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FINITE PRESHEAVES AND .«/-FINITE GENERATION
OF UNSTABLE ALGEBRAS MOD NILPOTENTS

by Geoffrey POWELL (*)

ABSTRACT. — Inspired by the work of Henn, Lannes and Schwartz on unstable
algebras over the Steenrod algebra modulo nilpotents, a characterization of unsta-
ble algebras that are o/-finitely generated up to nilpotents is given in terms of the
associated presheaf. We do this by introducing the notion of a finite presheaf. In
particular, this gives the natural characterization of the (co)analytic presheaves
that are important in the theory of Henn, Lannes and Schwartz. An important
source of examples is provided by unstable algebras of finite transcendence degree.

For unstable Hopf algebras, it is shown that the associated presheaf is finite if
and only if its growth function is polynomial. This leads to a description of unstable
Hopf algebras modulo nilpotents in the spirit of Henn, Lannes and Schwartz.

RESUME. — En s’inspirant du travail de Henn, Lannes et Schwartz sur la caté-
gorie des algebres instables sur 1’algebre de Steenrod localisée loin des nilpotents,
une caractérisation des algébres instables qui sont .7-finiment engendrées & nilpo-
tents prés est donnée en termes du préfaisceau associé en utilisant la notion d’un
préfaisceau fini, qui est introduite dans cet article. Ceci permet une caractérisation
naturelle des préfaisceaux (co)analytiques qui sont fondamentaux dans la théorie de
Henn, Lannes et Schwartz. Une classe importante de préfaisceaux finis est fournie
par les algebres instables de degré de transcendance fini.

Pour les algébres de Hopf instables, il est démontré que le préfaisceau associé est
fini si et seulement si sa fonction de croissance est polynomiale. En particulier, ceci
mene & une description de la catégorie des algebres de Hopf, instables localisées
loin des nilpotents.

1. Introduction

The work of Henn, Lannes and Schwartz [5] explains the relationship be-
tween unstable algebras over the mod p Steenrod algebra 7 and presheaves
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2170 Geoffrey POWELL

of profinite sets on the category ¥ of finite-dimensional F,-vector spaces,
where I, is the prime field. This is based upon Lannes’ T-functor; namely,
for K an unstable algebra, there is a presheaf gK given by

V s Hom y (K, H*(BV;F,)),

V' an Fp-vector space, where %" is the category of unstable algebras. Mo-
tivating examples of unstable algebras are given by singular cohomology
H*(Y;F,), for Y a topological space. Another presheaf is provided by ho-
motopy classes of maps out of BV, V — [BV,Y]. These presheaves are
related by Lannes’ theory, notably in relation to the Sullivan conjecture.

One of the key results of [5, Part II] gives a characterization for an unsta-
ble algebra K to be Noetherian up to nilpotents in terms of the associated
presheaf gK (this is recalled here in Section 2.6). Likewise, the notion of
transcendence degree is treated in terms of gK. The relevance of these to
the current theory is explained below.

In the context of unstable algebras, the more general notion of being
o/ -finitely generated (see Section 2.3) is known to be of importance. For
example, for an H-space, Castellana, Crespo and Scherer [2] showed that
this condition imposes strong conditions on its structure as an H-space.
One of the main objectives of this paper is to relax the condition of being
o/ -finitely generated in the spirit of Henn, Lannes and Schwartz, by con-
sidering unstable algebras that are «7-finitely generated up to nilpotents,
and to give a characterization in terms of the associated presheaf.

This is carried out in the first part of the paper, by introducing the notion
of a finite presheaf. This is given in terms of presheaves of F,,-vector spaces.
The latter form an abelian category and such a presheaf is said to be finite
if it has a finite composition series. A set-valued presheaf X is defined to
be finite if there exists an embedding X — Fx with F'x a finite presheaf
of FF,-vector spaces.

This definition may seem somewhat ad hoc at first view, in particular due
to its dependence on using presheaves of Fp-vector spaces. As shown in the
second part of the paper, this condition on F'x can be relaxed: it suffices
that Fx be a presheaf of finite p-groups that is a polynomial functor in
the sense of Baues and Pirashvili [1] (generalizing the Eilenberg—MacLane
notion of a polynomial functor to an abelian category [3], as recalled in
Appendix A); this is a consequence of Theorem 8.7.

The characterization of .o/-finitely generated up to nilpotents is as
follows:

ANNALES DE L’INSTITUT FOURIER
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THEOREM (Corollary 4.4). — For K an unstable algebra, the following
are equivalent:

(1) K is o/ -finitely generated up to nilpotents;
(2) gK is a finite presheaf.

This allows the theory of [5] to be revisited and made slightly more
precise (see Theorem 4.6).

The class of finite presheaves is, as of yet, imperfectly understood; a
reassuring general fact is the following, for unstable algebras of finite tran-
scendence degree:

THEOREM (Corollary 5.9). — Let K be an unstable algebra of finite
transcendence degree. The following are equivalent:

(1) K is o/ -finitely generated up to nilpotents;
(2) gK takes values in finite sets.

In general it is not easy to determine whether a given presheaf X taking
values in finite sets is a finite presheaf. A necessary condition is that the as-
sociated growth function defined on N by vx (t) := log, | X (F},)| should have
polynomial growth. As illustrated by Example 6.9, this is not sufficient.

Such growth functions occur in the work of Lannes and Schwartz [10] and
of Grodal [4], notably in relation to the study of finite Postnikov systems,
for which (under suitable hypotheses), the growth functions are shown to
have polynomial growth. Indeed, revisiting these results in the light of
subsequent developments of the theory provided one of the motivations for
introducing the notion of a finite presheaf.

Even in the case of two-stage Postnikov systems, there remain basic open
questions such as: for which two-stage Postnikov systems Y is gH*(Y; F,)
a finite presheaf?

When Y is an H-space, then the answer is yes, tying in with the work
of [2]. Indeed, in general in this theory, the situation is much better when
one restricts to unstable Hopf algebras (for these, see Section 7). This is
the subject of the second part of the paper.

For instance, one has the following, which should be of independent in-
terest:

THEOREM (Theorem 8.7 and Theorem 8.12). — For H a connected un-
stable Hopf algebra over I, the following are equivalent:

(1) the underlying unstable algebra of H is o -finitely generated up to
nilpotents;
(2) gH is a finite presheaf;

TOME 69 (2019), FASCICULE 5



2172 Geoffrey POWELL

(3) gH takes values in finite p-groups and is polynomial;
(4) ~vgu has polynomial growth.

As a consequence, a Henn—Lannes—Schwartz style characterization of
connected unstable Hopf algebras up to nilpotents is given (see Theo-
rem 9.7).

Part 1. Finite presheaves
2. Dramatis Personse

This section introduces the presheaf categories that are central to the
paper and recalls the notion of finite and polynomial abelian presheaves.
The relationship with unstable algebras is explained, in particular recalling
some of the salient points of Henn-Lannes—Schwartz theory [5].

2.1. Presheaves on F-vector spaces

Fix a prime p and let ¥y C 7 denote the full subcategory of finite-
dimensional spaces in the category ¥ of F-vector spaces, where F denotes
the prime field of characteristic p.

Notation 2.1. — Denote by

(1) ?/; the category of presheaves of sets on ¥} (i.e. contravariant func-
tors from ¥} to sets);

— profi
(2) “//fpm " the category of preshea\ges of profinite sets on ¥}, equipped
—profin

with the forgetful functor ¥% — ?/;;

(3) @/;)C C ”7/; (respectively (?/;pmﬁn)c C ”?/;pmﬁn) the full subcategory
of connected objects, namely X such that | X (0)| = 1;

(4) Z the category of functors from 7} to ¥, with abelian structure
inherited from 7.

Remark 2.2. — In the literature (eg. [5, 6]), % usually denotes covariant
functors. However, since vector space duality V +— V* restricts to an equiv-
alence of categories “//fOp = Y%, the choice of variance is of little import. In
particular, to simplify notation, for F' a covariant functor, the associated
contravariant functor V +— F(V*) will again be denoted by F.

The following is standard:

ANNALES DE L’INSTITUT FOURIER
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LEMMA 2.3. — For F' € ob.%, there is a canonical direct sum decompo-
sition F' = F(0) @ F, where F(0) is considered as a constant functor and
F is constant-free (i.e. F(0) =0).

The following results are clear.

LEMMA 2.4. — For ”7/},

(1) the coproduct IT and product [[ are inherited from the category of
sets;

(2) the product restricts to the product of (”7/;)6;

(3) the coproduct of (”7/;)0 is given by the wedge product V.

There is a forgetful functor .#% — ”7/} that retains only the underlying
set of a vector space. For F' € ob.#, the underlying presheaf lies in (¥}). if
and only if F' is constant-free.

LEMMA 2.5. — The forgetful functor % — ”}/; admits as left adjoint,
X — F[X], so that there is an adjunction
F[-]: % = Z.

The adjunction unit is the natural inclusion X — F[X].
Hence, the forgetful functor preserves products: in particular, the under-
lying presheaf of F & G (for F,G € ob.% ) is F x G.

Notation 2.6. — For X € ob”/V; and x € X(0), let X, C X denote the
connected presheaf with X, (V') the fibre over x of the surjection X (V) —
X(0) induced by 0 — V.

LEMMA 2.7. — For X € ob¥},

(1) there is a natural isomorphism X = Il,¢cx ) Xz;

(2) if X € ob(?/;)C andY € ob?/;, there is a natural bijection

Hom (X,Y) = Il,ey (g Hom 5 (X.Y,).

Proof. — The first statement is clear. For the second, for a map of
presheaves f : X — Y, the image f(x) € Y(0) of the basepoint € X (0)
determines the connected component of the image of f. O

2.2. Polynomial functors

The following general definition applies for example to the category .%#:

TOME 69 (2019), FASCICULE 5



2174 Geoffrey POWELL

DEFINITION 2.8. — An object F' of an abelian category is finite if it has
a finite composition series.

The Eilenberg-MacLane definition of a polynomial functor [3] (see Ap-
pendix A, where a general definition is given that covers the abelian case)
also applies to .%#, and one has:

PROPOSITION 2.9 ([6]). — A functor F € ob.%# is finite if and only if it
is polynomial and takes values in ¥%.

Example 2.10. — The nth symmetric power functor S™ and the nth ex-
terior power functor A™ are both polynomial functors in .# of degree n.

Remark 2.11. — The polynomial degree of a functor F' € ob.# that
takes finite-dimensional values can be characterized in terms of its growth
function (see Proposition 6.3).

The inclusion of the full subcategory of functors of % of Eilenberg—
MacLane polynomial degree at most n € N admits a left adjoint ¢,, (which
is considered as a functor ¢, : F — %), so that the adjunction unit
F — ¢, F is the universal map to a polynomial functor of degree at most
n. (See [8, Section 4.2] and the references therein.)

2.3. Unstable algebras

One motivation for considering profinite presheaves comes from the study
of the category J# of unstable algebras over the mod p Steenrod algebra
o [5].

As usual, the category of unstable modules over o/ is denoted % and
the Steenrod—Epstein (or Massey—Peterson) enveloping algebra functor by
U:% — . The reader is referred to [15] for the basic theory of unsta-
ble modules and algebras, together with the localization of % away from
Ail, the subcategory of nilpotent unstable modules, and the associated
localization functor % — % /.A"il. The theory and applications of this nil-
localization have been developed in [5, Part I], [6] and in subsequent work
by many authors.

In [5, Part II], the analogous (non-abelian) theory for unstable alge-
bras was developed, leading to the construction of the localized category
A [ ANil. Recall the terminology introduced by Quillen:

DEFINITION 2.12 ([5, Part II}). — A morphism ¢ : K — L in J¢ is
(1) an F-monomorphism if, ¥V x € ker ¢, 3n € N such that 2™ = 0;

ANNALES DE L’INSTITUT FOURIER
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(2) an F-epimorphism if, ¥y € L, 3m € N such that y?" € image ;
(3) an F-isomorphism if ¢ satisfies both the above.

The localization ¢ — ¢ /A7l is universal amongst functors % — &
which send F-isomorphisms to isomorphisms of .

DEFINITION 2.13. — An unstable algebra K € ob " is </ -finitely gen-
erated if there exists a finitely generated unstable module M and a mor-
phism of unstable modules M — K such that the induced map of unstable
algebras UM — K is surjective.

Notation 2.14. — Let ¢ denote the full subcategory of connected un-
stable algebras (K such that K° =TF).

Remark 2.15. — A connected unstable algebra K € ob.#* is canonically
augmented, hence the augmentation ideal K and the module of indecom-
posables, QK := F/Fz, are defined.

In this case, K is «/-finitely generated if and only if QK is a finitely
generated «7/-module.

Remark 2.16. — The condition that the cohomology of a space is /-
finitely generated imposes strong conditions, notably when working with
H-spaces; see [2, Theorem 7.3] for example.

2.4. From unstable algebras to presheaves

The following is clear:

PRrROPOSITION 2.17. — Every unstable algebra K is the colimit of its
o/ -finitely generated sub unstable algebras.
DEFINITION 2.18. — Let
—profin
(1) g: #°° =7, be the functor defined by

gK (V) := Hom » (K, H*(BV)),
where H*(BV') denotes the mod p group cohomology of V;

—profi
(2) g: (HT)P — (7/fpm n)c denote the restriction to connected ob-
Jjects.

Here the profinite structure arises from Proposition 2.17.

The following is a fundamental fact, following from the analogous re-
sult for  (as in [5, Part I] and [6]), together with Lannes’ linearization
principle.

TOME 69 (2019), FASCICULE 5
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PROPOSITION 2.19 ([5]). — The functor g factors naturally
—profin
g (NP =T
Notation 2.20. — For Y a topological space, let giopY € ob?/; denote
the presheaf giop Y (V) := [BV,Y].

The presheaves g and giop are intimately related (compare [10]):

THEOREM 2.21 ([9]). — For Y a topological space, mod p cohomology
induces a morphism of presheaves gopY — gH*Y that is an isomorphism
if' Y is connected, nilpotent, mY is finite and H*(Y) is of finite type.

2.5. From presheaves to unstable algebras

For simplicity of presentation, suppose that p = 2 in this section. The
odd primary case is treated by passage to objects concentrated in even
degrees (cf. [5], for example).

—profin

DEFINITION 2.22. — Let k: (¥} )°P — ', the associated unstable
algebra functor, be defined by

K+ X — Hom  prosin (X, S™)
s

where the commutative F-algebra structure of X is induced by the
commutative algebra structure of S* and Steenrod operations act via
Hom g (S*,5*) (cf. [6]).

Example 2.23. — For n € N, kS™ = UF(n), the free unstable algebra on
a generator of degree n (see [7]), thus kS™ = H*(K(F,n);F).

To stress the relationship between presheaves and unstable algebras, re-
call the following part of [5, Theorem II.1.5]:

PROPOSITION 2.24. — For K € ob.J#, there is a natural transformation
K — kgK that is an F-isomorphism.

The following is recorded for later use:

PROPOSITION 2.25. — Let X € 77f take values in finite sets. Then the
unstable algebra kX has finite type.

Proof. — In degree n, (kX)" = Homn;f (X,S") 2 Homgz (¢, F[X],S™).
Now, by construction, ¢,F[X] is a polynomial functor which takes finite-
dimensional values, hence is finite, by Proposition 2.9; likewise, S™ is fi-

nite. It follows that Hom g (¢, F[X], S™) is a finite-dimensional vector space,
whence the result. |

ANNALES DE L’INSTITUT FOURIER
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2.6. Finite transcendence degree and Noetherian unstable
algebras

Recall (see [5, Section I1.2]) that the transcendence degree of an unsta-
ble algebra K is the transcendence degree of its underlying graded algebra
(namely the supremum of the cardinalities of finite subsets of algebraically
independent homogeneous elements of K). Transcendence degree is invari-
ant under F-isomorphism.

DEFINITION 2.26. — For d € N, let J£; be the full subcategory of un-
stable algebras of transcendence degree at most d and g/ /il the corre-
sponding full subcategory of Jt | N il.

Notation 2.27. — For d € N, let 2% —End(F#) denote the category of
profinite right End(F?)-sets.

THEOREM 2.28 ([5, Theorems 11.2.7, 11.2.8]). — For d € N, the functor
g induces an equivalence of categories (#y/ N il)°P = P —End(F?) with
inverse kq induced by k.

Henn, Lannes and Schwartz [5, Definition 11.5.8] also introduce the notion
of a Noetherian End(IF%)-set (necessarily finite) which allows them to give a
characterization of unstable algebras that are Noetherian up to nilpotents:

THEOREM 2.29 ([5, Theorem I11.7.1]). — Let d € N.

(1) For K a Noetherian unstable algebra, g4K is a Noetherian End(F¢)-
set.

(2) IfS is a Noetherian End(F%)-set, then k4S5 is a Noetherian unstable
algebra of transcendence degree at most d.

In particular, this leads to the following:

DEFINITION 2.30. — An unstable algebra K is Noetherian up to nilpo-
tents if it has finite transcendence degree and, for any d € N, g4K is a
Noetherian End(F9)-set.

3. Finite presheaves and coanalyticity

This section introduces the notion of a finite presheaf. Its relevance for
unstable algebras is explained in Section 4.

TOME 69 (2019), FASCICULE 5
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3.1. Definitions and first properties

DEFINITION 3.1. — An object X of g/} is finite if there exists a finite
functor Fx € ob.# and a monomorphism

X — FX
— —fin
in ¥¢. The full subcategory of finite presheaves is denoted ¥y .

LEMMA 3.2. — A presheaf X of ¥} is finite if and only if | X (0)] < oo
and, for each x € X(0), there exists a constant-free finite functor F,, € .F
and a monomorphism X, — F,.

Proof. — First suppose that X is a finite presheaf, so that there exists
X — Fx where Fx € ob.% is a finite functor. Then X (0) is a finite set
and, for any x € X, the map

X, > X< Fx » Fx

is a monomorphism (by Lemma 2.7).

Conversely, suppose that X (0) is a finite set and that there exist injective
maps f, : Xz < Fy, Vo € X(0), with F, € ob.% finite and constant-free.
Then the map

X < Fx =FX(0)o P F
z€X(0)
defined on X, by the constant map X, — F[X(0)] to [z], the map f, to
F, and the zero map to the components F,, y # z, is an injection into a
finite functor of .#, exhibiting X as a finite functor. a

Remark 3.3. — The definition of a finite presheaf extends verbatim to
— profi
”f/fpm " This leads to no increased generality, since a finite presheaf nec-

essarily takes values in finite sets.

LEMMA 3.4. — Let X,Y € ob?/; be finite presheaves. Then
(1) XY is finite;
(2) X xY is finite;
(3) if U C X is a subobject, then U is finite;
(4) if X,Y are connected, with respective basepoints x,y, then X VY
is finite.

Proof. — The case of X I1Y follows easily from Lemma 3.2. For X x Y,
the inclusions X — Fx and Y — Fy, with Fx, Fy € ob.% finite, induce
X xY — Fx ® Fy by cartesian product.
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The preservation of finiteness under passage to subobjects is clear. Con-
sidering X VY as the subobject of X x Y given by X x yUx XY gives the
final statement. g

3.2. The degree of a finite presheaf

ProrosIiTION 3.5. — For X € ob?/;pmﬁn, the following conditions are
equivalent:
(1) X is finite;
(2) X takes values in finite sets and there exists n € N such that the
composite X < F[X] — ¢,F[X] is a monomorphism.
The degree of a finite X is the least such n.

Proof. — The condition that X takes finite values is necessary; under
this hypothesis, for any n, ¢,F[X] is a finite functor (by Proposition 2.9),
hence the existence of a monomorphism X — ¢,F[X] implies that X is
finite.

Conversely, suppose that X is finite, so that there is a finite functor Fx
and an inclusion X — Fx. Let n be the polynomial degree of F'x, then the
induced linear map F[X]| — Fx (provided by Lemma 2.5) factors across
¢-F[X], from which the result follows. O

The relevance of the functor g, o F[—] is explained by the following
straightforward proposition, using:

Notation 3.6. — For n € N, denote by

(1) Zfin c Z the full subcategory with objects finite functors of poly-
nomial degree at most n;

—~fin —
(2) (7 )n C ¥} the full subcategory of finite presheaves of degree at
most n.
PROPOSITION 3.7. — For n € N, the forgetful functor F — ”7/; restricts
—fi —fi
to Fin 5 (¥, ), and admits left adjoint g, o F[—] : (¥} )n — Fhn,

n

—~fi
Remark 3.8. — The restriction to (¥ n)n serves to restrict to presheaves
taking values in finite sets. (The functor ¢, o F[—] : ¥} — % does not take
values in finite functors.)

COROLLARY 3.9. — For X,Y € obg/} such that X takes values in finite
sets and Y is finite, Hom@ (X,Y) is a finite set.

TOME 69 (2019), FASCICULE 5



2180 Geoffrey POWELL

Proof. — By hypothesis, there exists n € N such that the natural mor-
phism Y < ¢,F[Y] is injective, hence there is a monomorphism:

Hom (X, ) = Hom (X, g, F[Y]) = Hom s (, F[X], auF[Y),

where the second isomorphism is given by Proposition 3.7.

Now ¢, F[X] and ¢, F[Y] are both finite functors of .% (by Proposition 2.9)
hence Hom # (¢, F[X], ¢,F[Y]) is a finite-dimensional F-vector space, thus
a finite set. O

DEFINITION 3.10. — For X € ob?/; that takes values in finite sets and

n €N, let X,, € ob;/} denote the image of X — q,F[X], equipped with the
canonical surjection X — X,,.

ProrosiTIiON 3.11. — For X € ob?/; that takes values in finite sets,
the natural surjection X — X,, is the universal map to a finite presheaf of
degree n.

These maps form a tower

| S

Xn+1 Xn Xn—l

Proof. — The key point is to check that X, is finite of degree at most
n. This is clear from the commutative diagram

X, “— ¢,FIX]

e
e

F[Xn] — QnF[XnL

where the top monomorphism is given by the construction of X,, the
dashed arrow by F-linear extension and the dotted arrow by the polynomial
degree adjunction.

The universality of X — X, follows from Proposition 3.7. 0

3.3. Coanalyticity of presheaves of sets

Even under the hypothesis that X takes values in finite sets, the induced
map X — lim. X, given by Proposition 3.11 need not be an isomorphism.

ANNALES DE L’INSTITUT FOURIER
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Example 3.12. — Consider the functor V + Ig(V) := FV in .#, and
take its constant-free summand Ir. Forgetting the linear structure gives a
connected presheaf taking values in finite sets.

The linearization F[Ir] admits no non-trivial map to a finite functor. It
is straightforward to reduce to proving this for ¢,F[—] o I, for all n € N.
Using the identification of the subquotients of the filtration associated to
F[—] = ¢,F[—], one shows that it is sufficient to show that functors of the
form E@, for 0 <4 € N, admit no finite quotients. Now Kuhn’s embedding
theorem [6] implies that it suffices to show that Hom g (E@, St) =0 for all
t € N and i > 0. This follows from the case i = 1 by using the exponential
property of the symmetric power functors; the case ¢ = 1 is well-known,
since the structure of Iy is known.

ProposITION 3.13. — For X € 0b”7/; taking values in finite sets, the
map

X —lim X,
—

n

is a bijection if and only if, for each V' € ob”#}, 3 ny such that

IR

X(V) 5 Xy (V).

— profi
In general one must consider the category ”VfPrO Y of presheaves on ¥}

with values in profinite sets.

The following should be compared with the definition in [5, Part II] of an
analytic functor from ¥} to Z27°P, the opposite of the category of profinite
sets. (Henn, Lannes and Schwartz work with the opposite of the category
of presheaves, whence their terminology analytic rather than coanalytic
here.)

—profin
DEFINITION 3.14. — An object X of “I/fp is coanalytic if
X = lim X (i),
p—
€S
where the indexing category % is cofiltered and small and X (i) are finite
presheaves.

— —profi
Let 7/fw C "I/fpro " denote the full subcategory of coanalytic functors.

— —profin
DEFINITION 3.15. — For X € ob¥} (respectively X € ob“//fp ° ), let
—~fin —
X/7s  denote the full subcategory of the undercategory X/¥; (resp.
—profin
X/7;"°"") with objects X — Y with Y finite.

TOME 69 (2019), FASCICULE 5



2182 Geoffrey POWELL

—profin

LEMMA 3.16. — For X € ob?/; or X € ob”?} ,
(1) X/ ”7/;ﬁn has finite morphism sets;
(2) given X — Y;, i € {1,2} of X/?/;ﬁn, there is a diagram of mor-
phisms of X/”?/;ﬁn:
X

SN

YI=— Y1 XYy, ——=Y),

in which the horizontal arrows are the projections;
—fi —fi
(3) any object X —Y of X/¥} " is the range of a morphism in X/ "

X

7N

Yy (—m— >V
where Y' C Y is a sub-presheaf and X — Y’ is surjective.
—fin
(4) for morphisms f,g : (X = Y1) = (X — Y32) of X/¥; , the mor-
phism (X — Y{) — (X — Y1) given by the factorization of X — Y3

equalizes f, g.

—fin
In particular, the category X/7%  is cofiltered.

Proof. — The first statement is an immediate consequence of Corol-
lary 3.9 and the second follows from the categorical definition of the prod-
uct. The factorization of a morphism of presheaves is clear and applies in
the final statement, using the categorical property of a surjection. O

DEFINITION 3.17. — Let X% € ob@w denote the presheaf of profinite
sets given by
X¥ .= lim Y,
AP
X—>Y€X/"Vf

equipped with the natural (continuous) coanalytic completion map X — X,

The following is clear from the definitions:

—profi
ProOPOSITION 3.18. — A presheaf X € ob”f/fpro Y s coanalytic if and
only if the natural map X — X% is an isomorphism.

— —fin
Example 3.19. — For X € ob¥}, the category X/7; can be the discrete
category with one object. Consider the presheaf Iy of Example 3.12, where
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it was shown that there are no non-trivial maps from I to a finite presheaf.
It follows that (Ir)® = *.

4. The relationship with unstable algebras

The relationship between finite presheaves and .«7-finite generation up to
nilpotents is made explicit in this section, leading to a conceptual restate-
ment of one of the main results of [5, Part II].

4.1. «/-finite generation up to nilpotents

The following is the natural extension of Definition 2.13 to working mod-
ulo nilpotents.

DEFINITION 4.1. — An unstable algebra K € ob % is «f -finitely gener-
ated up to nilpotents if there exists an unstable algebra L that is <f -finitely

Foni
generated and an F-epimorphism L XK.

Remark 4.2. — Unlike the case of «/-finite generation, for K € ob.# ™+,
the definition of .o/-finitely generated up to nilpotents cannot be given in
terms of QK.

For example, consider the unstable algebra K := U(€D,,5, F'(n)) at the
prime p = 2, so that QK = @m21 Y F(m); K is not «/-finitely generated
up to nilpotents. Now consider the unstable algebra F& P, XF(m) with
trivial algebra structure; this has the same module of indecomposables, but
is F-isomorphic to F, hence is «/-finitely generated up to nilpotents.

The following is an immediate consequence of Kuhn’s embedding the-
orem [6] that a finite functor F' € % embeds in a finite direct sum of
symmetric power functors.

—profin
PROPOSITION 4.3. — A presheaf X € Ob“//fp is finite if and only if

there is a finite direct sum @, , S™* of symmetric power functors and a
—profin

monomorphism X — @, , S™ in ¥y

COROLLARY 4.4. — Let K € obJ% be an unstable algebra. The follow-
ing conditions are equivalent:

—profin
(1) gK € ob”i/flD s finite;
(2) K is of -finitely generated up to nilpotents.
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Proof. — An immediate consequence of Proposition 4.3, Proposition 2.24
and Example 2.23, using the fact that x sends inclusions to F-epimor-
phisms [5]. O

Remark 4.5. — As observed by a referee, the key ingredient here is the
fact that an unstable module M is o7-finitely generated modulo nilpotents
if and only if the associated functor V'~ (Ty,M)? (where Ty is Lannes’
T-functor) is finite (this is related to Kuhn’s embedding theorem). Using
this, Corollary 4.4 has a short direct proof, by applying the functor g to a
morphism of unstable algebras of the form UM — K.

4.2. Reinterpreting 7/ 4il

The above leads to the following refinement of [5, Theorem I1.1.5]:

—profin
THEOREM 4.6. — For X € ob”f/fpro , the natural map X — X% in-
duces an isomorphism of unstable algebras kX“ — rkX.
In particular,

(1) X is coanalytic if and only if X = grX;
(2) g induces an equivalence of categories (& |/ N il)°P 5 ”f/fw.

5. Finitely generated presheaves are finite
5.1. The rank filtration

For X € ob?/; and n € N, the sections X (F™) have a natural right action
of End(F™), which restricts to a right Aut(IF")-action.

The following result is standard (and corresponds to the skeletal filtration
of [5, Part IT]):

PrRoOPOSITION 5.1. — For X € ob?/}, there is a natural rank filtration
XopCXagC...C X C X1 C...CX
such that X =) X<, where X¢,, is the image of the evaluation map:
X (F™) X gnaeny Hom(—, F") — X.
DEFINITION 5.2. — For X € ob”7/} and n € N, let X,c5(n) be the set of
regular elements of X (F™), namely the right Aut(F™)-set given by
Xieg(n) :== X(F")N\X<n1(F").
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The following is related to the Key Lemma, [5, Lemma I1.2.1] and its
associated results.

LEMMA 5.3. — For X € ob?/} and 1 <n €N,
(1) the quotient presheaf X<, /X<n_1 is naturally isomorphic to

Vs # 10 (Xreg(n) X Aut(e) Suri(V, F”))

(where Surj(V,F") C Hom(V,F™) is the set of surjective morphisms)
considered as a quotient presheaf of X (F") X gpq(g»)Hom(—,F") — X.
(2) there is a natural isomorphism of Aut(V')-sets:

X<n(VN\X<n-1(V) & Xieg(n) X pug(en) Surj(V,F").
Proof. — By definition, X, is the image
X(Fn) XEnd(Fn) Hom(—,]F") e Xgn — X

of the map induced by evaluation. From the definition of X,cg(n), this
induces a surjection

(51) * H<Xreg(n) ><Aut(IE‘") Surj(*vﬂ?n)) - X<7L/X<n—1-

Now Surj(V,F") is a free left Aut(F™)-set with cosets Surj(V,F") in bijec-
tion with the set of codimension n subspaces of V. Hence, as sets,

Xreg(n) X Aut(Fn) SUTJ(V7 Fn) = Xreg(n) X SUI‘J(‘/; Fn)

For the first point, it remains to show that the map (5.1) is injective.
By construction, this is true for sections with dim V' < n and, for V = F",
both sides of (5.1) identify with the set % IT X eg(n).

For the general case, given two sections x # y € Xyeg(n) Xaut(rn)
Surj(V,F™), using the fact that any surjection admits a section, there exists
a morphism ¢ : F” < V such that one of the following hold:

(1) zp € Xieg(n) and yp = *, (in the case that z, y correspond to
different cosets in Surj(V,F"));
(2) zp # yp € Xieg(n) (in the remaining case).
This implies the required injectivity.
The second statement is an immediate consequence. O

Remark 5.4. — A morphism of presheaves f : X — Y does not in general
restrict to a morphism Xieg(n) — Yieg(n).

PROPOSITION 5.5. — For a morphism of presheaves f : X — Y in ”///;,
the following conditions are equivalent:

(1) f is a monomorphism X < Y;
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(2) for each n € N, f restricts to a monomorphism X,es(n) < Yieg(n).

Proof. — If f is a monomorphism, it is sufficient to show that, for each
n € N, f sends Xyeg(n) to Yieg(n). Suppose that z € Xyeo(n); if f(x)
is not regular, then there exists a non-invertible @ € End(F™) such that
f(z) = f(x)a. By injectivity of f, it follows that z = za, a contradiction.

The converse is established by induction on the rank filtration. For V €
ob7%, as in the proof of Lemma 5.3,

Xen(V)\Xeno1(V) = Xieg(m) x Suri(V,F).

Hence, the inclusion Xyeg(n) < Yieg(n) of right Aut(F™)-sets induces a
monomorphism

Xcn(V\X<n-1(V) = Y (V)\Y<n-1(V)

and thus, by induction upon n, X<, (V) <= Y, (V). The result follows by
passage to the colimit as n — oo. O

COROLLARY 5.6. — For a morphism of presheaves f : X — Y in ”7/;
such that X = X, f is a monomorphism if and only if

[ XF") = Y(F")
is a monomorphism of sets.

Proof. — By hypothesis, X,eg(k) = 0 for k > n, hence the result follows
from Proposition 5.5. O

5.2. Finite generation implies finite

Notation 5.7. — For Z a finite right End(F")-set, denote by

(1) Xz € obg/} the induced presheaf V' = Z xgyq(n) Hom(V,F™)
(2) Gz € obZ the induced functor V' F[Z] @gpagen) F[Hom(V,F")]

equipped with the morphism Xz — Gz of ?/; induced by the canonical
inclusion of right End(F")-sets Z < F[Z].

THEOREM 5.8. — For Z a finite right End(F™)-set, there exists t € N
such that the composite

Xz =Gz —» Gy

is a monomorphism. In particular, X 7 is finite of degree at most t.
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Proof. — By Corollary 5.6, it suffices to exhibit ¢ € N such that the
natural surjection Gz — ¢.:Gz is a bijection when evaluated on F". The
functor Gz is a quotient of a finite direct sum of copies of the functor
F[Hom(—,F™)]. The latter takes finite-dimensional values and is dual to a
locally finite functor, namely is the inverse limit of its finite quotients. The
same therefore holds for Gz, which implies the existence of such a ¢.

The final statement follows, since ¢;Gz is a finite functor of polynomial
degree at most t. O

Recall the theory of unstable algebras of finite transcendence degree from
Section 2.6, in particular Theorem 2.28.

COROLLARY 5.9. — Let K be an unstable algebra of finite transcen-
dence degree. Then K is o/ -finitely generated up to nilpotents if and only
if gK takes values in finite sets.

Proof. — If K is &/-finitely generated up to nilpotents, then gk is finite,
by Corollary 4.4, hence takes values in finite sets.

Conversely, if K has finite transcendence degree d and gK takes values
in finite sets, then gK = X (pay, where gK (F?) is a finite right End(F?)-
set. The presheaf X (ra) is finite by Theorem 5.8, hence K is </-finitely
generated up to nilpotents, by Corollary 4.4. O

Remark 5.10. — Corollary 5.9 applies when gK (F%) is a Noetherian right
End(F%)-set (see Theorem 2.29). However, the Corollary shows that, for .o7-
finite generation up to nilpotents (as opposed to Noetherian up to nilpo-
tents), only the much weaker condition of finite values is required.

5.3. Examples

The prime p is taken to be 2 in this section.

Example 5.11. — For n € N, let Grg,, € ob?/; denote the presheaf de-
fined by Gre, (V) := GL,, \ Hom(V,F"). A linear embedding F*~1 — F"
induces an inclusion (independent of the choice) Gr¢,—1 < Grg,, . Let Gr,,
denote the presheaf defined by the pushout diagram in ?/}

Gl"gn_lc—> Grgn

|-

x* — G, .
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Hence Gr,, identifies as the presheaf  IT Surj(—, F"), using the notation of
the proof of Lemma 5.3.

Each of these presheaves is connected and takes values in finite sets.
Moreover, Grg, is induced by the right End(F")-set GL,, \ Hom(F",F")
(which is Noetherian), whereas Gr, is induced (for n > 0) by the pointed
End(F™)-set g II %,, where *, is regular (at the prime 2, this can be
identified with A™(F™)). The latter is not Noetherian for n > 1.

The unstable algebra x(Grg,,) is the Dickson algebra D(n) := H*(BF™;
F)GLn whereas k(Gry,) is F @ w, D(n), where w,, denotes the top Dickson
invariant. For n = 1 these coincide, whereas for n > 1 they differ: indeed
D(n) is a Noetherian algebra whereas, for n > 1, F @ w, D(n) is easily seen
not to be Noetherian or even .7-finitely generated. However, Theorem 5.8
implies that F @ w,, D(n) is «7/-finitely generated up to nilpotents.

Example 5.12. — Consider the finite presheaf Gry over F. It is a basic
calculation that goF[Gra] = A% @ F, so that there is a canonical inclusion

GI"Q;)A2@]F

in ?/; Since Grs is connected, it follows that there is an inclusion Gry < A2
(as a presheaf of sets, F@ A? identifies as A2IT1A?). This gives one approach
to showing that FEnd 7, (Grg) is the monoid underlying F.
The inclusion Gry < A? corresponds to the canonical F-epimorphism
in %
U(A*(F(1))) = F @ weD(2).

Example 5.13. — The following example complements Example 3.19.
Consider the presheaves Grg, of Example 5.11 and form the colimit

Greoo i= U Grgp
n

in “7/; . This exhibits Gr¢<, as a colimit of connected presheaves induced
from Noetherian End(F")-sets, whereas Grg¢oo is not finitely generated,
although it does take values in finite sets. The fact that the augmentation

ideal D(n) C D(n) is zero in degrees < 2"~! implies that (Grgoo)” = *.

6. The growth function

The growth functions introduced in this section provide a useful first
approximation to the property of finiteness for presheaves.
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6.1. The function ~x

DEFINITION 6.1. — For ) # X € 0b‘7/; that takes values in finite sets,
let vx : N = R be the growth function defined by

£y (£) 1= log, | X (EY)]

Remark 6.2. — If F' € ob.# takes finite-dimensional values, then v (t) =
dim F(F?), so that g coincides with the growth function considered in [6].

The following characterization of polynomial degree in terms of the
growth function is useful:

PROPOSITION 6.3 ([6]). — Let F' € ob.# be a functor that takes finite-
dimensional values. The following are equivalent:

(1) F is polynomial of degree d;
(2) ~vF is a polynomial function of degree d.
PROPOSITION 6.4. — Suppose that () # X € ob“?f is finite of degree d.
Then
(1) |X(V)| < oo for every V € ob¥};
(2) x(t) = Ot?).

Proof. — By hypothesis, ) # X — Fx, where Fx € ob.Z is a finite
functor of degree d. Hence vx < vr,; since F'x is of degree d, yr, is a
polynomial function of degree d, by Proposition 6.3. |

6.2. Applications

Such growth functions play an important role in the work of Grodal [4]
and Lannes and Schwartz [10].

Notation 6.5 ([4]). — For functions f,g : N — R, write f < g if, for all
e > 0, there exists N € N such that f(¢) < (1+¢)g(t) for all ¢t > N.

THEOREM 6.6 ([4, Theorem 3.3]). — Let E be a connected, nilpotent
finite Postnikov system with finite m F and finitely-generated homotopy
groups. Then there exist 0 < ¢,C' € N such that, as functions of t:

Ctd SJ logp |gt0PE(Ft)| 5 Ctda

where for k := sup{i|m;(E), # 0}, d = k if i E has p-torsion, otherwise
d=k—-1.
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Remark 6.7. — This should be compared with the argument used in the
proof of [10, Theorem 0.1], using the fact (see Theorem 2.21) that, un-
der suitable hypotheses upon the topological space E, cohomology induces
an isomorphism of presheaves giop £ 5 gH*E. In this situation, Grodal’s
theorem implies that vgp-p(t) = O(t?).

However, the arguments of [4, 10] only provide bounds on the growth
function; in particular, they do not show that gH*F is a finite presheaf
(see Example 6.9 below).

We do, however, have the following:

COROLLARY 6.8. — Let E satisfy the hypotheses of Theorem 6.6 and
suppose that giopE is a finite presheaf. Then giopE) has degree at least d
(for d as in the Theorem).

Example 6.9. — The property that vx is a polynomial function does not
imply that X is a finite presheaf.

Consider any finite, constant-free functor 0 # F € % of polynomial
degree d > 2, so that yr(t) = O(t?). To be concrete, we take F' = A? over
the field F.

The rank filtration of Proposition 5.1 provides the decomposition of the
underlying set

F(V) = [[ Fen(V\Fena(V)

and

an(V)\an_l(V) = Freg(n) XAut(IF") Sl].I'J(‘/7 Fn)
by Lemma 5.3 and, for n > 1, the quotient F, (V) := F¢,(V)/Fgn-1(V)
in presheaves identifies with

V i 5 11 (Frag(n) X awcen) Sui(V,E) ).

Consider the connected presheaf F := \/n>1 F,. For V € ob¥}, by con-
struction, F(V) has the same underlying finite set as F(V), but a very
different End(V)-structure.

To show that the presheaf F' is not finite, it suffices to show that, for
G € ob.Z a finite, constant-free functor, there is no non-trivial map from
F,, to G for n > 0.

Now Hom@ (Fn,G) = Homg (F[F,],G) and F[F,] splits as F @ F[F,]

where F[F,](V) = 0 if dimV < n, by construction of F,. Since G is
constant-free, Hom z (F[F,,], G) = Hom z(F[F,],G) and, since G is finite,
it follows by connectivity arguments that Hom & (F[F,,],G) = 0 for n > 0.
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Part 2. Unstable Hopf algebras and presheaves of p-groups
7. Hopf algebras in J&
7.1. Preliminaries

As usual, £ denotes the category of unstable algebras over the mod p
Steenrod algebra .

DEFINITION 7.1. — Let 2% be the category of cogroup objects in J& .

(1) An object of Sy is a commutative F-Hopf algebra H, such that
the underlying algebra is an unstable algebra over the Steenrod
algebra, and the structure morphisms A : H — H® H (the diagonal
or coproduct) and x : H — H (the conjugation or antipode) are
morphisms of modules over the Steenrod algebra.

(2) A morphism Hy — Hy of 5y is a morphism of F-Hopf algebras
that is </ -linear.

Let %} C A% denote the full subcategory of connected objects (H such
that H* =T).

Remark 7.2. — It is not assumed that the coproduct A is cocommuta-
tive.

Here we focus upon connected unstable Hopf algebras. This is not a seri-
ous restriction, since the general case can be treated by using the following:

LEMMA 7.3. — Let H € obJs”y be a Hopf algebra concentrated in
degree zero with dim H® < oo. Then H = FSpec HO, where Spec HY is a
finite group.

The following is a key fact:

PROPOSITION 7.4. — Let H € obs#;; and K C H be a sub unstable
algebra such that K is o -finitely generated. Then there exists Hx C H in
A such that

(1) Hg is <7 -finitely generated as an unstable algebra;
(2) K C Hk as unstable algebras.

Proof. — By hypothesis, there exists a finite graded vector subspace
Vi C K such that the induced morphism of unstable algebras U (F (Vi )) —
K is surjective, where F(V) is the free unstable module on Vi.

The vector space Vi is contained within a finite-dimensional sub F-
coalgebra Cx C H. (This is a standard fact; in this graded connected
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setting, the proof is straightforward.) Let Hg denote the sub unstable

algebra of H generated by Ck; by construction, this contains K. Moreover,

since the coproduct is @7-linear, it is straightforward to check that Hy is

stable under the coproduct. In the connected setting, stability under the

conjugation is automatic [11], hence Hg is an object of %}, as required.

|

Recall that cokernels exist in 7, (see [12, 13] for example). In particular,

if K < H is a monomorphism of 7}, then the cokernel H — H//K has
underlying unstable algebra given by the pushout in JZ":

K——H

]

LEMMA 7.5. — Let H € ob%”} such that gH takes values in finite sets.
Then the Hopf algebra structure of H induces a natural group structure
on gH, so that gH takes values in finite groups.

Let H' C H be a sub Hopf algebra in %fjg and consider the associated
sequence H' < H — H//H'. This induces a short exact sequence of finite
groups:

g(HJH') S gH — gH'

Proof. — The first statement is a formal consequence of the natural iso-
morphism g(K ® L) = gK x gL, for K,L € 2 and the fact that H is a
cogroup object in 7.

The underlying sequence of pointed sets

9(H//H') — gH — gH'
is exact as pointed sets, since the underlying unstable algebra of H// H’
is H ®p/ F. The morphisms are respectively injective and surjective as
morphisms of pointed sets, by [5, Corollary II.1.4]. In particular, both gH’
and g(H//H') take values in finite sets.

The naturality of the group structure implies that these are group mor-
phisms; the result follows. |

7.2. The primitive filtration

Recall that, if H is a connected Hopf algebra with augmentation ideal
H, then the module of primitives PH is the kernel of the reduced diagonal

AT
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LEMMA 7.6. — For H € ob#};, the module of primitives PH C H is
a non-trivial sub unstable module and the canonical morphism

UPH — H,

where U : % — ¥ is the enveloping algebra functor, is a morphism of
%} when UPH is equipped with the primitively-generated Hopf algebra
structure.

Moreover, this morphism is injective; UPH is the largest primitively-
generated sub Hopf algebra of H.

Proof. — This is standard. The injectivity statement follows from the
natural identification PH = PU PH together with the fact that a non-zero
element of minimal degree in the kernel is necessarily primitive. O

As usual, one has the primitive filtration of an object of 5} (cf. [12],

for example).

DEFINITION 7.7. — For H € ob%}, recursively define the natural se-
quence of quotients in jf}:

B
where, for each n € N, H,, 11 is the cokernel in jfjg of UPH,, — H,,.

LEMMA 7.8. — For H € obJ#},

(1) lim_, H, =F;
(2) if H is o/-finitely generated (as an unstable algebra), H, = F for
n > 0.

Proof. — Straightforward. a

The nilpotent filtration behaves well when working modulo nilpotents,
due to the following Lemma:

LEMMA 7.9. — Let H — H’' be a morphism of %”j, such that the un-
derlying morphism of unstable algebras is an F-isomorphism (equivalently
induces an isomorphism in % [.Ail). Then the induced map PH — PH’
is an isomorphism in % | Nil.
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Proof. — By definition, PH — PH’ fits into a commutative diagram
in%:

0 PH H—°HeH
0 PH' H ——> H @ H'
A

in which the rows are exact. After passage to % /./7il, the two right hand
vertical arrows are isomorphisms, by the hypothesis, hence so is the left
hand one. |

PROPOSITION 7.10. — Let H — H' be a morphism of %ﬂ} such that
the underlying morphism of unstable algebras is an F-isomorphism and
gH takes values in finite groups. Then the induced morphisms H, — H],
of the primitive filtration are F-isomorphisms.

Proof. — By induction, it suffices to prove the case n = 1. The morphism
H — H' induces a commutative diagram of sequences in Jf}

UPH— H —— H;

L]

UPH'“—— H' —— Hj.

By hypothesis, H — H’ is an F-isomorphism; Lemma 7.9 implies that
PH — PH' is an isomorphism in % /.4il and this implies that UPH —
UPH’ is an F-isomorphism (by [7]).

Applying Lemma 7.5 gives a morphism between short exact sequences
of functors to finite groups. It follows that gH] — gH; is an isomorphism,
hence that H; — Hj is an F-isomorphism. O

PRrROPOSITION 7.11. — Let H € ob%ﬂjg have underlying unstable alge-
bra that is of -finitely generated up to nilpotents. Then gH takes values
naturally in finite p-groups.

Proof. — By hypothesis, there exists a sub unstable algebra K C H such
that K is &/-finitely generated and the inclusion is an F-epimorphism.
Proposition 7.4 provides K C Hx C H with Hg € ob%@? that is also
o/ -finitely generated. Clearly Hx C H is also an F-epimorphism, hence we
may suppose without loss of generality that H is <7-finitely generated as
an unstable algebra, so that the primitive filtration is finite. (Alternatively,
Proposition 7.10 can be used.)
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Dévissage using the primitive filtration together with Lemma 7.5 al-
lows reduction to the case where H is primitively generated. If H =
UPH, then gH is given by the underlying set-valued functor of V
Homgy (PH, H*(BV)). It is straightforward to check that the group struc-
ture of gH corresponds to the elementary abelian p-group structure of
Homg, (PH, H*(BV)); in particular, gH takes values in finite p-groups. O

8. Functors to finite p-groups

Motivated by Proposition 7.11, this section studies presheaves of finite
p-groups.

8.1. p-finiteness

DEFINITION 8.1. — Let ng denote the category of functors from ”f/fOP
to the category of finite p-groups (i.e. presheaves of finite p-groups).

Remark 8.2. — The category . is a full subcategory of %f . Forgetting
the group structure gives a faithful functor gpf — Y.

Recall that the Frattini subgroup ®(G) C G of a finite group G is the
intersection of all maximal proper subgroups of G. If G is a finite p-group
then

oG =[G, G|GP
and ®G is the minimal normal subgroup of G such that the quotient G/®G
is p-elementary abelian.

The above description makes it clear that a morphism of finite p-groups,
G'1 — Gy restricts to @G — PG5 and thus induces a morphism of F-vector

spaces
G/PG, — G/PGs.

DEFINITION 8.3. — For G a finite p-group, let ®,,G denote the p-derived
series (or Frattini series) of G, defined recursively by ®,G = G and
3,.1G = (0,G).

For a finite p-group, this series is finite (i.e. NG = {e} for N > 0).

LEMMA 8.4. — Let f : G; — G be a morphism of finite p-groups, then
for n € N, f restricts to a morphism

(I)nf : (I)nGl — (bnG%
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thus induces a natural morphism of graded F-vector spaces:
P ensf: P OnG1/Pni1Gr — D PnGo/Pri1Go.
n=0 n=0 n=0

Proof. — A straightforward induction upon n. O

PROPOSITION 8.5. — Let & € ob%pf be a presheaf of finite p-groups.
The p-derived series induces a natural series

. CP 16 CP,BC...CB

such that, evaluated on V € ob¥%, (2,6)(V) = &, (&(V)).
The associated graded

@ D, 6/D, 1 G
n=0

is an N-graded functor with values in ¥;. For any V € ob¥},
(I)z®/<1>1+16(‘/) =0, for 1> 0.

Proof. — An immediate consequence of the naturality of the p-derived
series, established in Lemma 8.4. O

DEFINITION 8.6. — A functor & € ob%gr to the category of finite p-
groups is p-finite if @n>0 $,6/D,,,18 is a finite functor, considered as an
object of the category & (forgetting the grading).

The notion of a polynomial functor® to the category of groups (ala
Baues—Pirashvili [1]) is recalled in Section A.

THEOREM 8.7. — For 6 € obgg, the following conditions are equiva-
lent:
(1) & is p-finite;
(2) & is polynomial;
(3) Both the following conditions are satisfied:
(a) @B =0 for N > 0 (uniformly);
(b) each ®;6/®;416 is a finite functor of .F;
(4) & has a composition series;
(5) the growth function e satisfies ve(t) = O(t?) for some d € N.

If & takes values in finite abelian p-groups, this is equivalent to

e & is finite as a functor to the abelian category of finite abelian
p-groups.

(1) The author is grateful to Christine Vespa for pointing out that this notion of poly-
nomial provides an equivalent condition.
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Proof. — The result is proved by reducing to the case where ¥ takes
values in F-vector spaces, where the result is standard, for instance by
applying Proposition 2.9 and Proposition 6.3.

The equivalence of p-finiteness and polynomiality is proved by using the
thickness of the polynomial property established in Corollary A.9. g

The relevance of p-finiteness is shown by the following result:

COROLLARY 8.8. — Let € obfﬁf be a functor to finite p-groups such
that the underlying presheaf & € 0b‘7/; is finite. Then & is p-finite.

Proof. — The hypothesis that the underlying presheaf is finite implies
that v¢ = O(t?) for some d € N, by Proposition 6.4, hence the result
follows from Theorem 8.7. ]

Example 8.9. — Corollary 8.8 applies to the case & = gH, where H €
ob%’f} is o/-finitely generated up to nilpotents.

8.2. Coanalyticity of p-finite functors to p-groups
For any & € ob%pf , composition with the group ring functor F[—] (and
forgetting the ring structure) gives a functor F[®] € # that takes finite-
dimensional values. Example 3.12 shows that such a functor need not be
coanalytic (the inverse limit of its finite quotients).
This issue is resolved when one imposes p-finiteness:

PROPOSITION 8.10. — Let & € ob%/ be p-finite. Then F[®] € ob.Z is
coanalytic.

Proof. — Let I C F[®] denote the augmentation ideal (kernel in %
of the augmentation F[®] — F). The powers of the augmentation ideal
induces a decreasing filtration

LLCcIMs c MG C ... C 16 C F¢)
and hence an inverse system of quotients F[&] — F[&]/I*&.
To establish the result, it suffices to show that
e cach quotient F[®]/I*® is finite;
o F[®] = lim, F[&]/I*®.
This is proved using standard results on this filtration (see [14], for ex-
ample).
For the first statement, since I*® /I**1® is a quotient of (I1&/1?®)®* it
suffices to show that 1&/I%® is a finite functor. But the latter is equivalent

TOME 69 (2019), FASCICULE 5



2198 Geoffrey POWELL

to the functor &,, @ F = & /P®. The p-finiteness hypothesis implies that
this is a finite functor of .%: it takes finite-dimensional values and has
polynomial growth (by Theorem 8.7), hence is finite.

For the second statement, it suffices to show that, for any V' € ob7%,
there exists ky € N such that I*V&(V) = 0 (here ky depends upon &);
this follows from Lemma 8.11 below. g

LEMMA 8.11. — Let G be a finite p-group, and IG be the augmentation
ideal of the mod p group ring F[G]. Then IG is nilpotent, i.e. there exists
N € N such that ING = 0.

Proof. — This is a standard result. It is proved by induction upon the
order of the finite p-group G, the inductive step relying on the fact that
the centre of a finite p-group is non-trivial. O

8.3. p-finiteness versus finiteness

The following theorem implies that the two notions of finiteness for & €
ob%pf coincide.

THEOREM 8.12. — Let & € obgg be a functor to finite p-groups such
that &(0) = {e}. Then & is p-finite if and only if the underlying presheaf
& in ¥} is finite.

Proof. — The implication < is given by Corollary 8.8.

For =, since F[®] € & is coanalytic (by Proposition 8.10), it is possible
to carry out the argument by passing to unstable (Hopf) algebras. Namely,
consider the unstable algebra H := k®; by Proposition 2.25, this has finite
type. It follows that the group structure of & gives H the structure of
a Hopf algebra in J# and, by construction, gH = & as p-group valued
functors.

The proof is by induction upon the length of the p-derived series of &,
using the correspondence between short exact sequences of Hopf algebras
and short exact sequences of group-valued functors given by Lemma 7.5.
If &6 = {e}, then & actually belongs to % and p-finite is equivalent to
finite.

For the inductive step, consider the projection & — &/P&. Applying x
gives an inclusion of Hopf algebras in f%”;,

H' = k(6/96) < H
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and hence a short exact sequence in J#}:
H < H — H)H

By Lemma 7.5, one has that g(H//H') & ®®. Hence, by induction, H' and
H//H' are both «7-finitely generated up to nilpotents.

Since H//H' is «/-finitely generated up to nilpotents, there exists a con-
nected unstable algebra K C H that is o7-finitely generated and such that
the composite K — H//H' is an F-epimorphism.

Proposition 7.4 provides a sub unstable Hopf algebra Hx C H that is
o/-finitely generated as an unstable algebra and such that K C Hg (as
unstable algebras).

Let H” C H denote the sub Hopf algebra image in ¢, of

H @ Hg — H.

By construction, H” is «/-finitely generated and the cokernel H//H" is
nilpotent.
Applying the functor g to the short exact sequence of %}

H'"— H — H//H",

by Lemma 7.5 implies that gH"” = gH; since g(H//H') = *. (This step
relies crucially on having a short exact sequence of groups, not just pointed

sets.)
This implies that H is «/-finitely generated modulo nilpotents, by Corol-
lary 4.4. O

COROLLARY 8.13. — For H € ob%@?, the underlying unstable algebra
of H is &/ -finitely generated up to nilpotents if and only if vH is p-finite.

If H satisfies the above conditions and K C H is a sub Hopf algebra in
unstable algebras, then K is <7 -finitely generated up to nilpotents.

9. Unstable Hopf algebras modulo nilpotents
9.1. Coanalytic presheaves of p-profinite groups

The material of Section 8 leads to the appropriate notion of profinite
p-group valued functors.

Notation 9.1.
(1) Let ngi“ C gg denote the full subcategory of p-finite objects.
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—~profi
(2) For G € ob(”I/fpro n)C that takes values in profinite p-groups, let

— profi
G/%Ifi“ be the full subcategory of G/(”f/fp]rO n)C with objects mor-
phisms G — G’ with G’ € ob%zf‘n that are continuous group mor-
phisms on sections and such that morphisms are commutative dia-

grams
G

where G’ — G"” is a morphism of %Zf‘“.
(3) For G as above, set G¥ := lim

1"
G",

— G’, equipped with the
a-c'ea/gin AHPP

canonical map G — G“.

Remark 9.2. — Let G(i) be a diagram of g]f“ indexed by a small, cofil-
tering category .#. Then limfe—j G (i) has underlying presheaf in "///;w and
takes values in p-profinite groups.

DEFINITION 9.3.

— profi
(1) For G € ob(”i/fpro n)C which takes values in profinite p-groups, say
that G is p-coanalytic if the canonical map G — G¥ is an isomor-

phism.
(2) Let 54;’* for the category of connected, p-coanalytic sheaves and
continuous group morphisms, equipped with the forgetful functor
—profin

Gt — (Y )e-

Remark 9.4. — A p-coanalytic presheaf is, in particular, coanalytic.
—~w
Hence the forgetful functor induces 45+ — (¥ )..

LEMMA 9.5.

(1) For H € obs#’;;, gH is p-coanalytic and g induces a functor H#;; —
Gt
(2) For G € ob¥9" kG € obs#y and k induces a functor ¥+ — A

Proof. — For the first statement, use the fact that H is the colimit of its
sub-Hopf algebras in " that are «/-finitely generated, by Proposition 7.4.
The second is clear; the colimit of the associated diagram in %”} lies in
%} The functoriality is clear in both cases. O
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9.2. Connected unstable Hopf algebras modulo nilpotents

The analogue of Theorem 4.6 for connected unstable Hopf algebras is
now essentially tautological.

Notation 9.6. — Let /il denote the localization, defined as for
H [Nl (cf. [5, Part I1.1] and Section 2.3).

THEOREM 9.7. — The functor g induces an equivalence of categories
(S | Nil)P S g

Proof. — From the construction and from Lemma 9.5, it is clear that
g induces a functor &/ il — @+, The inverse functor is induced
by k. O

Example 9.8. — If H € %ﬂ} is primitively-generated, then gH is a
constant-free functor of % that is dual to a locally finite functor (con-
sidered as a pro-object).

Appendix A. Recollections on polynomial functors
A.1. Definitions

Let (%¢,0) be a small pointed category, equipped with symmetric mono-
idal structure (%, ®,0) for which 0 is the unit. Following Baues and Pi-
rashvili [1], consider the category of functors Gp? from € to the category
of groups Gp, and the associated notion of polynomial functor. The trivial
group is written e.

DEFINITION A.1. — A functor F € obGp? is constant-free if F(0) = e.

The cross-effects of [1] generalize the Eilenberg—MacLane notion of cross-
effect from the abelian setting [3].

DEFINITION A.2. — For1<n €N, let cr, : Gp% — Gp%m denote the

functors defined recursively by

(1) eri F(C) :==ker{F(C) — F(0)};

(2) croF(C,D) :=ker{cri F(C ® D) = cri F(C) x cri F(D)} and

(3) crn+1F(Cl, Cg, ey Cn+1) = Crg (crnF(f, 03, ey C’n+1))(C1, CQ),

forn > 2.

(Here the morphisms are induced by the projections to 0, considered as the
terminal object of €.)
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The following is standard, and allows usage of cr; to be avoided when
considering constant-free functors.

LEmMMA A3. — IfF € Gpc"”p is constant-free, then
(1) enF = F;
(2) the functor C — cryF(C, D) is constant-free for any D € ob% .

LEMMA A.4. — If F € obGp? is constant-free, then there is a natural
isomorphism:
n

cr, F(Ch,...,Cp) Zker {F(C10...0C,) —» [[ F(C10...0Ci6...0C,)},

i=1
where a indicates that the term is omitted.

Proof. — The result is proved by induction on n. For n = 2, by Lem-
ma A.3, this follows from the Definition of cry. For n > 2, the inductive
step proceeds as for the case n = 3, which is [1, Lemma 1.8]. a

DEFINITION A.5. — Forn € N, a functor F € obGp? is polynomial of
degree < n if crp, 1 F = e is the constant functor.

The following is an immediate consequence of Lemma A.4:

LEMMA A.6. — For n € N, a constant-free functor F' € oprCg is poly-
nomial of degree < n if and only if the natural transformation

n+1
F(Cl®...®cn+1)—>HF(Cl@...QOiQ...QCn_H)

i=1

is injective.

A.2. Exactness of cross-effects
DEFINITION A.7. — For 2 a small category, a sequence of functors of
Gp@, Fy — F5 — F3 is short exact if, for all D € ob2,
is a short exact sequence of groups.

The following generalizes the standard result for functors to abelian cat-
egories:
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PROPOSITION A.8. — Let 1 <n € N. If K —+ G — Q is a short exact
sequence of Gpcg, then

crp, K — cr,G — cr,Q
is a short exact sequence of Gp%xn.

Proof. — The reduction to the case where the functors are constant-free
is left to the reader. From the recursive definition of cross-effects, it is
straightforward to reduce to the case n = 2. Now, for F' constant-free, as
in [1, Section 1], there is a natural short exact sequence of groups

cryF(C, D) — F(C ® D) — F(C) x F(D).

Hence the result follows by the nine (or 3 x 3) Lemma in the category
Gp. O
This immediately provides the thickness of the polynomial property:

COROLLARY A.9. — For K — G — @ a short exact sequence of Gp(g
and n € N, G has polynomial degree < n if and only if both K and ) have
polynomial degree < n.
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