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TWISTERS AND SIGNED FUNDAMENTAL DOMAINS
FOR NUMBER FIELDS

by Milton ESPINOZA & Eduardo FRIEDMAN (*)

Abstract. — We give a signed fundamental domain for the action on Rr1
+ ×

C∗r2 of the totally positive units E+ of a number field k of degree n = r1 + 2r2
which we assume is not totally complex. Here r1 and r2 denote the number of real
and complex places of k and R+ denotes the positive real numbers. The signed
fundamental domain consists of n-dimensional k-rational cones Cα, each equipped
with a sign µα = ±1, with the property that the net number of intersections of the
cones with any E+-orbit is 1.

The cones Cα and the signs µα are explicitly constructed from any set of fun-
damental totally positive units and a set of 3r2 “twisters”, i.e. elements of k whose
arguments at the r2 complex places of k are sufficiently varied. Introducing twisters
gives us the right number of generators for the cones Cα and allows us to make
the Cα turn in a controlled way around the origin at each complex embedding.
Résumé. — Soit k un corps de nombres de degré n = r1 + 2r2 admettant au

moins une place réelle (i.e. r1 > 0). Nous présentons un domaine fondamental signé
pour l’action des unités totalement positives E+ de k sur Rr1

+ ×C
∗r2 , où R+ désigne

l’ensemble des nombres réels positifs. Le domaine fondamental signé est formé de
cônes k-rationnels Cα de dimension n, chacun muni d’un signe µα = ±1 avec la
propriété suivante : pour chaque E+-orbite, la somme signée des intersections des
cônes avec l’orbite est égale à 1.

Nous construisons explicitement les cônes Cα et les signes µα à partir d’un
ensemble arbitraire d’unités fondamentales totalement positives et d’un ensemble
de 3r2 « twisters ». Ces derniers sont des éléments de k dont les arguments aux
r2 places complexes de k sont suffisamment bien distribués. L’introduction des
« twisters » fournit le nombre exact de générateurs pour les cônes Cα et permet
de les faire tourner autour de l’origine de façon contrôlée dans chaque plongement
complexe.
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1. Introduction

The usual embedding of a number field k into a Euclidean space V gives
rise to an action of the units of k on V . Good fundamental domains for this
action are important in the study of abelian L-functions. For totally real
fields, Shintani [8] showed in 1976 the existence of fundamental domains
consisting of a finite number of k-rational polyhedral cones, now known as
Shintani cones. A few years later, in a posthumous and rarely cited work [9],
Shintani extended this to all number fields.
Shintani’s papers gave no practical procedure to construct his cones, or

even to estimate how many cones were needed. In the late 1980’s Colmez [2]
showed for totally real fields the existence of certain special subgroups of
the units for which he could explicitly construct Shintani-type fundamen-
tal domains for the action of this subgroup on V . This was a significant
theoretical advance, but it was not effective since no practical procedure
is known for producing Colmez’s special units, except in the quadratic or
cubic case [3].
A few years ago Charollois, Dasgupta and Greenberg [1], and inde-

pendently Diaz y Diaz and Friedman [4], found a way around this non-
effectiveness for totally real fields by introducing signed fundamental do-
mains. Espinoza [6] then found effective signed fundamental domains for
number fields having exactly one complex place.

Signed fundamental domains can be naturally defined if one defines fun-
damental domains using characteristic functions. Indeed, a set of subsets
{Cα}α∈J of a space Y , on which a countable group G acts, is a fundamental
domain if ∑

α∈J

∑
ε∈G

χCα(ε · y) = 1 (∀ y ∈ Y ),

where χCα is the characteristic function of Cα. A signed fundamental do-
main is a finite list {Cα}α∈J of subsets of Y and a corresponding list of
signs µα = ±1 such that∑

α∈J
µα
∑
ε∈G

χCα(ε · y) = 1 (∀ y ∈ Y ).

For technical reasons [4, Lemma 5], we also require that the cardinality of
Cα ∩ (G · y) be bounded independently of y ∈ Y .
Before going into details, we outline the difficulties that appear with

Shintani cones when k is not totally real. Let k be a number field of degree
n = r1 + 2r2 having r1 real places and r2 pairs of complex conjugate
embeddings. The most obvious problem is that we no longer have n natural

ANNALES DE L’INSTITUT FOURIER



SIGNED FUNDAMENTAL DOMAINS FOR NUMBER FIELDS 481

generators for the n-dimensional Shintani cones. In the totally real case,
following Colmez, we can use 1 ∈ k and n − 1 independent units of k to
generate the cones, but each complex case leaves us a unit short of the n
generators that we need. Thus, we must introduce one new generator for
each complex place. An additional difficulty is that Rr1

+ × C∗r2 , while it
is a cone, is not convex if r2 > 0. This means that n independent vectors
are liable to generate a cone including (nonzero) points outside Rr1

+ ×C∗r2 ,
for example where one complex coordinate vanishes. We choose the new
generators for the cones so as to force all of them inside convex subsets
of Rr1

+ × C∗r2 . These generators we call twisters, as their arguments at
the complex places are chosen so as to twist the generators into a convex
conical sector.
The approach to signed fundamental domains in [4, 6] and here can be

summarized in the following commutative diagram of topological spaces

(1.1)

X× R
f

g //

π̂

��

Rr1
+ × C∗r2

π

��
T̂

F

G // T.

We begin by explaining the vertical arrow on the right. Suppose we are
given totally positive independent units ε1, . . . , εr generating a subgroup E
of finite index in the units of k. Thus E acts on Rr1

+×C∗
r2 , where R+ denotes

the multiplicative group of positive real numbers. Let T = (Rr1
+ ×C∗r2)/E

be the quotient manifold and π : Rr1
+ × C∗r2 → T the natural map.

It is well-known that T is homeomorphic to the product of an (n − 1)-
torus with R. This is made explicit by the left vertical arrow in (1.1) and
the maps g and G, in the following sense. The standard (additive) model
for T is T̂ := (Rn−1/Λ)×R, where Λ ⊂ Rn−1 is a lattice of dimension n−1.
We let π̂ : Rn−1 × R → T̂ be the natural quotient map and g : Rn−1 ×
R → Rr1

+ × C∗r2 the group homomorphism (“exponential”) which induces
a homeomorphism G : T̂ → T of the quotient manifolds, i.e. G ◦ π̂ = π ◦ g.
Now let X be a fundamental domain for the action of Λ on Rn−1 and restrict
g and π̂ to X × R. This defines everything in (1.1), except the interesting
part, namely f and F .
We obtain a classical fundamental domain F (used by Hecke and Landau,

for example) for the action of E on Rr1
+ × C∗r2 by letting F := g(X × R).

Unfortunately, F is of limited use because of its complicated geometry. In
particular, it is difficult to describe the intersection of F with fractional
ideals of k, a vital step in Shintani’s treatment of L-functions.
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482 Milton ESPINOZA & Eduardo FRIEDMAN

To remedy this, for totally real fields Colmez deformed g to a new and
simpler function f so that its image f(X × R) is a union of k-rational
polyhedral cones. From our present standpoint, the work of Colmez [2]
can be described as follows. Take the fundamental domain X = [0, 1]n−1

for the lattice Λ := Zn−1 ⊂ Rn−1. There is a well-known decomposition,
parametrized by the symmetric group Sn−1,

X =
⋃

α∈Sn−1

Xα

of the hypercube into simplices Xα [4, (19)]. For each α ∈ Sn−1, let Aα :
Xα → Rn+ be the unique affine function which on each vertex κ of Xα
takes the value g(κ × 0) ∈ Rn+ (recall that Colmez only dealt with the
totally real case). Then we can unambiguously define f : X × R → Rn+ by
f(x× t) := etAα(x) where x ∈ Xα, t ∈ R. As Rn+ is convex, f takes values
in Rn+ and f(Xα×R) is the cone Cα generated by the g(κ× 0) as κ ranges
over the vertices of Xα. Colmez [2] proved that if the cones Cα meet only
along common faces, then

⋃
α Cα is a fundamental domain for the action

of E on Rn+. Here Cα is Cα minus some boundary faces.
Colmez’s proof is rather complicated, but it can be greatly simplified [4]

by observing that the decomposition X =
⋃
α Xα is good enough that f

induces a map F : T̂ → T of the quotient manifolds in (1.1). One can then
use topological degree theory to show that

⋃
α Cα is a signed fundamental

domain with weights µα given by the degree of f restricted to Xα × R. If
we add Colmez’s hypothesis that the Cα meet only along common faces,
then µα = 1 for all α ∈ Sn−1 and the signed fundamental domain is a true
one.
When k is not totally real we would like to have a similar construction.

The topology is unchanged, as the manifolds T̂ and T in (1.1) are still
homeomorphic to the product of an (n− 1)-torus with R. It is also easy to
write down the homomorphism g inducing the homeomorphism G in (1.1).
However, as we remarked above, the cone Rr1

+ × C∗r2 is not convex, so
to define f we must ensure that the generators of the cones lie in convex
subsets of Rr1

+ ×C∗r2 . Moreover, the decomposition X =
⋃
α Xα must again

allow f to descend to a map F of the quotient manifolds.
An additional difficulty is that the natural choice of g does not give cone

generators in k, as in general g(κ× 0) /∈ k for κ a vertex of Xα. We fix this
by modifying g slightly. Fortunately, the homotopy involved in formalizing
this approximation does not alter topological degrees, and so this turns out
to be a minor difficulty.
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Espinoza [6] obtained a signed fundamental domain for fields k with
exactly one pair of complex embeddings. In this paper we extend the ideas
there to all non-totally complex number fields. We exclude totally complex
fields solely because in this case we have not been able to give a satisfactory
description of the boundary faces that should be included in the signed
fundamental domain. The reader will find in the next section a detailed
description of the signed fundamental domain obtained.
As mentioned at the beginning of this paper, signed fundamental domains

are useful for working with abelian L-functions. More precisely, as in [4,
Cor. 6] and [6, Cor. 3], using a signed fundamental domain one can explic-
itly write any abelian L-function as a finite linear combination of Shintani
zeta functions [8]. The Shintani functions do not in general satisfy a func-
tional equation of the usual kind, but they do satisfy a ladder of difference
equations and are normalized by vanishing integrals [7, eqs. 1.4 and 1.7].
In a more geometric vein, in a forthcoming doctoral thesis Alex Capuñay
gives a practical algorithm producing a true k-rational fundamental cone
domain starting from a signed one.

2. Signed fundamental domain

We fix a number field k of degree [k : Q] = n, having r1 real embeddings
τ1, . . . , τr1 and r2 pairs of conjugate complex embeddings

τr1+1, τ r1+1, . . . , τr1+r2 , τ r1+r2 ,

which we use to embed k in Rr1 × Cr2 by γ → (γ(i))i where γ(i) :=
τi(γ) (1 6 i 6 r1 + r2). To save notation, we identify γ ∈ k with its
image (γ(i))i ∈ Rr1 × Cr2 . We also fix independent totally positive units
ε1, . . . , εr of k, where r = r1 +r2−1, and assume we have chosen an integer
Nj > 3 (1 6 j 6 r2) for each complex embedding. To have the smallest
number of cones we should take Nj = 3 for all j.

2.1. Raising the dimension of a complex

An ordered p-complex X for us will be a decomposition

(2.1) X :=
⋃
α∈I

Xα,≺α ,

where theXα,≺α ⊂V are ordered p-dimensional simplices in a p-dimensional
real vector space V . Thus, for each α in the (possibly infinite) index set I

TOME 70 (2020), FASCICULE 2
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we are given the set of vertices Vt(Xα) of the p-simplex Xα and a total
ordering ≺α on Vt(Xα). We will later want our complexes to satisfy quite
a few properties, but the above definition will do to identify a complex.
We shall be loose with the notation and denote by X both the underlying
point set and the complex, i.e. its decomposition (2.1). Similarly, we shall
often write Xα for both the simplex and the ordered simplex Xα,≺α .
Our purpose in this subsection is to construct a new ordered (p + 1)-

complex

(2.2) Y = Y (X,ω, [M1,M2]) :=
⋃
γ∈J

Yγ,≺γ ⊂ V × R

from a given p-complex X =
⋃
α∈IXα,≺α ⊂ V , a linear function ω : V → R

and an interval [M1,M2]. Here the Mi are integers and M1 < M2. In
our application ω will either vanish identically or be determined by the
arguments of the units εi at some complex embedding. The new ambient
vector space is V × R, and the new index set is

(2.3) J :=
{

(α, v, `)
∣∣α ∈ I, v ∈ Vt(Xα), ` ∈ Z, M1 6 ` < M2

}
.

If I is a finite set, then so is J and its cardinality is

(2.4) |J | = (M2 −M1)(p+ 1)|I|.

To define the simplex Yγ for γ = (α, v, `) ∈ J requires some preliminaries.
Let A : V → (0, 1] be the upper fractional part of ω, i.e. A(u) ∈ R is
uniquely determined by

(2.5) A(u)− ω(u) ∈ Z, 0 < A(u) 6 1 (u ∈ V ).

We use A to define a new total order ≺Aα on Vt(Xα) by

(2.6) u ≺Aα u′ ⇐⇒
[[
A(u) < A(u′)

]
or
[
A(u) = A(u′) and u ≺α u′

]]
for u, u′ ∈ Vt(Xα). Note that if ω = 0 identically, then ≺Aα = ≺α.
We now define Yγ in (2.2) for γ = (α, v, `) ∈ J . Order the vertices

{v0, v1, . . . , vp} of Xα so that v0 ≺Aα v1 ≺Aα · · · ≺Aα vp. Since v ∈ Vt(Xα) by
definition (2.3), there is a unique j = jγ such that v = vj . Note that j de-
pends on the order ≺Aα . Let [s1, . . . , st] denote the convex hull of s1, . . . , st.
Then Yγ ⊂ V × R is defined as

Yγ :=
[
v0 × (A(v0)− ω(v0) + `) , v1 × (A(v1)− ω(v1) + `) , . . . ,(2.7)

vj × (A(vj)− ω(vj) + `) , vj × (A(vj)− ω(vj) + `− 1) ,
vj+1×(A(vj+1)−ω(vj+1)+`−1

)
, . . . , vp×(A(vp)−ω(vp)+`−1)

]
.
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Note that vertices of Yγ map to vertices of Xα by the projection πV :
V × R → V , and that the coordinate we have added to each vertex is an
integer (see (2.5).

Finally, the new ordering ≺γ on the vertices of the new simplex Yγ is
defined by

(2.8) ρ ≺γ ρ′

⇐⇒
[[
πV (ρ) ≺α πV (ρ′)

]
or
[
πV (ρ) = πV (ρ′) and πR(ρ′) < πR(ρ)

]]
,

where πR : V × R→ R is the projection onto the second factor. Note that
≺γ is defined using the original order ≺α on the vertices of Xα, even though
we used the modified order ≺Aα to construct Yγ .

2.2. The (n− 1)-complex X

We start from the trivial 0-complex

(2.9) X0 := XO,≺O ⊂ R0,

where R0 := {0} is the trivial vector space, the index set is {O} (or any
one-element set), and the ordered 0-simplex XO,≺O = {0} is equipped with
the trivial (empty) ordering ≺O on the single vertex 0. For 1 6 j 6 r :=
r1 + r2−1, let ωj−1 : Rj−1 → R be the trivial linear function ωj−1(x) := 0,
and define

Xj := Y (Xj−1, ωj−1, [0, 1]) ⊂ Rj (1 6 j 6 r),

where Y was defined in (2.2).(1) If k is totally real, so r = n − 1, we are
done constructing X := Xn−1. Otherwise, we must carry out further steps,
one for each complex place of k. For 1 6 j 6 r2, let ωr+j−1 : Rr+j−1 → R
be given by

ωr+j−1(x) := Nj
2π

r∑
`=1

x[`] arg
(
ε

(r1+j)
`

)
(x = (x[1], x[2], . . . , x[r + j − 1])) ,

where we recall that for each 1 6 j 6 r2 we have fixed an integer Nj > 3.
For the sake of definiteness, the arguments above are taken so that −π <
arg(z) 6 π, but any branch would do as well. Define

(2.10) Xr+j := Y (Xr+j−1, ωr+j−1, [0, Nj ]) ⊂ Rr+j (1 6 j 6 r2),

with Y as in Section 2.1.

(1)Although we will not need this, Xr is the well-known decomposition of the r-cube
[0, 1]r into r! simplices determined by the order of the coordinates [4, (19)].
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We have thus constructed an (n− 1) ordered complex

(2.11) X =
⋃
α∈I

Xα := Xn−1 ⊂ Rn−1

|I| = (n− 1)!
r2∏
j=1

Nj

 ,

corresponding to j = r2 above. We have dropped the order ≺α on Vt(Xα)
from our notation since, once X is constructed we will have no further
interest in ordering the set of vertices

(2.12) Vt(Xα) := {v0,α, v1,α, . . . , vn−1,α} ⊂ Zn−1.

However, we will use the fact that the vertices v`,α have integral coordi-
nates. This is clear since we started from the single vertex 0 of X0. As we
noted after (2.7), in passing from Xj−1 to Xj the new coordinate appended
to a vertex is always integral.

2.3. The twister function β

Recall that we have fixed r := r1 + r2 − 1 independent totally positive
units ε1, . . . , εr in the number field k and integers Nj > 3 for 1 6 j 6 r2.
We must now also fix “twisters” β(x), which are totally positive elements
of k∗ whose arguments at the various complex places are sufficiently close
to those of certain roots of unity determined by x. More precisely, choose
a function β : Zn−1 → k∗ with the following properties:

• β(x) is a totally positive element of k.
• For x = (x[1], . . . , x[n − 1]) ∈ Zn−1 and 1 6 j 6 r2, there is a
tj(x) ∈ R such that

(2.13) |tj(x)|
Nj

<
1
4 −

1
2Nj

,

β(x)(j+r1)

|β(x)(j+r1)|
= exp (2π i (x[j + r] + tj(x)) /Nj) .

For example, if Nj = 3 this requires that, at the (j + r1)-th em-
bedding, the argument of β(x) be no farther than π/6 from that of
exp(2π ix[j + r]/3).

• We have

(2.14) β(x+ λ) = β(x) (x ∈ Zn−1, λ ∈ Λ := Zr ×N1Z× · · · ×Nr2Z).
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Thus, the twister β amounts to a function on the finite set Zn−1/Λ.
Note that in (2.13) we can take tj(x+λ) = tj(x). Twister functions
exist by our assumption Nj > 3 and the density of k in Rr1×Cr2 .(2)

2.4. Signs

We need to compute three determinants to define the sign

(2.15) µα := (−1)r2(r2−1)/2 sign (det(R) det(Vα) det(Wα)) .

Although R and Vα will prove to be invertible matrices, Wα may not be.
Thus, µα may take the values ±1 or 0.
Recall that we have listed the embeddings τi of k so that they are real

for 1 6 i 6 r1 and are complex conjugate pairs τi, τ̄i for r1 < i 6 r1 + r2.
The (r1 + r2)× (r1 + r2) matrix R = (rij) is defined by

(2.16) rij :=
{

1 if i = 1,
log |ε(j)

i−1| if 2 6 i 6 r1 + r2,
(1 6 i, j 6 r1 + r2).

Actually, |det(R)| = 2−r2nReg(ε1, . . . , εr), where Reg is the regulator of
the units εi, but we care here only for the sign of det(R).
Define Vα as the (n−1)×(n−1) matrix whose i-th column is vi,α−v0,α ∈

Zn−1 (1 6 i 6 n− 1). Here Vt(Xα) = {v0,α, v1,α, . . . , vn−1,α} ⊂ Zn−1 was
given in (2.11) with the complex X. To define the matrix Wα in (2.15), let

(2.17) w` = w`,α := β(v`,α)
r∏
j=1

ε
v`,α[j]
j (0 6 ` 6 n− 1).

Thus w` ∈ k∗. Define Wα as the real n× n matrix with (`+ 1)-th row

τ1(w`), τ2(w`), . . . , τr1(w`),Re (τr1+1(w`)) , Im (τr1+1(w`)) , . . . ,
Re (τr1+r2(w`)) , Im (τr1+r2(w`))

for 0 6 ` 6 n− 1.

(2)β(x) can be computed by taking a Q-basis γ1, . . . , γn of k ⊂ Rr1 × Cr2 , finding for
x ∈ Zn−1 with 0 6 x[j+r] < Nj (1 6 j 6 r2), rational solutions a` = a`(x) (1 6 ` 6 n)
to the approximate equality

(1, . . . , 1, exp(2π ix[r + 1]/N1), . . . , exp(2π ix[n− 1]/Nr2 )) ≈
n∑
`=1

a`γ`,

and letting β(x) :=
∑n

`=1 a`γ`. Then extend β to all x ∈ Zn−1 by periodicity (2.14).

TOME 70 (2020), FASCICULE 2
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2.5. Cones

For α ∈ I as in (2.11), let

(2.18) Cα :=
{
n−1∑
`=0

x`w`,α

∣∣∣∣∣x` > 0 for 0 6 ` 6 n− 1
}
− {0},

where w`,α ∈ k ⊂ Rr1 × Cr2 was defined in (2.17).(3) If w0,α, . . . , wn−1,α
is not an R-basis of the real vector space Rr1 × Cr2 , i.e. if µα = 0, we will
not define the subset Cα of Cα. If µα 6= 0, we can write e1 = (1, 0, . . . , 0) ∈
Rr1 ×Cr2 uniquely as e1 =

∑n−1
`=0 y`,αw`,α, where y`,α ∈ R. We shall prove

(see Lemma 4.12) that y`,α 6= 0 for 0 6 ` 6 n− 1. Define the cones

(2.19) Cα :=
{
n−1∑
`=0

x`w`,α

∣∣∣∣∣x` ∈ R`,α
}
, R`,α :=

{
[0,∞) if y`,α > 0,
(0,∞) if y`,α < 0.

Note that Cα is the open n-dimensional cone generated by the w`,α, to-
gether with some of its boundary faces.
We can now state our main result.

Theorem 2.1. — Let independent totally positive units ε1, . . . , εr and
a twister funtion β be given as in Section 2.3 for a number field k, let
E := 〈ε1, . . . , εr〉 be the subgroup of the units of k generated by the ε`,
and assume that k is not totally complex. Then {Cα, µα}α∈I, µα 6=0, defined
in (2.19), (2.15) and (2.11), is a signed fundamental domain for the action
of E on Rr1

+ × C∗r2 consisting of k-rational signed cones.
Thus, the cones Cα have generators w`,α ∈ k defined in (2.17), and for

any x ∈ Rr1
+ × C∗r2 we have

(2.20)
∑
α∈I
µα 6=0

µα
∑
ε∈E

χCα(εx) = 1,

where χCα is the characteristic function of Cα. Furthermore, χCα(εx) = 0
except for ε in a finite set of cardinality bounded independently of x.

We recall that in (2.11) there is a free choice of integers Nj > 3 for
1 6 j 6 r2 and that the number of cones Cα is at most (n − 1)!

∏
j Nj ,

where n = [k : Q]. If we pick all Nj = 3, then there are at most 3r2 · (n−1)!
cones.

(3)Note that we removed the origin in (2.18). A great part of our efforts will be directed
to showing that Cα is contained in Rr1

+ × C∗r2 . Here the difficulty is in ensuring that
the complex components do not vanish.
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If k is totally complex, we still prove (2.20), but only for x outside the
E-orbit of the boundary of all Cα. The excluded set has Lebesgue measure
0, but is still unfortunate for the calculation of abelian L-functions.
There are two very different parts to the proof of Theorem 2.1. The

first (see Section 3) consists of showing that if a complex X has a num-
ber of properties with respect to a lattice Λ, then so does the complex
Y (X,ω, [M1,M2]) with respect to the lattice Λ × (M2 − M1)Z. This al-
lows us to construct inductively an (n − 1)-complex X and a function
f : X× R→ Rr1

+ × C∗r2 whose image gives the cones in the signed funda-
mental domain. The second part of the proof (see Section 4) is mainly a
calculation of certain global and local topological degrees associated to f .
As in [4, 6], degrees enter because Theorem 2.1 can be interpreted as an
instance of the local-global principle on suitable manifolds.

3. Lattice-adapted ordered simplicial complexes

3.1. Affine preliminaries

Let V be a real vector space and {v0, . . . , vp} ⊂ V a finite subset. It is
called affinely independent if for a fixed j the set {vi − vj}06i6p

i 6=j
is linearly

independent. This notion does not depend on the choice of j. If p = 0, any
v0 ∈ V is affinely independent.

The convex hull S of {v0, . . . , vp} is

(3.1) S = [v0, v1, . . . , vp] :=

ω =
p∑
j=0

tjvj

∣∣∣∣∣∣ tj > 0,
p∑
j=0

tj = 1

 .

We call S a simplex if the vj are affinely independent. Then Vt(S) :=
{v0, v1, . . . , vp}, its set of vertices, is uniquely determined by the point set
S. If we wish to note the dimension of S, we call it a p-simplex. An `-face,
or simply a face, of S is an `-simplex K such that Vt(K) ⊂ Vt(S).

The tj in (3.1) are called the barycentric coordinates of ω and
∑p
j=0 tjvj

is called its barycentric expansion (with respect to S). If S is a simplex we
write SpVt(ω) = SpVt(ω;S) for the set of spanning vertices of ω, i.e. those
vj ∈ Vt(S) with tj > 0 in (3.1). Note that if ω ∈ K ⊂ S, where K is a face
of the simplex S, then

(3.2) SpVt(ω;S) = SpVt(ω;K).

If U is a real vector space, a map A : V → U is affine if A(v) = L(v)+C,
where L : V → U is R-linear and C ∈ U is fixed. If S = [v0, v1, . . . , vp] ⊂ V
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is a simplex, a map H : S → U is called affine if it is the restriction to S of
an affine map A : RS → U . Here RS is the vector subspace of V spanned
by the vi. In terms of the barycentric expansion such a map satisfies

(3.3) H(ω) =
p∑
j=0

tjH(vj)

ω=
p∑
j=0

tjvj ,

p∑
j=0

tj = 1, tj > 0 for 06 j6 p

,
and so is determined by the H(vj). In fact, H(ω) is determined by the
values of H on the spanning vertices of ω. Conversely, if for each vertex
vj of S we choose some H(vj) ∈ U , then (3.3) defines a unique affine map
H : S → U .

If S′ = [u0, u1, . . . , u`] ⊂ U is a simplex in U , a map T : S → S′ is
called simplicial if it is an affine map from S to U that takes vertices of
S to vertices of S′. An injective simplicial map T preserves barycentric
coordinates, i.e. if tj is the barycentric coordinate of ω ∈ S corresponding
to a vertex vj , then tj is also the barycentric coordinate of T (ω) ∈ S′

corresponding to the vertex T (vj).

3.2. Λ-complexes

Recall that in Section 2.1 we defined an ordered complex X =
⋃
α∈IXα.

A map of complexes X → X ′, where X ′ =
⋃
β∈I′ X

′
β , is a map of index

sets T̃ : I → I′ together with a map of point sets T : X → X ′ such
that T restricted to each Xα is a simplicial map to X ′

T̃ (α). If T̃ and T are
bijections, the set-theoretic inverse of T is also a map of complexes, and so
the complexes are isomorphic.

Definition 3.1. — Suppose V is a p-dimensional real vector space,
Λ ⊂ V is a full lattice (i.e. a discrete subgroup of V whose R-span is V ),
and X =

⋃
α∈IXα,≺α ⊂ V is an ordered p-complex in V . We shall say that

X is a Λ-complex if it satisfies the following five properties.
(i) X is a simplicial complex, i.e. for α, β ∈ I, Xα ∩Xβ is empty or

(3.4) Xα ∩Xβ = [v1, . . . , v`], where {v1, . . . , v`} := Vt(Xα) ∩Vt(Xβ).

In other words, simplices intersect along common faces.
(ii) The orders are compatible, i.e.

(3.5) v ≺α w ⇐⇒ v ≺β w (α, β ∈ I, v, w ∈ Vt(Xα) ∩Vt(Xβ)) .
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(iii) The orders are Λ-invariant, i.e. for α, α′ ∈ I, if v, w ∈ Vt(Xα) and
v + λ,w + λ ∈ Vt(Xα′) for some λ ∈ Λ, then

(3.6) v ≺α w ⇐⇒ v + λ ≺α′ w + λ.

(iv) X is nearly a fundamental domain for Λ, i.e. the restriction to X
of the natural quotient map from V to V/Λ is surjective, and it is
injective when restricted to the union

⋃
α∈I

◦
Xα of the interiors of

the Xα.
(v) The spanning vertices are Λ-equivariant,(4) i.e.[
x, x′ ∈ X, λ ∈ Λ, x′ = x+ λ

]
=⇒ SpVt(x′) = SpVt(x) + λ.

Note that if X is simplicial (in the sense of (i) above) and X ′ is an
isomorphic complex, then X ′ is also simplicial.
Next we state the main result of this section.

Proposition 3.2. — Let the p-complex X =
⋃
α∈IXα,≺α be a Λ-

complex in V = RΛ, let M1 < M2 be integers, let Λ̂ := Λ × (M2 −M1)Z,
and let ω : V → R be a linear function. Then the ordered (p+ 1)-complex
defined in Section 2.1,

Y (X,ω, [M1,M2]) =
⋃
γ∈J

Yγ,≺γ ⊂ V × R,

is a Λ̂-complex. Furthermore, if γ = (α, v, `) ∈ J and we define Ω : V ×R→
R by Ω(s× t) := ω(s) + t, then for all κ ∈ Yγ we have

(3.7) A(v) + `− 1 6 Ω(κ) 6 A(v) + `,

where A(v) is the upper fractional part of ω(v) defined in (2.5).

In the next three subsections we prove a series of lemmas leading to a
proof in Section 3.6 of the above proposition.

3.3. Simplicial decomposition of X × [M1,M2]

Lemma 3.3. — Let I = [0, 1] ⊂ R be the unit interval, let S = S≺ be
an ordered p-simplex in some real p-dimensional vector space V , and write

(4)As the complex X =
⋃
α∈IXα is assumed simplicial, (3.2) shows that the set

SpVt(x) = SpVt(x;Xα) of spanning vertices of x ∈ X is independent of the simplex Xα
containing x used to calculate the barycentric expansion of x. We will write SpVt(x;X)
when we wish to specify the simplicial complex involved.
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S = [v0, v1, . . . , vp] as the convex hull of its p+ 1 vertices, ordered so that
v0 ≺ v1 ≺ · · · ≺ vp. For any vertex v = vj ∈ Vt(S), let

(3.8) Sv = Sv≺ := [v0 × 1, v1 × 1, . . . , vj × 1, vj × 0, vj+1 × 0, . . . , vp × 0]
⊂ S × I ⊂ V × R.

Then Sv is an ordered (p+ 1)-simplex if we define, for w,w′ ∈ Vt(Sv),

w ≺v w′ ⇐⇒(3.9) [
[πV (w) ≺ πV (w′)] or [πV (w) = πV (w′) and πR(w′) < πR(w)]

]
,

where πV : V × R → V and πR : V × R → R are the natural projections.
Furthermore, S×I =

⋃
v∈Vt(S) S

v, and this is an ordered simplicial (p+1)-
complex, i.e. it satisfies (3.4) and (3.5).

Proof. — It is immediate that Sv is a (p+1)-simplex and that (3.9) makes⋃
v S

v into an ordered complex satisfying (3.5). To see that it is simplicial,
i.e. satisfies (3.4), we will show that it is isomorphic to the standard simpli-
cial decomposition of ∆p × I, where ∆p is the standard p-simplex. Indeed,
let e1, . . . , ep be the standard basis of Rp and set E0 := 0Rp ∈ Rp, Ei :=
ei+Ei−1 (1 6 i 6 p), and let A : V → Rp be the unique affine isomorphism
satisfying A(vi) := Ep−i (0 6 i 6 p), so that

A(S) = [Ep, Ep−1, . . . , E0] =: ∆p =
{
x∈Rp | 1>x1 > x2> · · ·>xp> 0

}
.

Let Â : V × R → Rp × R be the affine isomorphism given by Â(v × y) :=
A(v)× y ∈ Rp × R = Rp+1. Then Â(S × I) = ∆p × I, and

Â(Svj ) = [Ep × 1, . . . , Ep−j × 1, Ep−j × 0, Ep−j−1 × 0, . . . , E0 × 0]

=
{
x ∈ Rp+1 | 1 > x1 > · · · > xp−j > xp+1 > xp−j+1 > · · · > xp > 0

}
(0 6 j 6 p). This is the standard decomposition of the product ∆p × I,
easily seen to be simplicial. �

Next we record some simple properties of the above decomposition of
S × I.

(i) The projection πV : V ×R→ V maps Sv onto S, and maps the ver-
tices of Sv bijectively onto the vertices of S, except for the vertices
v × 0 and v × 1, both of which map to v.

(ii) Let Sv− and Sv+ be the p-faces of Sv defined by

Sv≺
− = Sv− :=[v0 × 1, v1 × 1, . . . , vj−1 × 1, vj × 0, vj+1 × 0, . . . , vp × 0],

(3.10)

Sv≺
+ = Sv+ :=[v0 × 1, v1 × 1, . . . , vj−1 × 1, vj × 1, vj+1 × 0, . . . , vp × 0],
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If w ∈ S, then w × 0 is contained in a proper face of Sv0 , namely
in Sv0− := [v0 × 0, v1 × 0, . . . , vp × 0] ⊂ Sv0 . Similarly, w × 1 is
contained in a proper face of Svp ,

(3.11) Svp+ := [v0 × 1, v1 × 1, . . . , vp × 1] = Sv0− + (0V × 1) ⊂ Svp ,

where 0V ∈ V is the origin in V .

Lemma 3.4. — Suppose X =
⋃
α∈IXα,≺α is an ordered simplicial p-

complex. Then

(3.12) X × I =
⋃
α∈I

⋃
v∈Vt(Xα)

Xv
α,≺vα

is an ordered simplicial (p+ 1)-complex. Here I is the closed interval [0, 1]
and Xv

α,≺vα was defined in Lemma 3.3, taking S≺ := Xα,≺α .

Proof. — The equality of sets in (3.12) is clear from Lemma 3.3. By the
same lemma, it is easy to see that (3.12) is an ordered (p+ 1)-complex. We
now show that the decomposition is simplicial. Suppose δ = ω × y ∈ Xv

α ∩
Xw
β . We will show that the spanning verticies of δ satisfy SpVt(δ;Xv

α) =
SpVt(δ;Xw

β ). This suffices as it shows that δ lies in the convex hull of
Vt(Xv

α)∩Vt(Xw
β ). Let L := Xα∩Xβ , a non-empty simplex as ω ∈ L, and a

common face of the simplicesXα andXβ . Then δ ∈ L×I, so by Lemma 3.3,
δ ∈ Lµ for some vertex µ ∈ Vt(L) = Vt(Xα)∩Vt(Xβ). But Lµ is a face of
Xµ
α and of Xµ

β , as follows immediately from the construction of Lemma 3.3.
Therefore δ ∈ Xµ

α ∩Xv
α and δ ∈ Xµ

β ∩Xw
β . Since Xα × I =

⋃
ρ∈Vt(Xα)X

ρ
α

is simplicial by Lemma 3.3, we have

SpVt(δ;Xv
α) = SpVt(δ;Xµ

α) = SpVt(δ;Lµ)
= SpVt(δ;Xµ

β ) = SpVt(δ;Xw
β ). �

Next we use translations in the last coordinate to extend the decomposi-
tion of Lemma 3.4 from X×I to X×[M1,M2]. Given an ordered p-complex
X =

⋃
α∈IXα,≺α ⊂ V , define the ordered (p+ 1)-simplex Xγ = Xγ

≺γ by

(3.13) Xγ := Xv
α + (0V × `) (γ = (α, v, `), α ∈ I, v ∈ Vt(Xα), ` ∈ Z) ,

where ≺γ is defined by (3.9). Thus, for w,w′ ∈ Vt(Xγ),

(3.14) w ≺γ w′ ⇐⇒[
[πV (w) ≺α πV (w′)] or [πV (w) = πV (w′) and πR(w′) < πR(w)]

]
.

Note that when γ ∈ J in (2.3), then M1 6 ` < M2.
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Lemma 3.5. — Let M1 < M2 be integers, suppose X =
⋃
α∈IXα,≺α

is an ordered simplicial p-complex, and let Xγ = Xγ
≺γ be as in (3.13)

and (3.14). Then

(3.15) X × [M1,M2] =
⋃
γ∈J

Xγ =
⋃
γ∈J

Xγ
≺γ

is an ordered simplicial (p+ 1)-complex.

Proof. — As in the proof of Lemma 3.3, applying an affine isomorphism
it is easy to see that

Xα × [M1,M2] =
⋃

M16`<M1
v∈Vt(Xα)

(Xv
α + (0V × `))

is an ordered simplicial (p + 1)-complex. The rest follows the proof of
Lemma 3.4. �

We can take M1 → −∞ and M2 → +∞ in (3.15), as we record next.

Corollary 3.6. — Let X be as in Lemma 3.5 and let

J∞ :=
{

(α, v, `) | α ∈ I, v ∈ Vt(Xα), ` ∈ Z
}
.

Then X × R =
⋃
γ∈J∞ X

γ is an ordered simplicial (p+ 1)-complex.

Lemma 3.5 shows that any ρ ∈ X × [M1,M2] belongs to some simplex
Xγ with γ = (α, v, `). Our next result shows that v can be chosen to be a
spanning vertex of the projection πV (ρ) ∈ X.

Lemma 3.7. — Let X,M1 and M2 be as in Lemma 3.5. Suppose ρ ∈
X × [M1,M2] and πV (ρ) ∈ Xα. Then there is some v ∈ SpVt (πV (ρ)) ⊂
Vt(Xα) and an integer ` satisfying M1 6 ` < M2 such that ρ ∈ Xγ , where
γ = (α, v, `).

Proof. — Lemma 3.5 shows that ρ ∈ X∆ for some ∆ = (α,w, `) ∈ J . If
w × ` or w × (` + 1) is a spanning vertex of ρ (with respect to X∆), then
w = πV (w × `) = πV (w × (`+ 1)) is a spanning vertex of πV (ρ), and we
may pick v := w. Otherwise,

(3.16) SpVt(ρ) =
{
v1 × (`+ 1), . . . , vt × (`+ 1), w1 × `, . . . , wr × `

}
,

where, by definition (3.15) of Xγ and definition (3.8) of Xv
α, the vi and wj

are vertices of Xα satisfying

v1 ≺α v2 ≺α · · · ≺α vt ≺α w ≺α w1 ≺α w2 ≺α · · · ≺α wr.

Applying πV to (3.16) we obtain

SpVt (πV (ρ)) =
{
v1, . . . , vt, w1, . . . , wr

}
.
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If t > 0, let v := vt. Otherwise, let v := w1. Then, from (3.16), (3.15)
and (3.8), SpVt(ρ) ⊂ Vt(Xγ). Hence ρ ∈ Xγ and v ∈ SpVt (πV (ρ)). �

3.4. The complex Y

Throughout this subsection we assume, as in Proposition 3.2, thatM1 <

M2 are integers and that X =
⋃
α∈IXα,≺α ⊂ V is a simplicial p-complex

contained in some vector space V , with compatible orders ≺α in the sense
of (3.5). So far in this section we have made no use of the linear function
ω : V → R in Proposition 3.2. Now we will use ω to make two changes in
the construction of the simplices Xγ in Lemma 3.5. First we will replace
the given order ≺α on the vertices of Xα by a new order ≺Aα which depends
on ω. Then, using the piecewise affine map T defined below, we will make
a change in the last coordinate of elements of X×R to obtain the simplices
Yγ in Proposition 3.2.
Recall that for u, u′ ∈ Vt(Xα) we defined in (2.6)

(3.17) u ≺Aα u′ ⇐⇒
[[
A(u) < A(u′)

]
or
[
A(u) = A(u′) and u ≺α u′

]]
,

where A is the upper fractional part of ω. A trivial verification shows that
if the orders ≺α are compatible, then so are the orders ≺Aα .

Applying Lemma 3.5 to the ordered simplicial complexX :=
⋃
α∈IXα,≺Aα ,

we obtain the simplicial complex

(3.18) X × [M1,M2] =
⋃
γ∈J

Xγ,A =: XA,

where we have called the new simplices Xγ,A (instead of Xγ) to clarify that
the original order ≺α on the vertices of Xα has been replaced by ≺Aα .(5)

We have also denoted by XA the corresponding simplicial decomposition
of X × [M1,M2]. By Corollary 3.6, we also get a simplicial complex

X × R =
⋃

γ∈J∞

Xγ,A =: XA
∞.

For γ = (α, v, `) ∈ J∞, i.e. α ∈ I, v ∈ Vt(Xα) and ` ∈ Z, let

Tγ := V × R→ V × R

be the unique affine function which on any vertex σ ∈ Vt
(
Xγ,A

)
satisfies

(3.19) Tγ(σ) := σ+(0V × (A(πV (σ))− ω(πV (σ))− 1))
(
σ ∈ Vt(Xγ,A)

)
,

(5)We do not consider XA as an ordered complex since this is not the complex Y
appearing in Proposition 3.2. To get Y we will still need to apply the map T studied in
Lemma 3.8 below.
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where πV : V × R → V is the projection to the first component and 0V
is the origin in V . Actually, Tγ(σ) ∈ X × Z since σ ∈ X × Z by (3.8)
and (3.13), while A(v)−ω(v) ∈ Z by (2.5). Since Tγ(σ) depends only on σ
(and not on the simplex Xγ,A to which it belongs) and XA

∞ is a simplicial
complex, there is a unique piecewise affine function

(3.20) T : X × R→ X × R,

T (ρ) = Tγ(ρ) :=
∑

σ∈Vt(Xγ,A)

cσTγ(σ) (ρ ∈ Xγ,A),

where

(3.21) ρ =
∑

σ∈Vt(Xγ,A)

cσσ

 ∑
σ∈Vt(Xγ,A)

cσ = 1, cσ > 0

 .

Note that T (ρ) = ρ if ω vanishes identically.

Lemma 3.8. — Suppose X =
⋃
α∈IXα,≺α ⊂ V is a simplicial complex

in some vector space V , with compatible orders ≺α. Then the piecewise
affine function T : X × R → X × R defined in (3.20) is a bijection. It
satisfies the identities

(3.22) πV ◦ T =πV ,

T ((s× t)+(0V × t′)) =T (s× t)+(0V × t′) (s∈X, t, t′ ∈R),

and

(3.23) T (s× t) = s× (rs + t) (s ∈ X, t ∈ R, s× rs := T (s× 0)) .

Proof. — The last identity implies the first two, and hence that T is
a bijection. To prove (3.23), let ρ = s × t ∈ Xγ,A, where γ = (α, v, `).
From (3.19), (3.20) and (3.21), we get

(3.24)
T (ρ) =

∑
σ∈Vt(Xγ,A)

cσ (σ + (0V × (A(πV (σ))− ω(πV (σ))− 1)))

= ρ− (0V × ω(πV (ρ))) + (0V × q) ,

where q = q(s× t) := −1 +
∑
σ cσA (πV (σ)) .

Now, πV restricted to Vt(Xγ,A) is a bijection onto Vt(Xα), except for
the two vertices v × ` and v × (`+ 1), both of which map to v (see (3.13)
and (i) after the proof of Lemma 3.3). From (3.21) we have

s = πV (s× t) =
∑

σ∈Vt(Xγ,A)

cσπV (σ) =
∑

δ∈Vt(Xα)

dδδ,
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where in the last equation we have simply written the barycentric expansion
of s with respect to Xα (see the remarks after (3.1)). Since barycentric
coordinates with respect to a simplex are unique, we have cv×`+cv×(`+1) =
dv and cσ = dπV (σ) for πV (σ) 6= v. Hence

q(s× t) := −1 +
∑
σ

cσA (πV (σ)) = −1 +
∑

δ∈Vt(Xα)

dδA(δ).

But the dδ are uniquely determined by s, so q(s× t) = q(s×0). Now (3.23)
follows from (3.24). �

By the lemma just proved, the affine function Tγ : V × R → V × R is
injective when restricted to a non-empty open subset of V ×R, namely on
the interior of any Xγ,A. Hence Tγ is an affine bijection. Thus

T (Xγ,A) = Tγ(Xγ,A) ⊂ X × R

is a (p+ 1)-simplex and

T (X × [M1,M2]) =
⋃
γ∈J

T (Xγ,A)

is a (p + 1)-complex, the isomorphic image by T of the (p + 1)-complex
in (3.18)

(3.25) XA = X × [M1,M2] =
⋃
γ∈J

Xγ,A.

Since, as remarked before (3.18), XA is a simplicial complex, so is T (XA).
We can now prove part of Proposition 3.2.

Lemma 3.9. — With the hypotheses and notation of Proposition 3.2,
the following hold.

(i) Yγ = T (Xγ,A), Vt(Yγ) = T
(
Vt(Xγ,A)

)
(γ ∈ J), and so by (3.25),

Y = T (X × [M1,M2]).
(ii) Y = Y (X,ω, [M1,M2]) =

⋃
γ∈J Yγ,≺γ is an ordered simplicial

(p+ 1)-complex and the orders ≺γ are compatible.
(iii) Define Ω : V ×R→ R by Ω(s× t) := ω(s) + t. Then for all κ ∈ Yγ ,

A(v) + `− 1 6 Ω(κ) 6 A(v) + ` (γ = (α, v, `) ∈ J).

Proof. — The second and third equations in (i) follow directly from the
first one and Lemma 3.8. To prove the first equation in (i), we start with the
case γ = (α, v, 0) with α ∈ I and v ∈ Vt(Xα). Unraveling definition (3.18),
Xγ,A = Sv, where we have applied Lemma 3.3 to S≺ := Xα,≺Aα . If we order
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the vertices of Xα as v0 ≺Aα v1 ≺Aα · · · ≺Aα vp, then by (3.8) the vertices of
Xγ,A are{

v0 × 1, v1 × 1, . . . , vj × 1, vj × 0, vj+1 × 0, . . . , vp × 0} (vj = v).

Applying definition (3.19) of Tγ , the vertices of T (Xγ,A) = Tγ(Xγ,A) are{
v0 × (A(v0)− ω(v0)) , . . . , vj × (A(vj)− ω(vj)) , vj × (A(vj)− ω(vj)− 1),

vj+1 × (A(vj+1)− ω(vj+1)− 1) , . . . , vp × (A(vp)− ω(vp)− 1)
}
.

Comparing this with the definition (2.7) of the vertices of Yγ , we find that
we have proved (i) for γ = (α, v, 0). This implies (i) for any γ = (α, v, `)
since Y(α,v,`) = Y(α,v,0) + (0V × `) by (2.7), while by (3.13) and (3.22)

X(α,v,`),A =X(α,v,0),A+(0V × `),
T ((s× t)+(0V × `)) = T ((s× t)) + (0V × `).

As we remarked just before stating Lemma 3.9, the (p + 1)-complex⋃
γ∈J T (Xγ,A) is simplicial. By (i), T ([X × [M1,M2]) =

⋃
γ∈J Yγ =: Y

is simplicial. This proves (ii) since the assumed compatibility of the ≺α
immediately implies that of the ≺γ defined in (2.8).
We now prove (iii). Just as in the proof of (i), it suffices to take γ =

(α, v, 0). Since Ω is linear, it suffices to prove (iii) for all vertices κ ∈ Vt(Yγ).
Since ` = 0, by (i) we have κ = T (δ× t), where δ ∈ Vt(Xα), t = 1 if δ ≺Aα v
and t = 0 if v ≺Aα δ. By (3.19),

(3.26) Ω(κ) = Ω(δ × t) + Ω (0V × (A(δ)− ω(δ)− 1)) = t+A(δ)− 1.

There are two vertices with δ = v, namely T (v×0) and T (v×1). From (3.26)
we have Ω (T (v × 0)) = A(v)− 1 and Ω (T (v × 1)) = A(v), proving (iii) for
the vertices T (v × 0) and T (v × 1).
We may therefore restrict to κ = T (δ × t) ∈ Vt(Yγ) with δ 6= v. We

consider first the case A(δ) = A(v). Then (3.26) gives Ω(κ) = A(v) − 1 if
t = 0, while if t = 1 we have Ω(κ) = A(v). Hence (iii) holds if A(δ) = A(v).
If A(δ) 6= A(v), then by definition (3.17) of the order ≺Aα , we have t = 1 if
and only if A(δ) < A(v). If t = 1, then (iii) follows from

A(v)− 1 6 0 < A(δ) = Ω(κ) < A(v),

where we again used (3.26) for the equality. If t = 0, so A(δ) > A(v), then

A(v) > 0 > A(δ)− 1 = Ω(κ) > A(v)− 1,

which proves (iii) in the last remaining case. �
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3.5. Λ-invariance

Although we have assumed in Proposition 3.2 that the orders ≺α on
Vt(Xα) are invariant with respect to a lattice Λ, the new orders ≺Aα on
Vt(Xα) in general are not Λ-invariant. We shall prove now that this devi-
ation is determined by

(3.27) ∆v,λ := A(v) +A(λ)−A(v + λ) =
{

0 if A(v) +A(λ) 6 1,
1 if A(v) +A(λ) > 1,

where the last equality used (2.5) and the linearity of ω.

Lemma 3.10. — Let Λ ⊂ V be a lattice for which X =
⋃
α∈J Xα,≺α

has Λ-invariant orders ≺α (see (3.6)), let ω : V → R be a linear function,
define ≺Aα and ∆ as in (3.17) and (3.27). Suppose v and w are vertices of
Xα and, for some λ ∈ Λ, v + λ and w + λ are vertices of Xα′ (α, α′ ∈ J).
Then, translation preserves order if ∆v,λ = ∆w,λ, i.e.

(3.28) v ≺Aα w ⇐⇒ v + λ ≺Aα′ w + λ (∆v,λ = ∆w,λ),

while it reverses order if ∆v,λ 6= ∆w,λ, i.e.

(3.29) v ≺Aα w ⇐⇒ w + λ ≺Aα′ v + λ (∆v,λ 6= ∆w,λ).

Moreover,

(3.30) A(v) = A(w) ⇐⇒ A(v + λ) = A(w + λ),

and

(3.31) A(v) = A(w) =⇒ ∆v,λ = ∆w,λ.

Proof. — From (3.27) we obtain

(3.32)
(
A(v+λ)−A(w+λ)

)
−
(
A(v)−A(w)

)
= ∆w,λ−∆v,λ = −1, 0, or 1.

As A takes values in (0, 1], (3.30) and (3.31) follow.
We now turn to the first two claims in the lemma. If A(v) = A(w), then

∆w,λ = ∆v,λ and the orders ≺Aα and ≺Aα′ in (3.28) reduce to ≺α and ≺α′ ,
respectively. In this case (3.28) follows from the assumed Λ-invariance of
the order (3.6). We may therefore suppose A(v) 6= A(w). Then A(v+ λ) 6=
A(w + λ) and the orders ≺Aα and ≺Aα′ in (3.28) and (3.29) reduce to the
usual order of A-values (see (3.17)). If ∆w,λ = ∆v,λ, then (3.32) shows that
A(v)−A(w) = A(v+λ)−A(w+λ), so (3.28) follows. If ∆w,λ 6= ∆v,λ, then∣∣(A(v + λ)−A(w + λ)

)
−
(
A(v)−A(w)

)∣∣ = 1.

But this is the distance between two real numbers in the open interval
(−1, 1), which must therefore have opposite signs. This proves (3.29). �
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Lemma 3.11. — Let Λ ⊂ V be a full lattice in a vector space V , let
X =

⋃
α∈IXα ⊂ V be a Λ-complex (see Definition 3.1), ω : V → R a

linear function, Y =
⋃
γ∈J Yγ,≺γ ⊂ V ×R as in (2.2) and πV : V ×R→ V

the projection. Assume that for some α ∈ I, v ∈ Vt(Xα) and λ ∈ Λ we
have (v + λ) ∈ Vt(Xα′) for some α′ ∈ I. Suppose also that κ ∈ Vt(Y(α,v,`))
and (πV (κ) + λ) ∈ Vt(Xα′). Then (κ+ λ̂) ∈ Vt(Y(α′,v+λ,`)), where

(3.33) λ̂ = λ× j ∈ Λ× Z, j := A(λ)− ω(λ)−∆(v, λ),

A being as in (2.5) and ∆ as in (3.27).

Note that λ̂ and γ′ := (α′, v + λ, `) depend on λ and on γ := (α, v, `),
but not on κ ∈ Vt(Yγ).
Proof. — That j ∈ Z is immediate from (2.5) and (3.27). Now, κ ∈

Vt(Yγ) = T
(
Vt(Xγ,A)

)
, by Lemma 3.9(i). Thus,

κ = T (w× t), w× t ∈ Vt(Xγ,A), t ∈ {`, `+ 1}, w = πV (κ) ∈ Vt(Xα).

By (3.19),

(3.34) κ = T (w × t) = w × t+ 0V × (A(w)− ω(w)− 1) .

By assumption, both v+λ and w+λ are vertices of Xα′ . Thus there exists
a vertex

(3.35) ρ ∈ Vt(Xγ′,A), ρ = (w+λ)× t′, t′ ∈ {`+ 1, `}, γ′ := (α′, v+λ, `).

Notice that for w 6= v, the value of t′ in (3.35) is determined by w+ λ, but
for w = v there are vertices ρ = (w + λ) × t′ ∈ Vt(Xγ′,A) for both values
of t′. We now calculate

T (ρ) = ρ+ 0V × (A(w + λ)− ω(w + λ)− 1) [by (3.19) and (3.35)]
= (w + λ)× t′ + 0V × (A(w) +A(λ)−∆(w, λ)− ω(w)− ω(λ)− 1)

[by (3.27)]
= w × t+ 0V × (A(w)− ω(w)− 1) + λ× (A(λ)− ω(λ)−∆(v, λ))

+ 0V × (∆(v, λ)−∆(w, λ) + t′ − t) [t as in (3.34)]

= κ+ λ̂+ 0V × (∆(v, λ)−∆(w, λ) + t′ − t) [by (3.33) and (3.34)].

Since T (ρ) ∈ Vt(Yγ′), Lemma 3.11 will be proved once we show

(3.36) ∆(v, λ)−∆(w, λ) + t′ − t = 0.

We will do this by checking various cases, bearing in mind that ∆ = 0 or
1 and t, t′ = ` or `+ 1.

If w = v, both (w + λ) × ` and (w + λ) × (` + 1) are vertices of Xγ′,A.
Hence we can pick the vertex ρ so that t′ = t, making (3.36) hold trivially.
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We may therefore assume w 6= v, which makes t and t′ uniquely determined
by ≺Aα and ≺Aα′ . Namely, t = `+1 is equivalent to w ≺Aα v (see Lemma 3.3).
Otherwise, t = `. Similarly, t′ = `+ 1 if and only if w + λ ≺Aα′ v + λ.
If ∆(v, λ) = ∆(w, λ), Lemma 3.10 shows t = t′, proving (3.36) in

this case. We may therefore assume ∆(v, λ) 6= ∆(w, λ). Thus, again by
Lemma 3.10, t 6= t′, A(v) 6= A(w) and A(v + λ) 6= A(w + λ).
We consider first the case t = `. Then v ≺Aα w, so A(w) > A(v) by

definition (3.17) of ≺Aα . Also, t′ 6= t, so t′ = ` + 1. We claim ∆(w, λ) = 1.
Indeed, otherwise ∆(w, λ) = 0 and so ∆(v, λ) = 1. Therefore, by (3.27),
A(v)+A(λ) > 1, whence A(w)+A(λ) > 1. Then, again by (3.27), ∆(w, λ) =
1, a contradiction. Hence, ∆(w, λ) = 1 and ∆(v, λ) = 0, from which (3.36)
follows.
Lastly, if t = `+ 1, then A(w) < A(v) and t′ = `. We claim ∆(v, λ) = 1.

Otherwise ∆(v, λ) = 0 and ∆(w, λ) = 1. By (3.27), A(v) + A(λ) 6 1.
Hence A(w) + A(λ) < 1, proving ∆(w, λ) = 0, a contradiction. Thus,
∆(v, λ) = 1, ∆(w, λ) = 0, and (3.36) follows. �

3.6. Proof of Proposition 3.2

We need to show that Y =
⋃
γ∈J Yγ,≺γ ⊂ V × R is an ordered (p + 1)-

complex satisfying inequality (3.7), and properties (i) to (v) in Defini-
tion 3.1 with respect to the lattice

Λ̂ := Λ× (M2 −M1)Z.

Parts (ii) and (iii) of Lemma 3.9 show that Y is an ordered simplicial
(p + 1)-complex with compatible orders and satisfies inequality (3.7). We
must still prove that Y has properties (iii) to (v).
We now prove (iii), i.e. if κ, δ ∈ Vt(Yγ) and κ + λ̂, δ + λ̂ ∈ Vt(Yγ′) for

some λ̂ ∈ Λ̂, γ = (α, v, `), γ′ = (α′, v′, `′) ∈ J, then we must show

(3.37) κ ≺γ δ ⇐⇒ κ+ λ̂ ≺γ′ δ + λ̂.

By (3.22) πV ◦ T = πV , so πV maps Vt(Yγ) = T
(
Vt(Xγ,A)

)
to Vt(Xα)

(see (i) in Lemma 3.9 and remark (i) following the proof of Lemma 3.3).
Of course, πV maps Λ̂ to Λ. Since X is by assumption a Λ-complex,

(3.38) πV (κ) ≺α πV (δ) ⇐⇒ πV (κ+ λ̂) ≺α′ πV (δ + λ̂).
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If πV (κ) 6= πV (δ), then πV (κ+ λ̂) 6= πV (δ+ λ̂), so (3.37) is clear from (2.8)
and (3.38). When πV (κ) = πV (δ), (2.8) defines

κ ≺γ δ ⇐⇒ t′ < t (κ = u× t, δ = u× t′).

Hence (3.37) is again clear and we have proved (iii).
We now turn to the proof of (iv) in Definition 3.1, i.e. that Y is nearly a

fundamental domain for Λ̂ ⊂ V ×R. By assumption, X surjects onto V/Λ.
Recall from (3.23) that T (x×s) = x×(rx+s), where rx ∈ R is independent
of s ∈ R. Thus, Y = T (X × [M1,M2]) surjects onto (V × R)/Λ̂.
To complete the proof of (iv), we show that the union of interiors

⋃
γ∈J

◦
Yγ

injects into (V × R)/Λ̂. Suppose ρ = T (s × t) ∈
◦
Yγ and ρ′ = T (s′ × t′) ∈

◦
Yγ′ map to the same point in (V × R)/Λ̂, for some γ = (α, v, `), γ′ =
(α′, v′, `′) ∈ J . Since ρ is in the interior of Yγ = T (Xγ,A) and πV (Yγ) = Xα,
it follows that s = πV (ρ) ∈

◦
Xα. Similarly, s′ ∈

◦
Xα′ . But we are assuming

the congruence

(s, rs+t) = T (s×t) ≡ T (s′×t′) = s′×(rs′+t′) (modulo Λ×(M2−M1)Z),

so s ≡ s′ (modulo Λ). By assumption, X =
⋃
αXα injects into V/Λ. Thus,

s = s′. Then

s× (rs + t) = T (s× t) ≡ T (s× t′) = s× (rs + t′) (modulo Λ̂),

showing t−t′ ∈ (M2−M1)Z. It t 6= t′, then t = M1 orM2 as t, t′ ∈ [M1,M2].
However, t ∈ Z means that s × t lies in a proper face of some Xγ′′,A (see
remark (ii) after Lemma 3.3). Hence ρ = T (s × t) lies in a proper face of
Yγ′′ . Since Y is a simplicial complex, this contradicts ρ ∈

◦
Yγ , proving (iv).

We now turn to the proof of (v), i.e. the Λ̂-equivariance of the spanning
vertices. To this end, suppose

(3.39) y, y′ ∈ Y = T (X × [M1,M2]), y′ = y + λ̃, λ̃ = λ× j ∈ Λ̂.

We must show that their spanning vertices satisfy

(3.40) SpVt(y′;Y ) = λ̃+ SpVt(y;Y ),

where for clarity we have written SpVt(y;Y ) to indicate that the spanning
vertices are calculated with respect to Y , i.e. with respect to any simplex
Yγ ⊂ Y containing y. We claim that it suffices to prove

(3.41) κ ∈ SpVt(y;Y ) =⇒ κ+ λ̃ ∈ Vt(Yγ̃)
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for some γ̃ ∈ J independent of κ. Indeed, the barycentric expansion

(3.42) y =
∑
κ

cκκ

(
κ ∈ SpVt(y;Y ),

∑
κ

cκ = 1, cκ > 0
)

implies y′ = y + λ̃ =
∑
κ cκ(κ + λ̃), proving (3.40) since κ + λ̃ ∈ Vt(Yγ̃)

by (3.41).
We now prove (3.41). By (3.22) and (3.39),

x′ = x+ λ ∈ X, x := πV (y) ∈ X, x′ := πV (y′) ∈ X, λ := πV (λ̃) ∈ Λ.

Since X =
⋃
β∈J Xβ is by assumption a Λ-complex,

(3.43) SpVt(x′;X) = λ+ SpVt(x;X).

As y ∈ Y = T (X × [M1,M2]), we have y = T (ρ) ∈ Yγ for some γ =
(α, v, `) ∈ J and ρ ∈ Xγ,A. Therefore SpVt(y) ⊂ Vt(Yγ). Similarly, y′ ∈ Yγ′
for some γ′ = (α′, v′, `′) ∈ J . By Lemma 3.7 and (3.22), we can assume
v ∈ SpVt(x) ⊂ Vt(Xα).
Let κ ∈ SpVt(y;Y ) ⊂ Vt(Yγ). Then πV (κ) ∈ SpVt(x) ⊂ Vt(Xα).

By (3.43), v+λ ∈ Vt(Xα′) and πV (κ)+λ ∈ Vt(Xα′). By Lemma 3.11, there
is a λ̂ = λ× ĵ ∈ Λ×Z, independent of κ, such that κ+ λ̂ ∈ Vt(Y(α′,v+λ,`)).
By adding 0V × q to λ̂ for some q ∈ Z, we may ensure λ̂ ∈ Λ̂ and

(3.44) κ+ λ̂ ∈ Vt(Y(α′,v+λ,`′)),

where `′ := `+ q. By again adding 0V × q′(M2−M1) to λ̂ for some q′ ∈ Z,
we may assume `′ ∈ [M1,M2). Note that γ′ = (α′, v+ λ, `′) is independent
of κ. Using the barycentric expansion (3.42) of y, let

(3.45) ŷ :=
∑
κ

cκ(κ+ λ̂) = y + λ̂ ∈ Yγ′ ⊂ Y = T (X × [M1,M2]).

As y′, ŷ ∈ Y , we can write

y′ = T (x′ × t′), ŷ = T (x̂× t̂ ) (x′, x̂ ∈ X, t′, t̂ ∈ [M1,M2]).

Applying the projection πV and (3.22), we find

x′ = πV (y′) = πV (y + λ̃) = x+ λ = πV (y + λ̂) = πV (ŷ) = x̂.

Therefore, using (3.23),

λ̃− λ̂ = y′ − ŷ = T (x′ × t′)− T (x′ × t̂ )

= x′ × (rx′ + t′)− x′ × (rx′ + t̂) = 0V × (t′ − t̂).

Since λ̃ − λ̂ ∈ Λ̂ := Λ × (M2 −M1)Z and t′, t̂ ∈ [M1,M2], there are only
three possibilities:

(i) t′ = t̂,
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(ii) t′ = M1, t̂ = M2,
(iii) t′ = M2, t̂ = M1.

Note that t′ and t̂ are independent of κ ∈ SpVt(y) since λ̃ and λ̂ are
independent of κ. Hence the same case (i), (ii) or (iii) above occurs, inde-
pendently of κ.

In case (i), λ̃ = λ̂, so (3.44) implies (3.41) with γ̃ := γ′. In this case we
are done. Consider now case (ii), so ŷ = T (x̂×M2) and

(3.46) λ̃ = λ̂+ (0V × (M1 −M2)) .

Order the vertices vj of Xα′ so that v0 ≺Aα′ v1 ≺Aα′ · · · ≺Aα′ vp. Using the
notation of (3.10), let(

X(α,v,`),A
)±

:=
(
Xv
α,≺Aα

)±
+ (0V × `) ⊂ X(α,v,`),A (` ∈ Z).

From (3.11) we have

(x̂×M2) ∈
(
X(α′,vp,M2−1),A

)+
⊂ X(α′,vp,M2−1),A.

Hence
SpVt(x̂×M2;XA) ⊂

(
X(α′,vp,M2−1),A

)+
,

where XA is the simplicial complex XA :=
⋃
γ X

γ,A = X × [M1,M2]
in (3.18). Thus,

ŷ = T (x̂×M2) ∈ T
(

(X(α′,vp,M2−1),A)+
)
⊂ T (X(α′,vp,M2−1),A)

= Y(α′,vp,M2−1).

As ŷ :=
∑
κ cκ(κ+ λ̂) by (3.45), we see from (3.44) that

(3.47) κ+ λ̂ ∈ SpVt(ŷ) ⊂ Vt
(
T ((X(α′,vp,M2−1),A)+)

)
.

By (3.11) again,

(X(α′,vp,M2−1),A)+ = (X(α′,v0,M1),A)− + (0V × (M2 −M1)) .

Applying T and (3.22) we find

(3.48) T
(

(X(α′,vp,M2−1),A)+
)

= T
(

(X(α′,v0,M1),A)−
)

+ (0V × (M2 −M1)) .

Using (3.46), (3.47) and (3.48) we obtain

κ+λ̃ = κ+λ̂+(0V × (M1 −M2)) ⊂ Vt
(
(Y(α′,v0,M1))−

)
⊂ Vt

(
Y(α′,v0,M1)

)
,

proving (3.41) with γ̃ := (α′, v0,M1).
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Case (iii) is analogous, for then ŷ = T (x̂×M1)∈ (Y(α′,v0,M1))− and λ̃=
λ̂+(0V ×(M2−M1)). Reasoning as above, we find κ+λ̃ ∈ Vt(Y(α′,vp,M2−1)),
concluding the proof of Proposition 3.2.

4. Degree theory and the signed fundamental domain

In this section we prove Theorem 2.1. Thus we have fixed independent
totally positive units ε` ∈ k, principal logarithms log ε(r1+j)

` of these units
at the complex embeddings, and integers Nj > 3 (1 6 ` 6 r := r1 + r2 − 1,
1 6 j 6 r2). Lastly, we have also fixed a twister function β : Zn−1 → k∗,
as defined in Section 2.3.

4.1. The function f on X× R

Proposition 4.1. — The (n − 1)-complex X =
⋃
α∈I Xα ⊂ Rn−1 de-

fined in Section 2.2 is a Λ-complex (see Definition 3.1), where Λ := Zr ×
N1Z×N2Z×· · ·×Nr2Z ⊂ Zn−1. It has the following additional properties.

(i) The vertices have integral coordinates, i.e. Vt(Xα) ⊂ Zn−1 for all
α ∈ I.

(ii) There are |I| = (n− 1)!
∏r2
j=1Nj simplices Xα.

(iii) For any integer 1 6 j 6 r2 and any index α ∈ I, there is an αj ∈ R
such that any κ ∈ Xα satisfies αj 6 Ωj(κ) 6 αj + 1, where

(4.1) Ωj(κ) := κ[r + j] + Nj
2π

r∑
`=1

κ[`] arg
(
ε

(r1+j)
`

)
(κ = (κ[1], . . . , κ[n− 1])∈Rn−1)

and −π < arg
(
ε

(r1+j)
`

)
6 π.

Proof. — Recall from Section 2.2 that X := Xn−1 was constructed in-
ductively starting from the trivial one-point complex X0, letting

Xj := Y (Xj−1, ωj−1, [0, Qj ])

where Qj := 1, ωj−1(x) := 0 if 1 6 j 6 r, and

Qr+j := Nj , ωr+j−1(x) := Nj
2π

r∑
`=1

x[`] arg
(
ε

(r1+j)
`

)
(1 6 j < r2).
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Since X0 is obviously a Λ0-complex for the trivial lattice Λ0 := {0}, Propo-
sition 3.2 and induction on j shows that Xj ⊂ Rj is a Q1Z × · · · × QjZ-
complex for 1 6 j 6 n−1.(6) Taking j = n−1 shows that X is a Λ-complex.

Property (i) in Proposition 4.1 was already proved in (2.12), while (ii)
follows from (2.4). To prove (iii), let κ ∈ Xα and let πr+j : Rn−1 → Rr+j
be the projection to the first r + j coordinates (1 6 j 6 r2). Then πr+j(κ)
is contained in some (r + j)-simplex Yγ := πr+j(Xα) ⊂ Xr+j for some
index γ = (β, v, `) depending only on j and α. Here the complex Xr+j was
defined in (2.10), v is a vertex in a simplex in Xj+r−1 indexed by β, and `
is an integer in the range 0 6 ` < Nj . Inequality (3.7) in Proposition 3.2,
applied to πr+j(κ) ∈ Yγ , to X := Xr+j−1, V = Rr+j−1, ω := ωr+j−1 and
to [M1,M2] := [0, Nj ], yields (iii) with αj := A(v) + ` − 1 and A(v) as
in (3.7). �

We now define the function f in (1.1). Henceforth we keep the notation
of Proposition 4.1, i.e. X, I,Λ and Ωj . For α ∈ I, let Aα : Rn−1 → Rr1×Cr2

be the unique affine function which on vertices v = (v[1], . . . , v[n − 1]) ∈
Vt(Xα) ⊂ Zn−1 is given by

(4.2) Aα(v) := f̃(v) := β(v)
r∏
`=1

ε
v[`]
` ∈ k∗ ⊂ Rr1 × Cr2 .

Here we used (i) of Proposition 4.1 and the twister function β recalled at
the beginning of this section. Note that since by definition β is Λ-periodic,

(4.3) f̃(v + λ) = f̃(v)
r∏
`=1

ε
λ[`]
` (v ∈ Zn−1, λ ∈ Λ).

Let A : X → Rr1 × Cr2 be the piecewise affine function which equals Aα
on Xα. Since X =

⋃
α∈I Xα is a simplicial complex by Proposition 4.1,

and f̃(v) in (4.2) does not depend on α ∈ I, the Aα define a unique (and
continuous) piecewise affine function A : X → R which restricts to Aα on
Xα. Let

(4.4) f(x× y) := ey A(x), f : X× R→ Rr1 × Cr2 ,

where ey is regarded as a real scalar multiplying each one of the r1 + r2
coordinates of A(x). Writing x =

∑n−1
i=0 civi, where

∑n−1
i=0 ci = 1, ci >

0 (0 6 i 6 n− 1), (3.3) gives

(4.5) f(x×y) = ey
n∑
i=1

ciwi

(
x∈Xα = [v0, . . . , vn−1], y ∈R, wi := f̃(vi)

)
.

(6)We identify 0× Rj with Rj , of course.
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We now prove some basic properties of f .

Lemma 4.2. — The function f defined in (4.4) above has the following
properties.

(i)

(4.6) f(Xα × R) ⊂ Hα := Rr1
+ ×H

(
α1 + 1

2
N1

)
× · · · ×H

(
αr2 + 1

2
Nr2

)
,

where αj ∈ R was defined in Proposition 4.1(iii) and where H(t) ⊂
C∗ is the open half-plane

H(t) :=
{
r e2π i(t+θ) ∈ C∗ | r > 0, θ ∈ (−1/4, 1/4)

}
.

Thus,

(4.7) f(X× R) ⊂ Rr1
+ × C∗r2 .

(ii) For α ∈ J , let v0, . . . , vn−1 be the vertices of Xα (in any order) and
let wi := f̃(vi) = f(vi × 0) ∈ k ⊂ Rr1 × Cr2 , and let Cα be as
defined in (2.18). Then

(4.8) Cα = f(Xα × R)

=
{
t0w0 + t1w1 + · · ·+ tn−1wn−1

∣∣∣ ti > 0 for 0 6 i 6 n− 1
}
−
{

0
}
,

the closed k-rational polyhedral cone generated by the wi, minus
the origin.

(iii) If y ∈ R and x′ = x + λ with x, x′ ∈ X and λ ∈ Λ (see Proposi-
tion 4.1), then

(4.9) f(x′×y) = ε(λ)f(x×y), ε(λ) :=
r∏
`=1

ε
λ[`]
` (λ = (λ[1], . . . , λ[n− 1])) .

Note that ε(λ) is a unit belonging to the subgroup generated by ε1, . . . , εr.
The product ε(λ)f(x × y) is taken in the ring Rr1 × Cr2 . Recall that we
regard k ⊂ Rr1 × Cr2 .

Proof. — We begin with the proof of (4.6), i.e. f(Xα × R) ⊂ Hα. The
set Hα is a convex cone, so from (4.5) it is clear that it suffices to prove
f(κ× 0) ∈ Hα for κ ∈ Vt(Xα). From (4.3) and (4.5),

(4.10) f(κ× 0)(j) = β(κ)(j)
r∏
`=1

(
ε

(j)
`

)κ[`]
(1 6 j 6 r1 + r2).
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For 1 6 j 6 r1, β(κ)(j) > 0 and ε(j)
` > 0, so f(κ×0)(j) > 0. For 1 6 j 6 r2,

recall from (2.13) in the definition of twisters,

(4.11) β(κ)(r1+j) = |β(κ)(r1+j)| exp (2π i(κ[r + j] + tj(κ))/Nj)(
|tj(κ)|
Nj

<
1
4 −

1
2Nj

)
.

Using Proposition 4.1(iii) and (4.1), we can write

(4.12) Ωj(κ) := κ[r + j] + Nj
2π

r∑
`=1

κ[`] arg
(
ε

(r1+j)
`

)
= αj + 1

2 + θj(κ)

for some θj(κ) ∈ [−1/2, 1/2]. Then, letting rj(κ) :=
∣∣f̃(κ)(r1+j)

∣∣ > 0,
from (4.10) we have

f̃(κ)(r1+j)

= rj(κ) exp (2π i(κ[r + j] + tj(κ))/Nj) exp
(
i

r∑
`=1

κ[`] arg
(
ε

(r1+j)
`

))

= rj(κ) exp
(

2π i
Nj

(
κ[r + j]+Nj

2π

r∑
`=1

κ[`] arg
(
ε

(r1+j)
`

)))
exp(2π i tj(κ)/Nj)

= rj(κ) exp(2π i Ωj(κ)/Nj) exp(2π i tj(κ)/Nj)
= rj(κ) exp

(
2π i(αj + 1

2/Nj
)

exp (2π i(tj(κ) + θj(κ))/Nj) .

By (4.11) and (4.12), |tj(κ) + θj(κ)|/Nj < 1
4 , showing that f̃(κ)(r1+j) ∈

H
(
(αj + 1

2 )/Nj
)
and proving (4.6).

To prove (4.9), write the barycentric expansion of x =
∑
i civi ∈ Xα as

in (4.5), but only include vertices vi with ci > 0, i.e. vi ∈ SpVt(x). Since
X is a Λ-complex by Proposition 4.1, every vi + λ is a spanning vertex of
x′, and therefore a vertex of some Xα′ where α′ is independent of vi (see
property (v) in Definition 3.1). Hence we obtain the barycentric expansion
of x′ as

x′ = x+ λ = λ+
∑
i

civi =
∑
i

ci(vi + λ).

By (4.5) and (4.3),

f(x′ × y) = ey
∑
i

cif̃(vi + λ) = ey
∑
i

cif̃(vi)ε(λ) = ε(λ)f(x× y),

proving (4.9).
We now prove (4.8). Since f(x × 0) = Aα(x) for x ∈ Xα, and Aα is an

affine function, it follows that f(Xα × 0) = [w0, . . . , wn−1], the convex hull
of the wi := Aα(vi). From (4.4), f(x × y) = ey f(x × 0). It follows that
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f(Xα × R) ⊂ Hα is the closed cone generated by the wi, minus the origin.
It does not contain the origin since 0 /∈ Hα. �

4.2. Global and local degree computations

As in Theorem 2.1, let ε1, . . . , εr be fixed independent totally positive
units of k, where r = r1 +r2−1. We use them to define a homomorphism g

from the additive group Rn to the multiplicative group Rr1
+ ×C∗

r2 . Namely,
let the j-th coordinate of g (1 6 j 6 r1 + r2) be
(4.13)

g(x)(j) :=

exp
(
x[n] +

∑r
`=1 x[`] log ε(j)

`

)
if j 6 r1,

exp
(
x[n] + 2π i x[j+r2−1]

Nj−r1
+
∑r
`=1 x[`] log ε(j)

`

)
if r1 < j.

Here Nj is as in Theorem 2.1 and log z denotes the branch with −π <

Im(log z) 6 π.

Lemma 4.3. — The homomorphism g in (4.13) is onto, infinitely differ-
entiable and

(4.14) g−1 (〈ε1, . . . , εr〉) = Λ̂ := Λ× 0 = Zr×N1Z×· · ·×Nr2Z× 0 ⊂ Rn,

where 〈ε1, . . . , εr〉 is the subgroup of the units of k generated by the ε`.

Proof. — From (4.13) it is clear that g is infinitely differentiable. Let
us show that g is onto. Let {Ei}ni=1 be the standard basis for Rn. Then
g(Ei) = εi for 1 6 i 6 r, and g(En) = (e, . . . , e). Define L : Rr1

+ × C∗r2 →
Rr1+r2 at z =

(
z(1), . . . , z(r1+r2)) by

(4.15) (L(z))j := ej log |z(j)|
(ej := 1 if 1 6 j 6 r1, ej := 2 if r1 < j 6 r1 + r2).

Then L (g(x)) = x[n]F +
∑r
`=1 x[`] L(ε`), where Fj := ej . As the εi are

assumed independent and F does not lie in the span of the L(ε`), given
z ∈ Rr1

+ × C∗r2 , there exists x ∈ Rn such that L (g(x)) = L(z). But then
all coordinates of zg(−x) ∈ Rr1

+ × C∗r2 have absolute value 1, so z(j) =
g(x)(j) exp(2π i θj) with θj ∈ R (r1 < j 6 r1 + r2). On letting x′[`] :=
x[`] + N`−rθ`−r2+1 for r < ` 6 n − 1 and x′[`] := x[`] for all other `, we
have g(x′) = z.
A similar use of L shows that x ∈ ker(g) if and only if x[j] = 0 for

1 6 j 6 r and j = n, and x[r + j] ∈ NjZ for 1 6 j 6 r2. Hence (4.14)
follows. �
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Lemma 4.4. — With g and Hα as in (4.13) and (4.6), g(Xα×R) ⊂ Hα.

Proof. — For 1 6 j 6 r1 it is clear that g(x × y)(j) > 0 for x ∈ Rn−1

and y ∈ R. For 1 6 j 6 r2, observe that g(x× y)(r1+j) = ey g(x× 0)(r1+j).
Hence it suffices to show that g(x × 0) ∈ Hα for x ∈ Xα. Now g(x ×
0)(r1+j) = rx,j exp (2π i Ωj(x)/Nj), where rx,j > 0 and Ωj(x) was defined
in (4.1). Property (iii) in Proposition 4.1 concludes the proof since Nj > 3
by assumption. �

Let Λ̂ ⊂ Rn be as in (4.14), and define the n-manifolds

(4.16) T̂ := Rn/Λ̂, T := (Rr1
+ × C∗r2)/〈ε1, . . . , εr〉.

It follows from Lemma 4.3 that g induces a bijection G : T̂ → T ,

(4.17)

Rn
g //

π̂

��

Rr1
+ × C∗r2

π

��
T̂

G // T

making the diagram commute. Here π̂ and π are the natural quotient maps.

Lemma 4.5. — The map G : T̂ → T defined above is a homeomorphism.

Proof. — Since T̂ is not compact, it is not quite obvious that G−1 is
continuous. But, as G is a continuous and bijective map between locally
compact metric spaces, it suffices to prove that G is proper. Thus, let
K ⊂ T be compact, and let us show that G−1(K) ⊂ T̂ is compact. Define
the “norm” map N : Rr1

+ × C∗r2 → R+ by

(4.18) N (z) :=
r1+r2∏
j=1

∣∣z(j)∣∣ej (
z = (z(1), . . . , z(r1+r2))

)
,

with ej = 1 or 2 as in (4.15). Then N (εi) = 1 (1 6 i 6 r), so N induces a
continuous map Ñ : T → R+. Since K is compact, Ñ (K) ⊂ [a, b] for some
positive real numbers a and b. As N (g(x[1], . . . , x[n])) = enx[n], we have
by Lemma 4.3 and (4.16),

G−1(K) ⊂ π̂ ([0, 1]r × [0, N1]× · · · × [0, Nr2 ]× [(log a)/n, (log b)/n]) ,

a compact subset of T . �

From Lemma 4.5 and T̂ := Rn/Λ̂, it is clear that T̂ and T are homeo-
morphic to an (n − 1)-torus ×R. Thus, G is a homeomorphism between
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connected, orientable n-manifolds. We fix any orientation of Rn and orient
Rr1 × Cr2 by declaring the homeomorphism I : Rr1 × Cr2 → Rn,

I(z1, . . . , zr1+r2)(4.19)
:= (z1, . . . , zr1 ,Re(zr1+1), Im(zr1+1), . . . ,Re(zr1+r2), Im(zr1+r2)) ,

to be orientation-preserving. The orientation on Rr1 × Cr2 induces an ori-
entation on its open subset Rr1

+ × C∗r2 = domain(π). Finally, we orient T̂
and T by declaring π and π̂ in (4.17) to be orientation-preserving.
In practice, this means for the homeomorphism G that deg(G) = ±1 is

the sign of the determinant of the Jacobian matrix Jacx(I ◦ g) of I ◦ g :
Rn → Rn at any point x of its domain, a number which we now compute.(7)

Lemma 4.6. — With the orientation on T̂ and T defined above,

deg(G) = (−1)n−1(−1)r2(r2−1)/2 sign (det(R)) 6= 0,

where R = (rij) is the matrix defined in (2.16).

Proof. — We have det(R) 6= 0 since the rows with i > 1 span the hyper-
plane{

x = (xj)j ∈ Rr1+r2
∣∣x1 + · · ·+ xr1 + 2xr1+1 + · · ·+ 2xr1+r2 = 0

}
,

while the first row is off the hyperplane. Since G is a homeomorphism,
deg(G) = locdegp(T̂ ), the local degree at any p ∈ T̂ [4, (39)]. As π̂ and π
are orientation-preserving local homeomorphisms, deg(G) = locdegx(g) for
any x ∈ Rn. By definition of the orientation on Rr1

+ × C∗r2 , locdegx(g) =
locdegx(I ◦ g), with I as in (4.19). If the differential d(I ◦ g)x : Rn → Rn
is invertible at some x, then [4, Prop. 22]

deg(G) = locdegx(I ◦ g) = sign (det(d(I ◦ g)x)) = ±1.

To compute the sign of det(Jacx(I ◦ g)), note that (4.13) and (4.19) show
that the coordinates corresponding to 1 6 j 6 r1 are

((I ◦ g)(x))j = ex[n]+
∑r

`=1
x[`] log(ε(j)

`
) = ex[n]+

∑r

`=1
x[`] log |ε(j)

`
|

since the ε` are assumed positive at all real embeddings. For the complex
embeddings we have two real coordinates, corresponding to the real and

(7)The degree of any (proper, continuous) function from an oriented manifold L to itself
is independent of the orientation on L. Thus, deg(I ◦g) is independent of the orientation
of Rn fixed above. A summary of degree theory in five pages, based on Dold’s textbook [5]
and sufficient for our purposes, can be found in [4, §7].
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imaginary parts of g(x)(j).Thus, setting Θ(j)
` := arg(ε(j+r1)

` ) for 16 j6 r2,

((I ◦g)(x))2j−1+r1
= ex[n]+

∑r

`=1
x[`] log |ε(j)

`
| cos

(
2πx[j + r]

Nj
+

r∑
`=1

x[`]Θ(j)
`

)
,

((I ◦g)(x))2j+r1
= ex[n]+

∑r

`=1
x[`] log |ε(j)

`
| sin

(
2πx[j + r]

Nj
+

r∑
`=1

x[`]Θ(j)
`

)
.

It is now easy to calculate the matrix J := Jacx=0(I ◦ g). Namely, abbre-
viating L(j)

` := log |ε(j)
` | (1 6 j 6 r1 + r2, 1 6 ` 6 r),

J =



L
(1)
1 · · · L

(r1)
1 L

(r1+1)
1 Θ

(1)
1 · · · L

(r1+r2)
1 Θ

(r2)
1

L
(1)
2 · · · L

(r1)
2 L

(r1+1)
2 Θ

(1)
2 · · · L

(r1+r2)
2 Θ

(r2)
2

...
...

...
...

...
...

...
...

L
(1)
r · · · L

(r1)
r L

(r1+1)
r Θ

(1)
r · · · L

(r1+r2)
r Θ

(r2)
r

0 · · · 0 0 2π/N1 · · · 0 0
...

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 2π/Nr2

1 · · · 1 1 0 · · · 1 0


.

To compute det(J), permute the rows so that the bottom row becomes the
first row, and row i becomes row i + 1 (1 6 i 6 n − 1). This introduces
a factor of (−1)n−1. Now permute columns so that all columns coming
from imaginary parts at complex places are placed to the right of all those
coming from the real parts (with the places in the same relative order as
before). This gives a factor of (−1)

∑r2−1
j=1

j = (−1)r2(r2−1)/2, and results
in a lower-right r2 × r2 diagonal block and a lower-left block of 0’s of size
r2 × (r1 + r2). Hence,

det(J) = (−1)n−1(−1)r2(r2−1)/2 det(R)
r2∏
j=1

(2π/Nj) 6= 0,

from which the lemma follows. �

We now incorporate the map f of Lemma 4.2 into our maps between
manifolds. By (4.7) and (4.9), f induces a (continuous) map F : T̂ → T

making

(4.20)

X× R
f
//

π̂

��

Rr1
+ × C∗r2

π

��
T̂

F
// T
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a commutative diagram (4.20),where T̂ , π̂, T and π are as in (4.17).

Lemma 4.7. — Fix the orientation on T̂ and T as in Lemma 4.6. Then
F in (4.20) is a proper map and

deg(F ) = deg(G) = (−1)n−1(−1)r2(r2−1)/2 sign (det(R)) = ±1.

Proof. — By Lemma 4.6, it suffices to prove that F is proper and that
deg(F ) = deg(G). This will follow once we construct a proper homotopy
between G and F . Suppose x × y ∈ X × R. Then x ∈ Xα for some α ∈ I.
By Lemmas 4.2 and 4.4, both f(x× y) and g(x× y) lie in the same convex
set Hα ⊂ Rr1

+ ×C∗r2 . Hence we can define ϑ : X×R× [0, 1]→ Rr1
+ ×C∗r2 ,

ϑ(x× y × t) := tf(x× y) + (1− t)g(x× y) (x ∈ X, y ∈ R, t ∈ [0, 1]).

Note that
ϑ(x× y × t) = ey ϑ(x× 0× t),

as f(x× y) = ey f(x× 0) and g(x× y) = ey g(x× 0). For x ∈ X, y ∈ R and
λ ∈ Λ := Zr ×N1Z× · · · ×Nr2Z, we have by (4.9) and (4.13),

(4.21) f ((x+ λ)× y) = ε(λ)f(x× y), g ((x+ λ)× y) = ε(λ)g(x× y).

As ε(λ) ∈ E := 〈ε1, . . . , εr〉, the homotopy ϑ descends to the quotient
manifolds,

Θ : T̂ × [0, 1]→ T, Θ (π̂(x× y)× t) = π (ϑ(x× y × t)) .

Since Θ provides a homotopy between F and G, our only remaining task
is to show that Θ is a proper map [4, Prop. 21(4)]. To this end, let K ⊂ T
be compact. We must prove that K̂ := Θ−1(K) ⊂ T̂ × [0, 1] is compact.
From this it will follow that F is proper, since F−1(K) = {x̂ ∈ T̂ | x̂× 1 ∈
Θ−1(K)}.
As the Λ-complex X ⊂ Rn−1 is nearly a fundamental domain for Λ

(see (iv) in Definition 3.1),

(4.22) π̂(X× R) = T̂ ,

so it suffices to prove the compactness of

K := π̂−1(K̂) = ϑ−1 (π−1(K)
)
⊂ X× R× [0, 1].

As in the proof of Lemma 4.5, Ñ (K) ⊂ [a, b] for some a, b > 0. Since
L := π (ϑ(X× 0× [0, 1])) is a compact subset of T , Ñ (L) ⊂ [c, d] for some
c, d > 0. If x× y × t ∈ K, then

[a, b] 3 Ñ (π(ϑ(x× y × t))) = eny Ñ (π(ϑ(x× 0× t))) ∈ eny[c, d].

It follows that 1
n log(a/d) 6 y 6 1

n log(b/c). Thus, y is bounded and K is
compact. �
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We now calculate another Jacobian determinant.

Lemma 4.8. — Given n affinely independent elements v0, v1, . . . , vn−1 ∈
Rn−1, and any n elements w0, w1, . . . , wn−1 ∈ Rr1 × Cr2 , let B : Rn−1 →
Rr1×Cr2 be the unique affine function such that B(vi) = wi (0 6 i 6 n−1).
Define K : Rn → Rn by

K(x[1], . . . , x[n]) := I
(

ex[n]B(x[1], . . . , x[n− 1])
)
,

where the linear isomorphism I : Rr1 × Cr2 → Rn was defined in (4.19).
Then

(4.23) det(Jacx(K)) = (−1)n−1 enx[n] det(W )/ det(V )

where x = (x[1], . . . , x[n]) ∈ Rn, W is the n× n matrix whose i-th column
is I(wi−1) (1 6 i 6 n), and V is the invertible (n − 1) × (n − 1) matrix
whose i-th column is vi − v0 (1 6 i 6 n− 1).

Proof. — The matrix V is invertible since, by definition of affine inde-
pendence, the vi − v0 (1 6 i 6 n − 1) are linearly independent. By (3.3),
B satisfies B (

∑n
i=1 yivi) =

∑n
i=1 yiwi provided

∑n
i=1 yi = 1, yi ∈ R. Let

En := (0, 0, . . . , 0, 1) ∈ Rn and ṽi := vi × 0 ∈ Rn = Rn−1 × R, and define
U : Rn → Rn by

U(x[1], . . . , x[n]) := x[n]En + ṽ0 +
n−1∑
i=1

x[i](ṽi − ṽ0).

Then, for 1 6 j 6 r1,

((K ◦ U)(x)) [j] = ex[n]

(
w

(j)
0 +

n−1∑
i=1

x[i](wi − w0)(j)

)
,

while for 1 6 j 6 r2,

((K ◦ U)(x)) [2j − 1 + r1]

= ex[n]

(
Re
(
w

(r1+j)
0

)
+
n−1∑
i=1

x[i] Re
(

(wi − w0)(r1+j)
))

,

((K ◦ U)(x)) [2j + r1]

= ex[n]

(
Im
(
w

(r1+j)
0

)
+
n−1∑
i=1

x[i] Im
(

(wi − w0)(r1+j)
))

.

The above formulas and elementary row operations yield

det(Jacx(K ◦ U)) = enx[n](−1)n−1 det(I(w0), . . . , I(wn))

= enx[n](−1)n−1 det(W ).
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Now,

det(Jacx(K ◦ U)) = det
(
JacU(x)(K)

)
det(Jacx(U))

= det
(
JacU(x)(K)

)
det(V ),

so

det
(
JacU(x)(K)

)
= enx[n](−1)n−1 det(W )

det(V ) = enU(x)[n](−1)n−1 det(W )
det(V ) .

Since U is surjective, the proof is done. �

We now use (4.20) to calculate the local degree of F .

Lemma 4.9. — Let x̂ = π̂(x) ∈ T̂ , where x = κ × y ∈ Xα × R, let
v0, . . . , vn−1 be the vertices of Xα (in any order) and let wi := f(vi × 0).
Assume that the wi are R-linearly independent and that κ is an interior
point of Xα. Then the local degree of F at x̂ is defined and

(4.24) locdegx̂(F ) = (−1)n−1 sign (det(V )) sign (det(W )) =: dα,

with V and W as in Lemma 4.8.

Proof. — By Lemma 4.8 and the inverse function theorem, f is a local
homeomorphism in a neighborhood of x, so locdegx(f) = ±1 is defined.
Note that deg(I) = 1 as I in (4.19) is an orientation-preserving homeo-
morphism, by definition of the orientation of Rr1

+ ×C∗
r2 . Hence (4.23) shows

that locdegx(f) is given by the right-hand side of (4.24). Here we used the
fact that the local degree is invariant under composition with orientation-
preserving local homeomorphisms [4, Prop. 21(7)].
We now consider the commutative diagram (4.20). Note that π̂ is a local

orientation-preserving homeomorphism in a neighborhood of x since X is
nearly a fundamental domain (see property (iv) in Definition 3.1). The same
holds for the covering map π at any point of its domain, and in particular
at f(x). Thus, locdegx̂(F ) = locdegx(f). �

Next we prove that the number of points in any orbit E · x inside a cone
Cα is bounded independently of x, as claimed at the end of Theorem 2.1.

Lemma 4.10. — Let Cα := f(Xα × R) be the cone in (4.8) and let
E := 〈ε1, . . . , εr〉 be the subgroup of the units of k generated by the ε`.
Then there exists cα ∈ N such that for any z ∈ Rr1

+ × C∗r2 , the orbit E · z
has at most cα elements in Cα. Moreover, given any compact subset K ⊂
Rr1

+ ×C∗r2 , there are at most finitely many ε ∈ E such that εK ∩Cα 6= ∅.

Proof. — We begin by proving the first claim. Let N be the “norm” map
defined in (4.18). As Cα is a cone, the map z → z† := N (z)−1/nz gives a
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bijection between (E · z) ∩ Cα and
(
E · z†

)
∩ Cα. Hence we may assume

N (z) = 1.
Letm andM be respectively the minimum and maximum values of N on

the convex hull [w0, . . . , wn−1] of the generators wi of Cα. Then m,M > 0,
and by homogeneity we have

m

(
n−1∑
i=0

ti

)n
6 N

(
n−1∑
i=0

tiwi

)
6M

(
n−1∑
i=0

ti

)n
(ti > 0, 0 6 i 6 n− 1).

Hence Γ := ker(N ) ∩ Cα is compact. Applying the logarithmic map L

in (4.15), we are reduced to bounding the number of ε ∈ E such that
L(z) + L(ε) ∈ L(Γ). This is bounded independently of z since the lattice
L(E) is discrete, proving the first claim.
The second claim is proved similarly. Namely, if εK ∩ Cα 6= ∅ with K

compact, then εK† ∩Cα 6= ∅. As εK† ∩Cα ⊂ Γ := ker(N ) ∩Cα, we need
to bound the number of ε ∈ E such that L(z) + L(ε) ∈ L(Γ) for z ∈ K†.
But this is again bounded since K† is compact. �

We can now prove that generic points z ∈ Rr1
+ × C∗r2 satisfy the basic

count formula (2.20) in Theorem 2.1. More precisely, let ∂Xα := Xα−
◦
Xα

be the boundary of Xα and let

(4.25) B :=
⋃
α∈I
µα=0

(Xα × R) ∪
⋃
α∈I
µα 6=0

(∂Xα × R), B :=
⋃
ε∈E

εf(B),

where E := 〈ε1, . . . , εr〉 and µα was defined in (2.15). Note that B ⊂
Rr1

+×C∗
r2 is a subset of Lebesgue measure 0 since the cone Cα is degenerate

if µα = 0.
We now prove the following claims.

(a) If µα 6= 0, then f maps Xα×R bijectively onto the cone Cα in (4.8).
(b) The restriction of π̂ to X× R−B is a bijection onto T̂ − π̂(B).
(c) F is surjective.

Because of (4.8), to prove (a) it suffices to show that f is injective on Xα×
R. Let x =

∑n−1
i=0 civi ∈ Xα with

∑
i ci = 1 be the barycentric expansion of

x ∈ Xα. Similarly, let x′ =
∑
i c
′
ivi ∈ Xα and suppose f(x×y) = f(x′×y′).

From (4.5) we find ey
∑
i ciwi = ey′

∑
i c
′
iwi. As we are assuming µα 6= 0,

the wi are linearly independent. Hence ey ci = ey′ c′i (0 6 i 6 n − 1).
Summing over i and using

∑
i ci = 1 =

∑
i c
′
i gives y = y′ and ci = c′i,

proving claim (a).
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Claim (b) follows since the quotient map Rn−1 → Rn−1/Λ is surjective
when restricted to X and injective when restricted to

⋃
α∈I

◦
Xα (see Propo-

sition 4.1 and (iv) in Definition 3.1). Claim (c) follows from Lemma 4.7, as
deg(F ) 6= 0 implies the surjectivity of F [4, Prop. 21(3)].

Lemma 4.11. — Let z ∈ Rr1
+ ×C∗r2 −B, where B was defined in (4.25).

Then ∑
α∈I
µα 6=0

µα
∑
ε∈E

ε·z∈Cα

1 = 1,

where µα = dα/deg(F ) was given in (2.15) using (4.24) and Lemma 4.7.

Proof. — With the notation of (4.20), set γ := π(z) ∈ T and suppose
x̂ ∈ F−1(γ) ⊂ T̂ . Such x̂ exists since F is surjective by (c) above. By (4.22),
x̂ = π̂(x) for some x ∈ X× R. But

π (f(x)) = F (π̂(x)) = F (x̂) = γ = π(z),

shows that f(x) = εz for some ε ∈ E. As we assumed z /∈ B, we have x /∈ B.
By (b) above, x̂ uniquely determines x. Conversely, given x ∈ X × R such
that f(x) = εz for some ε ∈ E, then x̂ := π̂(x) ∈ F−1(γ). As f(x) ∈ Cα
for some α ∈ I with µα 6= 0, Lemma 4.10 and (a) above show that the set
of such x̂ is finite and that F is a local homeomorphism in a neighborhood
of x̂. The local-global principle [4, Prop. 21(9)], Lemma 4.9 and (a) above
give

deg(F ) = degγ(F ) =
∑

x∈X×R
π̂(x)∈F−1(γ)

locdegx̂(F ) =
∑

x∈X×R
f(x)∈E·z

locdegπ̂(x)(F )

=
∑
α∈I
µα 6=0

dα
∑

x∈Xα×R
f(x)∈E·z

1 =
∑
α∈I
µα 6=0

dα
∑
ε∈E

ε·z∈Cα

1. �

4.3. End of proof of Theorem 2.1

Having proved the basic count (2.20) for generic z, we extend it to all
z ∈ Rr1

+ ×C∗r2 following Colmez’s unpublished idea for selecting boundary
parts of the Cα’s. It is only here that we must finally assume that k has at
least one real embedding.

Lemma 4.12. — Let v1, . . . , v` ∈ k ⊂ V := Rr1 × Cr2 be elements of k
with ` < n := [k : Q], assume r1 > 1, and define e1 ∈ V by e(1)

1 = 1 and
e

(j)
1 = 0 if 2 6 j 6 r1 + r2. Then e1 is not contained in the real span of
v1, . . . , v`.
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Proof. — Following the proof in [4, Lemma 9], define the R-bilinear form
on V ,

(4.26) 〈z, w〉 :=
r1∑
j=1

z(j)w(j) + 2
r1+r2∑
j=r1+1

Re
(
z(j)w(j)

)
(z, w ∈ V ).

Note 〈z, w〉 = Tracek/Q(zw) for z, w ∈ k. As ` < n, there exists x ∈ k∗ such
that Trace(xvi) = 0 for 1 6 i 6 `. Let ψ : V → R be the R-linear function
ψ(w) := 〈x,w〉. Thus, ψ(vi) = 0, and so ψ(e1) = 0 if e1 ∈ Rv1 + · · ·+ Rv`.
But (4.26) and r1 6= 0 give x(1) = 〈x, e1〉 = ψ(e1) = 0, contradicting
x ∈ k∗. �

For any subset C ⊂ V and x, y ∈ V , we shall say that −→x, y pierces C if y ∈
C and the closed line segment −→x, y connecting x and y intersects the interior
of C. We now characterize piercing of a cone in terms of coordinates [4,
Lemma 14].

Lemma 4.13. — Let w0, . . . , wn−1 ∈ V be a basis of a real vector space
V , let

C = C(w0, . . . , wn−1) :=
{
t0w0 + · · ·+ tn−1wn−1

∣∣ ti > 0 for 0 6 i 6 n− 1
}

be the corresponding closed polyhedral cone. In the basis w0, . . . , wn−1,
write x =

∑n−1
j=0 xjwj and y =

∑n−1
j=0 yjwj . Then

−→x, y pierces C ⇐⇒
[
yj > 0 (0 6 j 6 n−1) and

[
yj = 0⇒ xj > 0

]]
.

Furthermore, if −→x, y pierces C and s ∈ −→x, y is an interior point of C, then
every point of −→s, y is an interior point of C, except possibly for y.

Proof. — Suppose −→x, y pierces C. Then yj > 0 since y ∈ C. Let s ∈ −→x, y
be in the interior of C. Then s = (1 − t)x + ty for some t ∈ [0, 1] and
s =

∑
j sjwj with sj > 0 (0 6 j 6 n − 1). But sj = (1 − t)xj + tyj > 0

implies xj > 0 whenever yj = 0. Conversely, if yj > 0, and yj = 0⇒ xj > 0,
then for some sufficiently small positive ε and all t ∈ [1 − ε, 1), the point
s := (1 − t)x + ty lies in the interior of C. To prove the last claim in the
lemma, assume sj > 0 (1 6 j 6 n). Then ((1− t)s+ ty)j > (1 − t)sj > 0
if t ∈ [0, 1). �

Lemma 4.13 shows that an equivalent definition of the cone Cα in (2.19)
is

Cα =
{
y ∈ Cα | −−→e1, y pierces Cα

}
.

This is useful because of the following “piercing invariance” of e1.
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Lemma 4.14. — Assume r1 > 0, let y ∈ V := Rr1×Cr2 and let ε ∈ Rr1
+×

C∗r2 . Then−−→e1, y pierces a closed polyhedral cone C = C(w0, . . . , wn−1) ⊂ V
if and only if −−−→εe1, y pierces C.

Proof. — We may assume that the n generators of C are R-linearly inde-
pendent, for otherwise there is no piercing at all and the lemma is trivial.
As εe1 = ε(1)e1, where the real scalar ε(1) > 0, the lemma follows from
Lemma 4.13. �

To complete the proof of Theorem 2.1 we will prove the basic count (2.20)
in the form

(4.27) 1 =
∑
α∈I
µα 6=0

µα
∑

ε∈Iα(y)

1 =
∑
α∈I
µα 6=0

µα Card (Iα(y)) (y ∈ Rr1
+ × C∗r2),

where we have set

Iα(y) :=
{
ε ∈ E

∣∣ εy ∈ Cα} =
{
ε ∈ E

∣∣−−−→e1, εy pierces Cα
}
.

Note that Lemma 4.11 established (4.27) only for y ∈ Rr1
+×C∗

r2−B. If µα =
0 we have Iα(y) = ∅, for in this case Cα has an empty interior. As in [4,
Lemma 25], we will prove that the Iα stabilize along the path from e1 to y.

Lemma 4.15. — For t ∈ [0, 1] and y ∈ Rr1
+ ×C∗r2 , parametrize the line-

segment−−→e1, y by Py(t) := (1−t)e1+ty. Then there exists T0 = T0(y) ∈ (0, 1)
such that Iα(y) = Iα (Py(t)) for all α ∈ I and all t ∈ [T0, 1]. Moreover, T0
can be chosen so that Py(t) /∈ B for all t ∈ [T0, 1).

Proof. — Suppose ε ∈ Iα(y) for some α ∈ I, i.e. −−−→e1, εy pierces Cα. By
Lemma 4.14, −−−−→εe1, εy pierces Cα. Thus, for some s = s(α, ε) ∈ (0, 1), the
point (1−s)εe1+sεy is an interior point of Cα. By Lemma 4.13, (1−t)εe1+
tεy is also an interior point of Cα for s 6 t < 1. But εPy(t) = (1−t)εe1+tεy.
Hence ε ∈ Iα (Py(t)) for s 6 t 6 1. Thus Iα(y) ⊂ Iα (Py(t)) for T0 6 t 6 1,
where T0 := supα∈I,ε∈Iα(y){s(α, ε)}. Since I and Iα(y) are finite sets, we
have T0 ∈ (0, 1).
We now prove the reverse inclusion, i.e. Iα (Py(t)) ⊂ Iα(y) for t ∈ [1−ε, 1]

for some ε > 0. Note that Py(t) ∈ Rr1
+ × C∗r2 for t near 1, as Py(1) = y ∈

Rr1
+ × C∗r2 . If the inclusion claimed is false, then there is a sequence tj ∈

(0, 1) converging to 1, and corresponding εj ∈ Iα (Py(tj)) with εj /∈ Iα(y).
Thus εjPy(tj) ∈ Cα but εjy /∈ Cα. By Lemma 4.10, if Γ ⊂ Rr1

+ × C∗r2

is a small neighborhood of y, there are finitely many ε ∈ E such that
εΓ ∩ Cα 6= ∅. Hence the set of εj is finite. Passing to a subsequence, we
may therefore assume εj = ε is fixed, ε ∈ Iα (Py(tj)) , ε /∈ Iα(y). Thus
−−−−−−−→
e1, εPy(tj) pierces Cα. In particular, εPy(tj) ∈ Cα. As Py(tj) converges to

TOME 70 (2020), FASCICULE 2



520 Milton ESPINOZA & Eduardo FRIEDMAN

y and Cα ∪ {0} is closed in Rr1 ×Cr2 , it follows that εy ∈ Cα ∪ {0}. Since
εy 6= 0, it follows that εy ∈ Cα. As

−−−−−−−→
e1, εPy(tj) pierces Cα, Lemma 4.14

shows that
−−−−−−−−→
εe1, εPy(tj) pierces Cα, i.e. contains an interior point of Cα. But

−−−−−−−−→
εe1, εPy(tj) = ε ·

(−−−−−−→
e1, Py(tj)

)
⊂ ε ·

(−−−−−→
e1, Py(1)

)
= ε · (−−→e1, y) = −−−−→εe1, εy.

Hence −−−−→εe1, εy contains an interior point of Cα. As we have already shown
that εy ∈ Cα, we have proved that −−−−→εe1, εy pierces Cα. Hence, again by
Lemma 4.14, −−−→e1, εy pierces Cα. Thus ε ∈ Iα(y), contradicting our choice
of ε.
To prove the final claim in the lemma, suppose it is false. Then Py(tj) ∈ B

for a sequence tj ∈ (0, 1) converging to 1. From the definition (4.25) of B
we see that there are εj ∈ E and αj ∈ I such that Py(tj) ∈ εjf(∂Xαj ×R)
if µαj 6= 0 or Py(tj) ∈ εjf(Xαj × R) if µαj = 0. Thus ε−1

j Py(tj) ∈ Cαj :=
f(Xαj×R). Hence the εj belong to a finite set. Passing to a subsequence we
can assume that the εj = ε and αj = α are fixed. If µα = 0, the cone genera-
tors w0, . . . , wn−1 in (4.8) are R-linearly dependent. Hence f(Xα×R) = Cα
is contained in the R-span Hα of ` elements of the number field k, with
` < n. Thus, for two distinct values tj we have Py(tj) ∈ εHα. In par-
ticular, the straight line connecting both of these points lies in εHα. As
the Py(tj) ∈ −−→e1, y, this line includes e1. Thus e1 ∈ εHα, contradicting
Lemma 4.12. If µα 6= 0,

f(∂Xα × R) ⊂
n−1⋃
i=0

Hα,i, Hα,i :=
∑

06m6n−1
m6=i

Rwm.

Passing again to a subsequence of the tj , we may assume Py(tj) ∈ εHα,i

for a fixed i. This again contradicts Lemma 4.12. �

We can now finish the proof of Theorem 2.1, i.e. the basic count (2.20)
for all y ∈ Rr1

+ × C∗r2 , as reformulated in (4.27). Using Lemma 4.15, we
have Iα (Py(t)) = Iα(y) and Py(t) /∈ B for some t ∈ (0, 1). Hence, by
Lemma 4.11, ∑

α∈I
µα 6=0

µα
∑

ε∈Iα(y)

1 =
∑
α∈I
µα 6=0

µα
∑

ε∈Iα(Py(t))

1 = 1.
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