H•(X) with the following properties: There exists
an open neighborhood U of θ in B̃lR0 (C) (remark that θ ∈ R ⊂ B̃lR0 (C))
such that for any compact subset K in U there exists a positive integer
N with ‖e−c/zΦ(α)(z)‖ 6 O(|z|−N ) for log z ∈ K ∩ C̃∗. Hence the condi-
tion (3.6) implies α ∈ ImAfθ◦,c. On the other hand, by replacing Iθ◦ with
a bigger (−CX)-good open interval, we see that α ∈ ImAfθ◦,c implies the
condition (3.6). �

Remark 3.6. — By Remark 2.44 and Corollary 3.2, the dimension of
Im fθ◦,c is equal to the dimension of the eigenspace of −c1(X)∗0 associated
with c.
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4. B-mutation systems

4.1. Hochschild homology for smooth projective varieties

We recall some definitions and properties of Hochschild homology of
smooth projective varieties. We mainly follow the formulation of [25, §5]
(see also [37]).

Let X,Y, Z be smooth projective varieties defined over C. The dimension
of X,Y, Z are denoted by dX , dY , dZ respectively. We denote by Db(X) the
triangulated category of bounded complexes of coherent sheaves on X. The
shift functor is denoted by [1]. For a morphism f : X → Y , we denote by
f∗ the right derived direct image functor and f∗ the left derived inverse
image functor. Moreover the left derived tensor product is denoted by ⊗.
Let E ∈ Db(X × Y ) and F ∈ Db(Y × Z) be bounded complexes. We

define the exact functor

ΦE : Db(X)→ Db(Y )

by
ΦE(−) := (π2)∗(π∗1(−)⊗ E),

where πi is the projection from X × Y to the i-th factor. For the diagonal
sheaf

O∆ := ∆∗OX ∈ Db(X ×X),
we have ΦO∆

∼= id, where ∆ : X → X ×X is the diagonal embedding. We
define the composition of kernels E and F by

F ◦ E := (π1,3)∗(π∗1,2E ⊗ π∗2,3F) ∈ Db(X × Z),

where πi,j is the projection from X × Y × Z to the ith × jth factor. Then
we have ΦF◦E ∼= ΦF ◦ ΦE .

We define the Hochschild homology of X as follows:

HHk(X) :=
⊕
p−q=k

Hq(X,ΩpX), HH•(X) :=
⊕
k∈Z

HHk(X)

This is a Z-graded vector space.

Remark 4.1 (see, e.g., [6], [24], [53], [57]). — More precisely, the definition
of the Hochschild homology is

HHk(X) := HomDb(X)(OX [k],∆∗O∆)

and we have the Hochschild–Kostant–Rosenberg isomorphism

IHKR :
⊕
k∈Z

HHk(X) ∼−→
⊕
k∈Z

⊕
p−q=k

Hq(X,ΩpX).

We use the right hand side as a definition of the Hochschild homology.
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For a homogeneous element α ∈ HH•(X), the degree of α is denoted by
degα. We identify HH•(X) with H•(X) via the Hodge decomposition (as
Z/2Z-graded vector spaces). For a morphism f : X → Y , we denote by f∗
the Gysin map.

Remark 4.2. — By definition, f∗ satisfies the following:
1

(2πi)dY

∫
Y

f∗α ∪ β = 1
(2πi)dX

∫
X

α ∪ f∗β.

Here α ∈ HH•(X) and β ∈ HH•(Y ).

For E ∈ Db(X × Y ), a morphism φE : HH•(X) → HH•(Y ) is defined as
follows:

φE(−) := (π2)∗(π∗1(−) ∪ υ(E)),
where

υ(E) := Ch(E)
√

TdX×Y
is the Mukai vector. Then we have

φO∆ = id, φF ◦ φE = φF◦E .

We note that φE preserves the Z-grading.

Remark 4.3. — By definition, Chern characters Ch and Todd classes Td
of bounded complexes of coherent sheaves on X are elements of

Im
(
dX⊕
k=0

H2k(X;Z(k)
)
→ H•(X)

)
,

where Z(k) is the k-th Tate twist of Z (see [17, §3.4]).

An exact functor F : Db(X)→ Db(Y ) is called a Fourier–Mukai functor
if there exists E ∈ Db(X × Y ) such that F ∼= ΦE . The complex E is called
a Fourier–Mukai kernel of F . For a Fourier–Mukai functor F ∼= ΦE , we
define φF by φE . By the next lemma, we see φF is independent of a choice
of a Fourier–Mukai kernel E .

Lemma 4.4 ([8, Corollary 4.4]). — Let E1, E2 ∈ Db(X × Y ). If we have
an equivalence ΦE1 ∼= ΦE2 , then φE1 = φE2 .

Proof. — By [8, Corollary 4.4], we have [E1] = [E2] in theK-group, which
implies the lemma. �

Let E1 → E2 → E3 → E1[1] be an exact triangle in Db(X × Y ). Since
Chern characters are additive, we have

φE2 = φE1 + φE3 .
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By considering the case E2 ∼= 0, we have φE[1] = −φE .
We define the left and right adjoint kernels E∗, E ! ∈ Db(Y ×X) by

E∗ := (σXY )∗(E∨ ⊗ π∗2ωY [dY ]), E ! := (σXY )∗(E∨ ⊗ π∗1ωX [dX ]),

where σXY : Y ×X → X × Y is the natural isomorphism, E∨ is the dual
RH om(E ,OX×Y ), and ωX , ωY are the canonical bundles. Then we see that
ΦE∗ is the left adjoint of ΦE and ΦE! is the right adjoint of ΦE . Since the
operations ∗ and ! preserve exact triangles, it follows that

φE∗2 = φE∗1 + φE∗3 , φE!
2

= φE!
1

+ φE!
3

(4.1)

for an exact triangle E1 → E2 → E3 → E1[1].

4.2. Hochschild homology for admissible subcategories

We define Hochschild homology for admissible subcategories and con-
struct objects of RepZ(C). Similar construction has already been considered
by many people (e.g., [7], [32], [45], [52]).
For a functor F , we denote by F ∗ (resp. F !) the left (resp. right) adjoint

functor. Let A be a full triangulated subcategory of Db(X) and we denote
by iA : A ↪→ Db(X) the inclusion functor. A is called admissible if iA has
left and right adjoint functors. Note that an admissible subcategory A is
saturated, and hence all fully faithful functors to triangulated categories
of finite type are also admissible (see [4, §2]). For a functor F to A, the
functor iA ◦F is denoted by F̃ . For an admissible subcategory A, we define
left and right orthogonal to A by

⊥A := {A′ ∈ Db(X) | ∀ A ∈ A Hom(A′, A) = 0},

A⊥ := {A′ ∈ Db(X) | ∀ A ∈ A Hom(A,A′) = 0}.

Then ⊥A and A⊥ are also admissible (see [4, Proposition 3.6]). Moreover
we have semiorthogonal decompositions

Db(X) ∼= 〈A,⊥A〉 ∼= 〈A⊥,A〉.

See Definition 4.12 for the definition of semiorthogonal decompositions.
We denote by LA (resp. RA) the projection functor from Db(X) to A with
respect to the semiorthogonal decomposition 〈A,⊥A〉 (resp. 〈A⊥,A〉).

Lemma 4.5. — i∗A
∼= LA and i!A ∼= RA.
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Proof. — For E ∈ Db(X), we have an exact triangle

R̃⊥AE → E → L̃AE → R̃⊥AE[1].

Since HomDb(X)(R̃⊥AE,A) = 0 for A ∈ A, by applying HomDb(X)(−, A)
to the above exact triangle, we have a functorial isomorphism

HomA(LAE,A) ∼= HomDb(X)(E,A).

This implies i∗A ∼= LA. The proof of i!A ∼= RA is similar. �

To define φ
L̃A

and φ
R̃A

, we need the following lemma:

Lemma 4.6 ([32]). — L̃A and R̃A are Fourier–Mukai functors.

Proof. — Apply [32, Theorem 3.7] for semiorthogonal decompositions
〈A,⊥A〉 and 〈A⊥,A〉. �

Using the above lemma, we define the Hochschild homology of A as
follows:

Definition 4.7. — We define the Hochschild homology HH•(A) of A
by Imφ

R̃A
⊂ HH•(X).

Let B ⊂ Db(Y ) be an admissible subcategory. A functor F : A → B is
called a Fourier–Mukai functor if there exists E ∈ Db(X × Y ) such that
ΦE |A ∼= F̃ . The complex E is called a Fourier–Mukai kernel of F . To define
φF for a Fourier–Mukai functor F , we need some lemmas.

Lemma 4.8. — Let B ⊂ Db(Y ) be an admissible subcategory of Db(Y )
and E ∈ Db(X × Y ) be a bounded complex. If ΦE(A) ⊂ B, then we have
φE(HH•(A)) ⊂ HH•(B).

Proof. — By assumption, we have

ΦE ◦ R̃A ∼= R̃B ◦ ΦE ◦ R̃A.

Hence we have
Im(φE ◦ φR̃A) ⊂ Imφ

R̃B
,

which implies the lemma. �

Lemma 4.9. — If ΦE1 |A ∼= ΦE2 |A, then φE1 |HH•(A) = φE2 |HH•(A).

Proof. — By assumption, we have ΦE1 ◦ R̃A ∼= ΦE2 ◦ R̃A. This implies
the lemma. �

TOME 70 (2020), FASCICULE 2



656 Fumihiko SANDA & Yota SHAMOTO

For a Fourier–Mukai functor F : A → B with a Fourier–Mukai kernel
E , we define φF by φE |HH•(A). By Lemma 4.8, we can consider φF as a
morphism from HH•(A) to HH•(B). By Lemma 4.9, this is independent of
a choice of a Fourier–Mukai kernel. Note that idA and iA are Fourier–Mukai
functors with a Fourier–Mukai kernel O∆. Hence we have φidA = idHH•(A)
and φiA is the natural embedding of HH•(A). To define HH•(A), we used
the specific projection R̃A. The next lemma implies that the definition of
HH•(A) is independent of a choice of a projection.

Lemma 4.10. — Let P : Db(X)→ A be a Fourier–Mukai functor which
satisfies P |A ∼= idA. Then ImφP = HH•(A).

Proof. — By assumption, we have P ◦ R̃A ∼= RA and RA ◦ P̃ ∼= P . Hence
we have ImφRA ⊂ ImφP and ImφP ⊂ ImφRA . �

We construct an object of RepZ(C) from A and the Serre functor. We
recall that for E ∈ Db(X), the functor−⊗E is a Fourier–Mukai functor with
a Fourier–Mukai kernel ∆∗E. Hence the Serre functor SX ∼= − ⊗ ωX [dX ]
of Db(X) is a Fourier–Mukai functor.

Lemma 4.11. — RA ◦ SX ◦ iA is the Serre functor SA of A. Especially,
SA is a Fourier–Mukai functor.

Proof. — Let A1, A2 ∈ A. This lemma is proved by the following func-
torial isomorphisms:

HomA(A1, A2) ∼= HomDb(X)(A2, SX(A1))∨

∼= HomA(A2, RA ◦ SX(A1))∨. �

Let F : A → B be a Fourier–Mukai functor with a Fourier–Mukai kernel
E . Then we have an equivalence F ∼= RB ◦ ΦE ◦ iA, which implies the left
adjoint F ∗ ∼= LA ◦ ΦE∗ ◦ iB is a Fourier–Mukai functor. Hence, if F is an
isomorphism, the quasi-inverse F−1 ∼= F ∗ is a Fourier–Mukai functor and
φF is an isomorphism with the inverse φF−1 . Set

TA := (−1)degφS−1
A
,

where (−1)deg is the sign operator defined by (−1)k · id on HHk(X). The
above argument shows that (HH•(A) , TA) is an element of RepZ(C). More-
over, for an isomorphism F , we have F ◦ SA ∼= SB ◦ F (see, e.g., [25,
Lemma 1.30]), which implies

φF ◦ TA = TB ◦ φF .

Thus φF is a morphism in RepZ(C). For simplicity of notation, we write
TX instead of TDb(X). Then we have (HH•(X) , TX) ∈ RepZ(C).
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4.3. Stokes data from semiorthogonal decompositions

In this section we construct Stokes data from (framed) semiorthogonal
decompositions. We first recall the definition of semiorthogonal decompo-
sitions.

Definition 4.12. — Let T be a triangulated category. A sequence of
full triangulated subcategories A1,A2, . . . ,Am is called a semiorthogonal
decomposition of T if Ai ⊂ A⊥j for i < j and for every T ∈ T there exists
the following sequence of exact triangles:

0 Tm // Tm−1 //

��

Tm−2 //

}}

· · · // T1 // T0

��

T

Am

YY

Am−1

]]

A1

\\ .

Here Ai are objects of Ai.

Let C be a finite set and τ : C ∼−→ {1, 2, . . . ,m} be a bijection. Let
{grcDb(X)}c∈C be a family of admissible subcategories in Db(X).

Definition 4.13. — A pair ({Ai}16i6m, {Fc}c∈C) is called a framed
semiorthogonal decomposition of type (C, τ) with the frame {grcDb(X)}c∈C
if {Ai}16i6m is a semiorthogonal decompositionDb(X)= 〈A1,A2, . . . ,Am〉
and {Fc}c∈C is a tuple of Fourier–Mukai isomorphisms

Fc : grcDb(X) ∼−→ Aτ(c).

We denote by Pi the projection functor from Db(X) to Ai with respect
to the semiorthogonal decomposition {Ai}16i6m. Then we have

Pi ◦ P̃j ∼=

{
Pi (i = j)
0 (i 6= j).

The next theorem of Kuznetsov is essential for our construction.

Theorem 4.14 ([32, Theorem 3.7]). — Every Pi is a Fourier–Mukai
functor. Moreover, we have the following sequence of exact triangles in
Db(X ×X):

0 Dm // Dm−1 //

��

Dm−2 //

}}

· · · // D1 // D0

��

O∆

Pm

YY

Pm−1

]]

P1

XX

where Pi is a Fourier–Mukai kernel of Pi.
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Since Pi is a projection to Ai, using Lemma 4.10, we have

ImφPi = HH•(Ai) .

Hence, as a corollary of Theorem 4.14, we have the following:

Corollary 4.15. — HH•(X) =
⊕m

i=1 HH•(Ai).

Let ({Ai}16i6m, {Fc}c∈C) be a framed semiorthogonal decomposition of
type (C, τ) with a frame {grcDb(X)}c∈C . Then

φFc :
(
HH•

(
grcDb(X)

)
, TgrcDb(X)

) ∼−→ (
HH•

(
Aτ(c)

)
, TAτ(c)

)
is an isomorphism in RepZ(C). Set

Bfc := φiAτ(c)
◦ φFc : HH•

(
grcDb(X)

)
↪→ HH•(X) , Bf :=

∐
c∈C

Bfc,

Bf∗c := φ−1
Fc
◦ φLAτ(c)

: HH•(X)� HH•
(
grcDb(X)

)
, Bf∗:=

∏
c∈C

Bf∗c ,

Bf !
c := φ−1

Fc
◦ φRAτ(c)

: HH•(X)� HH•
(
grcDb(X)

)
, Bf ! :=

∏
c∈C

Bf !
c.

Since RAi ∼= i!Ai
∼= SAi ◦ i∗Ai ◦ S

−1
X , we have Bf !

c = T−1
c ◦ Bf∗c ◦ TX .

Theorem 4.16. —
((

HH•
(
grcDb(X)

)
, TgrcDb(X)

)
c∈C ,

Bf,Bf∗
)
defines

Stokes data on (HH•(X) , TX) of type (C, τ).

Proof. — By Corollary 4.15, Bf is an isomorphism. By the definition of
semiorthogonal decomposition, we have Aj ⊂ ⊥Ai for i < j. Hence we have

LAi ◦ iAj ∼=

{
idAj (i = j)
0 (i < j).

This implies

Bf∗c ◦ Bfc′ =
{

idVc′ (c = c′)
0 (τ(c) < τ(c′)).

Similarly, we have

Bf !
c ◦ Bfc′ =

{
idVc′ (c = c′)
0 (τ(c) > τ(c′)),

which proves the theorem. �

Definition 4.17. — Let ({Ai}16i6m, {Fc}c∈C)be a framed semiorthog-
onal decomposition of type (C, τ) with a frame {grcDb(X)}c∈C . We define
Stokes data

B
(
({Ai}16i6m, {Fc}c∈C)

)
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on
(
HH•(X) , TX

)
of type (C, τ) by the tuple((

HH•
(
grcDb(X)

)
, TgrcDb(X)

)
c∈C ,

Bf,Bf∗
)
.

4.4. Mutations of framed semiorthogonal decompositions

In this section, we define mutations of framed semiorthogonal decompo-
sitions. Essentially, this construction is due to [4] (see also [32]).

Let ({Ai}16i6m, {Fc}c∈C) be a framed semiorthogonal decomposition of
type (C, τ) with a frame {grcDb(X)}c∈C .

Definition 4.18 (cf. [32, §2.4]). — For each i ∈ {1, 2, . . . ,m − 1}, we
define

(Ri+1A•)j :=


Aj (j 6= i, i+ 1)
Ai+1 (j = i)
⊥〈A1, . . . ,Ai−1,Ai+1〉 ∩ 〈Ai+2, . . . ,Am〉⊥ (j = i+ 1),

(Ri+1F•)c :=
{
Fc (τ(c) 6= i)
R⊥Ai+1 ◦ Fc (τ(c) = i).

The pair
(
{(Ri+1A•)j}16j6m, {(Ri+1F•)c}c∈C

)
is called the right mutation

of ({Ai}16i6m, {Fc}c∈C). Similarly, we define the left mutation(
{(LiA•)j}16j6m, {(LiF•)c}c∈C

)
as follows:

(LiA•)j :=


Aj (j 6= i, i+ 1)
Ai (j = i+ 1)
⊥〈A1, . . . ,Ai−1〉 ∩ 〈Ai,Ai+2, . . . ,Am〉⊥ (j = i),

(LiF•)c :=
{
Fc (τ(c) 6= i+ 1)
LA⊥

i
◦ Fc (τ(c) = i+ 1).

To prove the propositions below (Propositions 4.20 and 4.21), we need
the following:

Lemma 4.19 ([4]). — R⊥Ai+1 |A⊥i+1
: A⊥i+1 → ⊥Ai+1 is an isomorphism

and the quasi-inverse is given by LA⊥
i+1
|⊥Ai+1 .

Proof. — See the proof of [4, Lemma 1.9]. �
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Proposition 4.20. — The pairs
(
{(Ri+1A•)j}16j6m, {(Ri+1F•)c}c∈C

)
and

(
{(LiA•)j}16j6m, {(LiF•)c}c∈C

)
are framed semiorthogonal decompo-

sitions of type (C, si ◦ τ) with the frame {grcDb(X)}c∈C .

Proof. — We only prove that
(
{(Ri+1A•)j}16j6m, {(Ri+1F•)c}c∈C

)
is a

framed semiorthogonal decomposition. The proof for the left mutation is
similar. By definition, {(Ri+1A•)j}16j6m is a semiorthogonal decomposi-
tion of Db(X). Thus it is sufficient to show that (Ri+1F•)c is an isomor-
phism between grcDb(X) and (Ri+1A•)si◦τ(c). We only consider the case
c = τ−1(i) since the case c 6= τ−1(i) is obvious. For Ai ∈ Ai, we have the
following exact triangle:

R⊥Ai+1(Ai)→ Ai → LAi+1(Ai)→ R⊥Ai+1(Ai)[1].

This implies

R⊥Ai+1(Ai) ∈ (〈Ai,Ai+1〉 ∩ ⊥Ai+1) = (Ri+1A•)i+1.

From Lemma 4.19 and Ai ⊂ A⊥i+1, it follows that R⊥Ai+1 |Ai is fully faithful.
It remains to show that R⊥Ai+1 |Ai : Ai → (Ri+1A•)i+1 is essentially sur-

jective. Since Ai is saturated, ImR⊥Ai+1 |Ai ⊂ (Ri+1A•)i+1 is admissible.
Hence it is sufficient to show that

(Ri+1A•)i+1 ∩ ⊥(ImR⊥Ai+1 |Ai) ∼= 0.

Choose A ∈ (Ri+1A•)i+1∩⊥(ImR⊥Ai+1 |Ai). Then, for all B ∈ Ai, we have

HomDb(X)(A,B) = Hom⊥Ai+1(A,R⊥Ai+1B) = 0.

Thus we have A ∈ ⊥Ai ∩ (Ri+1A•)i+1 ∼= 0, which completes the proof. �

We construct an action of the braid group Brm on the set of framed
semiorthogonal decompositions. Set

σi({Ai}16i6m, {Fc}c∈C) :=
(
{(Ri+1A•)j}16j6m, {(Ri+1F•)c}c∈C

)
,

σ−1
i ({Ai}16i6m, {Fc}c∈C) :=

(
{(LiA•)j}16j6m, {(LiF•)c}c∈C

)
.

Proposition 4.21.
(1) σ−1

i σi = σiσ
−1
i = id.

(2) σiσi+1σi = σi+1σiσi+1.
(3) σiσj = σjσi (|i− j| > 2).

In other words, σi, σ−1
i satisfy the braid relations.
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Proof.
(1). — By definition, we have

(
Li(Ri+1F•)•

)
c

=
{
Fc (τ(c) 6= i)
LA⊥

i+1
◦R⊥Ai+1 ◦ Fc (τ(c) = i).

From Lemma 4.19 and Ai ⊂ A⊥i+1, we see that

LA⊥
i+1
◦R⊥Ai+1 ◦ Fτ−1(i) ∼= Fτ−1(i).

This implies σ−1
i σi = id. Similarly, we can prove σiσ−1

i = id.
(2). — Set A′i+2 := ImR⊥Ai+2 |Ai+1 . By definition, we have

(
Ri+1 (Ri+2 (Ri+1F•)•)•

)
c

=


Fc (τ(c) 6= i, i+ 1)
R⊥Ai+2 ◦ Fc (τ(c) = i+ 1)
R⊥Ai+2 ◦R⊥Ai+1 ◦ Fc (τ(c) = i),

(
Ri+2 (Ri+1 (Ri+2F•)•)•

)
c

=


Fc (τ(c) 6= i, i+ 1)
R⊥Ai+2 ◦ Fc (τ(c) = i+ 1)
R⊥A′

i+2
◦R⊥Ai+2 ◦ Fc (τ(c) = i).

Hence it is sufficient to show that

R⊥Ai+2 ◦R⊥Ai+1
∼= R⊥A′

i+2
◦R⊥Ai+2 .

Choose A ∈ Db(X). Then we obtain the following sequences of exact tri-
angles:

0 // R⊥Ai+2 ◦R⊥Ai+1A
//

||

R⊥Ai+1A
//

||

A

||
R⊥Ai+2 ◦R⊥Ai+1A

bb

LAi+2 ◦R⊥Ai+1A

bb

LAi+1A

bb

0 // R⊥A′
i+2
◦R⊥Ai+2A

//

}}

R⊥Ai+2A
//

}}

A

}}
R⊥A′

i+2
◦R⊥Ai+2A

aa

LA′
i+2
◦R⊥Ai+2A

aa

LAi+2A

aa

From these sequences of exact triangles, we see that R⊥Ai+2 ◦ R⊥Ai+1 is
the projection to ⊥〈Ai+1,Ai+2〉 and R⊥A′

i+2
◦ R⊥Ai+2 is the projection to

⊥〈Ai+2,A′i+2〉. Since

〈Ai+1,Ai+2〉 = 〈Ai+2,A′i+2〉
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as subcategories of Db(X), it follows that

R⊥Ai+2 ◦R⊥Ai+1
∼= R⊥A′

i+2
◦R⊥Ai+2 .

(3). — Obvious from definition. �

Remark 4.22. — More precisely, the braid group Brm acts on the set
of equivalence classes of framed semiorthogonal decompositions with the
frame {grcDb(X)}c∈C . Here two framed semiorthogonal decompositions

({Ai}16i6m, {Fc}c∈C) and ({A′i}16i6m, {F ′c}c∈C)

with the frame {grcDb(X)}c∈C are equivalent if and only if F̃c ∼= F̃ ′c for all
c ∈ C.

For σ ∈ Brm, we can define the framed semiorthogonal decomposition
σ({Ai}16i6m, {Fc}c∈C) of type (C, σ̄ ◦ τ) with the frame {grcDb(X)}c∈C
as the composition of mutations.

Theorem 4.23. — We have

B
(
σ({Ai}16i6m, {Fc}c∈C)

)
= Mσ

(
B({Ai}16i6m, {Fc}c∈C)

)
.

Proof. — By the braid relations, it is sufficient to show the case σ = σi
for some i. We only show that

φ(Ri+1F•)c = Ri+1 ◦ fc,
φ(Ri+1F•)∗c = f∗c ◦R∗i+1.

for c = τ−1(i) since the rest of the proof is evident. The first equality is
shown by

Ri+1 = idVX − φL̃Ai+1
= φ

R̃⊥Ai+1
.

We will show the second equality. Note that, for an admissible subcategory
A, we have

(R̃A)∗ = (iA ◦RA)∗ ∼= L̃A.

Since (Ri+1F•)c ∼= R̃⊥Ai+1 ◦ iAi ◦ Fc, we have

(Ri+1F•)∗c ∼= F−1
c ◦ LAi ◦ L̃⊥Ai+1 .

Hence it follows that

φ(Ri+1F•)∗c = f∗c ◦ φL̃⊥Ai+1
.

Since L̃⊥Ai+1
∼= (R̃⊥Ai+1)∗ ∼= S−1

X ◦ R̃!
⊥Ai+1

◦ SX , we have

φ
L̃⊥Ai+1

= TX ◦ φR̃!
⊥Ai+1

◦ T−1
X .
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By simple computation, it follows

φ
R̃!
⊥Ai+1

= idVX − φL̃!
Ai+1

= idVX − φR̃Ai+1

= Li+1,

where in the first line we use (4.1). Thus we have

φ
L̃⊥Ai+1

= TX ◦ Li+1 ◦ T−1
X = R∗i+1,

which proves the claim. �

4.5. Pairings on Hochschild homology and B-mutation systems

In this section, we introduce a slightly modified version of the general-
ized Mukai pairing and show that this pairing is compatible with the mon-
odromy TX and the Stokes data constructed from a framed semiorthogonal
decomposition.

Definition 4.24 (see also [7], [44], [46], [47], [52]). — We define a Pair-
ing on HH•(X) by

[α, β〉X := 1
(2πi)dX

∫
X

eπiρ
XW (α) ∪ β,

where W (α) := ip+qα for α ∈ Hq(X,ΩpX).

Since
eπiµe−πiρ

X = eπiρ
X eπiµ = i−dXeπiρ

XW,

we see that [ · , · 〉X = [ · , · )X . To compute TX , we show the following lemma.

Lemma 4.25. — For E ∈ Db(X), we have φ−⊗E = − ∪ Ch(E).

Proof. — Let π1 (resp. π2) be the projection from X × X to the first
(resp. second) factor.
We recall that −⊗ E is a Fourier–Mukai functor with a Fourier–Mukai

kernel ∆∗E. We compute φ−⊗E(α). By definition, we have

φ−⊗E(α) = π2∗
(
π∗1(α) ∪ Ch(∆∗E)

√
TdX×X

)
.

Using the Riemann–Roch theorem and the projection formula, we have

Ch(∆∗E)
√

TdX×X = ∆∗(Ch(E) TdX) ∪
√

TdX×X
−1

= ∆∗
(
Ch(E)∆∗(

√
TdX×X)

)
∪
√

TdX×X
−1

= ∆∗(Ch(E)).
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Thus we have

φ−⊗E(α) = π2∗
(
π∗1(α) ∪∆∗(Ch(E))

)
= π2∗∆∗

(
∆∗π∗1(α) ∪ Ch(E)

)
= α ∪ Ch(E). �

As a special case of E = ω−1
X [−dX ], we have TX = (−1)dX (−1)dege2πiρ

X .
To show some statements about [ · , · 〉X , we use the following properties

of the morphism W :
• W is a ring homomorphism.
• For α, β ∈ HH•(X), we have

∫
X

(−1)dXW (α) ∪ β =
∫
X
W (β) ∪ α.

• W
(
c1(X)

)
= −c1(X),W

(
Ch(E∨)

)
= Ch(E),

W (
√

TdX)=
√

TdX ∪ e−πic1(X).
• For a map f : X → Y , we have

W ◦ f∗ = f∗ ◦W, W ◦ f∗ = (−1)dY −dXf∗ ◦W.

Proposition 4.26. — [ · , · 〉X is compatible with TX .

Proof. — We need to show [TXα, β〉X = (−1)degα[β, α〉X , i.e.,
1

(2πi)dX

∫
X

eπiρ
XW

(
(−1)degα−dXe2πiρ

Xα
)
∪β = (−1)degα

(2πi)dX

∫
X

eπiρ
XW (β)∪α

for homogeneous elements α, β ∈ HH•(X). Using the above properties of
W , this follows from simple computation. �

The next proposition gives a characterization of φE∗ , φE! in terms of the
pairing [ · , · 〉X .

Proposition 4.27 (cf. [7, Theorem 8]). — For E ∈ Db(X × Y ), α ∈
HH•(Y ) , β ∈ HH•(X) , we have

(1) [α, φE(β)〉Y = [φE∗(α), β〉X ,
(2) [φE(β), α〉Y = [β, φE!(α)〉X .

Proof. — Set π̃1 := π2 ◦ σXY and π̃2 := π1 ◦ σXY . We first show

(−1)dYW
(
ν(E∗)

)
∪ π̃∗2eπic1(X) = σ∗XY

(
ν(E) ∪ π∗2eπic1(Y )).(4.2)

By definition, we have Ch(E∗) = σ∗XY
(
Ch(E∨) ∪ (−1)dY π∗2e−2πic1(Y )),

which implies

W
(
Ch(E∗)

)
= σ∗XY

(
Ch(E) ∪ (−1)dY π∗2e2πic1(Y )).

Hence we have

W
(
ν(E∗)

)
= W

(
Ch(E∗)

)
∪W (

√
TdY×X)

= σ∗XY
(
Ch(E) ∪ (−1)dY π∗2e2πic1(Y ) ∪W (

√
TdX×Y )

)
,
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where we use σ∗XY
√

TdX×Y =
√

TdY×X . Using

W (
√

TdX×Y ) =
√

TdX×Y ∪ e−πic1(X×Y ),

it follows that

W
(
ν(E∗)

)
= σ∗XY

(
Ch(E) ∪ (−1)dY π∗2eπic1(Y ) ∪

√
TdX×Y ∪ π∗1e−πic1(X))

= σ∗XY
(
Ch(E) ∪ π∗2eπic1(Y ) ∪

√
TdX×Y

)
∪ (−1)dY π̃∗2e−πic1(X),

which implies the equality (4.2).
We next show (1). By definition, we have

[φE∗(α), β〉X = 1
(2πi)dX

∫
X

eπiρ
XW

(
π̃2∗(π̃∗1α ∪ ν(E∗))

)
∪ β

= (−1)dY
(2πi)dX

∫
X

π̃2∗
(
π̃∗1W (α) ∪W (ν(E∗))

)
∪ eπiρ

X β

= (−1)dY
(2πi)dX×Y

∫
Y×X

π̃∗1W (α) ∪W
(
ν(E∗)

)
∪ π̃∗2(eπiρ

X β),

where in the third line we use the projection formula. Using the equal-
ity (4.2) and the projection formula, we have

[φE∗(α), β〉X = 1
(2πi)dX×Y

∫
Y×X

σ∗XY
(
π∗2W (α) ∪ ν(E) ∪ π∗2eπic1(Y ) ∪ π∗1β

)
= 1

(2πi)dX×Y

∫
X×Y

π∗2
(
eπiρ

Y W (α)
)
∪ π∗1β ∪ ν(E)

= 1
(2πi)dY

∫
Y

eπiρ
Y W (α) ∪ π2∗

(
π∗1β ∪ ν(E)

)
.

This proves (1).
Finally, we show (2). Since ΦE! ∼= SX ◦ ΦE∗ ◦ S−1

Y , we see that

φE! = T−1
X ◦ φE∗ ◦ TY .

Hence the statement follows from (1) and Proposition 4.26. �

Let A be an admissible subcategory ofDb(X). We define a pairing [ · , · 〉A
on HH•(A) by the restriction of [ · , · 〉X to HH•(A).

Lemma 4.28. — The pairing [ · , · 〉A is compatible with TA.

Proof. — By Lemma 4.11, we have SA ∼= RA ◦ SX ◦ iA. Hence we have
S−1
A
∼= S∗A

∼= LA ◦S−1
X ◦ iA and TA = φLA ◦ TX |HH•(A). Since L!

A
∼= iA, the

statement follows from Proposition 4.26 and (2) of Proposition 4.27. �

Lemma 4.29. — Let A and B are admissible subcategories of Db(X).
Suppose that B ⊆ A⊥. Then [α, β〉X = 0 for α ∈ HH•(A) and β ∈ HH•(B).
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Proof. — Note that L̃!
A = (iA ◦ LA)! ∼= R̃A. Hence we have

[α, β〉X = [φ
L̃A

(α), β〉X = [α, φ
R̃A

(β)〉X .

Since B ⊂ A⊥ we see R̃A|B ∼= 0, which implies the lemma. �

Applying this lemma to A and A⊥, we see that [ · , · 〉A is non-degenerate.
In general, for a Fourier–Mukai functor F , the morphism φF does not
preserve the pairings.

Lemma 4.30. — Let F : A → B be a Fourier–Mukai functor. Suppose
that F is fully faithful. Then φF preserves the pairings.

Proof. — Note that F ∗ is a Fourier–Mukai functor. Since F is fully faith-
ful, it follows F ∗ ◦ F ∼= idA (e.g., [25, Corollary 1.22]). Thus we have

[φF (α), φF (β)〉B = [φF∗◦F (α), β〉A = [α, β〉A. �

Let ({Ai}16i6m, {Fc}c∈C) be a framed semiorthogonal decomposition
of type (C, τ) with a frame {grcDb(X)}c∈C of Db(X). Combining Lem-
mas 4.28, 4.29, and 4.30, we conclude

Theorem 4.31. — The pairing [ · , · 〉X is compatible with the Stokes
data B

(
({Ai}16i6m, {Fc}c∈C)

)
, and hence gives a mutation system.

Definition 4.32. — This mutation system is called a B-mutation
system.

To simplify notation, the B-mutation system is also denoted by

B
(
({Ai}16i6m, {Fc}c∈C)

)
.

5. Dubrovin type conjectures

Let X be a Fano manifold. Fix −CX -generic θ◦ ∈ R. In Section 3, under
assumption (3.3), we construct the A-mutation system Aθ◦

(
RH(MX ,QX)

)
with the splitting data (τθ◦ ,Afθ◦). On the other hand, in Section 4, we
construct the B-mutation system B

(
({Ai}16i6m, {Fc}c∈−CX )

)
with the

splitting data (τθ◦ ,Bf) from a framed semiorthogonal decomposition of
type (−CX , τθ◦) with a frame {grcDb(X)}c∈−CX .
Let

Γ̂X =
dX∏
i=1

Γ(1 + δi) ∈ H•(X)
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be the Gamma class of X, where δ1, δ2, . . . , δdX ∈ H•(X;Z) are the Chern
roots of TX and Γ(z) is the Gamma function. We define an isomorphism

Γ : HH•(X)→ H•(X)

by Γ(α) := (α ∪ Γ̂X)/
√

TdX , where we identify H•(X) with HH•(X) via
the Hodge decomposition.

Lemma 5.1. — For α, β ∈ HH•(X) , we have [Γ(α),Γ(β)〉X = [α, β)X .

Proof. — Note that [α, β〉X = [α, β)X . Hence it is sufficient to show that
[Γ(α),Γ(β)〉X = [α, β〉X . By the identity

eπizΓ(1− z)Γ(1 + z) = 2πiz
1− e−2πiz ,

we see that
eπiρ

XW (Γ̂X) ∪ Γ̂X = TdX .
From this and W (

√
TdX) = e−πiρ

X

√
TdX , we obtain

eπiρ
XW (Γ(α)) ∪ Γ(β) = eπiρ

XW (α) ∪ β.

Hence we have [Γ(α),Γ(β)〉X = [α, β〉X . �

Definition 5.2. — We say that X satisfies Dubrovin type conjecture
if the following conditions hold:

• The meromorphic connection MX is of exponential type (3.3).
• There exists a framed semiorthogonal decomposition of type

(−CX , τθ◦) with a frame {grcDb(X)}c∈−CX such that Γ gives an
isomorphism of mutation systems, i.e.,

ImAfθ◦,c = Im(Γ ◦ Bfc)

for all c ∈ −CX .

Remark 5.3. — For another −CX -generic θ′◦, we can construct another
A-mutation system. By Theorem 2.19, these mutation systems are related
by the braid group action. From this and Theorem 4.23, we see that X
satisfies Dubrovin type conjecture for θ◦ if and only if X satisfies Dubrovin
type conjecture for θ′◦.

Remark 5.4.
• If (even part of) the quantum cohomology of X is semisimple and
Db(X) has a full exceptional collection, then Dubrovin type conjec-
ture defined above follows from Gamma conjecture II ([17, Conjec-
ture 4.6.1]).

• Gamma conjecture II is closely related to Dubrovin’s (original) con-
jecture [15] (see [17, §4.6] for a more detailed explanation)
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6. Properties of quantum connections of Fano manifolds

6.1. Symmetry of fundamental solutions of quantum
connections

Let X be a Fano manifold. We denote by rX the Fano index of X, that
is,

rX := max
{
r ∈ Z>0

∣∣∣∣ c1(X)
r
∈ H2(X;Z)

}
.

Recall that Pic(X) ∼= H2(X;Z) sinceX is Fano. LetO(k) be the line bundle
which satisfies c1(O(k)) = kc1(X)/rX . Set HX := c1(O(1)). Let Cq be the
complex plane with the coordinate q. Set c1(X)∗q := c1(X)∗c1(X) log q. Note
that c1(X)∗q ∈ End(H•(X))⊗C[qrX ] by the divisor axiom. Recall that the
set of eigenvalues of the operator c1(X)∗0 is denoted by CX . We denote by
E(c) the generalized eigenspace of c1(X)∗0 associated with the eigenvalue
c ∈ CX . Set logωk := −(2πik)/rX and ωk := elogωk for k ∈ Z. We recall
the following equation (See, e.g., [17, §2.2]):

qµ(c1(X)∗q)q−µ = q(c1(X)∗0).(6.1)

By substituting ωk for q, we have the following lemma:

Lemma 6.1. — If c ∈ CX , then we have ωkc ∈ CX . Moreover, we have
E(c) ∼= E(ωkc) and this isomorphism is given by α→ ω−µk α.

Proof. — Since c1(X)∗q ∈ End(H•(X))⊗ C[qrX ], it follows that

c1(X)∗ωk = c1(X) ∗0 .

Hence the lemma follows from the equation (6.1). �

We introduce a one parameter deformation of the quantum connection
(HX ,∇) of X, which is the restriction of the usual Dubrovin connection
([14], [15]) to the c1(X) direction (see also [12, Chapter 8], [31, §3.2.1] and
references therein). We consider the trivial bundle

H̃X := (H•(X)× Cz × Cq → Cz × Cq)

with the meromorphic connection

∇̃ := d−
(

1
z

(c1(X)∗q)− µ
)

dz
z

+
(
c1(X)∗q

z

)
dq
q
.

By definition, the restriction of (H̃X , ∇̃) to q = 1 is the quantum connection
(HX ,∇).
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Set

S̃(z, q) := q−µS

(
z

q

)(
z

q

)−µ(
z

q

)ρ
X

.

This is a holomorphic map defined on the universal cover C̃∗z × C̃∗q .

Lemma 6.2. — S̃ gives a fundamental solution of the meromorphic con-
nection (H̃X , ∇̃), that is, ∇̃S̃ = 0.

Proof. — Set S′(z) := S(z)z−µzρX . This lemma is proved by the follow-
ing computation:

∇̃ ∂
∂z
S̃ = q−µ

1
q

(
dS′

dz

)(
z

q

)
+ q−µ

1
q

(q
z

)
µS′

(
z

q

)
− q−µ 1

q

(q
z

)2
(c1(X)∗0)S′

(
z

q

)
= q−µ

1
q

(∇ d
dz
S′)
(
z

q

)
= 0,

∇̃ ∂
∂q
S̃ =−µq−µ 1

q
S′
(
z

q

)
− q−µ

(
z

q2

)(
dS′

dz

)(
z

q

)
+ q−µ

1
z

(c1(X)∗0)S′
(
z

q

)
= −q−µ

(
z

q2

)
(∇ d

dz
S′)
(
z

q

)
= 0,

where we use the equation (6.1). �

Recall that T (z) = zµS(z)z−µ.

Proposition 6.3. — T (z/ωk) = T (z).

Proof. — Since ∇̃S̃ = 0 and c1(X)∗ωk = c1(X)∗0, we see that

S̃(z, ωk) = z−µT (z/ωk)zρX ω−ρXk

is a fundamental solution of (HX ,∇). Hence z−µT (z/ωk)zρX is also a fun-
damental solution. It is obvious that T (z/ωk) = id at z =∞. This implies
T (z/ωk) = T (z) by uniqueness (Proposition 3.3). �

6.2. Gamma conjecture I

In this section, we recall Gamma conjecture I and derive some assertions.
First, we recall Property O. Set

TX := max {|c| | c ∈ CX} .
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Definition 6.4 ([17, Definition 3.1.1]). — We say thatX satisfies Prop-
erty O if the following conditions hold:

• TX ∈ CX .
• If c ∈ CX and |c| = TX , then c = ωkTX for some k.
• The multiplicity of TX is one, i.e., dimE(TX) = 1.

Remark 6.5. — Galkin–Golyshev–Iritani [17] only considered the even
part cohomology Hev(X) :=

⊕
k∈2ZH

k(X). But the next lemma implies
our definition of Property O is equivalent to the original one. Note that the
set of eigenvalues of (c1(X)∗0)|Hev(X) is equal to CX (see, e.g., the proof
of [18, Proposition 7.1]). Hence we easily see that our Property O implies
the original one.

Lemma 6.6. — Assume that Hev(X) satisfies the same conditions as
Definition 6.4. Then X satisfies Property O.

Proof. — The proof is the same as [22, Proposition 1.2]. Set

Hodd(X) :=
⊕

k−1∈2Z
Hk(X).

Let α be an element of Hodd(X)∩E(c)\{0}. Take β ∈ Hodd(X) such that
(α, β)X = 1. Then we have α∗0 β ∈ Hev(X)∩E(c)\{0}, and (α∗0 β)2 = 0.
Thus we have dim

(
Hev(X) ∩ E(c)

)
> 2, which implies the lemma. �

We define the subspace

A(c,θ) ⊂
{
s : C̃∗z → H•(X)

∣∣∣∇s = 0
}

of flat sections as follows (cf. [17, §3.3]). A section s is an element of A(c,θ) if
and only if there exists a constant C and a non-negative integer N such that
‖ec/zs(z)‖ 6 C|z|−N for log z ∈ C̃∗z with = log z = θ, |z| < 1. Here the norm
of ec/zs is given by a fixed hermitian metric on H•(X). A(ωkTX ,−2πk/rX)
is denoted briefly by Ak. Recall that the isomorphism

Φ : H•(X)→
{
s : C̃∗z → H•(X)

∣∣∣∇s = 0
}

is defined by Φ(α)(z) = (2π)−dX/2S(z)z−µzρXα.

Definition 6.7 ([17, Conjecture 3.4.3]). — We say that X satisfies
Gamma conjecture I if X satisfies Property O and A0 = CΦ(Γ̂X).

We have the following lemma:

Lemma 6.8. — A(c,θ) ∼= A(ωkc,θ−2πk/rX). This isomorphism is given by
α→ Ch(OX(k)) ∪ α via the isomorphism Φ.
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Proof. — For s ∈ A(c,θ), choose α ∈ H•(X) which satisfies s = Φ(α). By
Lemma 6.2, we have ω−µk s(z/ωk) ∈ A(ωkc,θ−2πk/rX). By Proposition 6.3,
we have ω−µk s(z/ωk) = Φ(ω−ρXk ∪α). The lemma is proved by the equation
ω
−ρ
X

k = Ch(OX(k)). �

From this lemma together with Gamma conjecture I, we can calcu-
late Ak.

Proposition 6.9. — If X satisfies Gamma conjecture I, then we have

Ak = CΦ(Γ̂X Ch(OX(k))).

Proof. — Obvious from Lemma 6.8. �

6.3. Vanishing cycles

In this section, we fix (−CX)-generic θ◦ and assume MX is of exponential
type (3.3). Let Aθ◦

(
RH(MX ,QX)

)
be the A-mutation system with the

splitting data (τθ◦ ,Afθ◦).

Definition 6.10. — Let A ⊂ Db(X) be an admissible subcategory. We
say that A is a vanishing cycle at (c, θ◦) if ImAfθ◦,−c = Γ(HH•(A)).

Recall that E ∈ Db(X) is called an exceptional object if

Hom(E,E[k]) =
{
C (k = 0)
0 (k 6= 0).

Let 〈E〉 be the smallest full strict triangulated subcategory of Db(X) which
contains E. We note that 〈E〉 is an admissible subcategory of Db(X) if E
is an exceptional object. (see, e.g., [25, Lemma 1.58]).

Lemma 6.11. — Let E ∈ Db(X) be an exceptional object. Then

Γ
(
HH•(〈E〉)

)
= CΓ̂X Ch(E).

Proof. — We consider E as an object of Db({pt} ×X). Let

ΦE : Db({pt})→ Db(X)

be the Fourier–Mukai functor with the Fourier–Mukai kernel E. Then we
have Im ΦE ⊂ 〈E〉 and this inclusion induces an isomorphism. Hence we see
that φE induces an isomorphism HH•

(
Db({pt})

) ∼= HH•(〈E〉). By defini-
tion, we have HH•({pt}) ∼= C, which implies ImφE = Cν(E), where ν(E)
is the Mukai vector. The statement follows from Γ

(
ν(E)

)
= Γ̂X Ch(E). �
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We note that O(k) is an exceptional object since X is Fano. Moreover,
we easily see that the collection of objects

(
OX(0),OX(1), . . . ,OX(rX−1)

)
is exceptional, i.e., 〈OX(k)〉 ⊂ 〈OX(l)〉⊥ for k < l.

Proposition 6.12. — Suppose that −π/2 6 θ◦ 6 π/2. If X satisfies
Gamma conjecture I, then the subcategory 〈OX(k)〉 is a vanishing cycle at
(ωkTX , θ◦ − 2πk/rX).

Proof. — By Lemma 3.5, we have

ImAfθ◦−2πk/rX ,−ωkTX ⊂ Ak = CΦ
(
Γ̂X Ch(OX(k))

)
.

By Remark 3.6 and Lemma 6.1, we have dim ImAfθ◦−2πk/rX ,−ωkTX = 1.
Thus we have

ImAfθ◦−2πk/rX ,−ωkTX = CΦ
(
Γ̂X Ch(OX(k))

)
.

Combined with Lemma 6.11, we have the statement. �

In the proof of Lemma 6.14, which is used in the proof of Theorem 7.9,
we use the following notation:

Notation 6.13. — Let (V, [ · , · 〉) be a finite dimensional vector space V
over a field k with a pairing [ · , · 〉 and W be a subspace of V . Set

⊥W := {v ∈ V | [v, w〉 = 0 for all w ∈W} ,

W⊥ := {v ∈ V | [w, v〉 = 0 for all w ∈W} .

Lemma 6.14. — Suppose that θ• = {θc}c∈−CX is ordered. Take c◦ ∈
−CX . Let {A(−c,θc)}c∈−CX\{c◦} be a family of vanishing cycles. Assume
that A(−c,θc) ⊂ A⊥(−c′,θc′ ) for c <θ•+π/2 c′. Set

A(−c◦,θc◦ ) :=

 ⋂
c<θ•+π/2c◦

⊥A(−c,θc)

⋂ ⋂
c◦<θ•+π/2c

A⊥(−c,θc)

 .

Then A(−c◦,θc0 ) is a vanishing cycle at (−c◦, θc◦).

Proof. — By construction, {A(−c,θc)}c∈−CX gives a framed semiorthog-
onal decomposition

({Ai}16i6m, {Fc}c∈−CX )

of type (−CX , τθ•) with a frame {A(−c,θc)}c∈−CX by requiring Fc = id for
all c. Hence we can construct a B-mutation system

B
(
({Ai}16i6m, {Fc}c∈−CX )

)
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with the splitting data (τθ• ,Bf). By semiorthogonality of the pairing
[ · , · 〉X , we have

ImBfc◦ =

 ⋂
c<θ•+π/2c◦

⊥(ImBfc)

⋂ ⋂
c◦<θ•+π/2c

(ImBfc)
⊥

 .(6.2)

On the other hand, ImAfθ•,c◦ of the splitting data (τθ• ,Afθ•) of the
mutation system Aθ•

(
RH(MX ,QX)

)
has a similar expression as the equa-

tion (6.2), i.e.,

ImAfθ•,c◦ =

 ⋂
c<θ•+π/2c◦

⊥(ImAfθ•,c)

⋂ ⋂
c◦<θ•+π/2c

(ImAfθ•,c)
⊥

 .(6.3)

By the definition of vanishing cycles, we have Im(Γ ◦ Bfc) = ImAfθ•,c
for c 6= c◦. Thus we have Im(Γ ◦ Bfc◦) = ImAfθ•,c◦ , which proves the
lemma. �

7. Examples

In this section, we prove that complete intersection Fano manifolds in
projective spaces with Fano index greater than one satisfy Dubrovin type
conjectures. The proof is similar to the proof of Gamma conjectures for
projective spaces ([17, §5]).

7.1. Calculations of cohomology

Let F be an ample vector bundle on a Fano manifold Y , that is, the tau-
tological line bundle of the projective space bundle P(F ) is ample. By [42,
Proposition 1.8], F is generated by global sections. Hence F is convex, that
is, H1(P1, f∗F ) = 0 for all non-constant holomorphic maps f : P1 → Y . We
assume 1 6 rkF 6 dY . Let s be a global section of F and set X := s−1(0).
By a Bertini type theorem ([42, Theorem1.10]), we can choose general s so
thatX is reduced and smooth. We assumeX is a Fano manifold. We denote
by i : X → Y the inclusion and set H•amb(X) := Im i∗. Since F is convex,
H•amb(X) is closed under the quantum cup product ∗τ for τ ∈ H•amb(X)
(see, e.g., [11], [27, §2.4], [28, §3.4]). The next lemma is well known (see,
e.g., [39, §2.2]) and we only use the case Y = PdY , but we give a detailed
proof for completeness.
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Lemma 7.1.
• H•(X) = H•amb(X)⊕H•amb(X)⊥.
• H•amb(X)⊥ ⊂ HdX (X).

Here H•amb(X)⊥ is the orthogonal subspace of H•amb(X) with respect to
the Poincaré pairing.

Proof. — By definition, we have

H•amb(X) ∩H•amb(X)⊥ =
{
i∗α

∣∣∣∣ ∫
X

i∗α ∪ i∗β = 0 for all β ∈ H•(Y )
}
.

Using the projection formula and i∗i∗ = (2πi)dY −dXe(F )∪, we obtain∫
X

i∗α ∪ i∗β =
∫
Y

e(F ) ∪ α ∪ β,

where e(F ) ∈ H•(Y ;Z) is the Euler class of F . Thus we have

H•amb(X) ∩H•amb(X)⊥ = i∗ ker(e(F ) ∪ −).

By Sommese’s theorem (see, e.g., [35, Theorem 7.1.1]), it follows that i∗ :
Hk(Y ) → Hk(X) is an isomorphism for k < dX . Choose an ample line
bundle L on Y . Then

(i∗c1(L) ∪ −)dX−k : Hk(X)→ H2dX−k(X)

is an isomorphism for k < dX by the hard Lefschetz theorem. Consider the
following commutative diagram:

Hk(Y ) i∗ //

(c1(L)∪−)dX−k

��

Hk(X)

(i∗c1(L)∪−)dX−k

��
H2dX−k(Y ) i∗ // H2dX−k(X)

Here the top and right arrows are isomorphisms for k < dX . This diagram
implies that

i∗ : Hk(Y )→ Hk(X)
is surjective for k 6= dX . Hence we obtain H•amb(X)⊥ ⊂ HdX (X). By the
hard Lefschetz theorem for ample bundles (e.g., [35, Theorem 7.1.10]), it
follows that

e(F ) ∪ − : HdX (Y )→ H2dY −dX (Y )
is injective. Thus HdX

amb(X) ∩H•amb(X)⊥ = {0}, which proves the lemma.
�

We consider the quantum connection MX as a OC,0(∗{0})〈∂z〉-module.
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Lemma 7.2. — The decomposition H•(X) = H•amb(X) ⊕ H•amb(X)⊥
induces the decomposition

H•(X)⊗ OC,0(∗{0}) = H•amb(X)⊗ OC,0(∗{0})⊕H•amb(X)⊥ ⊗ OC,0(∗{0})

as a OC,0(∗{0})〈∂z〉-module. Moreover H•amb(X)⊥ ⊗OC,0(∗{0}) is of expo-
nential type.

Proof. — Recall that H•amb(X) is closed under the quantum product ∗0.
For α ∈ H•amb(X)⊥ and β ∈ H•amb(X), we have

(c1(X) ∗0 α, β)X = (α, c1(X) ∗0 β)X = 0,

where we use c1(X) = i∗(c1(Y ) − c1(F )) ∈ H•amb(X). This implies that
c1(X) ∗0 α ∈ H•amb(X)⊥. Hence c1(X)∗0 and µ are compatible with the
decomposition H•(X) = H•amb(X) ⊕ H•amb(X)⊥, which implies the first
statement. We will show the second statement. Since µ = 0 on the subspace
H•amb(X)⊥ ⊂ HdX (X), the differential ∂z acts on H•amb(X)⊥ ⊂ HdX (X) as
d/dz − (c1(X)∗0)/z2. Let c1(X)∗0 = S +N be the Jordan decomposition,
where S is the semisimple part and N is the nilpotent part. Without loss
of generality, we can assume N has only one Jordan block. Take a basis
e1, e2, . . . ek of H•amb(X)⊥ such that N(ei) = ei+1 for 1 6 i 6 k − 1 and
N(ek) = 0. We define a grading operator Gr by Gr(ei) := i · ei. Then we
easily see that

zGr
(

d
dz −

c1(X)∗0
z2

)
z−Gr = d

dz −
Gr
z
− N

z
− S

z2

and the right hand side is obviously of exponential type. �

If the Fano index of X is greater than one, we can calculate the action
of c1(X)∗0 on H•amb(X)⊥ as follows:

Lemma 7.3 ([18, §7]). — If rX > 2, then c1(X) ∗0 α = 0 for α ∈
H•amb(X)⊥.

Proof. — Since α ∈ H•amb(X)⊥ ⊂ HdX (X) and rX > 2, we have

c1(X) ∗0 α ∈ HdX+2(X)⊕
⊕

k6dX−2
Hk(X).

But c1(X)∗0α ∈ H•amb(X)⊥ ⊂ HdX (X). Hence we have c1(X)∗0α = 0. �
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7.2. Dubrovin type conjectures for complete intersections in
projective spaces

In this section, we assume that Y is the projective space PdY of dimension
dY and F = O(d1)⊕ · · · ⊕ O(dk). Moreover, we assume

di > 2, dX = dY − k > 3, rX = dY + 1− d1 − d2 − · · · − dk > 2.

Proposition 7.4. — The quantum connection MX is of exponential
type.

Proof. — By Lemma 7.2, it is sufficient to show that the meromorphic
connection (H•amb(X) ⊗ OC,0(∗{0}),∇amb) is of exponential type, where
∇amb is the restriction of ∇ to H•amb(X) ⊗ OC,0(∗{0}). Let log q ∈ C. Set
q := elog q, w := qz, and τ := c1(X) log q. Note that c1(X)∗τ defines an
endomorphism of H•amb(X) since τ ∈ H•amb(X). Then we can easily check
that

q−µ∇amb
d
dz

qµ =
(
w

d
dw + µ− 1

w
c1(X)∗τ

)∣∣∣∣
H•amb(X)⊗OC,0(∗{0})

.

By [48, Corollary 6.14], we see that the right hand side is equipped with a
non-commutative Hodge structure for |q| � 1 (see [50] for the definition),
and hence of exponential type. �

As a corollary of Givental’s mirror theorem, we calculate the ring struc-
ture of H•amb(X) with respect to the quantum product.

Lemma 7.5. — Set DX = dd1
1 d

d2
2 · · · d

dk
k . Then

H•amb(X) ∼= C[x]/〈xdX+1−rX (xrX −DX)〉

as a ring.

Proof. — By [20, Corollary 9.3], HX ∈ H2(X) satisfies the relation
HdX+1
X −DXH

d1+d2+···+dk−k
X = 0. Hence we have the ring morphism

C[x]/〈xdX+1−rX (xrX −DX)〉 → H•amb(X)

which sends x to HX . We easily see that these rings have the same dimen-
sion. Since

H l
X =

l︷ ︸︸ ︷
HX ∪HX ∪ · · · ∪HX +(lower degree term),

the ambient cohomology H•amb(X) is generated by HX . Hence the above
morphism is an isomorphism. �
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Remark 7.6. — Similarly, by using [20, Corollary 10.9], we have

H•amb(X) ∼= C[x]/〈(x+D′X)dX (xrX −DX +D′X)〉

for the case rX = 1, where D′X := d1!d2! · · · dk!.

Corollary 7.7. — TX = rXD
1/rX
X , CX = {TXωk | k ∈ Z}∪{0}. More-

over, X satisfies Property O.

Proof. — This statement easily follows from Lemmas 7.3 and 7.5. �

Proposition 7.8. — X satisfies Gamma conjecture.

Proof. — By [17, Theorem 5.0.1], projective spaces satisfy Gamma con-
jectures I. By [18, Corollary 3.9, Theorem 8.3], it follows that X satisfies
Gamma conjecture I by induction on k. �

Theorem 7.9. — X satisfies Dubrovin type conjecture.

Proof. — Choose a sufficiently small positive real number θ◦ ∈ R. Set
c◦ := 0 and ck := −TXωk (k = 0, 1, . . . , rX − 1). We define a ordered tuple
of real numbers θ• by

θc :=
{
θ◦ (c = c◦)
−2πk/rX + θ◦ (c = ck).

Then the order <θ•+π/2 on −CX is given by

c◦ <θ•+π/2 c0 <θ•+π/2 c1 <θ•+π/2 · · · <θ•+π/2 crX−1.

Note that θ◦ and θ• are (−CX)-generic. By Corollary 2.40, we can construct
a mutation system Aθ•

(
RH(MX ,QX)

)
with the splitting data (τθ• ,Afθ•).

Since X satisfies Gamma conjecture I, using Proposition 6.12, we see
that A−ck := 〈O(k)〉 is a vanishing cycle at (−ck, θck). It is easy to see that
{A−ck}ck∈−CX\{c◦} satisfies the assumption of Lemma 6.14, which implies

A−c◦ := 〈O(0),O(1), . . . ,O(rX − 1)〉⊥

is a vanishing cycle at (−c◦, θc◦). We define a framed semiorthogonal de-
composition

({Ai}16i6m, {Fc}c∈−CX )
of type (−CX , τθ•) with the frame {grcDb(X)}c∈−CX := {A−c}c∈CX by
requiring Fc = idA−c . We consider the corresponding B-mutation system

B
(
({Ai}16i6m, {Fc}c∈−CX )

)
with the splitting data (τθ• ,Bf). Then, by the definition of vanishing cycle
categories, we have Im(Γ ◦ Bfc) = ImAfθ•,c for all c ∈ −CX .
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Let Aθ◦
(
RH(MX ,QX)

)
be the A-mutation system with the splitting

data (τθ◦ ,Afθ◦). By Theorem 4.23, it is sufficient to show that

(τθ• ,Afθ•) = (σ̄ ◦ τθ◦ , σAfθ◦)

for some σ ∈ BrrX+1. To show this statement, we introduce the following
ordered tuple of real numbers {φ•}c∈−CX :

φc :=
{
θc (θc > θ◦ − π)
θ◦ − π (θc 6 θ◦ − π).

We can easily see that φ• is −CX -generic. Let Aφ•
(
RH(MX ,QX)

)
be the

corresponding mutation system with the splitting data (τφ• ,Afφ•). Note
that VMX

is identified with H•(X) via the isomorphism Φ (see Defini-
tion 3.4). We define elements of the symmetric group s, s′ by τφ• ◦τ−1

θ◦
, τθ• ◦

τ−1
φ•

respectively. We claim that

(τφ• ,Afφ•) =
(
s ◦ τθ◦ , (s)RAfθ◦

)
, (τθ• ,Afθ•) =

(
s′ ◦ τφ• , (s′)RAfφ•

)
.

We first show (τφ• ,Afφ•) =
(
s ◦ τθ◦ , (s)RAfθ◦

)
. By Lemma 2.15, we have

(
(s)RAfθ◦

)
c

=

 ←∏
i∈Iτθ◦ (c)(s)

Ri

 ◦ Afθ◦,c.
On the other hand, by Corollary 2.28, we have

Afφc,c =

 ←∏
i∈Iτθ◦ (c)(sθ◦,φc )

Ri

 ◦ Afθ◦,c.
Hence it is sufficient to show that{

c′ ∈ −CX
∣∣∣∣ c <θ◦+π/2 c′c′ <φ•+π/2 c

}
=
{
c′ ∈ −CX

∣∣∣∣ c <θ◦+π/2 c′c′ <φc+π/2 c

}
for all c ∈ −CX . By simple consideration, we see that both sets are equal
to 

∅ (c = c◦){
cl
∣∣ c <θ◦+π/2 cl, l < k

}
(c = ck, θck > θ◦ − π){

cl
∣∣ c <θ◦+π/2 cl,} ∪ {c◦} (c = ck, θck 6 θ◦ − π).

We next show (τθ• ,Afθ•) =
(
s′ ◦τφ• , (s′)RAfφ•

)
. It is sufficient to show that{

c′ ∈ −CX
∣∣∣∣ c <φ•+π/2 c′c′ <θ•+π/2 c

}
=
{
c′ ∈ −CX

∣∣∣∣ c <φc+π/2 c′c′ <θc+π/2 c

}
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for all c ∈ −CX as ordered sets, where order of the left hand side (resp.
right hand side) is defined by <φ•+π/2 (resp. <φc+π/2). We see that both
sets are equal to

∅ (c = c◦)
∅ (c = ck, θck > θ◦ − π){
cl
∣∣c <θ◦−π/2 cl, l < k

}
(c = ck, θck 6 θ◦ − π).

Since φck = θ◦ − π for ck with θck < θ◦ − π, we see that <φ•+π/2 and
<φc+π/2 define the same order on this set, which completes the proof. �

Remark 7.10. — Similarly, we can prove that X satisfies Dubrovin type
conjecture if rX = 1 and dX is odd (see also Lemma 6.6 and Remark 7.6).
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