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HOLOMORPHIC ISOMETRIES FROM THE POINCARÉ
DISK INTO BOUNDED SYMMETRIC DOMAINS OF

RANK AT LEAST TWO

by Shan Tai CHAN & Yuan YUAN (*)

Abstract. — We first study holomorphic isometries from the Poincaré disk
into the product of the unit disk and the complex unit n-ball for n > 2. On
the other hand, we observe that there exists a holomorphic isometry from the
product of the unit disk and the complex unit n-ball into any irreducible bounded
symmetric domain of rank > 2 which is not biholomorphic to any type-IV domain.
In particular, our study provides many new examples of holomorphic isometries
from the Poincaré disk into irreducible bounded symmetric domains of rank at
least 2 except for type-IV domains.
Résumé. — Nous étudions d’abord les isométries holomorphes du disque de

Poincaré dans le produit du disque unité et de la boule unité complexe n-dimen-
sionnelle pour n > 2. Ensuite, on observe qu’il existe une isométrie holomorphe du
produit du disque unité et de la boule unité complexe n-dimensionnelle dans tout
domaine symétrique borné irréductible de rang > 2 non-biholomorphe à aucun
domaine de type IV. En particulier, notre étude fournit de nombreux nouveaux
exemples d’isométries holomorphes du disque de Poincaré dans les domaines sy-
métriques bornés irréductibles de rang au moins deux, à l’exception des domaines
de type IV.

1. Introduction

Holomorphic isometries between bounded symmetric domains have been
studied extensively since the fundamental works of Calabi [1], Clozel–
Ullmo [6] and Mok [14] and various rigidity results were derived. For ex-
ample, when the source is irreducible and of rank at least 2, the total
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geodesy of holomorphic isometries follows from the proof of Mok’s theo-
rem of metric rigidity (cf. [6, 14]); when the source is of rank 1 and of
complex dimension at least 2, namely, the complex unit n-ball for n > 2,
and the target is the product of complex unit balls, the total geodesy of
holomorphic isometries is obtained by Zhang and the second author [22].
On the other hand, the non-standard (i.e., not totally geodesic) holomor-
phic isometries were discovered by Mok either from the (complex) unit disk
to polydisks [14] or from the complex unit m-ball to irreducible bounded
symmetric domains of rank at least 2 for some integer m > 2 [15]. It turns
out to be a highly non-trivial problem to classify holomorphic isometries
from the (complex) unit disk to polydisks with respect to the canonical
Kähler–Einstein metrics (cf. [2, 3, 12, 17]). One motivation of our study is
along this line after [17] and [22] to understand the holomorphic isometries
from the (complex) unit disk to the product of complex unit balls with
respect to the canonical Kähler–Einstein metrics. The first main result in
the present article is that we fully characterize all holomorphic isometries
from the unit disk to the product of the unit disk and a complex unit n-ball
for n > 2 (cf. Theorem 2.8 and Theorem 2.12). In particular, we further
construct a real 1-parameter family of mutually incongruent holomorphic
isometries. When the target is an irreducible bounded symmetric domain Ω
of rank at least 2, holomorphic isometries from the unit disk are poorly un-
derstood in general. This is the second motivation of our study as one may
obtain various examples by composing the maps described above with a
totally geodesic (or non-standard) holomorphic isometric embedding from
the product of the unit disk with a complex unit n-ball to Ω. When the
target Ω is of rank at least 3, by composing the real 1-parameter family
of mutually incongruent holomorphic isometries from the unit disk to the
3-disk found by Mok (cf. [14]) with the totally geodesic holomorphic iso-
metric embedding from the 3-disk to Ω, it is known that a real 1-parameter
family of mutually incongruent holomorphic isometries from the unit disk
to Ω exists. When rank(Ω) = 2, the real 1-parameter family of mutually
incongruent holomorphic isometries from the unit disk to Ω is only known
to exist when Ω is a classical domain of type IV (cf. [4, 19]). Nevertheless,
we may obtain a real 1-parameter family of mutually incongruent holo-
morphic isometries from the unit disk to any classical irreducible bounded
symmetric domain Ω of rank at least 2 except for type-IV domains (cf.
Theorem 3.3). Another interesting question of Mok regards the boundary
extension of holomorphic isometries from the unit disk to bounded sym-
metric domains of rank at least 2 (cf. [13, Problem 5.2.2]). In this direction,
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we construct new non-standard holomorphic isometries from the unit disk
into Ω that extend holomorphically to a neighborhood of the closed unit
disk and have irrational component function(s), where Ω is any irreducible
bounded symmetric domain of rank at least 2 in its Harish-Chandra real-
ization (cf. Theorem 3.1). Note that rational examples are known to exist
before (cf. [4, 19]). For related problems of holomorphic isometries between
Hermitian symmetric spaces of compact type, the interested readers may
refer to [7, 8, 21].
We fix the notations in the present article. Denote by gD the canonical

Kähler–Einstein metric on an irreducible bounded symmetric domain D b
Cn normalized so that minimal disks are of constant Gaussian curvature
−2. We also denote by ds2

U the Bergman metric of any bounded domain U b
CN . On an irreducible bounded symmetric domainD b Cn, gD and ds2

D are
proportional by a positive constant. In particular, on a complex unit n-ball
Bn, ds2

Bn = (n + 1)gBn . Let D b Cn and Ω b CN be bounded symmetric
domains. We write D = D1 × · · · × Dm and Ω = Ω1 × · · · × Ωk, where
Dj , 1 6 j 6 m, (resp. Ωl, 1 6 l 6 k), are irreducible factors of D (resp.
Ω). Let F1 = (f (1)

1 , · · · , f (1)
k ), F2 = (f (2)

1 , · · · , f (2)
k ) : (D1, λ1gD1) × · · · ×

(Dm, λmgDm)→ (Ω1, λ
′
1gΩ1)×· · ·× (Ωk, λ′kgΩk) be holomorphic isometries

for some positive real constants λj , 1 6 j 6 m, and λ′j , 1 6 j 6 k, in the
sense

m⊕
j=1

λjgDj =
k∑
j=1

λ′j(f
(l)
j )∗gΩj

for l = 1, 2. Then, F1 and F2 are said to be congruent (or equivalent) to each
other if F1 = Ψ◦F2◦φ for some φ ∈ Aut(D) and Ψ ∈ Aut(Ω); otherwise, F1
and F2 are said to be incongruent to each other. This defines an equivalence
class of any holomorphic isometry F : (D1, λ1gD1)× · · ·× (Dm, λmgDm)→
(Ω1, λ

′
1gΩ1)× · · · × (Ωk, λ′kgΩk).

Throughout the present article, we say that b ∈ P1 is a branch point
of a rational function R : P1 → P1 of degree deg(R) > 2 if b = R(a) for
some ramification point a of R, where R : P1 → P1 is regarded as a finite
branched covering of degree equal to deg(R) > 2.

Acknowledgement. We would like to thank Prof. X. Huang and
Prof. N. Mok for their interest and invaluable comments. We are grateful to
the referee for carefully reading the manuscript and the helpful suggestions.
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2. Holomorphic isometries from the unit disk to ∆×Bn for
n > 2

For any integer n > 1, we denote by Bn the complex unit n-ball in the
complex n-dimensional Euclidean space Cn, i.e.,

Bn :=

(z1, . . . , zn) ∈ Cn :
n∑
j=1
|zj |2 < 1

 .

Then, the Kähler form ωgBn of (Bn, gBn), n > 1, is given by

ωgBn = −
√
−1∂∂ log

1−
n∑
j=1
|zj |2

 .

We denote by ∆ := B1 b C the (open) unit disk in the complex plane C
throughout the present article. For n > 2, we define the complex-analytic
subvariety

WU′ :=
{

(w, z1, . . . , zn) ∈ ∆× Bn : U′(w, z1, . . . , zn)T = (wz1, . . . , wzn)T
}

of ∆× Bn for any matrix U′ ∈M(n, n+ 1;C) of full rank n.
The following extension theorem is a special case of Calabi’s theorem

(cf. [1]).

Proposition 2.1. — Let f : (∆, g∆; 0)→ (∆, g∆; 0)× (Bn, gBn ; 0) be a
germ of holomorphic isometry, where n > 2 is an integer. Then, f extends
to a holomorphic isometric embedding F : (∆, g∆)→ (∆, g∆)× (Bn, gBn).

Proof. — We may suppose that f is defined on B1(0, ε) for some ε > 0.
Writing f = (f1, f2,1, . . . , f2,n), we have the functional equation

(
1− |f1(w)|2

)1−
n∑
j=1
|f2,j(w)|2

 = 1− |w|2

for any w ∈ B1(0, ε). In particular, we have

(
1− |f1(w)|2

)2(n+1)

1−
n∑
j=1
|f2,j(w)|2

2(n+1)

= (1− |w|2)2(n+1)

for any w ∈ B1(0, ε). Write Ω := ∆n+1 × Bn × Bn. Define a holomorphic
isometry f̃ : (∆, (n+1)ds2

∆)×(Bn, 2ds2
Bn)→ (Ω, ds2

Ω) by f̃(w, z1, . . . , zn) =
(w, . . . , w; z1, . . . , zn; z1, . . . , zn). Then, we see that f̃ ◦f : (∆, (n+1)ds2

∆)→
(Ω, ds2

Ω) is a germ of holomorphic isometry. Therefore, f̃ ◦ f extends to the
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holomorphic isometry F̃ : (∆, (n+1)ds2
∆)→ (Ω, ds2

Ω) by the extension theo-
rem for local holomorphic isometries between bounded symmetric domains
(cf. Calabi [1] and Mok [14]). In particular, f extends to a holomorphic
isometric embedding F : (∆, g∆)→ (∆, g∆)× (Bn, gBn). �

It is natural to ask whether all holomorphic isometries (∆, g∆) →
(∆, g∆)× (Bn, gBn) are obtained from the square-root embedding ∆→ ∆2

if the components ∆ → ∆ and ∆ → Bn are not constant maps. But we
will show that there are examples of holomorphic isometries which are not
obtained in that way.

2.1. Existence of holomorphic isometries

Let

U :=

 u1,1 · · · u1,n+1
...

. . .
...

un+1,1 · · · un+1,n+1

 ∈ U(n+ 1)

be a unitary matrix, where n > 2 is an integer. Our goal in this section
is to obtain a holomorphic isometry f := (f1, f2,1, . . . , f2,n) : (∆, g∆) →
(∆, g∆)× (Bn, gBn) such that

(2.1) U(f1(w), f2,1(w), . . . , f2,n(w))T

= (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for any w ∈ ∆. In other words, we need to solve the system provided in
(2.1) for some germ of holomorphic function f1 : (∆; 0)→ (∆; 0) and some
germ of holomorphic map (f2,1, . . . , f2,n) : (∆; 0)→ (Bn; 0). Then, we have
a germ of holomorphic isometry f := (f1, f2,1, . . . , f2,n) : (∆, g∆; 0) →
(∆, g∆; 0)× (Bn, gBn ; 0) and the rest would follow from Proposition 2.1.
Write

U′ :=

 u2,1 · · · u2,n+1
...

. . .
...

un+1,1 · · · un+1,n+1

 .

Then, it is obvious that U′ is of full rank n. SinceWU′ is a complex-analytic
subvariety of ∆×Bn which is smooth and of dimension 1 at 0, there exists
a germ of holomorphic map f := (f1, f2,1, . . . , f2,n) : (∆, 0)→ (∆× Bn; 0)
such that the image of f is an open neighborhood of 0 in WU′ and

U′(f1(w), f2,1(w), . . . , f2,n(w))T = (f1(w)f2,1(w), . . . , f1(w)f2,n(w))T ,
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equivalently

(2.2)


 u2,2 · · · u2,n+1

...
. . .

...
un+1,2 · · · un+1,n+1

− f1(w)In


f2,1(w)

...
f2,n(w)



= −f1(w)

 u2,1
...

un+1,1


for any w lying inside the domain of f . In order to apply the Cramer’s rule
to solve the system in (2.2), we need

det


 u2,2 · · · u2,n+1

...
. . .

...
un+1,2 · · · un+1,n+1

− f1(w)In

 6= 0

for any w in some open neighborhood of 0 in the domain of f . Thus, it
suffices to require that

det

 u2,2 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

 6= 0.

Actually, we have the following:

Proposition 2.2. — Write

U′′ :=

 u2,2 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

 .

In the above settings, we have f1(w) ≡ 0 if and only if det U′′ = 0.

Proof. — By performing Gaussian elimination, if det U′′ = 0, then we
have

cf1(w) = f1(w)
n∑
j=1

cjf2,j(w)

for some c, cj ∈ C, 1 6 j 6 n, such that c 6= 0. Then, we have

f1(w)

c− n∑
j=1

cjf2,j(w)

 = 0,

so that either f1(w) ≡ 0 or c −
∑n
j=1 cjf2,j(w) ≡ 0. But the latter is

impossible because c 6= 0 and f2,j(0) = 0. Thus, f1(w) ≡ 0.

ANNALES DE L’INSTITUT FOURIER
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Conversely, if f1(w) ≡ 0, then U′′(f2,1(w), . . . , f2,n(w))T ≡ 0 by (2.2).
Since there is j, 1 6 j 6 n, such that f2,j(w) 6≡ 0, the matrix U′′ is not
invertible, i.e., det U′′ = 0. In this case, we can always solve

(2.3) U(0, f2,1(w), . . . , f2,n(w))T = (w, 0, . . . , 0)T .

Actually, we have (0, f2,1(w), . . . , f2,n(w))T = U−1(w, 0, . . . , 0)T . The proof
is complete. �

We are ready to prove the following existence theorem for any unitary
matrix U := (uij)16i,j6n+1 ∈ U(n+ 1).

Theorem 2.3 (Existence Theorem). — Let U := (uij)16i,j6n+1 ∈
U(n + 1) be a unitary matrix, where n > 2 is an integer. Then, there
is a holomorphic isometry f := (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) ×
(Bn, gBn) such that

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for any w ∈ ∆.

Proof. — We adapt the above settings and constructions. In particular,
there exists a germ of holomorphic map f := (f1, f2,1, . . . , f2,n) : (∆; 0)→
(∆× Bn; 0) such that

(2.4)


 u2,2 · · · u2,n+1

...
. . .

...
un+1,2 · · · un+1,n+1

− f1(w)In


f2,1(w)

...
f2,n(w)



= −f1(w)

 u2,1
...

un+1,1


on the domain of f . Write

U′′ :=

 u2,2 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

 .

If det U′′ = 0, then by Proposition 2.2 we may solve f(w) = (0, f2,1(w), . . . ,
f2,n(w)) out from (2.3) and the result follows.
From now on, we assume that det U′′ 6= 0. Then, by applying the

Cramer’s rule to (2.4), there exists a rational function Rj : P1 → P1 such
that f2,j(w) = Rj(f1(w)) on B1(0, ε′) for some ε′ > 0 and any pole of Rj
in C is a zero of det (U′′ − zIn) for 1 6 j 6 n.

TOME 69 (2019), FASCICULE 5
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Now, we require that the germ of holomorphic map

f := (f1, f2,1, . . . , f2,n) : (∆, 0)→ (∆× Bn; 0)

satisfies

(2.5) u11f1(w) +
n∑
j=1

u1,j+1f2,j(w) = w.

This is equivalent to the requirement that the germ f1 : ∆ → ∆ of holo-
morphic function satisfies R(f1(w)) = w, where R : P1 → P1 is the rational
function defined by

(2.6) R(z) =
z det

(
U− z

[
0 0
0 In

])
det (U′′ − zIn) .

This follows from the fact that f2,j = Rj ◦ f1 on B1(0, ε′) for some rational
functionRj : P1 → P1, 1 6 j 6 n, and by substituting f2,j(w) = Rj(f1(w)),
1 6 j 6 n, into (2.5). Since det U 6= 0 and det U′′ 6= 0, z = 0 is a
simple zero of R so that 0 is not a ramification point of R. In particular,
there are neighborhoods U and V of 0 in C such that R|U : U → V

is a biholomorphism. Therefore, there is a germ of holomorphic function
f1 : (∆; 0) → (∆; 0) such that R(f1(w)) = w on the domain of f1. Then,
we have

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for some germ of holomorphic function f1 : (∆; 0)→ (∆; 0) and some germ
of holomorphic map (f2,1, . . . , f2,n) : (∆; 0)→ Bn satisfying f2,j = Rj ◦ f1
for 1 6 j 6 n. It follows that

(1− |f1(w)|2)

1−
n∑
j=1
|f2,j(w)|2

 = 1− |w|2

on B1(0, ε′′) for some ε′′ > 0. Thus, f := (f1, f2,1, . . . , f2,n) : (∆, g∆; 0) →
(∆, g∆; 0)× (Bn, gBn ; 0) is a germ of holomorphic isometry. It follows from
Proposition 2.1 that f extends to a holomorphic isometry (∆, g∆) →
(∆, g∆) × (Bn, gBn), which is also denoted by f . The rest follows directly
from the above constructions. �

Remark 2.4.
(1) This theorem applies to the case where n = 1 and this would reduce

to the case of holomorphic isometries (∆, ds2
∆)→ (∆2, ds2

∆2).
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(2) Writing

U′′ =

 u2,2 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

 ,

we also have

R(z) =

zu11 det

U′′ − 1
u11

 u21
...

un+1,1

 · (u12, . . . , u1,n+1)− zIn


det (U′′ − zIn) ,

when U′′ is invertible.
(3) Let U := (uij)16i,j6n+1 ∈ U(n + 1) be any unitary matrix. If

the matrix U′′ = (uij)26i,j6n+1 is invertible, then one constructs
the rational function R : P1 → P1 from U so that R determines
the component function f1 : ∆ → ∆ of the holomorphic isometry
f := (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) × (Bn, gBn) uniquely
via the identity R(f1(w)) = w. This follows from the fact that R is
unramified at 0 and this gives rise to a unique germ of holomorphic
function f1 : (∆; 0) → (∆; 0) such that R(f1(w)) = w. From the
functional equation, it is obvious that if there is another holomor-
phic isometry f̃ := (f1, g1, . . . , gn) : (∆, g∆) → (∆, g∆) × (Bn, gBn)
such that f̃(0) = 0, then

∑n
j=1 |gj(w)|2 =

∑n
j=1 |f2,j(w)|2 for any

w ∈ ∆ so that f̃ and f are congruent to each other. It turns out
that the rational function R : P1 → P1 determines the holomorphic
isometry f := (f1, f2,1, . . . , f2,n) : (∆, g∆)→ (∆, g∆)× (Bn, gBn) up
to congruence.
Conversely, let f := (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) ×

(Bn, gBn) be any holomorphic isometry. We may assume that f(0) =
0. Then, it follows from the functional equation and Calabi’s the-
orem (cf. [1, Theorem 2]) that U(f1(w), f2,1(w), . . . , f2,n(w))T =
(w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T for some unitary matrix U ∈
U(n + 1). If f1 is non-constant, then we can construct a unique
rational function R : P1 → P1 from U so that R(f1(w)) = w.

2.1.1. Normalization of matrices

Let f = (f1, f2,1, . . . , f2,n) : (∆, g∆)→ (∆, g∆)× (Bn, gBn) be a holomor-
phic isometry such that f1 is a non-constant function, where n > 2 is an
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integer. Assume without loss of generality that f(0) = 0. Then, we have

(
1− |f1(w)|2

)1−
n∑
j=1
|f2,j(w)|2

 = 1− |w|2

for any w ∈ ∆. It follows from the local rigidity theorem of Calabi [1,
Theorem 2] that there is U ∈ U(n+ 1) such that

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for any w ∈ ∆. Let B ∈ U(n) be a unitary matrix. Define a holomorphic
map (g1, . . . , gn) : ∆→ Bn by

(g1(w), . . . , gn(w))T = B(f2,1(w), . . . , f2,n(w))T .

Then, (f1, g1, . . . , gn) : (∆, g∆) → (∆, g∆) × (Bn, gBn) is a holomorphic
isometry which is congruent to the holomorphic isometry f : (∆, g∆) →
(∆, g∆)× (Bn, gBn). Moreover, we have

[
1

B

]
U
[
1

B−1

]
f1(w)
g1(w)

...
gn(w)

 =


w

f1(w)g1(w)
...

f1(w)gn(w)

 .

Here we choose B ∈ U(n) so that

B

 u22 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

B−1

is an upper triangular matrix by the Schur Decomposition (cf. [23, Theo-
rem 3.3, p. 79]). (Noting that B−1 = BT .) In particular, we may write

[
1

B

]
U
[
1

B−1

]
=


u′11 u′12 · · · u′1,n+1
u′21 u′22 · · · u′2,n+1
...

...
. . .

...
u′n+1,1 0 · · · u′n+1,n+1

 ,

where u′11 = u11, (u′12, . . . , u
′
1,n+1) = (u12, . . . , u1,n+1)B−1, u′21
...

u′n+1,1

 = B

 u21
...

un+1,1


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and u
′
22 · · · u′2,n+1

. . .
...

0 u′n+1,n+1

 = B

 u22 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1

B−1.

Then, u
′
22 · · · u′2,n+1

. . .
...

0 u′n+1,n+1


is invertible if and only if u22 · · · u2,n+1

...
. . .

...
un+1,2 · · · un+1,n+1


is invertible. From now on, we may use the normalization of the unitary
matrix directly, i.e.,

U′′ :=

 u2,2 · · · u2,n+1
...

. . .
...

un+1,2 · · · un+1,n+1


is assumed to be upper triangular.

2.2. Degree of the rational function R

We observe that the rational function R is of a certain special form.

Lemma 2.5. — Let f = (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) ×
(Bn, gBn) be a holomorphic isometry such that f1 is a non-constant function
and f(0) = 0, where n > 2. Then, there is a rational function R : P1 → P1

such that R(f1(w)) = w, R
( 1
z

)
= 1

R(z)
and

R(z) = α0z

n∏
j=1

z − 1
αj

z − αj
,

where αj ∈ ∆ r {0} for 1 6 j 6 n and α0 ∈ ∆ r {0}.

Proof. — By polarization, it follows from the functional equation that

(1− f1(w)f1(ζ))

1−
n∑
j=1

f2,j(w)f2,j(ζ)

 = 1− wζ
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for any w, ζ ∈ ∆. It follows also from the local rigidity theorem of Calabi [1,
Theorem 2] that

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for some U ∈ U(n + 1). By the normalization of the matrix U, we can
assume that U =

[ u11 u
v U′′

]
with U′′ being an n-by-n upper triangular

matrix. From the assumption that f1 is non-constant, we have ujj 6= 0 for
1 6 j 6 n + 1 by Proposition 2.2. Then, we have f2,j(w) = Rj(f1(w))
for some rational function Rj : P1 → P1 for 1 6 j 6 n. Moreover, we
have R(f1(w)) = w for some rational function R : P1 → P1 of the form
R(z) = γz p(z)∏n+1

j=2
(z−ujj)

from the construction, where p(z) is a complex

polynomial and γ ∈ C is a nonzero constant such that p(0) 6= 0. From the
polarized functional equation, we have

(1− f1(w)f1(ζ))

1−
n∑
j=1

Rj(f1(w))Rj(f1(ζ))

 = 1−R(f1(w))R(f1(ζ))

for any w, ζ ∈ ∆. Since f1 : ∆→ ∆ is a non-constant holomorphic function,
the image of f1 is an open subset of C ⊂ P1 by the Open Mapping Theorem.
Thus, we have

(1− ξη)

1−
n∑
j=1

Rj(ξ)Rj(η)

 = 1−R(ξ)R(η)

for any ξ, η ∈ Cr {ujj | 2 6 j 6 n+ 1}. In particular, we have

(2.7) (1− |ξ|2)

1−
n∑
j=1
|Rj(ξ)|2

 = 1− |R(ξ)|2

for any ξ ∈ C r {ujj | 2 6 j 6 n + 1} (cf. [3]). Then, there is an open arc
A ⊂ ∂∆ such that |Rj(ξ0)|2, 1 6 j 6 n, are finite for any ξ0 ∈ A because
the set of poles of Rj in C is a subset of {ull : 2 6 l 6 n+ 1} for 1 6 j 6 n.
Then, we have |R(ξ)|2 = 1 for any ξ ∈ A by (2.7). We define the rational
function Υ : P1 → P1 by Υ(z) := R(z)R

( 1
z

)
. Then, we have Υ(z) = 1

for any z ∈ A. But then Υ−1(1) is finite if Υ is non-constant. Therefore,
Υ(z) ≡ 1 is a constant function. In particular, we have R

( 1
z

)
= 1

R(z) .
Now, z0 is a zero of R if and only if 1

z0
is a pole of R. The poles of R

in P1 = C ∪ {∞} are precisely the infinity ∞ and ull for 2 6 l 6 n + 1
such that |ull| 6= 1. Thus, the zeros of R in P1 are precisely 0 and 1

ull
for

ANNALES DE L’INSTITUT FOURIER



HOLOMORPHIC ISOMETRIES FROM THE POINCARÉ DISK 2217

2 6 l 6 n+ 1 such that |ull| 6= 1. In particular, one has

R(z) = γ′z

n+1∏
j=2

z − 1
ujj

z − ujj

for some γ′ ∈ C r {0}. (Noting that if |ujj | = 1 for some j, 2 6 j 6

n + 1, then
z− 1

ujj

z−ujj ≡ 1.) Since R
( 1
z

)
= 1

R(z) , we have |γ′| =
∏n+1
j=2 |ujj |.

Comparing R(z) with the formula that we have obtained in item (2) of
Remark 2.4, we have γ′ = u11. �

Remark 2.6. — We have deg(R) 6 n + 1. Moreover, if |ujj |2 < 1 for
2 6 j 6 n+ 1, then we have deg(R) = n+ 1.

This actually yields the following corollary.

Corollary 2.7. — Let U = (uij)16i,j6n ∈ U(n) be such that ukj = 0
for 2 6 j 6 k− 1, 3 6 k 6 n and u11 6= 0, where n > 3 is an integer. Then,
the zeros of the polynomial

pU(z) := det
(

U− z
[

0 0
0 In−1

])
are precisely 1

ujj
for 2 6 j 6 n and thus

pU(z) = u11

n∏
j=2

(
1
ujj
− z
)
.

In particular, the eigenvalues of the matrixu22 · · · u2n
. . .

...
0 unn

− 1
u11


u21
u31
...
un1

 · (u12, u13, . . . , u1n)

are precisely 1
ujj

for 2 6 j 6 n.

Proof. — Since U ∈ U(n), we have |u11| =
∣∣∏n

j=2 ujj
∣∣ (cf. [23]). Thus,

the assumption u11 6= 0 implies that ujj 6= 0 for 2 6 j 6 n. By The-
orem 2.3 and the constructions, there is a holomorphic isometry f =
(f1, g1, . . . , gn−1) : (∆, g∆)→ (∆, g∆)× (Bn−1, gBn−1) such that f1 is non-
constant and R(f1(w)) = w, where R : P1 → P1 is the rational function
defined by R(z) = zpU(z)∏n

j=2
(ujj−z)

. By the proof of Lemma 2.5, we have

R(z) = u11z

n∏
j=2

z − 1
ujj

z − ujj
= u11z

n∏
j=2

1
ujj
− z

ujj − z
.
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and thus pU(z) = u11
∏n
j=2

( 1
ujj
− z
)
. Note that

pU(z) = u11 · det


u22 · · · u2n

. . .
...

0 unn



− 1
u11


u21
u31
...
un1

 · (u12, u13, . . . , u1n)− zIn−1


by item (2) of Remark 2.4. The proof is complete. �

Actually, Lemma 2.5 implies the following theorem due to the fact that
0 < |ujj | 6 1 while | 1

ujj
|2 > 1 for 2 6 j 6 n+ 1.

Theorem 2.8. — Let f = (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) ×
(Bn, gBn) be a holomorphic isometry such that f1 is non-constant, where
n > 2 is an integer. Let R : P1 → P1 be the rational function such that
R(f1(w)) = w. Then, we have the following:

(1) If deg(R) = m + 1 6 n for some positive integer m, then f is
congruent to a map f̃ : (∆, g∆) → (∆, g∆) × (Bn, gBn) defined by
f̃(w) = (F (w),0) for some holomorphic isometry F : (∆, g∆) →
(∆, g∆)× (Bm, gBm) such that F is not congruent to (F̃ ,0) for any
holomorphic isometry F̃ : (∆, g∆) → (∆, g∆) × (Bm′ , gBm′ ) with
m′ 6 m − 1 (resp. F̃ : (∆, g∆) → (∆, g∆)) whenever m > 2 (resp.
m = 1).

(2) If deg(R) = 1, then f is congruent to a map f̃ : (∆, g∆) →
(∆, g∆) × (Bn, gBn) defined by f̃(w) = (F (w),0) for some holo-
morphic isometry F : (∆, g∆)→ (∆, g∆).

Proof. — We first prove (1). Assume without loss of generality that
f(0) = 0. Then, we have shown that there is a unitary matrix U :=
(uij)16i,j6n+1 ∈ U(n+ 1) such that

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T .

We may further assume without loss of generality that (uij)26i,j6n+1 is
upper triangular (cf. Section 2.1.1). From the construction and Lemma 2.5,
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the rational function R is given by

R(z) = u11z

n+1∏
j=2

z − 1
ujj

z − ujj
.

If deg(R) = m + 1 6 n, then we have 1
ujµjµ

= ulµlµ for some jµ, lµ, 2 6
jµ, lµ 6 n+ 1, and 1 6 µ 6 n−m such that l1, . . . , ln−m are distinct. But
then this implies that for each µ, 1 6 µ 6 n−m, |ulµlµ |2 = 1 so that ulµk =
uklµ = 0 for any k 6= lµ. This would force f2,lµ−1 ≡ 0 for 1 6 µ 6 n −m.
This shows that f is congruent to a map f̃ : (∆, g∆)→ (∆, g∆)× (Bn, gBn)
defined by f̃(w) = (F (w),0) for some holomorphic isometry F : (∆, g∆)→
(∆, g∆) × (Bm, gBm). Since deg(R) = m + 1, we see that it is impossible
that F is congruent to (F̃ ,0) for some holomorphic isometry F̃ : (∆, g∆)→
(∆, g∆)×(Bm′ , gBm′ ) form′ 6 m−1 (resp. F̃ : (∆, g∆)→ (∆, g∆)) whenever
m > 2 (resp. m = 1). The case where deg(R) = 1 is also clear by our
arguments and thus the assertion of (2) follows. �

Remark 2.9. — In the settings of Theorem 2.8, if deg(R) = 2, then
f is congruent to the holomorphic isometry f̃ : (∆, g∆) → (∆, g∆) ×
(Bn, gBn) defined by f̃(w) := (α(w);β(w), 0, . . . , 0), where (α, β) : (∆, ds2

∆)
→ (∆2, ds2

∆2) is the square-root embedding (cf. [17]).

Lemma 2.10. — For any integer n > 3, there is a unitary matrix U =
(uij)16i,j6n ∈ U(n) such that ukj = 0 for 2 6 j 6 k − 1, 3 6 k 6 n and
0 < |ull| < 1 for 2 6 l 6 n.

Proof. — For n = 3, we have constructed an explicit matrix in U(3)
which satisfies the desired property, namely the matrix−

1
2

1√
2

1
2

1
2

1√
2 − 1

2
1√
2 0 1√

2

 ∈ U(3).

Assume that the statement is true for some integer m > 3, i.e., there is a
unitary matrix V = (vij)16i,j6m ∈ U(m) such that vkj = 0 for 2 6 j 6
k − 1, 3 6 k 6 m and 0 < |vjj | < 1 for 2 6 j 6 m. Then, we see that the
matrix

V′ :=

 v21 0 v22 · · · v2m
...

...
...

. . .
...

vm1 0 0 · · · vmm

 ∈M(m− 1,m+ 1;C)

satisfies V′V′T = Im−1. Let W be the C-linear span of the row vec-
tors (0, 1, 0, . . . , 0), (v11, 0, v12, . . . , v1m) ∈ M(1,m + 1;C). Then, we have
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Ũ :=
[
uT1 uT2 V′T

]T
∈ U(m + 1) for any orthonormal basis {u1,u2}

of W . Let u = ( 1√
2v11,

1√
2 ,

1√
2v12, . . . ,

1√
2v1m) be a vector in W . Then,

‖u‖2 = 1
2
∑m
j=1 |v1j |2 + 1

2 = 1. Thus, we can let u2 = u and u1 be a unit
vector in W such that u1 and u2 are orthogonal. Actually, one may choose

u1 =
(
− 1√

2
v11,

1√
2
,− 1√

2
v12, . . . ,−

1√
2
v1m

)
,

but this does not affect our arguments. Then, Ũ ∈ U(m + 1) satisfies the
desired property. By induction, the proof is complete. �

By Lemma 2.10 and Theorem 2.3, we have the following:

Proposition 2.11. — For any integer n > 2, there is a holomorphic
isometry f = (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) × (Bn, gBn) such that
f1 is a non-constant function and R(f1(w)) = w on the unit disk ∆ for
some rational function R : P1 → P1 of degree n+ 1.

Proof. — By Lemma 2.10, there is a unitary matrix U = (uij)16i,j6n+1 ∈
U(n + 1) such that ukj = 0 for 2 6 j 6 k − 1, 3 6 k 6 n + 1 and
0 < |ull| < 1 for 2 6 l 6 n + 1. Then, it follows from Theorem 2.3
that there is a holomorphic isometry f = (f1, f2,1, . . . , f2,n) : (∆, g∆) →
(∆, g∆)× (Bn, gBn) such that f1 is a non-constant function,

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

and there is a rational function R : P1 → P1 satisfying R(f1(w)) = w. From
the construction, we see that

R(z) = u11z

n+1∏
j=2

z − 1
ujj

z − ujj
.

Since 0 < |ull| < 1 for 2 6 l 6 n + 1, 1
ujj
6= ull for 2 6 l, j 6 n + 1. Thus,

deg(R) = n+ 1 and we are done. �

It is natural to ask whether one can relate any holomorphic isome-
try (∆, g∆) → (∆, g∆) × (Bn, gBn), n > 2, to some holomorphic isome-
try (∆, g∆) → (∆, g∆) × (Bn−1, gBn−1) with extra parameters. The fol-
lowing yields certain relations between any given holomorphic isometry
f : (∆, g∆)→ (∆, g∆)× (Bn, gBn), n > 2, and some holomorphic isometry
f̃ : (∆, g∆)→ (∆, g∆)× (Bn−1, gBn−1) together with one extra parameter.

Theorem 2.12. — Let f = (f1, f2,1, . . . , f2,n) : (∆, g∆) → (∆, g∆) ×
(Bn, gBn) be a holomorphic isometry such that f1 is non-constant, where
n > 2 is an integer. Then, f can be determined by some holomorphic
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isometry f̃ : (∆, g∆) → (∆, g∆) × (Bn−1, gBn−1) and some parameter ζ ∈
∆ r {0} up to congruence.

Proof. — Assume without loss of generality that f(0) = 0. By [1, Theo-
rem 2] we have

U(f1(w), f2,1(w), . . . , f2,n(w))T = (w, f1(w)f2,1(w), . . . , f1(w)f2,n(w))T

for some U ∈ U(n+1) and for any w ∈ ∆. Then, we have obtained another
holomorphic isometry F := (f1, g1, . . . , gn) : (∆, g∆)→ (∆, g∆)× (Bn, gBn)
such that F is congruent to f , F (0) = 0 and

U′(f1(w), g1(w), . . . , gn(w))T

= (w, f1(w)g1(w), . . . , f1(w)gn(w))T ∀ w ∈ ∆,

where U′ = (uij)16i,j6n+1 ∈ U(n + 1) is some unitary matrix such that
(uij)26i,j6n+1 is an upper triangular matrix. This does not affect the ra-
tional function R : P1 → P1 which satisfies R(f1(w)) = w. If deg(R) 6 n,
then we are done by Theorem 2.8. Therefore, we now consider the case
where deg(R) = n + 1 so that 0 < |ujj | < 1 for 2 6 j 6 n + 1. Then, we
obtain the matrix

Ũ :=


a1 a2 · · · an
u31 u33 · · · u3,n+1
...

...
. . .

...
un+1,1 0 · · · un+1,n+1

 ∈ U(n)

for some row vector (a1, . . . , an) ∈ M(1, n;C). Note that we have |a1| =∏n+1
j=3 |ujj |. Then, one observes that the row vectors uj := (uj1, . . . , uj,n+1),

j = 1, 2, are C-linear combinations of (a1, 0, a2, . . . , an) and (0, 1, 0, . . . , 0).
In particular, we have u2 = (c1a1, c2, c1a2, . . . , c1an) for some c1, c2 ∈ C
such that |c1|2 + |c2|2 = 1. Now, we have u22 = c2 so that 0 < |c2| 6 1 from
the construction. Moreover, this determines that

u1 = eiθ(c2a1,−c1, c2a2, . . . , c2an)

for some θ ∈ [0, 2π). By Theorem 2.3, the unitary matrix Ũ defines a holo-
morphic isometry f̃ = (f̃1, g̃1, . . . , g̃n−1) : (∆, g∆)→ (∆, g∆)×(Bn−1, gBn−1)
and a rational function R̃ : P1 → P1 such that R̃(f̃1(w)) = w. From the
constructions, we have

(2.8) R(z) = eiθc2R̃(z)
z − 1

c2

z − c2
= eiθR̃(z)c2z − 1

z − c2
for some θ ∈ [0, 2π). (Noting that deg(R̃) = n and 0 < |c2| < 1 under the
assumption that deg(R) = n+1.) We may assume without loss of generality
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that θ = 0 because this does not affect the equivalence class of f . Actually,
(2.8) is still valid when deg(R) 6 n.
It follows that the rational function R is determined by the holomorphic

isometry f̃ : (∆, g∆) → (∆, g∆) × (Bn−1, gBn−1) and a parameter c2 ∈
∆ r {0}. From item (3) of Remark 2.4, R determines f uniquely up to
congruence so that f actually depends on the holomorphic isometry f̃ :
(∆, g∆) → (∆, g∆) × (Bn−1, gBn−1) and a parameter c2 ∈ ∆ r {0} up to
congruence. �

Remark 2.13.
(1) From the above theorem, given a holomorphic isometry f̃ : (∆, g∆)→

(∆, g∆) × (Bn−1, gBn−1) and a parameter ζ ∈ ∆ r {0}, we have a
holomorphic isometry F

f̃ ,ζ
: (∆, g∆) → (∆, g∆) × (Bn, gBn). It is

not known whether F
f̃ ,ζ

and F
f̃ ,ζ′

are congruent or incongruent to
each other for distinct ζ, ζ ′ ∈ ∆ r {0} in general.

(2) For any ζ ∈ ∂∆ and any holomorphic isometry f̃ = (f̃1, g̃1, . . . ,

g̃n−1) : (∆, g∆) → (∆, g∆) × (Bn−1, gBn−1), the holomorphic isom-
etry F

f̃ ,ζ
: (∆, g∆) → (∆, g∆) × (Bn, gBn) is congruent to the map

(f̃1, 0, g̃1, . . ., g̃n−1). Thus, F
f̃ ,ζ

and F
f̃ ,ζ′

are congruent to each
other for any distinct ζ, ζ ′ ∈ ∂∆.

2.3. The case where the target is ∆× B2

The following is a corollary of Theorem 2.8. In addition, we can charac-
terize those holomorphic isometries (∆, g∆)→ (∆, g∆)× (B2, gB2) obtained
from the square-root embedding (∆, ds2

∆)→ (∆2, ds2
∆2) (cf. Ng [17]).

Corollary 2.14. — Let f = (f1, f2,1, f2,2) : (∆, g∆) → (∆, g∆) ×
(B2, gB2) be a holomorphic isometry. Suppose that f1 is a non-constant
function. Then, deg(R) 6 2 if and only if f is congruent to either w 7→
(w; 0, 0) or w 7→ (α1(w);β1(w), 0), where (α1, β1) : (∆, ds2

∆) → (∆2, ds2
∆2)

is the square-root embedding (cf. Ng [17]), and R : P1 → P1 is the rational
function such that R(f1(w)) = w.

Proof. — If f is congruent to one of the given holomorphic isometries,
then it is clear that deg(R) 6 2. Conversely, if deg(R) 6 2, then it follows
from Theorem 2.8 that f is obtained from some holomorphic isometry
(∆, g∆)→ (∆, g∆)× (∆, g∆) and the rest follows from the classification for
the 2-disk by Ng [17]. �
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Remark 2.15.
(1) Actually, we have deg(R) = 2 if and only if the holomorphic isom-

etry f : (∆, g∆) → (∆, g∆) × (B2, gB2) is congruent to the map
(∆, g∆) → (∆, g∆) × (B2, gB2) given by w 7→ (α1(w);β1(w), 0),
where (α1, β1) : (∆, ds2

∆) → (∆2, ds2
∆2) is the square-root embed-

ding.
(2) It follows from Corollary 2.14 and Proposition 2.11 that there ex-

ists a holomorphic isometry f = (f1, g1, g2) : (∆, g∆) → (∆, g∆) ×
(B2, gB2) such that deg(R) = 3 and R(f1(w)) = w for some ra-
tional function R : P1 → P1 so that f is incongruent to any
of the holomorphic isometris (∆, g∆) → (∆, g∆) × (B2, gB2) given
by w 7→ (w; 0, 0), w 7→ (0;w, 0) or w 7→ (α1(w);β1(w), 0), where
(α1, β1) : (∆, ds2

∆)→ (∆2, ds2
∆2) is the square-root embedding.

2.4. Existence of a real 1-parameter family of mutually
incongruent holomorphic isometries and generalizations

Let f = (f1, g1, . . . , gn) : (∆, g∆)→ (∆, g∆)× (Bn, gBn) and f̃ = (f̃1, g̃1,
. . ., g̃n) : (∆, g∆) → (∆, g∆) × (Bn, gBn) be holomorphic isometries such
that f1 and f̃1 are non-constant functions, where n > 2 is an integer.
We may suppose that f(0) = f̃(0) = 0 without loss of generality. Then,
there are rational functions R, R̃ : P1 → P1 such that R(f1(w)) = w and
R̃(f̃1(w)) = w. If f is congruent to f̃ , then we have ψ ◦f1 ◦ϕ = f̃1 for some
ϕ,ψ ∈ Aut(∆) so that

R = ϕ ◦ R̃ ◦ ψ.
In particular, ψ maps the ramification locus of R onto the ramification
locus of R̃. In addition, ϕ maps the branch locus of R̃ onto the branch
locus of R.
A slight modification of the proof of Lemma 2.10 yields the following:

Lemma 2.16. — For any integer n > 3, there is a unitary matrix U =
(uij)16i,j6n ∈ U(n) such that ukj = 0 for 2 6 j 6 k − 1, 3 6 k 6 n,
u22 = · · · = unn =: ζ ∈ ∆ r {0}.

Proof. — For n = 3, we have the matrix

Uζ :=

 −ζ2 −
√

1− |ζ|2 ζ
√

1− |ζ|2
−
√

1− |ζ|2 · ζ ζ 1− |ζ|2√
1− |ζ|2 0 ζ

 ∈ U(3)
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which satisfies the desired properties. For m > 3, we simply let

u2 = (
√

1− |ζ|2v11, ζ,
√

1− |ζ|2v12, . . . ,
√

1− |ζ|2v1m)

(resp. u1 = (−ζv11,
√

1− |ζ|2,−ζv12, . . . ,−ζv1m)) in place of the origi-
nal u2 (resp. u1) in the proof of Lemma 2.10. Then, we also obtain Ũ ∈
U(m+ 1) as in the proof of Lemma 2.10 and Ũ satisfies the desired prop-
erties. The proof is complete by induction. �

The following shows the existence of a real 1-parameter family {ft}t∈R
of mutually incongruent holomorphic isometries ft : (∆, g∆) → (∆, g∆) ×
(Bn, gBn).

Proposition 2.17. — Let n > 2 be an integer. Then, there is a real 1-
parameter family {ft}t∈R of mutually incongruent holomorphic isometries
ft : (∆, g∆)→ (∆, g∆)× (Bn, gBn).
More generally, there is a family {fζ}ζ∈An of holomorphic isometries

fζ : (∆, g∆) → (∆, g∆) × (Bn, gBn) such that for any ζ, ζ ′ ∈ An := {ξ ∈
C : n−1

n+1 < |ξ| < 1}, fζ and fζ′ are congruent to each other if and only if
|ζ| = |ζ ′|.
In addition, if n > 3, then there is a family {fζ}ζ∈∆∗ of holomorphic

isometries fζ : (∆, g∆) → (∆, g∆) × (Bn, gBn) such that for any ζ, ζ ′ ∈
∆∗ := ∆ r {0}, fζ and fζ′ are congruent to each other if and only if
|ζ| = |ζ ′|.

Proof. — For any integer n > 2, there is a matrix Uζ = (uij(ζ))16i,j6n+1
∈ U(n+1) such that ukj(ζ) = 0 for 2 6 j 6 k−1, 3 6 k 6 n+1, ujj(ζ) = ζ

for 2 6 j 6 n+ 1 and u11(ζ) = ζ
n for any ζ ∈ ∆ r {0} by Lemma 2.16.

By Theorem 2.3, there is a holomorphic isometry fζ = (f1
ζ , f

2,1
ζ , . . . ,

f2,n
ζ ) : (∆, g∆)→ (∆, g∆)× (Bn, gBn) such that fζ(0) = 0 and

Uζ(f1
ζ (w), f2,1

ζ (w), . . . , f2,n
ζ (w))T = (w, f1

ζ (w)f2,1
ζ (w), . . . , f1

ζ (w)f2,n
ζ (w))T

for any w ∈ ∆. Moreover, we have Rζ(f1
ζ (w)) = w, where Rζ : P1 → P1 is

the rational function of degree n+ 1 given by

Rζ(z) = z

(
ζz − 1
z − ζ

)n
.

We observe that

Rζeiθ (z) = z

(
ζe−iθz − 1
z − eiθζ

)n
= e−i(n−1)θ(e−iθz)

(
ζe−iθz − 1
e−iθz − ζ

)n
= e−i(n−1)θRζ(e−iθz)
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for any θ ∈ [0, 2π). Since Rζ(e−iθf1
ζeiθ (e

−i(n−1)θw)) = w and 0 is not a
ramification point (or critical point) of Rζ , we have

f1
ζ (w) = e−iθf1

ζeiθ (e
−i(n−1)θw)

for any w ∈ ∆ by the Identity Theorem of holomorphic functions. In par-
ticular, 1 − |f1

ζ (w)|2 = 1 − |f1
ζeiθ (e

−i(n−1)θw)|2 for any w ∈ ∆. Then, it
follows from the functional equations

(1− |f1
ζ (w)|2)

1−
n∑
j=1
|f2,j
ζ (w)|2


= 1− |w|2 = 1− |e−i(n−1)θw|2

= (1− |f1
ζeiθ (e

−i(n−1)θw)|2)

1−
n∑
j=1
|f2,j
ζeiθ

(e−i(n−1)θw)|2


for any w ∈ ∆ that
∑n
j=1 |f

2,j
ζ (w)|2 =

∑n
j=1 |f

2,j
ζeiθ

(e−i(n−1)θw)|2 holds on
∆. Then, there exists a unitary transformation Ψ : Cn → Cn such that
Ψ(f2

ζ (w)) = f2
ζeiθ (e

−i(n−1)θw) for any w ∈ ∆ by the local rigidity theorem
of Calabi [1, Theorem 2], where f2

χ := (f2,1
χ , . . . , f2,n

χ ) for any χ ∈ ∆r {0}.
Actually, Ψ belongs to the isotropy subgroup of Aut(Bn) at 0, and the
map φ defined by φ(w) := e−i(n−1)θw belongs to the isotropy subgroup of
Aut(∆) at 0. Let Φ : C× Cn → C× Cn be the map

Φ(z, w1, . . . , wn) = (eiθz,Ψ(w1, . . . , wn)).

Then, it is clear that Φ belongs to the isotropy subgroup of the automor-
phism group of ∆× Bn at (0,0) and

Φ(fζ(w)) = fζeiθ (e−i(n−1)θw) = fζeiθ (φ(w)) ∀ w ∈ ∆

so that Φ ◦ fζ ◦ φ−1 = fζeiθ , i.e., fζ and fζeiθ are congruent to each other.
In particular, if ζ, ζ ′ ∈ ∆∗ = ∆ r {0} such that |ζ| = |ζ ′|, then fζ and fζ′
are congruent to each other.
Now, we will show that fζ and fζ′ are incongruent to each other whenever
|ζ| 6= |ζ ′| for ζ, ζ ′ ∈ ∆r{0}. Write Rζ(z) = pζ(z)

qζ(z) , where pζ(z) := z(ζz−1)n

and qζ(z) := (z − ζ)n. Then, the ramification points of Rζ are the zeros
of p′ζ(z)qζ(z)− pζ(z)q′ζ(z). In particular, the ramification points of Rζ are
precisely 1

ζ
, ζ, a+(ζ), a−(ζ), where

a±(ζ) :=
(n+ 1)|ζ|2 + (1− n)±

√
(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4

2ζ
∈ Cr {0}.
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In addition, the ramification order of Rζ at 1
ζ
(resp. ζ) is equal to n−1 and

the ramification order of Rζ at a+(ζ) (resp. a−(ζ)) is equal to 1. Therefore,
Rζ(a±(ζ)) ∈ Cr{0}. Note that a+(ζ) = a−(ζ) = (n+1)|ζ|2+(1−n)

2ζ
whenever

ζ satisfies (n − 1)2 − (2n2 + 2)|ζ|2 + (n + 1)2|ζ|4 = 0. It is obvious that
(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4 < 0 whenever n−1

n+1 < |ζ| < 1. Then,
we have

a±(ζ) =
(n+ 1)|ζ|2 + (1− n)±

√
(2n2 + 2)|ζ|2 − (n+ 1)2|ζ|4 − (n− 1)2 i

2ζ

with
√

(2n2 + 2)|ζ|2 − (n+ 1)2|ζ|4 − (n− 1)2 ∈ Rr{0} for n−1
n+1 < |ζ| < 1,

where i =
√
−1. Moreover, we have |a±(ζ)|2 = 1 whenever n−1

n+1 < |ζ| < 1.
Let An := {ξ ∈ C : n−1

n+1 < |ξ| < 1}, where n > 2. Now, we simply write
a±(ζ) = eiθ

±
ζ for ζ ∈ An. Note that Rζ(∂∆) ⊂ ∂∆ (cf. Lemma 2.5). For any

ζ ∈ An, the branch points of Rζ are 0,∞, Rζ(eiθ
+
ζ ) =: eiφ

+
ζ and Rζ(eiθ

−
ζ ) =:

eiφ
−
ζ . Note that a priori it is possible that Rζ(eiθ

+
ζ ) = Rζ(eiθ

−
ζ ) =: eiφ

−
ζ

when n > 3 because Rζ is (n+ 1)-sheeted and the ramification order of Rζ
at eiθ

±
ζ is equal to 1.

Given any distinct ζ, ζ ′ ∈ An, we suppose that Rζ = ϕ ◦Rζ′ ◦ψ for some
ψ,ϕ ∈ Aut(∆). Then, ϕ maps the branch locus of Rζ′ onto the branch locus
of Rζ . From the fact that ϕ ∈ Aut(∆) and the above observations, we have
ϕ(0) = 0 so that ϕ(w) = eiθ1w for some θ1 ∈ [0, 2π). Now, zeros of Rζ(z)
and Rζ′(ψ(z)) are the same by the assumption. Note that the zeros of Rξ
are 0 and 1

ξ
∈ C r ∆. Thus, we have ψ−1(0) = 0 and ψ−1( 1

ζ′

)
= 1

ζ
since

ψ ∈ Aut(∆). In particular, ψ(w) = eiθ2w for some θ2 ∈ [0, 2π). Moreover,
ψ(w) = eiθ2w and ψ−1( 1

ζ′

)
= 1

ζ
implies that |ζ ′| = |ζ|.

If fζ and fζ′ are congruent to each other, then it is obvious that Rζ =
ϕ ◦ Rζ′ ◦ ψ for some ψ,ϕ ∈ Aut(∆) and thus |ζ ′| = |ζ| by the above
arguments. In other words, fζ and fζ′ are incongruent to each other for
any ζ, ζ ′ ∈ An such that |ζ ′| 6= |ζ|. Thus, we have a real 1-parameter
family {ft}t∈(n−1

n+1 ,1) of mutually incongruent holomorphic isometries ft :
(∆, g∆)→ (∆, g∆)×(Bn, gBn). This finishes the proof of the first statement.
Indeed, the second statement is also proved.
It remains to prove the third statement by showing that {fζ}ζ∈∆∗ is the

desired family of holomorphic isometries when n > 3. More precisely, we
only need to focus on the case where 0 < |ζ| < n−1

n+1 . We do not restrict to
the case where n > 3 yet. Let Bn := {ξ ∈ C : 0 < |ξ| < n−1

n+1} for n > 2.
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Then, we have

a±(ζ) =
(n+ 1)|ζ|2 + (1− n)±

√
(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4

2ζ

and
√

(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4 ∈ R. In particular,

|a±(ζ)|2 =
2(n+1)2|ζ|4−4n2|ζ|2 +2(n−1)2 ± 2((n+1)|ζ|2 +(1−n))

√
Cζ

4|ζ|2 ,

where Cζ := (n+ 1)2|ζ|4 − 2(n2 + 1)|ζ|2 + (1− n)2. Note that

2(n+ 1)2|ζ|4 − 4n2|ζ|2 + 2(n− 1)2 − 2((n+ 1)|ζ|2 + (1− n))
√
Cζ − 4|ζ|2

= 2Cζ − 2((n+ 1)|ζ|2 + (1− n))
√
Cζ > 0

because (n + 1)|ζ|2 + (1− n) < (n + 1) (n−1)2

(n+1)2 + 1− n = − 2(n−1)
n+1 < 0 and

Cζ > 0. Thus, we have |a−(ζ)|2 > 1. On the other hand, we compute

((n+ 1)|ζ|2 + (1− n))2 −
(√

(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4
)2

= −2(n2 − 1)|ζ|2 + (2n2 + 2)|ζ|2 = 4|ζ|2,

so that

a+(ζ)a−(ζ)

=
((n+ 1)|ζ|2 + (1− n))2 −

(√
(n− 1)2 − (2n2 + 2)|ζ|2 + (n+ 1)2|ζ|4

)2

4|ζ|2

= 1,

i.e., a−(ζ) = 1
a+(ζ)

. Thus, |a+(ζ)| = 1
|a−(ζ)| < 1. In particular, the ram-

ification points of Rζ are 1
ζ
, ζ, a+(ζ), a−(ζ) with 0 < |a+(ζ)| < 1 and

|a−(ζ)| > 1 whenever 0 < |ζ| < n−1
n+1 . In addition, none of the ramification

points of Rζ are on the unit circle ∂∆. This implies that fζ and fζ′ are in-
congruent to each other for any ζ ∈ Bn and ζ ′ ∈ An. Note that the branch
points of Rζ are 0,∞, w0(ζ) and 1

w0(ζ)
for some w0(ζ) ∈ ∆ r {0}. Here{

w0(ζ), 1
w0(ζ)

}
=
{
Rζ(a+(ζ)), Rζ(a−(ζ)) = 1

Rζ(a+(ζ))

}
⊂ C r {0}. Note

that a priori it is possible that |w0(ζ)|2 = 1 for n > 3 because Rζ : P1 → P1

is (n+ 1)-sheeted and the ramification order of Rζ at a+(ζ) (resp. a−(ζ))
is equal to 1 for |ζ| 6= n−1

n+1 .
Given any distinct ζ, ζ ′ ∈ Bn, we suppose that fζ and fζ′ are congruent

to each other. Then, f1
ζ′ = ψ◦f1

ζ ◦ϕ for some ϕ,ψ ∈ Aut(∆). It follows that
Rζ = ϕ ◦ Rζ′ ◦ ψ. Then, ϕ maps the branch locus of Rζ′ onto the branch
locus of Rζ . Moreover, ϕ should preserve the branching order of the branch
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points. We will make use of the fact that ϕ(∆) ⊂ ∆ and ϕ(P1r∆) ⊂ P1r∆
as we regard ϕ as an automorphism of P1.
Now, we consider the case where n > 3. For ζ ∈ Bn, the branching order

of Rζ at 0 is equal to n−1 > 2 and the fiber R−1
ζ (0) contains a ramification

point of ramification order n − 1 > 2 while the branching order of Rζ at
w0(ζ) is at most 2 and the fiber R−1

ζ (w0(ζ)) contains ramification point(s)
of ramification order 1. Thus, it is impossible that ϕ(w0(ζ)) = 0 so that
ϕ(0) = 0. Since Rζ′(ψ(0)) = 0 and ψ(0) is not a ramification point of
Rζ′ , we have ψ(0) = 0 and thus both ϕ and ψ are rotations. In particular,
ψ(z) = eiθ2z for some θ2 ∈ [0, 2π) so that 1

ζ′
= eiθ2 1

ζ
and |ζ ′| = |ζ|.

Note that Rζ only has three distinct ramification points ζ, 1
ζ
and a+(ζ) =

a−(ζ) whenever |ζ| = n−1
n+1 . Thus fn−1

n+1 e
iθ and fζ′ are incongruent to each

other for any ζ ′ ∈ ∆ r {0} and θ ∈ [0, 2π) such that |ζ ′| 6= n−1
n+1 . Hence,

we conclude that for any ζ, ζ ′ ∈ ∆ r {0}, fζ and fζ′ are congruent to each
other if and only if |ζ| = |ζ ′|. �

Remark 2.18. — Write Ω := ∆n+1 ×Bn ×Bn. From the proof of Propo-
sition 2.1 and Proposition 2.17, there is a real 1-parameter family {ft}t∈R
of mutually incongruent holomorphic isometries f̃t : (∆, (n + 1)ds2

∆) →
(Ω, ds2

Ω). In addition, all statements in Proposition 2.17 are true if we re-
place (∆, g∆) and (∆, g∆) × (Bn, gBn) by (∆, (n + 1)ds2

∆) and (Ω, ds2
Ω)

respectively.

Corollary 2.19. — In the settings of the proof of Proposition 2.17, the
holomorphic isometry fζ = (f1

ζ , f
2,1
ζ , f2,2

ζ ) : (∆, g∆) → (∆, g∆) × (B2, gB2)
is not totally geodesic, irrational (i.e., some component functions of fζ =
fζ(w) are not rational functions of w ∈ ∆ ⊂ C) and extends holomorphi-
cally to a neighborhood of the closed unit disk ∆ for 0 < |ζ| < 1

3 .

Proof. — We fix any ζ ∈ C such that 0< |ζ|< 1
3 . Let fζ = (f1

ζ , f
2,1
ζ , f2,2

ζ ) :
(∆, g∆)→ (∆, g∆)× (B2, gB2) be the holomorphic isometry constructed in
the proof of Proposition 2.17. From the construction, there is a rational
function Rζ : P1 → P1 of degree three such that Rζ(f1

ζ (z)) = z. Therefore,
f1
ζ is irrational, i.e., f1

ζ (w) is not a rational function in w ∈ ∆ ⊂ C. Since
any totally geodesic holomorphic isometry f : (∆, g∆)→ (∆, g∆)×(B2, gB2)
with f(0) = 0 is the restriction of some linear map C → C3 (cf. Mok [14,
p. 1646]), the constructed holomorphic isometry fζ is not totally geodesic.

Now, we show that fζ extends holomorphically to a neighborhood of ∆.
Note that the only possible singularities of fζ lying on the unit circle ∂∆
are branch points or poles of the component functions of fζ . One observes
from Rζ(f1

ζ (w)) = w and f1
ζ : ∆ → ∆ that f1

ζ does not have any pole on
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the unit circle ∂∆. For the rest of the proof, we follow the notations in
the proof of Proposition 2.17. Note that a branch point of f1

ζ is a branch
point of the 3-sheeted branched covering Rζ : P1 → P1. Since 0 < |ζ| < 1

3 ,
the ramification points a+(ζ) and a−(ζ) of Rζ satisfy a+(ζ) = 1

a−(ζ)
and

0 < |a+(ζ)| < 1 (cf. the proof of Proposition 2.17). Moreover, a+(ζ) and
a−(ζ) should lie in different fibers of Rζ because Rζ is 3-sheeted so that
the fiber of each branch point of Rζ contains precisely one ramification
point, i.e., Rζ(a−(ζ)) 6= Rζ(a+(ζ)). In addition, a−(ζ) = 1

a+(ζ)
so that

Rζ(a−(ζ)) = 1
Rζ(a+(ζ))

because Rζ
( 1
z

)
= 1

Rζ(z)
. If Rζ(a−(ζ)) ∈ ∂∆, then

we would have Rζ(a−(ζ)) = Rζ(a+(ζ)), a plain contradiction. Thus, we
have Rζ(a+(ζ)), Rζ(a−(ζ)) 6∈ ∂∆. In particular, all branch points of f1

ζ

are outside the closed unit disk ∆ so that f1
ζ extends holomorphically to a

neighborhood of ∆.
From the construction, we have f2,j

ζ = Rj ◦f1
ζ for some rational function

Rj : P1 → P1, j = 1, 2. Thus, it remains to show that f2,j
ζ does not have

any pole lying on the unit circle ∂∆ for j = 1, 2. Actually, the set Pj of all
poles of Rj is a subset of the set P of all poles of Rζ from the construction,
j = 1, 2. Then, we have f1

ζ (b) 6∈ Pj for any b ∈ ∂∆ and any j because
Rζ(f1

ζ (b)) = b and Pj ⊂ P . Thus, each f2,j
ζ extends holomorphically to a

neighborhood of ∆, j = 1, 2. The proof is complete. �

Remark 2.20.

(1) This corollary shows that Theorem 3 in [16, p. 2637] could not be
generalized to the case where the target is product of complex unit
balls BN1 × · · · × BNp , p > 2, with Nj > 2 for some j, 1 6 j 6
p. Nevertheless, one needs to impose the single valuedness of the
holomorphic isometries in order to generalize Theorem 3 in [16] (cf.
Theorem 4.1).

(2) As an application of the existence of the holomorphic isometry from
∆ to ∆ × B2 with irrational component function(s) that extends
holomorphically to a neighborhood of ∆, Xiao and the two authors
discovered that there exist proper holomorphic maps from ∆ to B2

that are algebraic and extend holomorphically to a neighborhood
of ∆ but are not rational. In fact, f1

ζ maps ∆ onto a compact set
E ⊂ ∆ for any 0 < |ζ| < 1

3 , where f1
ζ : ∆ → ∆ is the map

constructed in the above corollary. This is a new phenomenon in
the rank 1 case (see [5] for more details).
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3. New examples of holomorphic isometries from the
Poincaré disk into certain irreducible bounded

symmetric domains of rank > 2

In this section, we provide more applications of Proposition 2.17 and
our study on holomorphic isometries from (∆, g∆) to (∆, g∆) × (Bn, gBn),
n > 2, to the study of holomorphic isometries from (∆, g∆) to (Ω, gΩ) for
any irreducible bounded symmetric domain Ω of rank > 2.
Firstly, we construct examples of non-standard holomorphic isometries

from the Poincaré disk into irreducible bounded symmetric domains of rank
> 2 which are irrational and extend holomorphically to a neighborhood
of the closed unit disk ∆. It is well-known that any irreducible bounded
symmetric domain is biholomorphic to one of the following:

DI
p,q :=

{
Z ∈M(p, q;C) : Iq − Z

T
Z > 0

}
, p, q > 1,

DII
m :=

{
Z ∈ DI

m,m : Z = −ZT
}
, m > 2,

DIII
m :=

{
Z ∈ DI

m,m : Z = ZT
}
, m > 1,

DIV
n :=

{
(z1, . . . , zn) ∈ Cn :

∑n
j=1 |zj |2 < 2,∑n
j=1 |zj |2 < 1 +

∣∣ 1
2
∑n
j=1 z

2
j

∣∣2
}
, n > 3,

DV ∼= E6/SO(10) · SO(2) of complex dimension 16,

DVI ∼= E7/E6 · SO(2) of complex dimension 27

(cf. [10, 18]). The corresponding Kähler form ωg
DIV
n

of (DIV
n , gDIV

n
) is given

by

ωg
DIV
n

= −
√
−1∂∂ log

1−
n∑
j=1
|zj |2 +

∣∣∣∣∣∣12
n∑
j=1

z2
j

∣∣∣∣∣∣
2
 .

Throughout this section, we denote by fζ,2 = fζ : (∆, g∆) → (∆, g∆) ×
(B2, gB2) the non-standard holomorphic isometry obtained in Corollary 2.19
for 0 < |ζ| < 1

3 . For n > 3, let fζ,n : (∆, g∆)→ (∆, g∆)× (Bn, gBn) be the
non-standard holomorphic isometry defined by fζ,n(w) := (fζ,2(w), 0, . . . , 0)
for 0 < |ζ| < 1

3 . Then, the holomorphic isometry fζ,n extends holomorphi-
cally to a neighborhood of ∆ and has irrational component function(s) for
any n > 2 and any ζ ∈ C such that 0 < |ζ| < 1

3 by Corollary 2.19.
From now on, we fix ζ ∈ C with 0 < |ζ| < 1

3 . Let Ω b CN be
an irreducible bounded symmetric domain of rank r > 2 in its Harish-
Chandra realization. Then, it follows from Wolf [18] that the rank-1 bound-
ary component of Ω is the complex unit ball of complex dimension nr−1(Ω),
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where nr−1(Ω) is the (r − 1)-th null dimension of Ω (cf. [10]). More-
over, there exists a totally geodesic holomorphic isometric embedding G :
(∆, g∆) × (Bnr−1(Ω), gBnr−1(Ω)) ↪→ (Ω, gΩ) (cf. [18]). We may assume with-
out loss of generality that G(0) = 0 and G is the restriction of the linear
map from Cnr−1(Ω)+1 to CN .
If Ω is of non-tube type, then it follows from Mok [11] that n :=

nr−1(Ω) > 2. Therefore, the composed map G ◦ fζ,n : (∆, g∆)→ (Ω, gΩ) is
a non-standard holomorphic isometry which extends holomorphically to a
neighborhood of ∆ and is irrational.

Now, we assume that Ω is of tube type. Then, Ω is biholomorphic to
either DI

p,p for some p > 2, DII
2k for some k > 2, DIII

m for some m > 2, DIV
n

for some n > 3 or DVI. Note that there is a totally geodesic holomorphic
isometric embedding G1 : (∆, g∆) × (Ω′, gΩ′) ↪→ (Ω, gΩ), where Ω′ ⊂ Ω
is the maximal characteristic symmetric subdomain and is an irreducible
bounded symmetric domain of rank rank(Ω) − 1 = r − 1. Moreover, it
follows from Wolf [18] that

Ω′ ∼=



DI
p−1,p−1 if Ω ∼= DI

p,p, p > 2.
DII

2k−2 if Ω ∼= DII
2k, k > 2.

DIII
m−1 if Ω ∼= DIII

m , m > 2.
∆ if Ω ∼= DIV

n , n > 3.
DIV

10 if Ω ∼= DVI.

We observe that any irreducible bounded symmetric domain of rank 2 and
of tube type is isometrically biholomorphic to a type-IV domain DIV

n for
some n > 3. Thus, we further restrict to the case where Ω is of rank > 3
because the case where Ω ∼= DIV

n for some n > 3 will be done by another
method.
If Ω is biholomorphic to either DI

p,p for some p > 3, DII
2k for some k > 3,

or DVI, then it follows from [9, p. 1226] that there exists a totally geodesic
holomorphic isometric embeddingG2 : (Bm, gBm) ↪→ (Ω′, gΩ′) for somem >
2. Thus, there is a totally geodesic holomorphic isometric embedding G3 :
(∆, g∆) × (Bm, gBm) ↪→ (Ω, gΩ) for some m > 2. We may assume without
loss of generality that G3(0) = 0 and G3 is the restriction of the linear map
from Cm+1 to CN . Similar to the case of irreducible bounded symmetric
domains of non-tube type, the composed map G3◦fζ,m : (∆, g∆)→ (Ω, gΩ)
is a non-standard holomorphic isometry which extends holomorphically to
a neighborhood of ∆ and is irrational.

We now consider the case of Ω ∼= DIII
m for some m > 4. Recall that

there is a totally geodesic holomorphic isometric embedding (∆, g∆) ×
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(DIII
m−1, gDIII

m−1
) ↪→ (DIII

m , gDIII
m

) given by (w,Z) 7→ [w 0
0 Z ]. On the other

hand, Xiao–Yuan [19, Theorem 6.13] constructed a polynomial holomor-
phic isometry Fn : (Bn−1, gBn−1)→ (DIII

n , gDIII
n

) for n > 2. Here F being a
polynomial holomorphic isometry means that F is a holomorphic isometry
and each component function of F is a polynomial in z ∈ Bn−1 b Cn−1.
In particular, there is a polynomial holomorphic isometry F III

m : (∆, g∆)×
(Bm−2, gBm−2) ↪→ (DIII

m , gDIII
m

) given by

F III
m (w, z1, . . . , zm−2) =

[
w 0
0 Fm−1(z1, . . . , zm−2)

]
for m > 4. Then, the composed map F III

m ◦fζ,m−2 : (∆, g∆)→ (DIII
m , gDIII

m
),

m > 4, is a non-standard holomorphic isometry which extends holomor-
phically to a neighborhood of ∆ and is irrational.

Now, we consider the case of Ω ∼= DIII
3 . Note that there is a holomorphic

isometry ν : (DIV
3 , gDIV

3
) → (DIII

2 , gDIII
2

) which is a biholomorphism. We
may assume ν(0) = 0 without loss of generality and thus ν is the restriction
of a linear map C3 → Ms(2, 2;C) := {Z ∈ M(2, 2;C) : Z = ZT } ∼= C3

(cf. [14, Proposition 3.1.1]). On the other hand, Mok [15] constructed a
non-standard holomorphic isometry F̃ : (B2, gB2)→ (DIV

3 , gDIV
3

). Later on,
Xiao–Yuan [19, p. 30] have also written down the map F̃ explicitly and the
only possible singularity of F̃ at the boundary ∂B2 is the point (0, 1). In
particular, we obtain a holomorphic isometry F̃ III

3 : (∆, g∆) × (B2, gB2) →
(DIII

3 , gDIII
3

) given by

F̃ III
3 (w, z1, z2) =

[
w 0
0 ν ◦ F̃ (z1, z2)

]

We claim that the composed map F̃ III
3 ◦ fζ,2 extends holomorphically to a

neighborhood of ∆. Actually, it suffices to show that fζ,2(w) does not tend
to (w0, 0, 1) for any w0 ∈ ∂∆. Write fζ,2(w) := (f1

ζ,2(w), g1
ζ,2(w), g2

ζ,2(w)).
Then, we have

g2
ζ,2(w) =

√
1− |ζ|2f1

ζ,2(w)
f1
ζ,2(w)− ζ

from the construction. If there is w0 ∈ ∂∆ such that g2
ζ,2(w) → 1 as

w → w0, then we would have f1
ζ,2(w) → ζ

1−
√

1−|ζ|2
as w → w0. We write

f1
ζ,2(w0) := ζ

1−
√

1−|ζ|2
. Then, we have |f1

ζ,2(w0)| 6 1 so that |ζ| 6 1 −√
1− |ζ|2. Since 0 < |ζ| < 1

3 , |ζ| 6 1−
√

1− |ζ|2 implies that
√

1− |ζ|2 6
1− |ζ| 6 1− |ζ|2, i.e., 1−

√
1− |ζ|2 6 0, a plain contradiction. Therefore,
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the composed map F̃ III
3 ◦ fζ,2 : (∆, g∆) → (DIII

3 , gDIII
3

) is a non-standard
holomorphic isometry which extends holomorphically to a neighborhood of
∆ and is irrational.
It remains to consider the case of Ω ∼= DIV

n for some n > 3. From [4, 20],
there is a non-standard holomorphic isometry F : (B2, gB2) → (DIV

3 , gDIV
3

)
given by

F (z1, z2) :=

z1, z2, 1−

√√√√1−
2∑
j=1

z2
j

 .

Let h : (∆, g∆) → (B2, gB2) be the holomorphic isometry given by h(w) =(√
−1
4 w,

√
15w
4

)
. Then, we have F ◦h(w) =

(√
−1
4 w,

√
15
4 w, 1−

√
1− 7

8w
2
)
.

Note that 1 − 7
8w

2 6= 0 for any w ∈ ∆. Define the map F̃ IV
n : ∆ → DIV

n ,
n > 3, by

F̃ IV
n (w) =

(√
−1
4 w,

√
15
4 w, 1−

√
1− 7

8w
2, 0, . . . , 0

)
.

Then, F̃ IV
n : (∆, g∆)→ (DIV

n , gDIV
n

) is a non-standard holomorphic isometry
which extends holomorphically to a neighborhood of ∆ and is irrational.

In short, we have shown the following:

Theorem 3.1. — Let Ω b CN be an irreducible bounded symmetric
domain of rank > 2 in its Harish-Chandra realization. Then, there is a
non-standard holomorphic isometry F : (∆, g∆) → (Ω, gΩ) which extends
holomorphically to a neighborhood of the closed unit disk ∆ and is ir-
rational, i.e., some component functions of F = F (w) are not rational
functions of w ∈ ∆ ⊂ C.

Remark 3.2.

(1) This actually answers Problem 5.2.2. in Mok [13] in the negative
when Ω is an irreducible bounded symmetric domain of rank > 2
and the normalizing constant λ (cf. [13]) is the minimal possible one.
In addition, our examples of holomorphic isometries from (∆, g∆)
to (Ω, gΩ) are all irrational.

(2) In [19], Xiao–Yuan constructed non-standard holomorphic isome-
tries from (∆, g∆) to (Ω, gΩ) which extend holomorphically to a
neighborhood of ∆ and are rational, where Ω is any classical irre-
ducible bounded symmetric domain of rank > 2 (cf. [15] as well).
Nevertheless, Theorem 3.1 shows that for any irreducible bounded
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symmetric domain Ω of rank > 2, there are non-standard holomor-
phic isometries from (∆, g∆) to (Ω, gΩ) which extend holomorphi-
cally to a neighborhood of ∆ and are irrational.

(3) Suppose that Ω is an irreducible bounded symmetric domain of
rank 2 and F is as in Theorem 3.1. Then, the image of F is not
contained in any totally geodesic bidisk ∆2 ∼= Π ⊂ Ω. Otherwise,
F would be the composition of the square root embedding from ∆
to ∆2 and the totally geodesic holomorphic isometric embedding
from (∆, g∆)× (∆, g∆) to (Ω, gΩ) so that F has two distinct branch
points on the unit circle ∂∆ (cf. [17]), which contradicts with the
fact that F extends holomorphically to a neighborhood of the closed
unit disk ∆. This answers Problem 5.2.5 in [13] in the negative.

Theorem 3.3. — Let Ω b CN be an irreducible bounded symmetric
domain of classical type and of rank > 2 such that Ω 6∼= DIV

n for any n > 3.
Then, there is a family of holomorphic isometries Fζ : (∆, g∆) → (Ω, gΩ),
α < |ζ| < 1 for some α ∈ (0, 1), such that Fζ and Fζ′ are incongruent
to each other provided that |ζ| 6= |ζ ′|. In particular, there exists a real
1-parameter family of mutually incongruent holomorphic isometries F̃t :
(∆, g∆)→ (Ω, gΩ), t ∈ R.

Proof. — Let f̃ζ,n = fζ : (∆, g∆)→ (∆, g∆)× (Bn, gBn) be the holomor-
phic isometry constructed in the proof of Proposition 2.17 for n−1

n+1 < |ζ| < 1
and n > 2. Under the assumption, Ω is either biholomorphic to

(I) DI
p,q for some p and q satisfying q > p > 2 and (p, q) 6= (2, 2),

(II) DII
m for some m > 5 or

(III) DIII
m for some m > 3.

Then, we have constructed many holomorphic isometries Fζ,m,Ω := G ◦
f̃ζ,m : (∆, g∆) → (Ω, gΩ), where G : (∆, g∆) × (Bm, gBm) ↪→ (Ω, gΩ)
is a holomorphic isometric embedding for some m > 2. Write f̃ζ,n :=
(f̃1
ζ,n, f̃

2,1
ζ,n, . . . , f̃

2,n
ζ,n ).

Case I: Ω = DI
p,q, q > p > 2 and (p, q) 6= (2, 2). — Let

G(w, z1, . . . , zq−1) =

w 0 · · · 0
0 z1 · · · zq−1
0 0 · · · 0

 .
Then, we have

Fζ,q−1,DI
p,q

(w) = G◦f̃ζ,q−1(w) =

f̃1
ζ,q−1(w) 0 · · · 0

0 f̃2,1
ζ,q−1(w) · · · f̃2,q−1

ζ,q−1 (w)
0 0 · · · 0

.
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Note that automorphisms of DI
p,q are of the form Z 7→ (AZ + B)(CZ +

D)−1 for [ A B
C D ] ∈ SU(p, q). Suppose that Fζ,q−1,DI

p,q
and Fζ′,q−1,DI

p,q
are

congruent to each other for some ζ, ζ ′ ∈ C such that q−2
q < |ζ|, |ζ ′| < 1.

Then, we have

f̃1
ζ,q−1(φ(w)) =

af̃1
ζ′,q−1(w) + b

cf̃1
ζ′,q−1(w) + d

for some a, b, c, d ∈ C and some φ ∈ Aut(∆). But then since f̃1
ζ,q−1 is a non-

constant function, the matrix
(
a b
c d

)
is invertible and z 7→ az+b

cz+d =: ψ(z) is
an automorphism of P1. Let Rξ : P1 → P1 be the rational function such
that Rξ(f̃1

ξ,q−1(w)) = w. Note that 0 is the only branch point of Rξ which
lies in ∆ for ξ ∈ C satisfying q−2

q < |ξ| < 1. Then, we have

(3.1) φ−1 ◦Rζ ◦ ψ = Rζ′ .

Since φ−1 ∈ Aut(∆) and it maps branch points of Rζ to the branch points
of Rζ′ by (3.1), we have φ−1(0) = 0 so that φ(z) = eiθz for some θ ∈ [0, 2π).
In particular, we have

(3.2) e−iθRζ(ψ(z)) ≡ Rζ′(z).

Then, we have Rζ(ψ(∞)) =∞ by (3.2) so that ψ(∞) ∈ {∞, ζ}. Recall that
ζ is a ramification point of Rζ . Since ψ maps the ramification points of Rζ′
to that of Rζ , we have ψ(∞) =∞. Similarly, Rζ(ψ(0)) = 0 by (3.2) so that
ψ(0) ∈

{
0, 1

ζ

}
. Since 1

ζ
is a ramification point of Rζ , we have ψ(0) = 0.

Therefore, ψ(z) = az for some nonzero complex number a. Moreover, we
have ψ(ζ ′) = ζ and ψ

( 1
ζ′

)
= 1

ζ
by (3.2) and comparing the set of zeros

(resp. set of poles) of Rζ with the set of zeros (resp. set of poles) of Rζ′ . In
particular, aζ ′ = ζ and a 1

ζ′
= 1

ζ
. This implies that |ζ| = |ζ ′| and |a|2 = 1.

Therefore, Fζ,q−1,DI
p,q

and Fζ′,q−1,DI
p,q

are incongruent to each other for
any ζ, ζ ′ ∈ C such that q−2

q < |ζ|, |ζ ′| < 1 and |ζ| 6= |ζ ′|. The result follows
in this case.

Case II: Ω = DII
m, m > 5. — We let

G(w, z1, . . . , zm−3) =
[
w · J1 0

0 G̃(z)

]
,
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where J1 :=
( 0 1
−1 0

)
and G̃(z) :=

[ 0 z
−zT 0

]
with z = (z1, . . . , zm−3). Then,

we have

Fζ,m−3,DII
m

(w) = G ◦ f̃ζ,m−3(w)

=
[
f̃1
ζ,m−3(w)J1 0

0 G̃
(
f̃2,1
ζ,m−3(w), . . . , f̃2,m−3

ζ,m−3 (w)
)] .

Note that automorphisms of DII
m are of the form Z 7→ (AZ+B)(CZ+D)−1

for [ A B
C D ] ∈ SO∗(2m). By the same argument as in Case I, we see that

Fζ,m−3,DII
m

and Fζ′,m−3,DII
m

are incongruent to each other for any ζ, ζ ′ ∈ C
such that m−4

m−2 < |ζ|, |ζ
′| < 1 and |ζ| 6= |ζ ′|, wherem > 5. The result follows

in this case.
Case III: Ω = DIII

m , m > 3. — We let

G(w, z1, . . . , zm−1) =
[
w 0
0 G̃(z)

]
,

where G̃ : (Bm−1, gBm−1) → (DIII
m−1, gDIII

m−1
) is the holomorphic isometric

embedding constructed by Mok [15] and z = (z1, . . . , zm−1). Then, we have

Fζ,m−1,DIII
m

(w) = G ◦ f̃ζ,m−1(w)

=
[
f̃1
ζ,m−1(w) 0

0 G̃
(
f̃2,1
ζ,m−1(w), . . . , f̃2,m−1

ζ,m−1 (w)
)] .

Note that automorphisms ofDIII
m are of the form Z 7→ (AZ+B)(CZ+D)−1

for [ A B
C D ] ∈ Sp(m,R). By the same argument as in Case I, we see that

Fζ,m−1,DIII
m

and Fζ′,m−1,DIII
m

are incongruent to each other for any ζ, ζ ′ ∈ C
such that m−2

m < |ζ|, |ζ ′| < 1 and |ζ| 6= |ζ ′|, wherem > 3. The result follows
in this case. �

Remark 3.4.
(1) When Ω is any irreducible bounded symmetric domain of rank >

3, it follows from Mok [14, Theorem 3.2.1] that there is a real 1-
parameter family of mutually incongruent holomorphic isometries
Ht : (∆, g∆)→ (Ω, gΩ), t ∈ R, by using the Polydisk Theorem and
the arguments in the proof of [14, Theorem 3.2.1]. Now, we restrict
to the case where the target Ω is of classical type and of rank > 3.
Then, we observe that the holomorphic isometry F̃t has at most
two distinct branch points on the unit circle ∂∆ while Ht has four
distinct branch points on ∂∆ (cf. the proof of [14, Theorem 3.2.1]).
This shows that F̃t is incongruent to Ht′ for any t, t′ ∈ R.
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(2) In [19], Xiao–Yuan proved the existence of a real 1-parameter family
of mutually incongruent holomorphic isometries F̃t : (∆, g∆) →
(DIV

n , gDIV
n

), t ∈ R. On the other hand, our result in Theorem 3.3
yields a new phenomenon when the target Ω is biholomorphic to
DI

2,q or DII
5 , where q > 3 is any integer.

4. Rigidity of rational holomorphic isometries from the
unit disk into a product of complex unit balls

Recall that we have an example of non-standard holomorphic isometry
(∆, g∆)→ (∆, g∆)× (Bn, gBn), n > 2, which extends holomorphically to a
neighborhood of the closed unit disk ∆. In particular, one has to impose
some stronger assumptions in order to generalize Theorem 3 in [16, p. 2637]
and obtain the rigidity of a certain class of holomorphic isometries from
the unit disk into a product of complex unit balls.

Theorem 4.1. — Let f = (f1, . . . , fm) : (∆, g∆) → (BN1 , λ1gBN1 ) ×
· · · × (BNm , λmgBNm ) be a holomorphic isometry such that fj is a non-
constant map for 1 6 j 6 m, where λj , 1 6 j 6 m, are positive real
constants. If f is rational, i.e., each component function of f is a rational
function in w ∈ ∆ ⊂ C, then fj : (∆, g∆) → (BNj , gBNj ) is a (totally
geodesic) holomorphic isometry for 1 6 j 6 m and

∑m
j=1 λj = 1 so that f

is totally geodesic.

Proof. — Assume without loss of generality that f(0) = 0. Then, we
have the functional equation

m∏
j=1

(1− ‖fj(w)‖2)λj = 1− |w|2

for any w ∈ ∆. Write fj := (f1
j , . . . , f

Nj
j ) for 1 6 j 6 m. We claim that f

extends holomorphically to a neighborhood of ∆. If there is z0 ∈ ∂∆ such
that z0 is a pole of f lj for some j and some l, 1 6 l 6 Nj , then 1−‖fj(w)‖2
tends to negative infinity as w → z0. Take a simple continuous path γ(t),
0 6 t 6 1, from 0 to z0 in ∆∪{z0} such that γ(0) = 0 and γ(1) = z0. We see
that there is t0 ∈ (0, 1) such that ‖fj(γ(t0))‖2 = 1 because ‖fj(γ(0))‖2 = 0,
‖fj(γ(t))‖2 is continuous on [0, 1) and ‖fj(γ(t))‖2 → +∞ as t → 1. Note
that γ(t0) ∈ ∆ so that f is holomorphic around γ(t0). This would lead
to a contradiction by the functional equation since 1 − |γ(t0)|2 > 0. In
particular, the poles of the component functions of f do not lie on ∂∆ so
that f extends holomorphically to a neighborhood of ∆.
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If fj maps some point w0 ∈ ∂∆ to ∂BNj , then fj actually maps some open
arc A ⊂ ∂∆ containing w0 into ∂BNj (cf. [12, Proof of Theorem 2, p. 894]).
Since fj extends holomorphically to a neighborhood of ∆, 1−‖fj(w)‖2 is a
real-analytic function in a neighborhood of ∆. Then, we have 1−‖fj(w)‖2 ≡
0 on ∂∆ by the Identity Theorem for real-analytic functions. In particular,
fj : ∆→ BNj is a proper holomorphic map.

Assume without loss of generality that fj is proper for 1 6 j 6 k and
fl(∆) ⊂ BNl for k+ 1 6 l 6 m if k < m, where k is some integer satisfying
1 6 k 6 m. We claim that fl is a constant map for k+ 1 6 l 6 m if k < m.
Note that the functional equation

m∏
j=1

(1− ‖fj(w)‖2)λj = 1− |w|2

holds true in C away from the poles of f by the Identity Theorem for real-
analytic functions. Note that 1 − |w|2 < 0 for |w|2 > 1 so that

∏m
j=1(1 −

‖fj(w)‖2)λj does not vanish. If there is w ∈ C r ∆ ⊂ P1 such that 1 −
‖fl(w)‖2 = 0 for some l, k+ 1 6 l 6 m, then

∏
16j6m, j 6=l(1−‖fj(w)‖2)λj

has a pole. But then there are only finitely many poles among all fj , 1 6
j 6 m with j 6= l. By avoiding the poles of all fj ’s, we have 1−‖fl(w)‖2 > 0
on a dense open subset of P1 for k + 1 6 l 6 m. This shows that fl(P1) ⊂
BNl , which contradicts with the Liouville’s Theorem unless fl is a constant
map. In particular, we would have fl ≡ 0 for k + 1 6 l 6 m. But then
this contradicts with the assumption that fj is a non-constant map for
1 6 j 6 m. Therefore, we have k = m so that fj : ∆ → BNj is a proper
holomorphic map for 1 6 j 6 m.

Now, we follow the arguments in [22]. Then, 1−‖fj(w)‖2
1−|w|2 is smooth and

nonzero in some neighborhood of ∆ for 1 6 j 6 m. From the functional
equation, we have1−

m∑
j=1

λj

√−1∂∂ log(1− |w|2) =
m∑
j=1

λj
√
−1∂∂ log

(
1− ‖fj(w)‖2

1− |w|2

)
.

This implies that 1−
∑m
j=1 λj = 0 because ∂∂ log(1−|w|2) is singular around

any point b ∈ ∂∆. In addition, we have
√
−1∂∂ log

( 1−‖fj(w)‖2
1−|w|2

)
> 0 by the

Ahlfors–Schwarz Lemma so that ∂∂ log(1 − ‖fj(w)‖2) = ∂∂ log(1 − |w|2)
for 1 6 j 6 m. Hence, fj : (∆, g∆) → (BNj , gBNj ) is a (totally geodesic)
holomorphic isometry for 1 6 j 6 m and the proof is complete. �
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