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UNIVERSAL REAL LOCALLY CONVEX
LINEAR TOPOLOGICAL SPACES

Otton Martin NIKODYM (Gambier, Ohio, U.S.A.).

It is known that every separable Fr. Riesz-Banach space can be
isometrically and isomorphically embedded into the (C) — space of
all continuous functions in (o0, 1) with norm ||f]|= max f(z), [15].
Recently E. Silverman [12] has embedded the same spaces into the
space (m), 1. e. the space of all bounded infinite sequences (*) with
the norm ||a||=sup|a,| where a—(a,, a,, ...). The underlying

paper shows that the method used by Silverman can be generalized
to fit the construction of universal spaces which embed the general
locally convex real linear topological spaces. The obtained result
discloses, at the same time, that essentially, vectors of such a space
can be conceived as some real valued functions, and its topology
as generated by a generalized uniform convergence. Thus the uni-
form convergence shows itself as a more general notion than it
could be surmised.

Norations. — The elements of a linear space will be termed
vectors, and sometimes, for the sake of clearness provided with
arrows. We also call them points, since we may admit the Grass-
mann’s approach to the vector calculus.

The operations on sets will be denoled by the Bourbaki symbols
[4], n,u, n, the inclusion of sets by ¢ . The empty set will be
written @, the set composed of the single vector z by (Z)

Addition of vectors, and the multiplication of a vector by a real

number A will be denoted by z+y, 0@ respectively.

(Y) This space is not separable.
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Given the sets E, F of vectors, E- F will denote the set of all
vectors z —}—; where z€k, ;eF. Similarly - E will denote the
set of all vectors ;-4—; where ;eE. The symbol . E will denote the

set of all vectors ).. & where z €E.
(z, y) will mean the closed segment and (x, y) the open one. The

domain and range of a relation R will be denoted by dr, DR

respectively. If (JR u DR is meaningful, this set will be termed
field of R and denoted by oR. If a topological space is denoted
by (L), the set of all its vectors will be written L.

§ 1. — Basic concepts.

1. A. Kolmogoroff [ 1] has introduced the notion of a general
linear real topological space. Thisis 1) a linear space L (i. e.
an abelian group with real multipliers), 2) provided with an open —
set topology [4] (which is equivalent to the neighborhood topology
and also to the Kuratowski’s topology [2], [3]), 3) satisfying the
weakest separation axiom (i. e. if x5~ y, then either there exists a
neighborhood of x not containing y, or there exits a neighborhood
of y not containing x), and 4) in which -y, Jz are continuous
functions of the couple of both variables (not only with respect
to each variable separately).

It bas been proved that the linear topological space must satisfy
the Hausdorfl separation axiom (i. e. if z=£y, then there exist
disjoint neighborhoods of z and y), and even it must be a regular
topology [3]. '

J. v. Neumann [5] has given an equivalent definition of a linear
real topological space, by axiomatizing a class of sets U, V, W, ...
of vectors in L in the following way :

=)0,

ven

2° for every U, Vell there exists Well with Wc Un V,
3° for every U there exists V such that

V4ved,

(?) This axiom was admitted by D. H. Hyers [6] instead of the original v. Neumann’s
axiom.
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4° for every U there exists V such that
«.VecU for all o where ||,
5° for every z and U there exists 1 such that

_:;el.U.

Those sets U, V, ...will be termed v. Neumann’s neighborhoods
(N. nbhds).

Two systems U’, 11" of N. nbhds are said to be equivalent if
for every U'ell’ there exists U’ell” with U’ c U’ and for every Ujell”
there exists Uell with Uj c Uj.

Let Ec L. A point  is said to be an 1l — interior point of E,
[5], if there exists Uell such that - Uc E. A set E such that, if

z €k, then z isan Il — interior point of E is called I — open. If
U is equivalent to U, then a 1l — interior point of E is also a
W' — interior point of E.

If 1 is a system of N. nbhds, and if we replace every Uell by
U° 1. e. the set of all 1t — interior points of U, then the system § U°}
will be an equivalent system of N. nbhds. U’ is never empty. If
given 1, we take all translations of the sets of §U°§ , we obtain a
neighborhood-topology in L. (By a neighborhood of 21:)0 we shall
understand the ;o — translation of any U°.) The space L provide |
with this topology is a Kolmogoroff linear topological space, [5].
The topologies, thus generated by two equivalent systems of N.
nbhds, are equivalent.

Conversely, given a Kolmogoroff linear topological space, there
exists a topologically equivalent system of neighborhoods (s) such
that the neighborhoods 11 of 5 satisfy v. Neumann’s axioms and (s)
is composed of all translations of all sets of 11, [18].

It can be easily shown, that if we add, to the above five axioms,
the axiom

6° If Uell, and |«| < 1, then
a.UcU,

no restriction to the topology will be introduced [6]. Hence we may
admit 6° too. N. nbhds satisfying 6° will be termed V. Neumann’s
star neighborhoods (N. st. nbhds).
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2. D. H. Hyers [6] has introduced the pseudo-normed linear
spaces which are identical with the topological linear spaces. His
approach is this :

Let R be an E. H. Moore- H. L. Smith stream ordering, i. e.
a partial ordering such that
ifd,, d,eoR, then there exists d,eoR with

dRd,,  dRd ().

Let us attach to every o¢L and every deoR a number HG:, d),
called R-pseudonorm of z, and satisfying the following conditions:

° H(;:, d) = o0,

2° if H(z, d) = o for all d¢oR, then 2—o,

3 H(x, d) =[/. I{(;, d) for all real numbers 1,
4° for every v >0 and e€pR there exist 3 > 0 and dedR such

that for every 2, yeL we have :
if H(z, d) < 3, H(y,d) <3, thenH(z+y,e) <,

5° ifd Rd,, then H(.;;), d’) < H(;, dg) for every z.

A linear space with pseudo-norm is termed pseudo-normed
linear space.

Given such a space, if we define

U, a)fi $H(3, d) < o] for all «>o,

the class § U(d, «)}, where dedR, « > o will satisfy J. V. Neumann's
axioms, and the condition 6° too, so the U(d, «) are N. st. nbhds.

(®) By a partial ordering we understand a not empty relation [g] R such that

1) aRa whenever a€ DR,

2) if aRb, bRe, then aRec.

3) for a, b€ QR the following are equivalent

I) aRb, bRa, II) a=b.[10].

If, given a stream ordering R, we attach to every element a of the field QR of R an
element taken from a not empty set E, we get a funclion f(a) which will be termed
R- stream sequence of elements of E.

The term, commonly used, for a stream-sequence is « directed set », though this is
clearly no set at all, but may be rather understood as the ordered couple (R, f). The stream-
sequence is a generalisation of the ordinary sequence.
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Conversely given a system 1l of N. st. nbhds we can define a Hyers’
pseudo-norm in the following natural way by putting

1) H(z, U)=inf 2 {ze. U},
aK >

0

2) URU,.=.U, c U, for U, Ugll.
df

The second definition organizes llinto a stream ordering, and one can
prove that H(;, U) thus defined satisfies the Hyers’ conditions 1°-5°.

Thus, given a topological linear space (L), there is at least one
stream ordering attached to it.

The Hyers’ pseudo-norm-approach to linear spaces has been put
into a simpler form by J. P. La Salle [7].

3. The linear (real) topological space is said to be convex
(locally convex) if there exists a system of N. nbhds U such
that every Vell is a convex set (*), which condition is equivalent to

V4+Vea.V.

The linear space is convex if and only if there exists a pseudo-norm
>

H(;, d) such that for every d, z y

H(z+y, d) < H(z,d)+H(y, d).
We shall deal only with real linear topological convex
spaces (L).
We fix a system 1l of convex N. st. nbhds and take the corres-
ponding Hyers’ pseudonorm which we shall denote by
llelly = H(=, U),

daf
and where the corresponding stream ordering is defined by

URU,.=.U,cU, (U,Ugl)
df

(*) Given a linear space L, a subset E of L is said to be convex if the following
condition is satisfied :
> > > >
if 2;, 2,€E, then X,x, 4 X,z,€F for every X, A,
with ) >0, 23>0, L, +2;=1.
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Theorem. Every U is a convex body in (L), havingg
as its linearly inner point(°).

It may be proved that for U the linearly inner point coincide with
the topologically inner points, but we do not need it.

Proof. Let #=£0 and Ugll. By V. Neumann's axiom 5 there
exists £ such that .:n)e(ﬁ .U, g>o.
Hence —.z e U.
X
p -> ->
Hence on the line / passing through o and z there exists an open
segment containing o and included in U.

and then, for all y with |y| <, we have y . z¢U.

_ Theorem. — If we replace every U by its linear closure
U.vwecoblainanequivalent system of convex N.st. nbhds(®).
Proof. Let Uell. There exists U, with U, 4 U, c U, hence 2U, c U.

Let 4 be a boundary point of U,. We have Zqﬁg, because o is a

linearly inner point of U,. Fut B=1.4. We have (3, E) cUand
then A¢U.

Since every boundary point of U, belongs to U, we have U cU.
On the other hand we have U c U, which completes the proof.

Remark. It may happen that the whole space L belongs te U, but,
if we drop it, we obtain an equivalent system of N. nbhds, unless
the topology is trivial with L as the only neighborhood.

(*) Given a linear real space (L), (even without any topology consideved therein), a
convex body in V is a convex set E conlaining at least one linearly inner point,
i. e. a point z, such that on every straight line, in L, passing through z, there exists an
open segment (z', «”) containing z, and belonging to E. [11].

(%) If (L) is a linear space, E € L, then E is said to be linearly-closed, if for every
straight line ! in L the set E n [ is a closed set in the natural topology on the straight
line 1.

By the linear closure E of a set E C L we understand the smallest linearly closed
set containing E. If B is a convex body and, ;:)0 its linearly inner point, then B is also a
convex body in which :0 is a linearly inner point, and vice versa. _

The points of B which are no linearly inner points of B (hence of B) are termed
boundary points of B. (and of l_?) and its collection is termed the linear boundary
of B. Points of L which do not belong to B are termed linearly outer points for B
(and for B) [11].

It may be proved that the linear closure of U coincides with its topological closure,

but we do not need it.
1
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In the sequel we shall suppose that (L) is not trivial, and that 1l
does not contain L. Besides we may admit, without loss of gene-
rality, that every U is a linearly closed convex body.

§ 2. — Some linear functionals.

4. We shall need an important theorem by J. V. Wehausen
([18], p- 162); it will be states at 6. 2. It has been proved, by relying
on the known theorem of Hahn and Banach, but we shall derive it
in a geometrical way, by relying on a theorem on convex bodies.
This will give the Wehausen’s theorem the geometrical evidence,
(see also [13]).

Let us have a fixed system U of N. st. nbhds where Lell, where
every Uell is a linearly closed convex body with o as its linearly
inner point. Take the corresponding pseudo-norm ||x||;. We have
llzllg>1, < 1,0r= 1L,if 7 is linearly exterior to U, interior of U
or a boundary point of U respectively.

Consider the cartesian product (L*) = (L) X (— o, + ) of the

given linear topological space (L) and the topologlcal space (— oo,

—~+ o). Its vectors are ordered couples (;, 1) where z€L, and 1 is a
real number. We define addition and multiplication by

(@ )4, :J-)f(;%—;, A1),
OL.(;, l)ﬁ(a;, oO\).

Define U* as the set of all (; l) where €U, 2e(—¢, +¢), (¢ > 0).

The class { U*} satisfies V. Neumann’s axioms for neigborhoods.

Hence (L*) is a real linear topological space

All U* are linearly closed convex bodies in L* with (o o) as a
linearly inner point.

Having this, take Uell. Define E7 as the set of all couples (a: ’A)
where 1 > ||z||y.

4. 1. The set E}; is convex in (L*).

4. 2. The point (o, 1) is a linearly inner point of
Ey[in (L*)]. Ey is a convex body in (L*).
Proof. Choose :—;o:#:)); take the points (;0 0), (3, 1) and the
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straight line [* passing through them. The point

P — (o 1—a)
df
is lying on I*.
If =0, we have P::(O, 1). We want to find o, > o such that

if | < #,, then PyeEy. A simple geometric construction will do this,
and its arithmetical equivalent is as follows.

Put
2,—=—————1 wehave 0<o, <1 (e, | =1=%,
EE= st imle=m
Let ‘a‘ < 2,
It follows
1 —a >l 0=l [a o=,
This gives:

o]y < 1 — @, and then PiekEy.

Hence, if a straight line /* passing through (3, 1) is not parallel

to L, there exists an open segment on [* containing (o, 1) and
contained in E7J,.

Now let [* be parallel to L. Its points are (a;::), I) where ;o 0.
If ”;o“,,: o, we have “oc;o”,,< 1, and hence [*CE7. If ![;ollu>o,

we have for ‘a]<“:—” the inequality
a:o U
oz o=l e Jo < 1.
and then the open interval (( ;o, 1), (e.zo, 1)>, where

» belongs to Ej.
VEL )

Thus we have proved that (o, 1) is a linearly inner point of Ej.
Hence E? is a convex body in (L*).

4. 3. 1f (z, )€ B}y, ©#06, 2>o0, then (az, 2))€E}
for every o >o.
The proof is obvious.
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4. 4. Every point (3, l), (A>o0) is a linearly inner
point of E7.

Proof. Let &} be a straight line passing through (g, )\). Denote
by I* the straight line passing through (g, 1) and parallel to [}.
Since (0, 1) 1s a linearly inner point of E7, there exists an open
segment (], z;) with (3, l)e(a:’:, zy), (z}, )<l If =" e(z}, ),
we have e (O}, a@})<B. Since, by the preceding theorem,
L.x*e By, it follows that

(0, 2) €0}, 22} <5 0 B,
and then, that (3, 1) is a linearly inner point of Ej.

4. 5. Every point (;, ).), where “;“U<)\, (x> o) 1s
a linearly inner point of EJ.

Proof. Consider the line [, (pZ, 7\) where { varies in

(— o0, + ). I* passes through (3, 7.).
There exists ¢ > o such that

&y (1 ¢y <.
It follows that if — ¢ <7 o << 1 —+¢, we have

o 2}y < 2.
Hence the segment

((—— @, )\), ((1 -+ s)a_v), )\)) belongs to Ej.

The point (g, 1) is an inner point of this segment.

Now we can apply the following theorem on convex bodies [11]:

If G isa convex body, y, its linearly inner point, and (y,, y,) an
open segment containing y, and included in G, then all points of
(7, y,) are linearly inner points of G.

It follows that (;, )\) is a linearly inner point of Ej.

4. 6. Every point (;, .1), where llglluzl,isa boundary
point of E7; if “;“u>7\, it is a linearly exterior point
of E}.

Proof. Take the set of all points (;, y.) in L* for which p. >).
They are all linearly inner points of Ejand are lying on the straight
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line I* composed of the points (;, 2) where 2€(— o0, + ). If
« <A, the point (;, a) does not belong to E7,.

Choose a number %, > A. The point (:;:), 10) is a linearly inner point
of Ej. If we choose on I* the direction in which (;, 10) precedes
(.:;, 1), we see that the supremum of points of E}; lying on [* 18 (:_5, x).
Hence, by a theorem on convex bodies [11]. (;, )\) must be a

boundary point of Ej, and (:;;), 7&’) for every () <()) an exterior
point. The theorem is proved.

4. 7. It follows that (z, 1) is a linearly interior, exterior

or boundary point of Ej according to whether [l:;HU<)\,
> X or =1 respectively. It also follows, by a theorem on convex
bodies [11], that Ej; is a linearly closed convex body in L*.

4. 8. We see that, if (z, 1) is a boundary point of Ej}, then for
every « >0, (a;, la) 1s also a boundary point.

5. Take a vector z anda neighborhood U with“;“,, > 0. The point
P=G [l

is a boundary point of E7. Since EJ, is a linearly closed convex body,
there exists at P* a hyperflat F* of support of Ej in L*(").

5. 1. Let F* be a hyperflat of support of Ej at P*, and let M* be
the halfspace with boundary F* and such that

Ep <M.
We have P*=£ (3, 0), because z =~ 0; hence the ray R* issuing

(") If L is a linear space, then by a linear variety in L we understand a not empty
subset E of L such that, if z,, z,€E, then A,, + X,2,€E for every real X, and },.

By a flat in L we understand a translation of a linear variety. By hyperflat in L
we understand a flat F 5£ L for which there exists a vector 7 such that the smallest flat
containing F and T coincides with L.

A hyperflat F determines two halfspaces M;, M,, such that M, UM, =L, M\,nM,=F.
They are linearly closed convex bodies with F as common linear boundary.

J. Dieudonné [13] has proved that, if G is a linearly closed convex body, z its
boundary point, then there exists at least one hyperflat F such that z€F, and that G,
is contained in one of the two halfspaces determined by F. Such a hyperllat is termed
hyperflat of support for G at z. Dicudonné’s proof is algebraic. A geomelrical proof
is given in [11].
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from (3, o) and passing through P* is well determined. It must
belong to F*. Indeed R*<E} (on account of 4. 7).

Suppose R* c F*. Since P*¢R* n F*, there would exist on R* a
segment (P*, P}) composed of linearly inner points of one halfspace,
and another segment (P*, P;)on R* composed of linearly inner points
of the other halfspace. Since (P}, P}) belongs to the boundary of E7,
we could deduce that Ej; possesses inner points in both halfspaces (*)

which is impossible. Thus R* ¢ F*, and then (; ) o)eF’* .

5.2. If (*, )\‘)GF* and G, 12)6F*, then X, =1,.

Proof. Suppose %, < 3,. The straight line passingthrough (’, )\,),
(; ) belongs to F™*. Hence ( ) )GF* If y—0, we would have
(0 I)GF* which is 1mposs1ble because (o 1) is a linearly interior

point of Ej. Hence y=o0. Since (o, )eF* and ( v, )eF*, the
straight line [ joining these two points is contained in F*. Hence the
plane passing through ! and (;' 1) belongs to F*, and hence

(3’ I)GF * which is impossible, since (3’ 1) is a linearly inner point
of Ej.
5.3. For every  there exists ) such that
G 2)eF.
Proof. Suppose that for a given z, we have
(z,, 2)eF™* for all .

Consider the straight line * composed of all points (;0, 1) where
2&(— o , 4 ). Take the hyperflat E* parallel to I'* and passing

through (;, o). Since (3 0)eF*, we have E*— F*. The vector
Pt ) G — e

because if not, ¢ would be independent of E* and hence * would

intersect F™*.
Hence the line (o, l) with varying % would belong to F* and then
> .
(0, o) would be no inner point of Ej,.
(®) There is the following theorem. If G is a convex body, z, its linearly inner point

and a its boundary point then the open segment (a, z,) is composed of linearly inner
points of G, [11].
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5.4. Let us remark that given a U there exists z such

that |, > o.
Since U differs from the whole space, there exists at least one

boundary point z of U.
For this point we have H.rnl,: 1 as was already proved.

5.5. Given an x50, there exists U such that

=

Ifnot, we would have “;”U:o for all U, and then by Hyers’ first

axiom, £=o0.
The set Ej is lying in one of the two linearly closed halfspaces

determined by F*. One of them M, contains (3, — 1) the other M,
contains (;, 1). Clearly Ej c M,.

5.6. If z¢L, and (z, \)eF™*, then A< |-
Indeed if we had > |ai|y, the point (z, X) would be a linearly

interior point of Ej, and then (;, V™,

6. Take a neighborhood Ugll. Since there exists ;;0 with “;0”,, > o,
the corresponding set E7 is not empty, and then the flat F*, as defined

before, exists. Choose F*. Let us define the function f (;) by putting:
f (:_; ) =X  where (; , R)GF*.

Such a number X exists and is unique.

6.14. We easily see that f(;) is a linear functional in L.
This will mean that

fz+3)=1(2)+7() forall 3, yeL,

and f (a:;):otf (;) for all ;‘eL and all real numbers «. Of course,
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f (:;) depends not only on U but also on the choice of the support-
hyperflat F* for Ef (°).

6.2. Theorem. (Wehausen) For every ;i and U there
exists a linear continuous functional f,, y(x) in L such
that

Szlég lfx.,v(m)|: L, fz«,U(ma):”;a"U'

Proof.
Suppose first that

el > o.
Consider the set Ej;. We know that the point P*= (‘;n ||:c‘|[,,) is lying

on the boundary of Ej, and that this point differs from (o, o).
Take a support-hyperflat F* at P* to Ej in L*, and consider the
corresponding linear continuous functional f(z).

Put N
> xr

y ar > °

]

The point G, 1) lies on the boundary of Ej;, and especially on the
line joining (3,0) with P*.
Hence (}, l)eF*. Hence f(;): 1, and then

S@)=f(ele-r)=lele - .. .. ®
Now we have for xzeU,
f@ <l < 1.

(®) Let ZE€U. We have “;”u< 1. Since (;, f (;:)))EF", we have by what has been
proved,

@ <llb< .

Let Ue be the set of all points of U which are U-interior points. Hence U° is an open set
in the linear topological space. We have for z€U° also the inequality

@<

Thus we see that f(z) is bounded from above on a non empty topologically open set U°.

The following theorem is true [15].

If, in a linear space, provided with a topology T such that the following conditions are
satisfied :

1° if E is a T-open set, then every translation of E is so,

2° if Eis a T-open set then a . E for a 5% 0 is also a T-open set, there exists a T-open
set, on which the linear function f(z) is bounded from above, then f(z) is continuous in
this topology.

This theorem allows to conclude that f(z) is a continuous linear functional.
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If zeU, then — x¢U, because U is a star-neighborhood. Hence

—f(@) =f(—2) <[|—ally=]lells <

It follows that for every xeU we have

@) < x

Since ”;”U: 1, we have ;GU, for U is linearly closed.
Hence

s:;g lf@))=1 ... ... (2) '

Thus the functional f(z) satisfies the conditions stated in the
theorem.
Now suppose that ||z, |

There exists x, such that
above, for «,.

v—0.
.’Z v >o0; find a linear functional f(z), as

We have
sup | f(z)|=1.
zeU
Besides
S@)<[z]o=o.
Since xz,eU, we have —z €U,
and then
—f@)=f(—2)<|—a]v=0.
Thus
f(@)| <o, hence f(z,)=o0,
and then

f@)=|z]o.

The theorem 1is proved.

6. 3. The functional f,,,(;) of the preceding theorem
has the property:

>

() ... [ few (DI [Flo for every 7.
Proof. Let ”y“U:O. We have for n—=1, 2, ...

“’l;”zf: n. ”;”U =0.
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Since nny” < 1, we have nyeU
and then
| fe o(my) < 1
It follows
|fz4. U(;)|< . for n—=—rn, 2,.., hence

n
Sen U(_))_—:o, and then in this case the inequality (1) is proved. Let

“y”U>0 Put z— = Ty ”

We have ||z”u_ 1, hence z¢U, and then

'f-‘cl U( )l < L e.
[ e oM< 7l

The theorem 1s proved.

§ 3. — The matrix space.

7. Let X be a cardinal 2> N, and R a stream ordering. Take a set J
of any elements «, £, ... whose power is X ; these elements, as
well as the elements d, e, f... of oR will be used as indices. By a
matrix we shall understand a function 4 ={4, ,{ defined for all
a€J and all deoR and whose values are real numbers (hence {Aq, }
is a function of two variables 2, d).

Let I be the class of all matrices A ={ A, ,} such that for every
2 and every d eoR

supldg o <<oo. .. ... . (o)

dRdo,
agJ

7. 1. We organize IR into a linear space (JR) by defining the
addition of matrices and the multiplication of matrix by a real

number :
gAa,d}+g8“yd;%{Au,d+Ba,dgr
VA a0 A -

The matrix with all elements — o0 is the null-vector of this space.
Put '
il ==sup|daal - . . . .. (1)
dRd,

a€J
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7.2. We easily check that this function of 4 and d, satisfies
all the Hyers’ conditions for the R-convex pseudonorm.

Hence 9N is organized into a pseudo-normed space with the
pseudo-norm (1).

§ 4. — Embedding of (L) into a matrix space.

8. Let (L) be a real linear convex topological space ; by its sepa-
rability-cardinal we shall understand the smallest cardinal ¥
such that there exists a subset Q of L with power X} and everywhere

dense in (L), i. e. for every vector ;(,GL and every topologically

open set G containing a: there exists zeQ n G.

Let us choose a system Il of N. star. nbhds, such that Lell and
such that, if Uell then U is linearly closed. Construct the corres-
ponding Hyers' pseudonorm ||z||y with the corresponding stream
ordering R, defined by URU,-=-U,cU,, (U,, Ugll).

Let § be the separability-cardinal of (L) according to the topology
induced by I, and choose an everywhere dense set Q of power N
in L. We suppose that & > N,.

According to what was made in §2, attach to every Ze(Q and
Ugell a linear continuous functional f(x) fé’! () with the
properties :

K

3
=

splfie) =1, fE)=[F ... ... (1)
Put
A(z) ={4,, w(@)is 1 fi v@)! for all zeL,
£eQ and UgoR=1.
8.1. We shall prove that the matrix just defined satisfies

the condition (o), § 3.
We have

|4g. o@) =1 o)l < o < el

whenever URU,. Hence if we fix z and U,, we have

sup‘AE ol ”w

URUo

Uo < «ow ... .. (2)
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8.2. Let us take the correspondence S which attaches to every

;:EL the matrix A(Z) taken from IN.
The correspondence S is an algebraic homomorphism
from L into IN.

8.3. The correspondence S preserves the Hyers’ speudo-
norm. Proof. Let z be arbitrary. Take a neighborhood U,. We have

I = supl e o5 s )
g0 reQ

@<l <[

4@ <l - - - (3)

Take ¢ > 0 and-find a Vell such that if yeV* 2z (V* means the
topological interior of V), we have

Uo < € . ... e ([],)

‘We have

w ifURU,,

hence

Iy —=

For URU, we have .

e ll3) — o ol@) | = oy —2)|< Y — 2o <[y — 2l <,
hence

|feoy) = fedlz)l<e ... L (5)

for every £€ (), every URU, and yeve,
From (4) we have, because of the convexity condition,

[l — el < iy =l < — < ¢

for every URU, and every ;e Ve —}—;
Since Q is topologically everywhere dense in L, there exists
w€Qn [V —{— ;]
We have
el — Ll <

[feol) — foulz)| < e
for every Z€ ) and every URU,.

and from (b),
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Hence
|f7,.b("') —fn,v(“p)K €
and then
[l — Ano(z) < c.
It follows from (5):
(@) —[elol<
for every URU,,.
Hence
”x ‘Uo —2e< An’UO(w) <|An,l/0(m) l
Consequently
”; — 2 < suplAe U( )\ for any e>o.
EGQ
Hence <A@y - - - - .- (6)
- From (3) and (6) it follows
Nelloe=l14@)
E. D.

Hence we have proved that S preserves the pseudo-norm.
8. 4. Finally, let us prove that S is a one-to-one relation.

Suppose that A(a_v)‘) = A(;.z).
A(;‘ — ;2) is the o-matrix.
Since “;1 - ;2”'}: ”A (;1 - ‘;2)””: o

for all U, 1t follows that ;1— :;2:3, and then ;‘ :;2.

Thus the correspondence § is an isomelric isomorphism from L
into I and then also a homeomorphism. It follows that I is a
universal linear convex topological space in which are
isometrically and isomorphigally embedded all real topo-
logical linear spaces having isomorphic stream orderings
of N. str. nbhds and the same separability cardinal ¥.

9. Now let @ be a not empty set of real linear convex topological
spaces (L;) where ¢ ranges over a not empty set/. IfR; 1s a streamor-
dering generated by L;, and ¥, isits separability cardinal, we can put
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N —sup N;, and find a stream ordering R such that R; is isomorphic
df €7

with a sub-partial ordering of R, and consequently have a matrix-
space which embraces isomorphically and isometrically all spaces
of &.

10. Now let z,&z, which means that for every topologically open
set G with oeG there exists U, such that if URU, then ;Uea:—of—G
If we put yU_a:U—a:, the above 1s equivalent to the statement :

for every, open G with oeG there exists U, such that if URU, then
75€G.
This is equivalent to the statement :
(1) For every Nnbhd U there exists U’, such that, if URU, then

;UGU’.

We shall prove that (1) is equivalent to the following statement :
(2) For every U’ and ¢ > o there exists U, such that if U RU, then

“J’U”v'
Proof. Suppose (1). Let p be a natural number with ; <, and
take the topologically open set <7 U > . There exists U, such that,

if URU, then
€ U’>
y"<p

hence
I
E_ * UI’
Yu I
hence p.y el
hence
[|p-yullv <

”)’u”u<—;—<€, hence (2).

Suppose (2). Take U’ and e==1. There exists U, such that,
if IIORU, then ”;U”U < I.
Hence
yu€U',  hence (1).
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10. 1. Having this, take the matrix-image A(:y)u> of ;u-
(2) 1s equivalent to the statement :
(3) for every U’ and ¢ > o there exists U, such that if U RU, then

“A Gu)”v <e
because

l4Gle=15

MG suplde (7o)

«€Q

o

Hence (3) is equivalent to the statement :
b ...... for every U’ and ¢ > o there exists U, such that, if
URU, we have

A, w(70) <«

for all 2€() and all WRU'.

Now A W(y,) can be conceived as a fanction o,(x, W) of two
variables 2, W’ defined for all ¢Q and all W’ with W'RU'.
The statement (4) says that the stream sequence {9} converges

uniformly, i. e. For every ¢ > o there exists U, such that for all U
with URU and all («, W’) we have

o, W<

Hence for every U’ the stream sequence oi(«, W) of functions
restricted to those («, W) for which WRU', converges uniformly to
the O-matrix. We can say that every matrix, restricted from above,
converges uniformly.

Hence the correspondance S between vectors of the
space L and matrices transforms every convergent R-

stream sequence {:af of vectors into a corresponding
stream sequence of functions ¢u(«,W) whose all
restrictions from above (i. e. WRW_ , where W  is
fixed) converge uniformly.

This reminds an ordinary .sequence of functions g,(p, 9),
(n=1,2 ...) defined for 0 g, o< p <1, which converges uni-
formly in every rectangle o p <1, 0 <{gq<gq,.
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