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FLUX IN AXIOMATIC POTENTIAL THEORY
II: DUALITY

by Bertram WALSH (1).

0. Introduction.

This paper reports a continuation of the investigations
of [21]. There, given a pair (W, 3-6) consisting of a locally
compact Hausdorff space W and a complete presheaf 96
of vector spaces of continuous scalar-valued functions over W
that satisfies the axioms of [4], we constructed a fine resolution
of the sheaf (associated with) 3€ that gave us a way to de-
termine analytically the sheaf cohomology groups of 96 (at
least in the presence of certain other assumptions). Here, we
shall examine the relations between the fine resolution and
cohomology groups of [21, § 2] and the theory of adjoint
presheaves introduced by R.-M. Herve in [9]. These relations
turn out to be as close as one might reasonably expect to
those that subsist in the classical adjoint theory of second-
order elliptic differential equations with smooth coefficients,
and again indicate the power of the axiomatic approach to
the study of these equations.

While this paper is a continuation of [21], not all the results
of that paper underlie those of the present one; the notion
of normal structure is used only in a note, and § 4 below is the
only part of this paper that employs the material of [21, §§3
and 4]. The material below is organized as follows : § 1 consi-

(1) Partially supported by NSF GP-11625.
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ders the two related topics of patching local adjoint sheaves
together to give an adjoint theory in situations where the
assumptions of the Herve adjoint-sheaf theory are satisfied
only locally, and replacement of the rather ungainly sheaf 2
of [21] by a very natural-looking sheaf of measures derived
from the Herve integral representation theory. Then § 2
establishes a duality relation between Ht(W, 36) (the sub-
script K denoting compact supports) and F(W, W} = X^,
and § 3 investigates more deeply the properties of this duality—
notably, the question of whether it is separated. That question
is related to certain questions of approximation that have been
investigated by A. de la Pradelle, and the most easily verified
sufficient conditions for the duality to be separated are related
to his work [19]. § 4 considers the consequences of the prece-
ding §§ in the case where both 96 and <%i* satisfy the hypo-
thesis of proportionality and the separatedness condition,
and relates the flux theory of [21, §§3 and 4] to duality and the
adjoint sheaf. Finally, § 5 offers notes on the material of its
predecessors.

That the notation of this paper will be the same as that of [21]
goes without saying, and we shall maintain its standing hypo-
theses : a pair (W, 3-6) satisfying the Brelot axioms will be
fixed throughout the paper, and the base space W will be
assumed to possess a countable basis for its topology. W may
be compact. Real scalars are used throughout this paper.
We feel we should warn the reader that the space of all scalar-
valued functions on an open set U £ W that belong to 96
may be denoted by 9-6u, r(U, 36) or H°(U, 3-6), depending
on the emphasis that seems appropriate in a particular situa-
tion.

1. A new resolution for <%; global adjoint sheaves.

Here we « patch together » local integral representations
for local potentials to give a global integral representation
theory, thus making it possible to replace the sheaf 2 of [21]
by a more tractable sheaf of measures; similarly, we patch
together local adjoint sheaves to give a satisfactory adjoint
theory in the situation where the essentially local assumptions
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of the Herve theory are satisfied, but no global potential
necessarily exists on W.

DEFINITION 1.1. — A region V g W will be called small if
<%[ V possesses a nonzero potential. A set A c W will be called
small if it is contained in a small region.

It is well known and easy to verify that every point of W
has a neighborhood V such that <%|V possesses a nonzero
potential $ consequently, there is a basis for the topology of W
consisting of small regions. Incidentally, since there is a non-
zero potential on a region U with support all of U whenever
there is a nonzero potential on U at all [9, p. 429, N° I], if a
region is a small set then it is a small region.

While the Herve theory of integral representations of
potentials [9] is a global theory, only one of its underlying
hypotheses is a global one (in addition to the hypothesis that
the topology of W has a countable basis, which is a standing
hypothesis in this paper), namely, that any nonzero potentials
exist on W at all. Indeed, the Brelot axioms are obviously
of a local character, and it is a consequence of the Herve
extension theorem that the hypothesis of proportionality of
potentials with common one-point support is a local hypothesis
[9, Thm. 16.4, p. 470]. We have just observed, however, that
the « global » hypothesis of existence of a nonzero potential
is satisfied in neighborhoods of any point in W; thus if we
henceforth make the assumption that the hypothesis of
proportionality holds locally for (W, 56), then we shall know
that in any small region in W the entire integral-representa-
tion theory of [9] is available for the restriction of Wo to that
region. We shall now investigate the relations between these
integral representations on overlapping regions in W. The
following definition will be convenient.

DEFINITION 1.2. — If V is a small region in W, by [9,
Thm. 18.1, p. 479] for each y e V one can choose a potential
py{») on V in such a way that py has support {y} and that
the function y -> py(x) is continuous in V\{x} for each
x e V, and that the function (x, y) -> py(x) on V X V is a
lower-semicontinuous R-^-wlued function, continuous off the
diagonal [9, Prop. 18.1, p. 480]. Such a function (x, y) -> py{x)
will be called a kernel on V.
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The simplest form of overlapping is containment; if we
take a small region V, a subregion U, and a kernel py(«)
on V, a seemingly reasonable choice of a kernel on U with
the« same singularity » at y would be ^(•) = p y { » ) — M[py],
where for any function s e= %' we denote by M[s] its greatest
harmonic minorant in U. It will be necessary, however, to
prove that ^(•) is a kernel on U; in the absence of other
hypotheses, the easiest way to do this seems to be a posteriori
verification (ct. Lemma 1.12 below, however).

PROPOSITION 1.3. — With V, U, and py(«) as above, the
function ^(») = py(») — M[p^] is a kernel on U.

Proof. — The results of [9] guarantee that kernels exist
on U; let Sy{») be such a kernel. By the Herve extension
theorem [9, Thm. 13.2, pp. 458-459], for each y e U there is a
unique potential ty{») on V which differs from Sy{») on U
by a harmonic function. If y^ e U and B is a compact
neighborhood of yo in U, then by [21, Cor. (3.5)] the func-
tions ty(») converge uniformly on compacta in V\B to
^o(') as y ~ ^ y o in B- Consequently, (rr, y) -> ty{x) is
jointly continuous off the diagonal of V X U. Since ty{»)
is a potential on V with support {y}, the hypothesis of
proportionality guarantees the existence of a number 9(27) > 0
such that ^(•) = y(z/). py{») for z / e U ; if yo e U, B is a
compact neighborhood of t/o and XQ e= V\B, then
(p(y) = py{xQ)~1 .ty{xo), a fact that shows that ^{y) depends
continuously on y in B and thus that y is a continuous
function on U. Consequently ^{y)~1 •^(•) is also a kernel
on U; but since y(i/)~1 .ty = p y , it is also true that
y^)-1.^-^ Q-E.D.

The next proposition shows that the relation between py
and qy is inherited by their integrals-which means all the
potentials on V.

PROPOSITION 1.4. — Let V, U, py and qy be as above.
If p is a potential on V and X is the measure on V (which
exists by [9, Thm. 18.2 (2), pp. 481-482]) for which
?(•) = f p y { 9 ) d\{y), then the potential p|U — M[p|U] on U

is given by f qy{9} ^[/^u.^]; if ^ = Xu-^ (lfe^ ^ ^oes not
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charge V\U) then it is also true that

M[p|U]=/M[p,](.)rfX(t/).

Proof. — If Xup is the specific restriction of p to U
(which, it should be remembered, is also a potential on V),
then p and Xup differ by a harmonic function on U by
[9, Thm. 12.2, p. 456]. Consequently we might as well deal
with \up as with p; but 5lup = j Py^EXu*^] (?/) ^Y
[9, Thm. 18.3, p. 482], so we also might as well assume that X
puts no mass in V\U and work only with X.

Suppose further, for the moment, that X has compact
support in U. Let {Un}n°==i be an exhaustion of U by
regular inner regions, and for any function s e 3^ define
M^[s] to be the function equal to s in U\U^ and to
H(5|^Un, UJ in Un; then M[s] is the decreasing limit of
the M^]. (The existence of such an exhaustion is guaranteed
by [10, § 4, p. 183 ft.] and the existence of a countable base
for W.) If x e U and N is so large that x e UN and
Supp X c UN, then for n ^ N we have

^ln[p]W =J^[fPyW ^)]^^)
=f[f^PyWWt)]d;XW
==fM^]{x)d\(y)

since M^[py](^) equals the inside integral except for y outside
U^-but V\U^ is a set of X-measure zero. Taking the limit on
n ^ N gives

M[p](^==/M[p,](^)rfX(2/)

by the Lebesgue monotone convergence theorem. Finally,
then,

p{x) - M[p]{x) =fpy(x) d^{y)-fM[p,] d^{y)
=f[py{x)^M[p,]{x)]^(y)
=fq,{x)d^{y).

In the case where Supp X is not compact, one can always
00

write X = S \/ where each measure \j does have compact
j=iy=i
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support in U. We then have

p(-)=i/p,(-)^(y)7=1J

= I M[jp,^(y)](.) + |/^(-)^(Y).

The first of these sums consists of harmonic functions, the
second consists of potentials, and both are bounded above
by the superharmonic function p|U. The first sum is thus
(by Harnack's principle) a harmonic function and the second
sum a potential on U. From the uniqueness of decomposition
of the superharmonic function p|U into its harmonic part
and its potential part, it follows that the first sum must be the
greatest harmonic minorant on U of p|U, and so we have

M[p|U] = | / M[p,|U] d\,{y) = f M[p,|U] dk(y)

as desired, and

S qy{-)^(y)= fq^)d\(y)
j=i

is p|U- M[p|U], Q.E.D.

LEMMA 1.5. — Let Vi and Vy be two small regions in W
for which V i n V y = ^ ^ ; let p\ and p^ be kernels for each
of those regions, and let U be a region contained in the inter-
section. Then there exists a uniquely determined continuous
positive real-valued function <piy on U such that

(i) ^)=?v(y)-^)
for {x, y) e U X U, where q^ = p? — M[j^|U] is the kernel
induced on U by p^ as in the discussion above {k = i, /).
Equivalently,

(2) pi{x) + 9^)-M[^|U](^) = ?y(i/).p^) + M[^|U](^)
for all (x, y ) e U X U, and in particular p^ and (fi^.p'y
differ by a harmonic function for all y e U.

Proof. — There is very little to prove; the existence of a
function for which (1) is true is a consequence of [9, p. 480,



FLUX IN AXIOMATIC POTENTIAL THEORY 377

Remarque], and (2) is equivalent to (1) by the definition of the
^ , / c = i , / , Q.E.D.

THEOREM 1.6. — Let {V,}^i be a cover of W by small
regions. There exists a corresponding set of kernels {/^(^hei
such that for each ordered pair (i, /') of indices with Vi n Vy + ^
and each region U c Vi n V,, the relations (1) and (2) of Lem-
ma 1.5 above hold with y^- '=. 1. In particular p^y and p^
differ by a harmonic function in V^ n V,.

Proof. — Begin by choosing some set of kernels {P^ei
on the respective N,. Applying (1) of the lemma to any
component U of V; n Vy, we find that there jis a uniquely
determined <p^ defined on U for which (1) and (2) of the
lemma hold with the p^ replaced by the Pj;, and so <p^ is
defined, component-by-component, on all of V^ n Vy. By
interchanging the roles of i and / we see that <p^. y« == 1,
and it is similarly easy to verify that if V^ n V^ n V, ^ ^,
then the 1-cocycle relation y/u. 9^ • y./h E= 1 must hold on
that intersection. We thus have a 1-cocycle on N({VJ^i)
with coefficients in the (complete pre-) sheaf under multipli-
cation of continuous positive real-valued functions on open
sets in W. It is well known that this sheaf is fine, and so we

v

can determine a Cech 0-cochain {yi},ei °t continuous positive
real-valued functions on the respective V; for which
Vij = fi'fT1 (cf- ^e argument in [8, Ch. i, Sec. E, p. 31 ff.]).
Now (2) of Lemma 1.5 above is equivalent to saying that
^(^•P^') ^d y^-P^) differ by a harmonic function
on Vi n Vy. Consequently the kernels

{piA9)=fi{y)^)^}
satisfy the specifications of the theorem, Q.E.D.

DEFINITION 1.7. — A pair ({VJ^i, {^(•)hei) satisfying
the specifications of Theorem 1.6 above is called a normalization
for 96. If ^ is a continuous positive real-valued function
on W, then the pair ({VJ^i, {^(y)-1.^-)}^), which
clearly also satisfies the specifications of Theorem 1.6, is a renor-
malization of the pair originally given.

It is clear that normalizations exist-we have given a cons-
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truction for them-and that the construction is at least ambi-
guous up to renormalization, which is simply the replacement
of the cochain {yJiei of the construction by something
cohomologous. The fact that this is all the ambiguity involved
in a choice of normalization can be deduced from the following
proposition. We have another use for the proposition, and so
we leave the classification of ambiguity to the reader.

PROPOSITION 1.8. — Let ({VJ^i, {pSJiei) be a normaliza-
tion^ and let V he a small region in W. Then for any kernel p°y
on V there exists a unique continuous positive real-valued
function y(y) on V such that for every point y e V and every
i €E I with y e Vi there exists a neighborhood of y in V n Vi
on which p\ and y(y).p? differ by a harmonic function.
Equivalently, there is a kernel py on V such that for every
y e V and every i e I with y e V; there exists a neighborhood
of y in V n V; on which py differs from p\ by a harmonic
function. Clearly py is unique.

Proof. — This is about the same as the proof of Theorem 1.6.
For a fixed index i and a fixed region U c V n Vi, Lemma 1.5
provides a continuous positive real-valued function <p,u
on U such that p'y and 9i,u(y).p? differ by a harmonic
function on U for y e U, and it is easy to see that y^u
does not change if U is replaced by a smaller region. Thus
y^u also does not change if U is replaced by a larger region,
and we may think of y^u = y; as defined on all of V n V^.
Given another index / we may repeat the performance;
however, it will have to be true that both the difference of py
and 9i(y).p? and the difference of p^ and 9j(y).p^ can be
extended to be harmonic on V n V,;n V,. But then ^i{y).p°y
and y/y) .p°y differ by a harmonic function in a neighborhood
of y, and so they must be equal. This can happen only if
<pi(z/) = y/y) in that intersection, and so we can unambi-
guously define y by setting y(y) = y;(y) for y e V;, for each
i e I. This function y clearly satisfies the specifications of
the proposition, and py = ̂ {y)'p°y is a kernel that satisfies
the specifications given for it, Q.E.D.

DEFINITION 1.9. — Let ^ be the complete presheaf of signed
measures on W satisfying the following conditions: if X is an
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open set in W, a measure [JL in jlb(X) belongs to ^ i/* and
only if for every XG X (Aere 15 a smaM neighborhood V o/* a:
and a neighborhood K of x with K g V , 5uc/i that %.K.H
/ia5 (/^ property that for some kernel py on V the function
x—> \ py{x) d[)(K•IP l l](2 /) ts a continuous potential on V.

As an easy consequence of the fact that whenever the sum
of two potentials is continuous both the summands are conti-
nuous, we see that if f p y { 9 ) d[^K.|p.|](y) is a continuous
potential on V, then the same is true if |pi| is replaced by
any Xej1fli)+(X) with X ^ A*.|pi| for some /c. Thus K can
be replaced by any smaller set—in particular, by a relatively
compact one-and therefore py can be replaced by ^ ( y ) - p y ,
the most general replacement possible, without changing the
meaning of the definition. The fact that K can be shrunk if
necessary insures that the defining condition for ^ is a local
condition; we also see that ^ is a sheaf of modules over the
algebra 33 of bounded Borel functions on W (where f acts
on UL by multiplication) and thus a fortiori a sheaf of modules
over the subalgebra @ of simple functions.

There is a homomorphism from the presheaf Q of [21, § 2]
to ^ which we now proceed to construct. Select some norma-
lization ({VJ;gi, {p^hel) tor W) on W. For each open
region V in W, let ^pv denote the cone of continuous
potentials on V, as in [21, § 2], and let Ov = ^v — ^v-
If spy = {0}, set Zy: Qv -> ^v equal to the zero transfor-
mation. Otherwise (i.e., if V is small), for each p e ̂  let
Zyp be the unique measure on V for which

^-/^(•^[Zvp^),

where the kernel py on V is constructed as in Proposition 1.8
above. The mapping p -> Zyp is clearly additive and positi-
vely homogeneous, so it can be extended uniquely to a linear
mapping Zy: Ov -> ^(V), and it is clear that Zy takes its
values in ^v Moreover, Zy carries the action of specific
restriction on Ov to the action of the usual restriction of
measures on ^y: if Y £ W is an open set and p e= ^y?
then [9, Thm. 18.3, pp. 482-483] shows precisely that

^[p] = f Py{9} ^[Xynv.Zvp](y)
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and consequently that the same equation holds if Y is repla-
ced by a closed set K. Thus for any Borel set E, compact K
and open Y with K c E c Y we have

^K[P] ^ ^[P] < XY[P]

and
Mp] ^ /^(•^[y.Env.ZvpKz/) ^ Xy[p],

and taking limits from both sides we get

^[p] = fpy{9) ^[XEnv.Zvp].

Suppose U c V is an open region. By the definition of
the linking maps in the presheaf Q [21, Def. (2.7)] and
Proposition 1.4 above, we have

ruv[p]=p(-)-M[plU](.)

=/?,(•) d[^p]{y) - / M[p,|U](.) d[Zyp]{y)

=J'^(•)^b(u•Zvp](y)

where, as before, qy = py\V — M[py[U], a kernel on U.
Since the kernel qy has the property of Proposition 1.8 above
with respect to the region U, the measure yu.Zyp is
Zu[y*uvp] by definition, and so Zu ° ruv == y.u. Zy. Since
multiplication by ^v is the restriction mapping on measures,
this shows that the family of linear maps { Z y : V a region
in W} defines a homomorphism of presheaves from Q to ^;
we shall denote that homomorphism of presheaves by Z
and its corresponding homomorphism of sheaves by ^. It is
clear that ^ preserves the action of specific restriction over
Borel sets E ^ W ; equivalently, ^ is a homomorphism of
sheaves of ©-modules.

Our interest in ^ and ^ lies precisely in the following
fact.

THEOREM 1.10. — The homomorphism ^ is an isomorphism
of Q and ^

Proof. — Little is left to prove. The definition of ^ insists
that the elements of the stalk ^ at .^W are just the
(germs of) measures of the form Zv[p4" -- p~], where p4"
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is the potential f p^(») d^^^y) and p- is defined
similarly—V being some small region containing the point x.
The fact that ^ is 1-1 on stalks is just a restatement of the
uniqueness of the representing measure in the Herve integral
representation. Suppose ^ e= W and V is a region contai-
ning x on which there is a function pi — pa e S^v (with
each p, e spy, i = I? 2) such that Zy[pi — ?2] is a measure
whose germ lies in the zero of the stalk ^. That means
precisely that there is a neighborhood U of x in which
Zy[pi — pz\ places no mass, and without loss of generality
one can take U to be connected. With py and qy being the
usual things, that means that

yuv[pi — p2] = /^(•) ^[xu.Zv^i — p2]](y) = 0.
so pi — pa determines the zero of the stalk ^. Thus ^ is
1-1 and onto, Q.E.D.

What this theorem means, of course, is that whenever the
hypothesis of uniqueness is satisfied (locally) on W, one may
forget about the sheaf 2 of [21] : one merely replaces the
sheaf 3 by ^, the homomorphism A of [21, Thm. (2.11)]
by ^ o A (and immediately agrees to call the composite A),
and the resolution O-^-^-^a-^0 of [21] by a new
resolution O—^—^-^^—^O. The new sheaf and homo-
morphism are much pleasanter to work with, if only in that a
sheaf of (germs of) measures is much more susceptible to
analysis than a sheaf which can only be treated by dealing
with the presheaf that generates it-a presheaf whose linking
maps are not « restrictions »in any common sense of the word.
It is immediately clear, and useful, that if p e ̂ y where V
is a small region, then Zy[p] = Ap with this new definition
of A, so the relation between a potential on a small region V
and the measure that represents it with respect to a kernel
py(») on V satisfying the specifications of Proposition 1.8
above is represented by the satisfyingly classical formula
p == f py(») rf[Ap](z/). There is a loss of naturality in the
functorial sense, in that the sheaf 2 is determined directly
from knowing 96 (as is 31), while the construction of ^
seems to depend on the normalization ({V^iei? {pSJiesi).
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However, it is easy to verify that if this normalization is
renormalized by a function ^, the result is to replace Zy[p]
by ^ { 9 ) ' ^ [ p ] ^or eac!1 region V and pe^y; thus the
elements of ^ are replaced by their multiples by ^ and
(since ^ is closed under multiplication by [locally] bounded
Borel functions, as is easily verified) ^ is unchanged. The
homomorphism ^, however, is altered by « postmultiplication
by ^ », and that means that after 2 has been identified
with ^, A is identified with (( A followed by multiplication
by ^ ». Thus the constructions for varying normalizations
are naturally equivalent, with the equivalence being a multi-
plicative one.

The usefulness of kernels satisfying the condition of Propo-
sition 1.8 above suggests a formal definition.

DEFINITION 1.11. — If VeW is a small region and
({Vi}iei5 {p^iei) is a normalization of 96 on W, then a
kernel py on V satisfying the condition of Proposition 1.8
above that py — p^y have a harmonic extension to a neighborhood
of y for each i e I with y e V; will be called a normalized
kernel (with respect to the given normalization).

In addition to the assumption that the hypothesis of
proportionality holds (locally, if you wish) for S ,̂ the theory
of adjoint sheaves makes the assumption that there is a basis
3) for the topology of W composed of « completement
determinant » (henceforth, c.d.) domains. This again is a local
hypothesis, and if we make it (as we shall, henceforth, for the
rest of this paper) for (W, 36) the entire adjoint-sheaf theory
of [9, Ch. vi ] is available for the restriction of 96 to any small
domain in W. However, one gets different sheaves for diffe-
rent small regions (and for different choices of kernels on those
regions); one needs to know the way in which these sheaves
are interrelated.

To this end, let V be a small region, U c V a subregion,
and p y { » ) a kernel on V; let qy == p|U — M[p|U] as in 1.3
through 1.6 above, let {UJ^Li be an exhaustion of U by
regular inner regions, and let M^[»] have the same meaning
for superharmonic nonnegative functions on U as it did in 1.4
above. Using the kernel py we can define an adjoint sheaf
on V, which we shall denote by (<%|V)* since there is no
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danger of ambiguity as yet; similarly, we shall denote by
(3'6|U)* the adjoint sheaf defined on U by the kernel qy.

LEMMA 1.12. — With U, V, py and qy as abo^e, the function
(^, y ) —> M.\_py\[x) is jointly continuous on U X U; moreover,
it belongs to r(U, 96) in the first variable for fixed values of
the second and to F(U, (381V)*) in the second variable for
fixed values of the first.

Proof. — The function {x, y) -> M[py'](x) is the decreasing
limit of the functions {x, y) -> Mn[py]{x) pointwise on
U X U. Select a compact K c U, and think of (x^ y) as
restricted to K X K. If N is a sufficiently large number
that KcUN, then My[py](x) = f py{t) dp^{t) where p
denotes as usual the representing measure on ^UN tor 96.
Since ((, y) —> py(t) is jointly continuous on bU^ X K,
there is a constant k ^ py[t) for all ((, y) €=?)UN X K; thus
if h{x) = j k rfp^, then for all n > N the inequality
M^[py]{x) < My[py]{x) ^ h[x) holds for all {x, y) e UN X K.
By Harnack's principle, the family

{MM: n ^ N, i / eK}
is an equicontinuous family of harmonic functions on UN;
consequently the family of pointwise limits

{M[p,]( . )=l imM,[p,]( . ) :yeK}

is also equicontinuous and harmonic on UN. It thus suffices to
show that y —> M[py](a;o) is continuous for each XQ e K
in order to make (re, y) ~> M[py](rc) jointly continuous on
K X K. But t —> {y -> Py{t)) is a continuous (3(U^)-valued
function defined on ^U^, taking its values in the closed
subspace F(U,, (^|V)*) c(°(U,) by [9, Example, p. 537]-and
for XQ e U^, y -> M^[py]{xQ) = f py(t) dp^(t) is just the
vector integral of this F(U, (381V)*)-valued function, whence
it too belongs to F(U, (38|V)*). Consequently the limit
function y -> M[py](xo) belongs to F(U, (98|V)*) by the
Harnack principle for the adjoint sheaf [9, Cor. p. 540]. This
establishes that the function is adjoint-harmonic in y for
fixed x and a fortiori proves the separate continuity that was
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needed to make {x, y ) -> M[py](x) jointly continuous, Q.E.D.
We insert the following lemma now, though we shall not

need it for a while, because its proof is so similar to that of
1.12 above. Indeed, we only sketch the proof.

LEMMA 1.13. — Let U, V, and py be as above. Suppose
(x, y) —> Sy(x) is a function defined and continuous off the
diagonal of U X U, such that

(1) for each y e U, p y ( 9 ) — S y { » ) can be extended (i.e.,
defined at y ) in such a way as to belong to F(U, 3€);

(2) for each x, y-> Sy(x) is in F(U, (3'6|V)*). Then
(A) for each x, y —> py(x) — Sy(x) has an extension to x

belonging to F(U, (^|V)*);
(2?) the extended function (x, y) -> py{x) — Sy(x) is jointly

continuous on U X U;
(C) if \ is a measure of compact support in U, then

j P y { 9 ) ^{y) an(^ I s y{ 9 ) ^{y) differ by a harmonic function
in U.

Proof sketch. — Since all the conclusions given above are of
a local character and U has an exhaustion by regular inner
regions which must eventually contain Supp X, there is no
loss of generality in giving a proof for inner-regular U. Condi-
tion (1) above then shows that

Sy — M[sy] = qy== p y - ^ M[py]

for each y e U ; thus (A) and (B) will both follow if one
can show that (x, y) -> M[^](a;) is jointly continuous and
harmonic and *-harmonic in x and y separately. But this is
even easier to see than it was for py in 1.12, because one can
write M[5y](a^) == j Sy{t) d^{t) and use the joint continuity
and separate harmonicity of Sy(x) with no need to take a
limit over an exhaustion. We therefore omit the details.
Similarly,

fsy(x) d\{y) ==fqy(x) d\{y) + f M[sy]{x) d\(y)
=fpy{x) JX(y) + / [M[sy]{x) - M[py](x)] d\{y)

and checking that the second integral is harmonic is again
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simply a matter of looking at it as the vector integral of the
F(IJ, ^-valued function y -> (M[sy] — M[py]) with respect
to X. This suffices to prove (C), Q.E.D.

The next proposition is precisely that the two competing
ways to define the adjoint-harmonic functions on U are
consistent.

PROPOSITION 1.14. — If (3^1 V)* is the adjoint sheaf formed
on V using py and (5@| U)* is the adjoint sheaf formed on U
using qy, then (^]V)*|U == (^|U)*.

It is convenient to separate one part of the proof as the
following lemma.

LEMMA 1.15. — Let K be a compact subset of U and X
be a relatively compact open set with K s X g X c U . Let s
be a potential on V whose support is contained in K. Denote
the operation of forming the reduced function (« reduite ») on V
and U by the letters R and P respectively. Then

^W^TT _ i6v\x
s I ̂  — ^s\V •

Proof. - Set Sv == { < V € E ^ : ^v|V\X = s\Y\X and
ty\ X ^ s\ X} and £u == {h e ̂  : <u| U\X = s\ U\X and
(u|X ^ 5|X}; then R^ = inf Sv and P^ = inf £u.
Any such superharmonic function (y clearly restricts to
such a tv'y on the other hand, any such (u can be extended
in a canonical way to the rest of V, since one may simply
set it equal to s on V\U. (The resulting extension will
then belong to Sv.) Thus the infima that define R and P
are the same, so the values of R and P are the same on U,
and this equality passes over to the lower-semicontinuous
regularizations since U is open.

Proof of 1.14. — Begin by making the observation that all
elements of £y above have the greatest harmonic minorant
M[5|U] on U, since their greatest harmonic minorants can
be calculated using an exhaustion of U all of whose elements
contain X-and all elements of Sv equal s outside
X. Consequently, P(^_M[,IU]) = P^ — M|>|U], because if
tv e £u then

tv- M[s\V] =tv- M[(u] ^ 0
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and so <u — M[s[U] is a competitor for the infimum that
defines P^-M^U]) ; this makes P^-M^U]) + M[s\V] ^ P^,
but the reverse inequality is obvious, as is the fact that the equa-
lity passes over to the lower-semicontinuous regularizations.
Now if X is a c.d. open set with compact closure contained in U,
let y e X be fixed and let o^- and T^ respectively denote
the measures defined in [9, Def. 1, p. 537] relative to (3^|V)*
and py and relative to (381U)* and qy respectively; that is,
^(•) =/p.(-W(z) in V and f>^(.) = / q,{.) ^(z)
in U, respectively. By 1.15 above, we know that

ft^(^) = PW

for all x e U. The measure o^- has compact support contained
in U; therefore for all x e U

^W = f P.W dW
= / q^x) d^{z) + / M[p^(x) d^{z)
=fq^x} d^{z) + M[/p,(.) d^(z)]{x)
-/^)^x(z)+M[ft^x|U](^
=/^)d^(z)+M[p,|U](rr),

the third equality being a consequence of 1.4 above and the
last a consequence of the fact that py is supported in X.
On the other hand, for all x e= U we have

PW = P^-^^x) + M[p,|U](.r)
=P^(x)-{-M[py\V]{x)
=fq,{x)d^{z)+m[py\V]{x),

Combining those two relations with that of 1.15 gives

f^(•) d^{z) = f ^(.) d^{z)

on U, and by uniqueness of integral representations of
potentials on U with respect to the kernel z —^ ^(•), we
have (T^ == T^. Since those are the representing measures
for the regular* set X with respect to the adjoint sheaves
(S^jV)* and (S^jU)* respectively and X and y were arbi-
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trary, the restriction of the former sheaf to U is the latter
Q.E.D.

It is quite easy to see what this fact implies in the situations
considered in 1.5 and 1.6 above. (The number (3) for the
condition is chosen to continue the numbering of 1.5.)

THEOREM 1.16. — If V; and V, are two small regions in W
wzth V^ n Vy 7^ ^ and p\ and p^ are two kernels on V^
and Vj respectively, and if <p^ is the function of 1.5 above,
then

(3) (^|V,)*|(V, n V,) - y^|V,)*|(V, n V,)

where (^[V^)* is the adjoint sheaf formed on V\ using the
kernel p^ k = i, /. In particular, if ({VJ^i, {/^hei) is a
normalization of 96 on W, then

(3') (^| V,)*| (V, n V,) = (^| V,)*| (V, n V,)

for any indices i and /.

Proof. — There is little left to prove : given any region
U c V . n V y , we know by 1.16 above that (^|Vfc)*|U is the
adjoint sheaf induced on U by the kernel q1}, k == i, /,
where the kernel ^ is P?—M[p^ |U] as usual. Since
^(•) = ?i/2/) •^(•) by 1.6 above, we have (3) by [9, Remarque,
p. 536]$ and (3') is a special case of (3), Q.E.D.

DEFINITION 1.17. — Given a normalization ({VJ^i?
{p^}iei) of 96 on W, the global adjoint sheaf it defines is the
(complete pre-) sheaf of vector spaces of continuous scalar-
valued functions 96* defined by the condition that for any open
XcW.^e^X) belongs to 3% if and only if

/•|V,nXe(^|V^nx

for each i e= I for which V^ n X 7^ .̂
By virtue of 1.16 above, this is a well-defined complete

presheaf whose restriction to any V;, i e I, is precisely the
adjoint sheaf induced on Vi by ])\.

The following proposition is frequently useful. We omit its
proof, because the proof is essentially the same as that of
1.16 above.
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PROPOSITION 1.18. — Let a normalization of 96 on W and
the global adjoint sheaf <%* it defines as in 1.17 above he given.
If V is a small region in W and py is the normalized kernel
on V given by 1.8 above, then the adjoint sheaf induced on V
by py is precisely ^[V.

It is easy to see that the ambiguity in the definition of the
global adjoint sheaf is the same ambiguity that is present in the
definition of the sheaf homomorphism ^ of the discussion
preceding 1.10 above. That is, if ({VJiei, {p^Jiei) is renor-
malized by multiplication by 4'~l(^/) as in 1.7 above, then W
is replaced by the multiplicatively equivalent sheaf ^-1 • ̂ *-
This ambiguity will in general be a source of no concern,
since in everything that follows we shall have begun by
choosing and fixing a normalization of 96 on W. However,
there will be one special case in § 4 below in which it will be
desirable and natural to replace W by a certain multipli-
catively equivalent sheaf, and it is desirable to note at this
point that this replacement is effected simply by renorma-
lizing 3€.

2. The fundamental duality relation.

This section will be concerned with the analytical details
of establishing a duality relation between the spaces H^.(W, 3-6)
(the K denoting compact supports, as it will in all contexts
henceforth) and H°(W, 3€") == 3€w; the question of whether
this duality is separated, and the consequences of its being
separated, will be dealt with in the next section. We shall
assume throughout that a normalization of 36 on W has
been chosen and fixed, and denote by 96* the global adjoint
sheaf defined by that normalization. We shall also regularly
use py to denote the unique normalized kernel on a given
small region V, as constructed in 1.8 above.

To begin, we give the following useful lemma.

LEMMA 2.1. — Let V be a small region and py the norma-
lized kernel thereon. If \ e r'K.(V, ^) (i.e., \ is a measure in ^
of compact support in \) then there is a difference of potentials
yeOy for which Ag = \. If geF^V, S{) (i.e., g is a
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function of compact support in V which belongs to S^) then

§= f p A ' ) 4Ag](y).
Proof. — To prove the first assertion it will suffice to show

that if X is positive, then p = j Py{9) d^{y) ^ continuous;
for p is a potential, and if it is continuous then Ap = X.
Given XQ e V, by definition of ^ there is a connected open
neighborhood U of XQ and a smaller neighborhood Y of XQ
for which po = j cly(9) ^[Tj •X](2/) ]s a continuous potential
on U. (Here and below qy is the unique normalized kernel
on U, which [M denoting as usual the operator that takes
the greatest harmonic minorant of nonnegative superharmonic
functions on U] is just py — M[py].) By 1.4 above and
[9, Thm. 18.3, p. 482] the specific restriction of p to Y is

^YP = fpy^d^^y) and

^P - M[Xyp|U] =/^(-) d[^.\]{y) = po

on U. Thus p = Xyvrp + Po "4~ M[Xyp|U], which shows
that p is continuous at the point XQ, which was arbitrary.

For the second assertion, observe that we already know
that f p y { 9 ) d[/^g](y) has the same Laplacian as g. Conse-
quently the function g — f p y { 9 ) ^[Ag]^) has zero Laplacian
on V, and so is harmonic on V. On the other hand, since g
has compact support and the potential p == j p y ( 9 ) d|Ag|(z/)
on V has no zeros, one can easily see that

g - f p,(.) d[Ag](y)

is both majorized and minorized by appropriate scalar multiples
of p. Consequently, g — j py(<) d[^g](y) = 0, Q.E.D.

We should perhaps remark that the adjoint—sheaf machinery,
and the hypothesis of a basis for the topology of W consisting
of c.d. sets, was not used in 2.1 above.

PROPOSITION 2.2. — Let V be a small region, V c V an
open set that is relatively compact in V, and let pi e jIb^U)
be a measure of finite total mass. Let o-̂  be the measure (supported
by bV) for which RJ^ = f p y d ^ .

y %/
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Then

(1) the measure-valued function y —> ̂  is (scalarly) inte-
grable with respect to pi;

(2) if X == f o"̂  du.(y), then for any nonnegative lower-
semicontinuous function f on bU, j f d\ = f H*(/*) Jpi,
w/^re H*(/*) 15 t/ie upper (Perron) solution of the Dirichlet
problem for W on U;

(3) i/* pi Aa5 compact support and U ^5 regular for <%^
then X e FK(V, ^);

(4) if pi has compact support and belongs to ^, then the
integral p = j py d[^(y) defines a continuous potential on V
with R;̂  =. f p,dX{z),

(5) if g e F(V, 91) anc? Supp g ^ U 15 compact, then
J H*(/*) c?[Ag] == 0 for any nonnegative lower-semicontinuous
f on ^U which is integrable with respect to ^-harmonic measure.
In particular, f fd[/^g~\ = 0 for any fe F(V, 3^).

Proof. — Regardless of whether U is regular for 3^*, o-^
is the representing measure for W' at y in U [9, Cor. 1,
p.549],soforanylower-semicontinuousnonnegative f on bU,

f^if.

W(f)(y) == J /*(() d^(t)'y since there exist positive *-harmonic
functions defined in neighborhoods of the compact set U,
it is easy to see that the finite-total-mass assumption on pi
is necessary and sufficient for y —> ̂  to be scalarly integrable.
That proves (1); (2) is just [17, Cor. p. 19], because it says that
f* f d [f ̂  d^(y)] = f^ [̂ * f d^] d^{y). (Essential upper
integrals do not enter the picture because all topological spaces
present have countable bases.) To prove (3), observe that the
Harnack principle for <%* implies the existence of a constant
k for which G-^ ^ k. (T^ holds for all y e= Supp p. with
respect to a fixed yo e Supp pi, because Supp ^ is assumed
to be compact. One thus has A'.(T^ == (/c.o"^ — o"^) + ̂  for
y e Supp pi, with both these measures being positive and
scalarly continuously dependent on y. For any fixed *reV
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we thus have

1| a|| ./c.R^) = k . f p ^ x ) d^.fd^y)
= f p^x) d [f {k. ̂  - (T?) dp.(t/)] (.)
+fp,(x)(D.{z)

by the same Bourbaki corollary cited earlier, because z —> pz{x)
is nonnegative and lower-semicontinuous on V. Since the
left side of this equation is a continuous potential (because U
was taken to be regular for 3€) and both terms on the right
side are potentials, both terms on the right are continuous;
in particular j Pz{9) cD^{z) is continuous and its Laplacian X
belongs to ^(V, ^). (4) follows from the fact that by [9, Cor. 2,
p. 552]

R^)=fRWd^{y)

while by definition of ^ and that same Bourbaki corollary

J ft^.) d^{y) = f |jp,(.) d^{z)] d^y)
= f p ^ ) d [ f ^ d ^ y ) ] { z )
=fp^)d\[z).

Finally, to prove (5) let [f^ and pi~ be the positive and
negative parts respectively of Ag. Since by 2.1 above

g = f p y Wy} - f p y d^-(y),

the potentials p* == j P y d ^ ± { y ) are equal everywhere but on
the compact support of g. Consequently ftj^ = ft^
everywhere in V. Set X+ = f ̂  d[f+{y) and define X"~
^imilarly; then by (4) above

fp,{.) ^+(z) = R^ = R^ = fp^) ̂ -(z)

and so X4" == X"". Thus for any nonnegative lower semi-
continuous f on ^U we have

J H*(n d[^g] = f H*(f) du.+ - f H*(/-) dy.-
= ffd^+-ffd^-=0, Q.E.D.
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COROLLARY 2.3. — Every element of the dual space of
F(W, (%*) (topologized by uniform convergence on compacta)
can be realized in the form h* -> f h* dk, where X belongs to
FÎ W, ^). Moreover, the space A[TK(W, 31)] is contained in the
annihilator of F(W, 96*), so there is a surjection of
HK(W,^)==rK(W,^)/A[rK(W,^)J onto the dual of F(W, ^*).

Proof. — Since F(W, <%*) is topologized as a subspace of
6(W), the Hahn-Banach theorem guarantees that every
element of r(W, <%*), can be given in the form h* -> j h* dp.,
where pi is a measure (far from uniquely determined, of
course) of compact support on W. Since any measure of
compact support can be written as a linear combination of
measures of small support, we may as well assume that p.
and V are as in the proposition, and U is an inner-regular
set for 3€ that contains Supp pi. But then (3) of the proposition
produces a measure X e FK(V, ^) for which j A* dp. = j h"d\
when A* e= F(V, W). A similar argument produces the second
assertion of the corollary: any element of FK(W, 3t) can be
written as a sum of elements with small compact supports,
so it suffices to show that Ag annihilates r(V, 3^*) when
ge FK(V, 31), which is (5) of the proposition, Q.E.D.

We now have a pairing of

F(W, ag*) and FK(W, ^/A[FK(W, 31)]

that identifies the dual of the Frechet space F(W, W) in a
natural way with a quotient of HR(W, 38), and it is reasonable
to look for a topology on HK(W, 36) the dual of which can be
identified under this pairing with F(W, <%*). (The weak
topology induced by the pairing, an obvious choice, is not yet
seen to be sufficiently natural from the point of view of 38.)
A good candidate for such a topology can be generated by
recalling the connection between Cech cohomology with
compact supports and coefficients in Wo and the cohomology
derived from the resolution 0—>36—^S^—>^->0. Suppose
(A, U) is a Cousin pair in the sense of [21, § 3], such that U
is compact and small. Then given s e (%U\A, one can find
functions gs e ̂ u and fs e 3^w\A such that gs and fs depend
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linearly on s and s = gs — fs in U\A. For example,
suppose that 1 e 3@v? so 3ly is a ring admitting partitions
of unity [21, Prop. (2.2) and Cor. (2.4)], and let h^ ^ e gly
be such that Supp Ai c U, Supp h^ c W\A, both are nonne-
gative and the sum Ai + ^2 = 1 on W. Set gs = s.h^
in U\A and 0 in A, and set fs== —-s./ i i in U\A and 0
in W\U. It is easy to see that gs and fs belong to the
desired spaces, and clearly s = gs — fs in U\A. In the
general situation where 1 may not be harmonic on V, one
can go through this construction in h~1. (96\ V) and
h~1. (9fo\ V) where h e S-^y is a positive harmonic function
(existing by [9, Thm. 16.1, p. 468]), then multiply by h again
to yield the desired result. It is clear that s = gs — fs in
U\A, and so one can extract an element of I\(W, ^) from s
by setting pi = A^ in W\A and pi = Ag, in U; these
measures surely belong to ^, and they are the same measure
in U\A because g, — fs = s is harmonic in U\A. Since
fs=0 outside U, pi has compact support. For fixed Ai, Ag
the construction of fs and gs is linear in s, so we have a
linear map /(A.U): 5^u\A -> F^W, ^) and thus a linear map
J(A,U)'- <^U\A —> HK(W, <%). If (AI, Ui) is a refinement of
(A, U) and s == gi — /i in Ui\Ai where gi e 3{y, and
/3 e 3lw\A,, then one can define a measure p.i e F^W, ^) by
taking ^ == A^i in W\Ai and [^ = Agi in Ui, as before;
but the function 9 defined as gs — gi in U, and fs — fi
in W\Ai is a well-defined element of F^W, 31), since in
Ui\Ai one has gs — fs = s = gi — /i; thus (AI and ;x
differ by Ay e A[FK(W, 31)] and thus define the same cohomo-
logy class in H^W, 38). Thus /(A,U) is defined independently
of the choice of /ii and Ag above (even though /(A,U) wasn't),
and the j\^ .)9s respect refinement. It is obvious that if
s e c^u^sA has an extension to all of U which is harmonic
there, then s determines the zero element of H^(W, 3€); in
other words, the map from 3^u\A to Hi(W, 36) is well defined
up to coboundaries for any pair (A, U).

We may now observe that as (A, U) ranges over all Cousin
pairs with U compact and small, the ranges of the mappings
/(A u) generate HK(W, 96). Indeed, suppose p. is an element
of F(W, ^) with small compact support, and let V be a small
region containing Supp pi, py the normalized kernel on V.
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Setting A == Supp (JL and taking U to be an inner-regular
region of V containing A, we see that

s = f 9y{ •) ^(2/)1 U\A e 38 ,̂

where qy is the normalized kernel on U, and we have an
immediate and natural way to write s = g — f: set
8 = f 9y ^(y) and f = 0.

DEFINITION 2.4. — The inductile topology on Hi(W, 38)'
is the inductive (locally convex) topology [14, p. 54] generated
by the Frechet spaces 38y\A c^nd the maps

/^U):^A^HIL(W, 38)

as (A, U) ranges over all Cousin pairs in W for which U is
compact and small.

There is no good a priori reason that the inductive topology
should be a Hausdorff topology. Nonetheless, we can charac-
terize its topological dual, which consists precisely of the
linear functionals induced by the pairing we have already
constructed between Hi(W, W} and F(W, 38*).

PROPOSITION 2.5. — For every linear functional F in the
topological dual of the space H^(W, 96) equipped with the
inductive topology, there is an element /i* e F(W, 38*) that induces
F with respect to the pairing of 2.3 above. Conversely, each
linear functional F induced by an element A* e F(W, 38*)
with respect to that pairing is continuous in the inductive topo-
logy, and the correspondence is 1 — 1.

Proof. — Let F be an element of the topological dual of
H^(W, 38). If V is a relatively compact small region and py
is the normalized kernel on V, then for any compact A c V
we claim that y -> F[/(A,v)(py|V\A)] defines an element of
38* on A°. Indeed, (y, x) —> py(x) is a continuous function
on A° X (V\A) that can be construed as a r(A°, 38*)-
valued function of re e V\A, the functional F o /(A,V) ^/(A.vyl^F]
is a continuous linear functional on 38y\A that can be given
as a measure [x of compact support in V\A, and construing
(y -> F[/(A,v)(py|V\A)])== [y —^ f pyd^ as a vector integral
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-establishes the claim. It is a routine verification, using the
fact that the mappings j\.^ .) respect refinement and are zero
on coboundaries, to show that if U were another relatively
compact small set with normalized kernel qy and
y —>- F[/(B,u)(?y|U\B)] were constructed similarly, then the
two functions so constructed would agree on A°nB°; from
this it follows that we can define h! on all of W by simply
setting it equal to each of these functions y —^ F[/(A,v)(py| V\A.)]
on its domain. Now given any X e F^W, ^), if X has small
compact support A and V is a small relatively compact
region containing A, we may set s = j py dk(y) on V\A$
then

F[X] - F[/(^]
=[h^](fpy^{y))
= /([/^v)T](p,|V\A)) d^{y) = fh^y) d\{y)

and that suffices to prove the first part of the proposition.
For the other half of the proposition we shall need the follo-

wing little approximation lemma.

LEMMA 2.6. — Let V be a small region and U an open
relatively compact subset of V. Let E £ F(U, W) denote the
closed linear subspace spanned by the functions

{(y->p^))|u:^ev\u}.
Then F(V, 3g*)|UcE.

Proof. — By applying 2.3 above component by component
in U, it is easy to see that any element of the annihilator of E
in F(U, 36*Y is represented by some measure X e= FK(U, ^).
If X is such a measure, it can be construed as an element of
FK(V, 2i), and the function g(x) = f py(x) d\(y) belongs to
F(V, 31). By the choice of X, the values g(x) are zero for
x e V\U, so g has compact support (contained in U).
By 2.3 above applied to V, the fact that \ = Ag is cohomo-
logous to zero in Ht(V, 3^>) implies that

f V dk = f A* d[^g] = 0
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for all /i*€=:r(V, 38*), i.e., X belongs to the annihilator of
F(V, 3 )̂1 U, Q.E.D.

Conclusion of proof of 2.5. — Let /i* e F(W, 38*) be given.
Suppose (A, V) is a Cousin pair with V compact and small,
and with no loss of generality (since the topology of uniform
convergence on compacta on 96y\^ can be formed component
by component) assume that V is connected. One can then
find a refinement (B, U) of (A, V) with A c B° and with U
a regular (for 96) relatively compact region in V. Let H(s)
denote H(U, s|?)U) for s <= SC^A- For fixed s e= S^^A we can
find a function r e F(V, 9^} with r == s in a neighborhood of
V\B, using the fineness of 31; then Ar belongs to the
cohomology class given by /(B,u)[5|U\B] = /(A,V)^. Since
r — j qyd[^r]{y) is harmonic in U (where ^y, as usual,
is the normalized kernel on U) and H(U, r|^U) = H{s)
because r jbU = ,s|bU, the function

r-H{s)-fq,d[^r]{y)

is simultaneously harmonic and a linear combination of
potentials on U; that is, it is zero, and

fq,dW(y)=r-H(s).

Now by the lemma we can find a sequence of functions
on B° of the form

y^Sa,,^,,) ( / c= l , 2, . . . )

where {^}^i belong to U\B°- and {o^}^ are scalars,
that converge uniformly on compacta in B° to A*[B° as
k —> oo. Since Ar is a measure of compact support contained
in B°, we have

/ J1<W^) rf[Ar](z/) = |^a,,/^(^) rf[Ar](y)

=^j^(r{x^--H{s){x^)
nj,

= S ^jk'(s(x^) - H{s)(x^)),
y=i
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the last equality because r == s in a neighborhood of U\B°.
Taking limits on both sides as k ~> oo, we have

fh^y)d[j^s]=fh^y)d[^r]
n*

== linik S a^.(s(^) — H(5)(^)).
j=i

Neither the left- nor the right-hand side of this equation depends
on the choice of r, and each of the limitands on the right-
hand side clearly depends continuously on s e 3'6v\A- Thus the
functional on HK(W, 36) induced by A* with respect to the
natural pairing has the property that the functional it induces
on 3&r\A (its image under /(A,V)') is the simple limit of a
sequence of continuous linear functionals. By the Banach-
Steinhaus theorem [14, Corollary, p. 86] the induced functional
is continuous on 3^v\A? and thus by the definition of the
inductive topology the functional /i* determined on H^(W, 36)
is continuous.

We have thus shown that the subspace of the algebraic
dual of H^(W, 96) given by F(W, 36*) with respect to the
natural pairing of the two spaces is precisely the topological
dual of H^(W, 36) equipped with the inductive topology.
The remaining assertion of the proposition follows from the
pairing's being separated with respect to F(W, 3-6*), which
means precisely that the mapping of F(W, 36*) into the
algebraic dual of H^(W, 3-6) given by the pairing is 1 — 1,
Q.E.D.

3. Approximation theorems; further duality theorems.

At this point it would be desirable to find sufficient condi-
tions for the natural duality between HK(W, 36) and
F(W, 36*) to be separated in Ht(W, 38). We begin :with
the case in which W is noncompact, because a knowledge
of this case aids us in constructing Leray covers when W
is compact. The following proposition, which shows that an
approximation property for 3^* is necessary for the space
HK(W, 36) to be separated, is a good starting point.

PROPOSITION 3.1. — Let W be noncompact, and let
Ui c Ug c • - • be an exhaustion of W by subregions. Suppose
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Ht(W, 96) is a Hausdorff LTS in the inductile topology.
Then for every compact A c W there exists an index n for
which A c U^ and every element of r(U^, 38*) can be approxi-
mated uniformly on A by restrictions of elements of F(W, 38*).

Proof. — Obviously we can assume that AgUi . Let
|| [[ A denote the seminorm on r(Ui, 38*) that gives « uni-
form convergence on A », i.e., [|A*|[A == sup {|A*(;r)[ : rceA};
let EA be the Banach space consisting of the elements of the
topological dual r(Ui, 38*)' that are || ||A-continuous,
under the norm dual to |[ |JA? and let F c EA be the
annihilator in EA of r(W, 38*)|Ui. By 2.3 above, for every
linear functional ^ e= F we can find a measure X^ e ̂ (Ui, T)
for which <& = (h* -> ( V d^). However, since HK(W, 38)
is assumed to be Hausdorff and its topological dual is given
by F(W, 38*), there must exist some g e= FK(W, 31) for which
Ag == X^> (otherwise \^ could not annihilate F(W, 3-6*)).
Because g has compact support, one sees that actually
ge rK(U/,, S\) for some index /c. Let F/, denote the set
(obviously a subspace) of elements of F that can be given
by the Laplacian of some element of F^W, Si) whose support
is contained in U^, k == 1, 2, . . . . Clearly Fj s Fg c ... and

00

F = I j Ffc, so applying the Baire category theorem to F
k==l

we see that some F^ has interior points (where both the inte-
rior and the closure are taken in the norm on EA dual to
I [I A ) ; since F^ is a subspace, F^ = F. By 2.3 above, F^
is contained in the annihilator in EA of r(U^, 3'6*)|Ui, and
since that annihilator is norm-closed, F^ = F is contained
in that annihilator. By the bipolar theorem (or, simply, the
Hahn-Banach theorem), r(U^, S^Ui is in the || |JA-
closure of F(W, ^*)|Ui, Q.E.D.

COROLLARY 3.2. — If W is noncompact and H^(W, 96)
is a Hausdorff LTS in the inductive topology^ then every exhaus-
tion of W by relatively compact subregions {U/J^i possesses
a subsequence {U^}^ such that U^cU^ and every element
of r(U ,̂ 38*) can be approximated uniformly on U .̂ by
restrictions of elements of F(W, 38*).
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We shall now see that in certain circumstances the appro-
ximation condition given above is sufficient for Hi,(W, 96)
to be a Hausdorff LTS. In order to give a useful sufficient
condition for this approximation criterion, let us recall the
definition of quasi-analyticity given by A. de la Pradelle [19,
p. 383] : in the presence of the hypothesis of proportionality
on ^-potentials with point support, the sheaf Wo will be
said to have the property (A) or (A*) respectively if the
condition of quasi-analyticity holds for 3^ or (%* respecti-
vely, i.e., if for any region UsW and any h e 3-6u or <%S
respectively, h vanishes on an open set in U if and only
if it vanishes identically on U. Note that since the property
(A) or (A*) is present if and only if it is present for the
restrictions of 36 and ?6* to some neighborhood of each
point in W (an easy consequence of the connectedness
assumed of U above), these properties are essentially local
and do not depend, for example, on the selection of the global
adjoint sheaf W*.

PROPOSITION 3.3. — Let W be noncompact. Each of the
following conditions implies its successor:

(a) The hypothesis of proportionality of ^-potentials with
point support and the property (A) of [19] hold, and W pos-
sesses an exhaustion {UJ^i by small regions (in particular, W
may be small) ;

(6) W possesses an exhaustion by small open sets {U;}^
such that Ui^Ui-n and every element of r(Ui+i, S^*) can be
uniformly approximated on U; by the restrictions of elements of
r(Ui+2, S^*) to U,+i, with each U^ compact;

(c) H^(W, 96) is Hausdorff in the inductile topology.

Proof. — That (a) ===»- (6) follows readily from results of
de la Pradelle [19, § 3, p. 395 ff.], applied to »6*; for if U
possesses an exhaustion by small regions, then by replacing
each of these regions by its envelope [19, p. 395] and passing
to a subsequence if necessary, we can assume that no U,
possesses relatively compact complementary components.
The « Extension du theoreme precedent » of [19, p. 397],
applied to S^*, then shows that F(U, S^m is dense in
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F(Ui, 3%*) for the topology of uniform convergence on compac-
ta.

Condition (6) is in fact equivalent to the apparently weaker
condition

(&') W possesses an exhaustion by small open sets {UJ^
such that Ui c Ui-n and every element of I^U^i? 5^*) can
be uniformly approximated on U, by the restrictions of
elements of F(W, 3-6*) to U^+i, with each U^ compact.

This equivalence, which has nothing to do with adjoint
sheaves or small sets, will be proved as a Remark following 3.7
below. Granting this equivalence, we prove that (&') ===^ (c).
We know by 2.5 above that showing that HI,(W, 96) is
Hausdorff is equivalent to showing that if X e F^W, T) and
FA* ̂  = 0 for 'every A* e F(W, %;*), then X = Ag for

some ge FK(W, 31). Given such a X, take n so large that
Supp X c U^, and then take a small region V containing
U^+i. Let py be a normalized kernel for V and form
g(.) = f p^}d\{y}aV{\, 9{). For each a;eV\U^i the
function y -> py(x) belongs to F{Vn+i9 ^*)? and since every
element of r(U^+i, W) can be approximated uniformly on
U^ by restrictions of elements of F(W, <%*) and f A* c?X = 0
for /i*€= F(W, 3^*), we see that g(x) == f py(x} d^{y) -== 0
for n;eV\U^4.i. Thus SuppgsU^+i, a compact subset of V.
Since Ag = \ and g can be extended trivially to be zero
outside V, we have shown that X e A[FK(W, 31)], Q.E.D.

When H^(W, 38) is Hausdorff, it has a pleasant charac-
terization in terms of F(W, 36*) and the natural pairing:

PROPOSITION 3.4. — When Hi(W, W) is a Hausdorff LTS
and is identified with F(W, 3^*)' by the natural pairing,
the inductile topology of Hi.(W, 96) is identified with the topo-
logy T(F(W, 3T)', F(W, 3T)). In particular, Hi(W, 36) is
nuclear, reflexive, and the dual of a Frechet space when equipped
with the inductile topology.

Proof. — That F(W, W) is a nuclear Frechet space in the
topology of uniform convergence on compacta is by now well
known; see, e.g., [18, § 6.3, p. 266 ff.]. For any small Cousin
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pair (A, U) the natural mapping of 5&u\A -> H^(W, <%) is
continuous by definition of the inductive topology, therefore
this mapping is also

O^A^I^A/) - ̂ (H^W, ^), F(W, ^-continuous,

since F(W, 38*) is identified with the dual of HI(W, 3@);
by a standard theorem of duality [14, Thm. 7.4, p. 158] the
mapping is also continuous from T^u^^us^)') to
T(HK(W, ^), F(W, 3T)). Since ^^{96^)1) is the
(Frechet) topology of uniform convergence on compacta, we
see that T(HI(W, 5^), F(W, 3^)) is coarser than the inductive
topology; but since F(W, <%*) is identified with the dual of
HK(W, 3^), the (Arens-Mackey) characterization of the
topology T shows that T is precisely the inductive topology
[14, Thm. 3.2, Cor. 1, p. 131]. Thus Hi(W, ^) is identified
as the dual of a nuclear Frechet space, and in particular is
nuclear and reflexive [14, Thm. 9.6, p. 172], Q.E.D.

A rather trivial corollary of this proposition is that if W
is compact and HK(W, 96) is separated by elements of
F(W, 3-6*), then it is finite-dimensional (because the space
F(W, 36*) is a nuclear Banach space and therefore finite-
dimensional). This, however, would be easy to see directly.

Classically, approximation conditions like (b) of 3.3 above
are used to prove that H^W, 96) == 0 (without compact
supports). Results of this kind are also available in the axio-
matic theory:

PROPOSITION 3.5. — Let W be nancompact. Each of the
following conditions implies its successor:

(a) The hypothesis of proportionality of ^'potentials with
point support and the property (A*) of [19] hold, and W posses-
ses an exhaustion {UJ^i by small relatively compact regions
(in particular, W may be small);

(b) W possesses an exhaustion by small relatively compact
open sets {UJ^i such that UfSUi+ i and every element of
r(Ui+i, 3^) can be uniformly approximated on U, by restric-
tions of functions in r(Ui+2, 96) to Ui+i;

(c) H^W, W) = 0.
18
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Proof. — The proof that (a) =^ (&) is the same as that of the
corresponding implication in 3.3 above, except that the results
of [19] are applied to 96. That (&) ==^ (c) follows from an
essentially classical argument [7, Thm. 4, pp 42-44] which we
merely summarize. Given a measure X e F(W, ^), by an
inductive process we can determine a sequence of functions
{fi} 1̂ =1 with the properties

(i) Aercu, a);
(ii) A / , = 7 u i . X ; _
(iii) |/;(^) - f^{x)\ < 1/21 for all ^eU^. For i = 1, 2

one may simply select a region Vg which is small and contains
Ug, let pj be the normalized kernel on Vg, and take
fi = / P^(') ^Ex^-^Ky)!^^ (m) w1^ ^e satisfied vacuously.
Suppose /i, /a, . . ., /^i have been constructed. If V^ is a
small region that contains U^ and p^ is the normalized
kernel on Vn, then the function

gn= /?;(•) ^xu..^](y)|U,er(U, %)
has the property that Ag^ == 7,u^.^, and since

AA-i==X|U^==(AgJ |U^,
the function gn — /n-i is harmonic in Vn-i' By the approxi-
mation assumption there is a function h es r(Un, 38) for which
\gnW-fn-l{^-h{x)\<l|2n for all ^eU^, and the
function f^ = g^ — h then satisfies (i), (ii), and (iii). For
each a?eUfc the sequence {fi{^)}^ converges and thus
defines a limit function f on all of W; since one has

f{x) = f,(x) + S [fiW - fi-iW
i>k

for all x e U^(/c ^ 2) and the series converges uniformly on
U/, to a harmonic function, we have / ' [Ufc€=r(Ufc , 31),
/•e^W, ^), A/-|U, =A/,|U, = X|U, for all /c ^ 2 and
therefore A/*==X, Q.E.D.

COROLLARY 3.6. — If the hypothesis of proportionality of
W'-potentials with point support and the property (A*) hold
on W, then ?(11, 96) = 0 /or all q > 1 /or e^ry 5maM
region LJ, and! therefore for every small open set U, in W.
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Consequently, W possesses Leray coders (cf. [8, p. 46]^,
namely^ covers by small open sets.

Indeed, H^U, 36) = 0 for all y ^ 2 in any event [21,
Thm. (2.11)], while the present proposition takes care of
?(11, Wo) == 0 for small regions U and therefore for small
open sets U, since one needs A[T(U, %)] = r(U, ^) and
Laplacians are computed locally.

COROLLARY 3.7. — If W is noncompact, W has an exhaus-
tion {Ui}i°l:i by small subregions, the hypothesis of proportio-
nality of 96*-potentials holds and H^(W, 36) is a Hausdorff
LTS in the inductile topology, then H^W, 36*) = 0.

Indeed, smallness of sets means the same thing for 36*
as it does for 36, and consequently one can apply 3.2 above
and the implication (b) => (c) of the present proposition
to 36*.

Remark. — The condition that W possess an exhaustion
{UJ^i such that UiSUi+i and every element of
r(Ui-n, 36) be uniformly approximable on LJ( by restrictions
of elements of r(Ui+2, 36), i = 1, 2, . . ., which occurs in 3.3
and 3.5 above, is in fact equivalent to the condition that
every element of r(U,+i, 36) be uniformly approximable on
Ui by restrictions of elements of F(W, 36), i = 1, 2, . . . .
This can be proved by the same inductive technique used
in the proof of 3.5 above: given a fixed set U; and
AI e r(Ui4.i, 36), for any £ > 0 one may choose h^, h^, . . .
inductively with h^ e r(Ui+^, 36) having the property that
\h^x)-h^[x)\ < 6/271-1 for all ^UH.,_I, n = 2, 3, . . . .
Again it is clear that the sequence {hk(x)}^ converges to a
limit function h(x) for x e U^+^, with h being defined on all
of W, and since the convergence is uniform on a neighborhood
of each x e W the limit function h e F(W, 36); clearly one has
\h(x)_- h,{x)\ ^ ^\hn(x) - h^(x)\ < S^s/271-! - s for any
x^V,.

For compact W, the situation is quite classical.

PROPOSITION 3.8. — If W is a compact space, the following
conditions are equivalent:

(a) H^W, 36) is a Hausdorff LTS in the inductive topology,
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(6) H^W, 96) is finite-dimensional,
(c) There is a cover U of W /or which the natural map

?(N(11), 96) -> ff(W, 96) is surjective.

Proof. — Since the dual F(W, ^il() of H^W, 3^) is a
nuclear Banach space and therefore finite-dimensional, (a)
implies that H^W, 96) is in separated duality with a finite-
dimensional space, which implies (6). That (6) ==^ (c) follows
from the fact that for all covers U the natural mappings
?(N(11), 96) -^ ff(W, 96) give the space H^W, 96) as their
inductive limit: since the limit space is finitely generated,
it must be equal to one of the limitands.

Finally, (c) ===^ (a) : since the natural map

?(N(11), 96) -> ?(W, 96)

can be factored through the natural map

?(N(38), 96) -> ff(W, 96)
for any refinement 38 of U, one can assume that U is finite;
one can then take a refinement 38 of U such that every
V e 38 has the property that V c U for some U e U. The
natural map ?(N(8), 96) -> H^W, 96) is still onto, and the
natural refinement map ?(N(11), 36) -> ?(N(38), 96) is
therefore 1 — 1 and onto, because all the natural maps
?(N(58), 96) -> ?(W, 96) are 1-1 [7, p. 47]. The rest of
the argument is the classical one used in the situation where U
is a Leray cover [8, p. 245], so we merely summarize it briefly.
If (^(N(38), 96) is the space ofO-cochains on 38, the fact that
the natural restriction map ?(N(11), 96) -> ?(N(38), 96) is an
isomorphism implies that the map

u^^U), ^)©Co(N(38), 96) -^ Z^N^S), 96)
defined by

u : jfe g ->• Rest f + Sg

is surjective, and so (as in the classical theorem cited above)
implies that the map S : C°(N(38), 96) -> Z1(N(38), 96) is a
perturbation of a surjective mapping of Frechet spaces by a
compact mapping (viz., the natural map

Z^Ndl), 96) -> ^(N(38), 36))
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and therefore has closed finite-codimensional range. We have

H^W, 36) ̂  ?(N(33), Wo} -= Z^N^), ^)/S[C°(N(SS), 36)]
and the unique Hausdorff topology on H^W, 36) is the
quotient topology. Now given a small Cousin pair (A, U)
in W, we could clearly have chosen 3S in the argument
above to be a refinement of {W\A, U}, whereupon we
would have had a natural mapping

36^ = H^W^-sA, U}, 36) -> ?(N(38), 36) ̂  H^W, 36).
The last isomorphism is a topological isomorphism for the
unique Hausdorff topology on the finite-dimensional space
H?(W, 36), and the mapping represented by the arrow (being
a refinement map) is continuous. Thus the natural map from
Cousin data on U\A into H^W, 36) equipped with its
unique Hausdorff topology is a continuous map, and the
inductive topology of H^W, 36) is Hausdorff, Q.E.D.

COROLLARY 3.9. — If the hypothesis of proportionality of
potentials with point support and the condition of quasianalyticity
hold for 36*, then the equivalent conditions of 3.8 hold.

Indeed, 3.6 above guarantees the existence of Leray covers
for W, and the Leray theorem [8, p. 189] guarantees that (c)
of 3.8 holds.

4. Second duals; the case in which Ie 36.

In conclusion, we consider two subjects : first, the duality
theory obtained when 36* also satisfies the hypothesis of
proportionality of potentials with common point support, so
that 3S>* possesses an adjoint sheaf which can be identified
with 96, and second, the meaning of the results of [21, § 4]
in the case in which 36 admits an adjoint sheaf.

In order to study {36*)*, we assume (unless explicit mention
is made to the contrary) throughout the following discussion
that '36* satisfies the hypothesis of proportionality. In the
situation originally considered in [9], 36* is constructed
from a single kernel on the entire space W, no normalization
considerations appear, and the verification that {36*)* == 36
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is relegated to a remark [9, p. 559]. Given a normalization
({VJ;ei, {p^ici) of 96 on W, this result of [9] implies
directly that ((^|V,)T = Wi tor each i e I, so Wo can be
viewed as the result of patching together the second adjoints
on the open sets {VJ^ei. In order to make the considerations
of the preceding §§ directly applicable, however, it is desirable
to know that the kernels {{y -> p^))hei constitute a norma-
lization of W' that determines 3-6 as (c%*)*, so that 96
can be viewed as having been constructed from W as in § 1
above, only using the « transposed kernels ». For this we need
the following proposition.

PROPOSITION 4.1. — Let ({VJ^, {p5Jigi) be a normaliza-
tion of X. Then the kernels {(y —> p^x))}^^ satisfy conditions
(1) and (2) of 1.5 above with y^ == 1, and (3') of 1.16 above,
relative to the sheaf <%*. Moreover^ if U is a (nonempty) region
contained in V; n V j and qy is the (normalized) kernel induced
on U (equivalently by p^y or p-y)^ then (y —> qy(x)) is equal
to either of the kernels y -> {p^{x) — M*[z -> pz{x)]{y)) induced
on U by y -> p^x), k == i, /.

Proof. — The fact that the {p^-ei are part of a normaliza-
tion and are therefore themselves normalized insures that
p^x) = qy{x) + M[^[U](^) for x, ye U, k = i, /. By 1.12
above, the functions y -> M[p^|U](^) belong to

(^|V,)* = ̂ *|V, for each x^ U, k == i, /;

consequently, the ^-potential parts of the <%*-superharmonic
functions y -> p^{x) on U are equal for each x e U. But
y-^qy{x) is a (^|VJ*|U = ̂ *| U-potential on U by [9,
Prop. 30.1, p. 544], and thus it is the ^-potential part of
either of the y -> p^(x), k = i, /. That gives us the equality
of the kernels y -> p^x) — M*[(z -> p,(x)](y), Q.E.D.

Essentially the same argument gives us the following
proposition, whose proof we omit:

PROPOSITION 4.2. — Let ({Vi};^, {p^}igi) be a normalization
of S^, let U be a small region in W, and let py be a norma-
lized kernel on U. Then y —> py{x) is a normalized kernel
on U for the normalization of W given by

({VJ^i, {(2/->P^))hei).
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Of course, normalized kernels are just as unique for W
as they were for Wo.

Using the normalization ({Vi}iei, {(y —>• /^(^Ohel)? we can
define a fine resolution

o^^-^^^-^o
of 96* by the same considerations we used in defining the
resolution 0-^96->S{—^^->0. All the duality theorems
above will have dual versions, obtainable simply by interchan-
ging starred and unstarred objects throughout. While there
is no good reason to transcribe the duals of all the theorems,
the following dual statements would seem to be of particular
interest.

PROPOSITION 4.3 (== (2.3)*). — Every element of the dual
space of F(W, 96) (topologized by uniform convergence on
compacta) can be realized in the form h —> f h dk*, where
re FK(W, tf*). Moreover, the space A*[FK(W, S^}} is contain-
ed in the annihilator of F(W, 96), so there is a surjection of
Hl(W, 38*) = FK(W, r)/A*[TK(W, a*)] onto the dual of
F(W, 38).

PROPOSITION 4.4 (= (3.3)*). — Let W be noncompact.
Each of the following conditions implies its successor :

(a) The property (A*) of [19] holds, and W possesses an
exhaustion {UJ^ by small regions (in particular, W may
be small);

(&) W possesses an exhaustion by small open sets {UJ^
such that Vi c U;+i and every element of r(Ui+i, 96) can be
uniformly approximated on Ui by the restrictions of elements of
r(Ui4-2, W>} to Ui+i, with each U^ compact9,

(c) HE.(W, <%*) is Hausdorff in the inductile topology.

If HK(W, 38*) is known to be Hausdorff, that fact implies
an approximation property like (6) for 96, by the dual of 3.1
above, and we also have

PROPOSITION 4.5 (= (3.4)*). - When HK(W, 38*) is a
Hausdorff LTS and is identified with r(W, 36)' by the natural
pairing, the inductile topology of HK(W, 96*) is identified with
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the topology T(F(W, 3i6)', F(W, ̂ )). In particular, HI,(W, ̂ )
15 nuclear^ reflexive, and the dual of a Frechet space when equipped
with the inductive topology.

Thus, with certain approximation or quasi-analyticity
assumptions, we can characterize the strong dual of <%w as
HK(W, <%*) equipped with the inductive topology. The quasi-
analyticity condition is certainly satisfied in the (self-adjoint)
case of harmonic functions on a Riemann surface or Rieman-
nian manifold, and so we have a generalization of some results
of Tillmann [20]. See (C) in § 5 below.

The dualities considered here take a familiar form if we
note that the following relation holds :

LEMMA 4.6. — Let /*er(W, S{] and ger(W, 31*), and
suppose that one of them has compact support. Then \ fd[^g]
and j g d[^f] both are defined, and they are equal.

Proof. — Since one or the other of the function and the
measure in each integral has compact support, the integrals
are surely defined. Suppose f has compact support. Then
without loss of generality we can assume that f has small
compact support, and we can write g = gi + gg, where gi
is supported in a small region containing the support of f
and ga vanishes in a neighborhood of the support of f.
It will clearly suffice to prove F /c?[A*gi] = f gi d[^f].
But if V is a small region containing the supports of f
and gi, then we have f= j p y { » ) d[^f]{y) and

8M = f PyW d[^g,](x)

by 2.1 above (and its dual). But

ffp,{x) dW]{y) d[^g,]{x) -ffpy(x) d[^g,]{x) rf[A/*](y)

by the Fubini theorem, Q.E.D.
Now let us put F(W, SR) and I\(W, r) in duality under

the bilinear form </', X*> = j fdk". It is easy to check
that this duality is separated : if X* ^ 0 has small support,
the fact that the differences of 3^-potentials on any small
region V form a positively rich subspace of 3t(V) [9, Cor.,
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p. 38] insures that some f in F^W, 31) can be found for
which j f(D^ > 0, and an easy partitioning argument
handles the general case. The lemma above can now be expres-
sed in the form

</; A*g> - <AA g>
if we put F(W, t£) and F^W, SR*) in duality by setting
<P'? gY == j g ^V" Again it is clear that this is a separated
duality, and A* is revealed as the adjoint of

A : F(W, Sl) -> F(W, ^)
relative to the duality of those spaces with FK.(W, ^*) and
FK(W, 31*) respectively. The duality between F(W, 96) and
I\(W, ^*)/A*[FK(W, 31*)] = Hi(W, ^*), therefore, is simply
the duality induced on a subspace with respect to the quotient
by its annihilator; or from the linear-transformation standpoint,
is the duality between Ker A and the quotient of the dual
FK(W, ^*) by Im A*.

If W is compact, the restrictions to compact supports of
the considerations above are taken care of automatically.

Suppose W is compact. The results of [21, § § 3 and 4]
can be interpreted in the present setting as relating positivity
properties of 96 and W for compact W. We consider first
the case where 1 eJS^ but 1 ̂  S^w? and in 4.7 through 4.9
below we do not assume the hypothesis of proportionality
for W.

PROPOSITION 4.7. — Suppose W is compact and 1 is
96-superharmonic but not 36-harmonic. Then F(W, 3-6*) == 0;
moreover, the normalization ({VJigi, {p îei) that determines
3€^ also determines a unique « normalized global kernel»
P(rr, y) which is ^^-valued and lower-semicontinuous on
W X W, continuous off the diagonal, and differs from p^x)
by a harmonic function for x, y e V; and y fixed. P(rc, y) is
harmonic and ^-harmonic in x and y separately off the
diagonal of W X W, and as a consequence W possesses
global positive superharmonic functions.

Proof. - By [21, Thm. (4.4)], H^W, W} =0; since the
duality between H^W, f6) and F(W, 3-6*) always separates
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points of the latter, F(W, W) == 0. To construct P(a?, y),
take a region V^ and a point y e Vi, let A be an outer-
regular set with y e A° c A s U s U c V;, where U is an
inner-regular region with compact closure contained in V;.
Then by applying [21, Thm. (3.2)] with A and U as above
and V === W\A, M = H(», W\A), we can find a function
P(», z/), defined (with S as in the theorem of [21]) as
S[p5,|U\A] outside A and as

^ - H[(pS, - S[^|lKA])|bU, U) = q, - H(S[^|lKA]|e)U, U)

inside U. (Here qy is the normalized kernel on U.) An
easy vector-integration argument shows that the function
(x, y)-> S[ply\V\A.](x) is jointly continuous and separately
harmonic and *-harmonic for (^, y) e (W\A) X A°; a similar
argument yields a similar conclusion for

{x, y) -> H(S[j^|U\A]|OU, V){x) on U X AO.

That suffices to establish the assertions made above for this
function P, which is as yet only defined for (^, y) e W X A°.
Suppose Pi is a function constructed similarly using sets
AI and Ui in some region Vy, and suppose A° n A^ 7^ ^.
Then for y e A° n A^ one sees readily that Pi(», y) — P(», y)
has a harmonic extension to a neighborhood of y, and
therefore to all of W. Since 1 is superharmonic but not
harmonic, there are no nonzero functions in F(W, 9€) $ thus
P^(.^ y) = P(.^ y). We may thus define P globally by
allowing A and U (and V;) to range over all possible
choices of sets that satisfy the specifications made above.

It remains to verify that P is everywhere positive. Fix
y e W and observe that P(», y) is superharmonic in W and
thus takes a minimum a. If a ^ 0 then — a is super-
harmonic on W and P(», y) — a takes the minimum 0
on W. However, that would contradict the minimum prin-
ciple on W (cf. the proof of [21, Thm. (3.4)]), Q.E.D.

Since 96 or 3€* possesses a global positive superharmonic
function it and only if it possesses a continuous global positive
superharmonic function [4, Prop. 11, p. 95], and since renor-
malizing ({Vi}iei? {p^}iei) and replacing 3^* by a multipli-
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catively equivalent sheaf come to the same thing, the fact
that y -> P(x, y ) is superharmonic for 5^* gives us the
following.

COROLLARY 4.8. — If 96 possesses a global positive continuous
superharmonic nonharmonic function, then so does 38*. Alter-
natively, if Ie. 36w\^w, then for a suitable normalization of 3€
it is also true that 1 e f6sw\^ff^.

Another corollary is the following result, which is trivial
from the point of view of sheaf theory (see (D) of § 5 below)
but analytically interesting because it is explicit.

COROLLARY 4.9. — The mapping A : F(W, 91) -> F(W, ^)
is 1 — 1 and onto, and its inverse is given by

X-^/P(. ,y)^(y).

Proof. — It suffices to show that if A, U, V^ and p\ are
as in the proof of 4.7 and X has support in A°, then
A[j P(», y} c?X(2/)] == X. By vector integration it is clear
that j P(», y) dk(y) is harmonic outside A and that
y P ( » , y) (Tk(y} and f P^9) d^{y) differ by a harmonic
function inside U, and A[ f ?;,(•) rfX(y)] = X by definition
of A.

If <%* satisfies the hypothesis of proportionality and
possesses a positive global superharmonic non-harmonic
function we can apply the reasoning we just gave to 3^*
(or to something multiplicatively equivalent to it), there-
by constructing a positive global superharmonic non-harmonic
function for 'W = 3€; with no loss of generality we can
then assume that that function is 1. With that assumption
present, we could go through the construction we just gave
and construct a normalized global kernel for 3-6*. The next
proposition verifies that we get nothing new.

PROPOSITION 4.10. — Suppose W is compact, 1 is <%-
superharmonic but not 3^-harmonic, and the hypothesis of
proportionality holds for 3-6*. Then if P is the function
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constructed in 4.7 abo^e, the function y -> P(rr, y ) has the
properties of 4.7 relative to the normalization

({V,hei, {(?/-> P^))hei) 0/- ^*.

Proof. — The properties enumerated in 4.7 are symmetric
in x and y, except that one needs to know in the present
context that y -> p\{x) — P{x, y) has an ^-harmonic
extension to a neighborhood of x in V;. However, if U
is an inner-regular neighborhood of x with x e U £ Vi as
in the construction of P given in 4.7 above, we know that
hypotheses (1) and (2) of 1.13 above are satisfied for
Sy(x) = P(^, y)|U X U\diagonal. (A) of that lemma then
establishes the existence of the <%S*-harmonic extension of
y -> P(^, y) - p^), Q.E.D.

Let us now turn to the case where W is compact and 1 e 3^w.
By [21, Thm. (4.4)] we know that dim H^W, ^) = 1; 3.8
gives us separatedness of the duality between F(W, 3-6*)
and H^W, ^6), and we have dim F(W, 3^*) === 1. However,
we can establish that directly, and a positivity result as well.
To do this requires only that we reexamine some of the material
of [21, § 4] from the standpoint of the adjoint-sheaf theory.
Let (A, U) -> ¥(A u) be a flux functional for (W, 3-6) as in
[21, Thm. (3.8) and Def. (3.9)]. If V is a small subregion of
W and X an open subset of V with compact (proper)
closure in V, then we can define a function geF(X, 36*)
by the following process. Let (A, U) be a special Cousin pair
[21, § 3] with X c A c U c V and let py be the normalized
kernel on V. Set

g{y} = ̂ A.U^^IUXA] = ̂ ,U)[P,(.)|U\A].
If (Xu and VA are the measures of [21, Thm. (3.8)], then we
have (in the notation of that theorem)

¥^,u)[p,|U\A] = p^A^Sjp^) d^ -fPy^} <^)j

and the usual vector-integration argument shows that g(y)
is an ^-harmonic function of y in X. Since X was
arbitrary g is defined throughout V, and if ¥3 were
another small subregion of W on which we had gone through
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the same process and constructed a function gi e r(Vi, <%*),
the fact that the difference of the normalized kernels for V
and Vi, say py and p}, has an ^-harmonic extension to a
neighborhood of y shows that the cocycles py|(V n Vi)\{i/}
and p^|(V n Vi)\{t/} are cohomologous and thus that
g{y) = ̂ (M.vnv,)[py|(V n Vi)\{t/}] = gi(y). Since p, is a
potential on V, g(y) > 0 (again by [21, Thm. (3.8)]), and so
we have constructed a global positive 3'6*-harmonic function.
The minimum principle implies that all global X*-harmonic
functions must be multiples of g.

The function g has properties, in addition to its mere
existence. With X, V and so forth as they were above, let p
be a continuous potential on V, let IT be the measure for
which p = I p y ( 9 ) d-K{y) (so that in the notation of the
discussion preceding 1.10 above, i: = Zy[p]), and let E be
a compact subset of X. Then if T is the homomorphism of
presheaves constructed in making Def. (4.2) of [21], we have

Tv[p](E)=¥^i;)[^Ep|U\A]

^P^ifX/^^^^^^
- fT py{x) d^(y) d^v[

JJ E }

= P / A T T \ f S fp^)^A(^) - f P y { x ) d^{x)[ d^y)
.r^A, U) ,/E (</ J )

- fg(2/) d-K{y) = (g.^)(E) = (g.Zv[p])(E).
JE

Since V, p and E were arbitrary, this shows that for any
section N of the sheaf Q of [21] we have rN == g/(N where
T is the sheaf homomorphism of [21, Def. (4.2)] and "C is the
sheaf isomorphism of 1.10 above. In other words, under the
identification of the sheaf of charge distributions Q with the
sheaf of measures t£, the total charge distribution of a given
charge distribution is carried into g times the measure
corresponding to the given charge distribution.

It is now routine to verify (by chasing the effects of renor-
malization through all the computations made above) that
if the given normalization of 3€ is renormalized by division
by g, and the adjoint sheaf 3-6* thus replaced by g"1.̂ *,
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that the constants become 3^-harmonic and, because g is
replaced by g~1 .g = 1, that T = ̂  with this normalization.
This last equality says precisely that charge distributions
and total charge distributions are identified when 36 is so
normalized that 1 e 3-6*. We can summarize these conside-
rations in the following proposition.

PROPOSITION 4.11. — Suppose W is compact and 1 e <%vv.
Then F(W, 3^), F(W, 3%*), H^W, W) and H^W, 3^) are all
one-dimensional, and F(W, 3-6*) is generated by a positive
function. For a suitable renormalization of 36, 1 e 3'6'w ^^d the
total charge distribution of [21, Def. (4.2)] of a measure \ in ^
(with ^ and Q identified) is X itself. In particular, X e F(W, ̂ )
15 t/ie Laplacian of an element of F(W, 31) if and only if
f dk=0, by [21, Thm. (4.3)].

This proposition is independent of the hypothesis of propor-
tionality for W. If that hypothesis is satisfied, the proposi-
tion dualizes :

PROPOSITION 4.12. — Suppose W is compact and 36^
satisfies the hypothesis of proportionality. Then ^w possesses a
positive element if and only if 3-6^ does', for suitable [replace-
ment of 3€ by a multiplicatwely equivalent sheaf and renormali-
zation of 36, the constants belong to both 96 and 3'6*, and the
total charge distributions of the charge distributions corresponding
to sections of ^ and ^ can be identified with those measures.

5. Notes.

(A) Special consideration of the ideal of measures X for
which f p y { 9 ) d\'k\(y} is continuous, as well of the use of ^
to designate it, occurs already in [9, § 31]; we have « localized »
many of the considerations made there.

(B) If one traces back through the construction of norma-
lizations made in 1.6, one sees that the construction of the
global adjoint sheaf of 1.16 and 1.17 above is precisely the
patching procedure described at the end of [21, § 5, (B)].
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(C) The result of 3.4 or 4.5 above covers only the case of
open subsets of R", of course. In the classical situation that
Tillmann considered in [20], for open sets UcR" the dual
of F(U, <%) is identified with the space of sections of the
sheaf of germs of 3€ on (R/1 u {oo})\U, the pairing being

given by <f, g> == ( ( f— — g-^^dS taken over a suitable
Js \ ^n ^n)

contour 2 in U. Using the facts that <%* === 96 and that
those functions g have C°° extensions to the region enclosed
by 2, together with the classical second Green's formula,
one can easily verify that this pairing is essentially the same
as the pairing with HK.(U, W) discussed above; we leave the
computations to the reader. In the presence of a normal
structure on W it is particularly desirable to identify
HK(U, 3-6) with the space of germs of normal-harmonic func-
tions at oo (a subject we shall discuss in a subsequent paper),
and by making this identification we shall be able completely
to generalize the results of [20].

(D) That A : F(W, Sl) -> F(W, ^ is an isomorphism under
these circumstances follows from the exact sequence
0 -> F(W, 3€) -> F(W, 3^) 4. F(W, ^) 4- H^W, 36) -> . . . that
goes with the sheaf exact sequence 0->3^->S{—>^—>0
[8, p. 176, (c?)]; for F(W, <%) = 0 by the minimum principle
and H^W, M>} = 0 by [21, Thm. (4.4)].

(E) The construction of the function g in the discussion
preceding 4.11 above is valid whenever the hypothesis of
proportionality holds for 3"6, even if the other hypotheses of
the adjoint-sheaf theory are not satisfied (of course, one cannot
conclude that g belongs to S^*). Moreover, the construction
does not require that W be compact so much as that 1
belong to <%Sw and that a flux functional ^¥ determined
by 96 and a normal structure 3^ be available. The same
proof thus gives us the following proposition :

PROPOSITION 5.1. — Suppose W is noncompact, 1 e 3€w,
and 38s is a normal structure subordinate to 96 as in [21,
Def. (1.3)]. Identify the elements of FK(W, 2) with elements of
F(W*, Q8) in the natural way^ so that under a normalization
of 96 on W elements of t^W, ^) become identified with
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elements of r(W*, 2s). Then for a suitable renormalization
of 96, this identification identifies elements of F^W, 2) with
their total charge distributions.

(F) Proposition 4.10 above constitutes a proof of the asser-
tion of [21, § 5, (D)] that T is an injection if it is known that
the hypothesis of proportionality holds for 9€.
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