UNIFORM APPROXIMATION OF HARMONIC FUNCTIONS

by G. F. VINCENT-SMITH

Introduction.

Let ω be a bounded open set in Euclidian n-space ($n > 1$), with closure $\overline{\omega}$ and frontier ω^*. Corollary 1 below gives a necessary and sufficient condition that each continuous real-valued function on $\overline{\omega}$ harmonic in ω, may be uniformly approximated on $\overline{\omega}$ by functions harmonic in a neighbourhood of $\overline{\omega}$. The purpose of this paper is to extend corollary 1 to axiomatic potential theory.

Suppose a_p is a sequence of points chosen one from each domain in $\bigcap \overline{\omega}$. Let $\Phi_{a_p}^p$ be the elementary harmonic functions relative to a_p [10, § 1]. Then $\Phi_{a_p}^p$ is a potential of support a_p, $n = 1, 2, \ldots$. If $C(\omega)$ denotes the space of continuous real-valued functions on ω, then following Deny [9], [10, § 4] and de La Pradelle [16], we consider the following linear function spaces:

$M = \{f \in C(\overline{\omega}) : f$ is harmonic in $\omega\}$;

$L = \{f \in C(\overline{\omega}) : f$ extends to a function harmonic in a neighbourhood U_f of $\overline{\omega}\}$;

$K = \{f \in C(\overline{\omega}) : f$ extends to the difference of two potentials with compact support contained in $\bigcap \overline{\omega}\}$;

$J = f \in C(\overline{\omega}) : f$ extends to a function in the linear span of the elementary harmonic functions $\Phi_{a_p}^p\}$.
Theorem 1. — \(J \) is uniformly dense in \(M \) if and only if the sets \(\{ \omega \} \) and \(\{ \overline{\omega} \} \) are effilé (thin) at the same points.

The points at which \(\{ \omega \} \) is not thin [7, ch. VII, § 1] are precisely the regular points of \(\omega^* \) for the Dirichlet problem [7, ch. VIII, § 6], while the points where \(\{ \overline{\omega} \} \) is not thin are precisely the stable points of \(\omega^* \) for the Dirichlet problem.

Suppose now that \(\omega \) is a relatively compact open subset of a harmonic space \(\Omega \) which satisfies Brelot's axioms 1, 2 and 3, and on which there exists a strictly positive potential. Suppose also that the topology of \(\Omega \) has a countable base of completely determining open sets, that potentials with the same one point support are proportional, and that adjoint potentials with one point support are proportional. De La Pradelle [16, th. 5] proves the following generalisation of theorem 1.

Theorem 1'. — \(K \) is uniformly dense in \(M \) if and only if the sets \(\{ \omega \} \) and \(\{ \overline{\omega} \} \) are thin at the same points.

Deny's proof of theorem 1 consists of showing that the same measures on annihilate \(J \) and \(M \), and the same method is used to prove theorem 1'. In this paper the conditions on \(\Omega \) are relaxed, and the following corollary to theorem 1 is generalised.

Corollary 1. — \(L \) is uniformly dense in \(M \) if and only if every regular point of \(\omega^* \) is stable.

The proof of corollary 1, using elementary harmonic functions, does not adapt to axiomatic potential theory. In example 2 we give a proof which does generalise. This proof is rather satisfying, since it uses Bauer's characterisation of regular points, and the following generalisation of the Stone-Weierstrass theorem [13, th. 5].

Theorem 2. — Suppose that \(X \) is a compact Hausdorff space, that \(L \) is a linear subspace of \(C(X) \) which contains the
constant functions, separates the points of \(X \), and has the weak Riesz separation property, and that \(L \) is contained in the linear subspace \(M \) of \(C(X) \). Then \(L \) is uniformly dense in \(M \) if and only if \(\partial_L(X) = \partial_M(X) \).

\(L \) is said to have the weak Riesz separation property (R.s.p.) if whenever \(\{f_1, f_2, g_1, g_2\} \subset L \) with \(f_1 \lor f_2 < g_1 \land g_2 \), there exists \(h \in L \) with \(f_1 \lor f_2 \leq h \leq g_1 \land g_2 \). The Choquet boundary of \(M \) is denoted \(\partial_M(X) \) [15] and Bauer [1, th. 6] shows that in the classical case \(\partial_M(\omega) \) is precisely the set of regular points of \(\omega^* \). Brelot [7, ch. viii, § 1] remarks that this remains true when \(\omega \) is a relatively compact open subset of a harmonic space satisfying Brelot's axioms 1, 2 and 3', and that in this case \(\partial_L(\omega) \) is precisely the set of stable points of \(\omega^* \). Using Bauer's results, corollary 1 is an immediate consequence of Theorem 2, both in the classical case, and when \(\omega \) is a relatively compact open subset of a harmonic space satisfying Brelot's axioms 1, 2 and 3'.

If \(\omega \) is a relatively compact open subset of one of the harmonic spaces of Boboc and Cornea [4], which are more general than those of Brelot, then the set of regular points of \(\omega^* \) corresponds not to \(\partial_M(\omega) \) but to \(\omega^* \cap \partial_W(\omega) \), where \(W \subset C(\omega) \) is the min-stable wedge of continuous functions on \(\omega \) superharmonic in \(\omega \). In this case we need a strengthened form of theorem 2, which, together with this characterisation of regular points, has corollary 1 as a direct consequence. This we supply in theorem 4.

In order to strengthen theorem 2 we consider min-stable wedges \(\mathcal{I} \subset W \) in \(C(X) \), and a geometric simplex \((X, \mathcal{I}, L) \). In theorem 4 we give a sufficient condition that \(L \) be uniformly dense in the space \(M \) of continuous \(W \)-affine functions on \(X \). This condition is given in terms of the Choquet boundaries \(\partial_W(X) \) and \(\partial_{\mathcal{I}}(X) \). In lemma 5 a pair of conditions equivalent to this is given. These are of a more analytic nature. Theorem 4 is deduced from proposition 1, which is a characterisation of geometric simplexes. This is proved by repeated use of filtering arguments together with the following form of Dini's theorem.

Theorem 3. — If \(\{f_i : i \in I\} \) is an upward filtering family in \(C(X) \) and \(g \) is an upper bounded upper semicontinuous
function such that \(g < \sup \{ f_i : i \in I \} \), then \(g < f_{i_0} \) for some \(i_0 \in I \).

\(f > 0 \) (\(\geq 0 \)) will mean that \(f(x) > 0 \) (\(\geq 0 \)) for all \(x \in X \).

A characterisation of geometric simplexes.

Let \(X \) be a compact Hausdorff space, and let \(\mathcal{G} \in \mathcal{W} \) be min-stable wedges in \(C(X) \). If \(f \wedge g \in \mathcal{W} \) whenever \(f, g \in \mathcal{W} \) then \(\mathcal{W} \) is said to be min-stable. We shall assume that \(\mathcal{G} \) contains a function \(p = \frac{1}{2} \) and a function \(q = -1 \). The Choquet theory for min-stable wedges has been developed in [11] [5] where proofs of the following results may be found.

The wedge \(\mathcal{W} \) induces a partial order \(\preceq_w \) on the positive regular Borel measures on \(X \) given by the formula

\[\mu \preceq_w \lambda, \quad \lambda(f) \leq \mu(f) \quad \text{whenever} \quad f \in \mathcal{W}. \]

A measure which is maximal for \(\preceq_w \) is said to be \(\mathcal{W} \)-extremal. A measure \(\mu \) is \(\mathcal{W} \)-extremal if and only if

\[\mu(g) = \inf \{ \mu(f) : g < f \in \mathcal{W} \} \]

whenever \(g \in - \mathcal{W} \) [5, Th. 1.2]. An extended real-valued function \(g \) on \(X \) is \(\omega \)-concave if the upper integral \(\int g \, d\mu \leq g(x) \) whenever \(\varepsilon_x \preceq_w \mu \). The function \(g \) is \(\mathcal{W} \)-affine if both \(g \) and \(-g \) are \(\mathcal{W} \)-concave. The min-stable wedge of lower bounded extended real-valued \(\omega \)-concave functions on \(X \) will be denoted \(\mathcal{W} \).

Lemma 1. — [11, Th. 1] [5, Cor. 1.4 d)]. Each \(f \in \mathcal{W} \) is the pointwise supremum of an upward filtering family in \(\mathcal{W} \).

A closed subset \(A \) of \(X \) is a \(\mathcal{W} \)-face (\(\mathcal{W} \)-absorbent set [5, § 2], \(\mathcal{W} \)-extreme set [11, § 2]) if for each \(x \in A \)

\[\mu(X \setminus A) = 0 \quad \text{whenever} \quad \varepsilon_x \preceq_w \mu. \]

If \(A \) is a \(\mathcal{W} \)-face and \(f \in \mathcal{W} \) then the function \(f^\varepsilon_x \), equal to \(f \) on \(A \) and to \(+\infty \) on \(X \setminus A \), belongs to \(\mathcal{W} \) [11, § 2]. The \(\mathcal{W} \)-faces are ordered by inclusion, and each \(\mathcal{W} \)-face contains a minimal \(\mathcal{W} \)-face. The measure \(\varepsilon_x \) is \(\mathcal{W} \)-extremal if and only if \(x \) belongs to a minimal \(\mathcal{W} \)-face. The Choquet boundary
of \(W \) is the union of all minimal \(W \)-faces of \(X \), and is denoted \(\partial_W(X) \) [5, § 2]. Each \(\mathfrak{F} \)-face is a \(W \)-face, so that each minimal \(\mathfrak{F} \)-face contains at least one minimal \(W \)-face.

Lemma 2. — [2, Satz 2] [5, Cor. 2.1] A function \(f \in \mathcal{W} \) is positive if and only if it is positive on \(\partial_W(X) \).

We say that \(W \) distinguishes the points \(x, y \in X \) if there exists \(f, g \in W \) such that

\[
f(x)g(y) \neq f(y)g(x).
\]

If \(W \) contains the constant functions, then \(W \) distinguishes \(x \) and \(y \) if and only if \(W \) separates \(x \) and \(y \). The subspace \((W - W)/p = \{ (f - g)/p : f, g \in W \} \) is a sublattice of \(C(X) \) containing the constant functions. \((W - W)/p \) separates points of \(X \) if and only if \(W \) distinguishes points of \(X \). By Stone’s theorem, \(W - W \) is uniformly dense in \(C(X) \) if and only if \(W \) distinguishes points of \(X \). The following lemma is an immediate consequence of [5, Th. 2.1 c)].

Lemma 3. — \(W \) distinguishes \(x, y \in \partial_W(X) \) if and only if \(x \) and \(y \) belong to different minimal \(W \)-faces of \(X \).

Example 1. — Let \(X = [0, 1] \times [0, 1] \), and let \(\mathcal{G} = \{ f \in C(X) : y \mapsto f(x, y) \mbox{ is convex for each } x, \mbox{ and } x \mapsto f(x, y) \mbox{ is affine with } f(1, y) = 2f(0, y) \mbox{ for each } y \} \). Then the sets \(A = \{(x, 0) : x \in [0, 1] \} \) and \(B = \{(x, 1) : x \in [0, 1] \} \) are minimal \(\mathcal{G} \)-faces. \(\mathcal{G} \) separates, yet does not distinguish the points of \(A \). The Choquet boundary

\[
\partial_{\mathcal{G}}(X) = A \cup B.
\]

The \(\mathcal{G} \)-affine functions are the \(f \in \mathcal{G} \) which are affine in \(y \) for each \(x \).

Lemma 4. — If \(\mathcal{G} \subset W \) are min-stable wedges in \(C(X) \), and if \(\mathcal{G} \) contains a positive function \(p \) and a negative function \(q \), then the following conditions are equivalent:

(i) For each pair of (disjoint) minimal \(\omega \)-faces \(A_1, A_2 \), there exists a pair of (disjoint) \(\mathcal{G} \)-faces \(B_1, B_2 \), such that \(A_1 \subset B_1 \) and \(A_2 \subset B_2 \);

(ii) Same statement as (i) but with \(B_1, B_2 \) minimal \(\mathcal{G} \)-faces;
(iii) \(\partial_w(X) \subset \partial_\mathcal{G}(X) \) and \(\mathcal{G} \) distinguishes points of \(\partial_w(X) \) which are distinguished by \(W \).

Proof. — (i) \(\Rightarrow \) (ii). Let \(A \) be a minimal \(W \)-face, and put \(G = \cap \{ F: F \text{ is an } \mathcal{G} \text{-face and } A \subset F \} \). Then \(G \) is an \(\mathcal{G} \)-face, and contains a minimal \(\mathcal{G} \)-face \(H \). Now \(H \) is a \(W \)-face and contains a minimal \(W \)-face \(A' \). If \(A \cap A' = \emptyset \), then there exist disjoint \(\mathcal{G} \)-faces \(B, B' \) such that \(A \in B \) and \(A' \in B' \). Then \(B \cap G \) is an \(\mathcal{G} \)-face properly contained in \(G \), which contradicts the definition of \(G \). Therefore \(A = A' \), so that \(G \subset H \) and \(G \) is a minimal \(\mathcal{G} \)-face. It follows immediately that if \(A_1, A_2 \) are disjoint minimal \(W \)-faces, then \(A_1 \subset G_1 \) and \(A_2 \subset G_2 \), where \(G_1 \) and \(G_2 \) are disjoint minimal \(\mathcal{G} \)-faces.

(ii) \(\Rightarrow \) (iii). \(\partial_w(X) = \cup \{ A: A \text{ is a minimal } W \text{-face} \} \subset \cup \{ B: B \text{ is a minimal } \mathcal{G} \text{-face} \} = \partial_\mathcal{G}(X) \). Suppose \(W \) distinguishes \(x_1 \) and \(x_2 \in \partial_w(X) \), then by lemma 3 there are disjoint minimal \(W \)-faces \(A_1 \) and \(A_2 \) with \(x_1 \in A_1 \) and \(x_2 \in A_2 \). Therefore there are disjoint minimal \(\mathcal{G} \)-faces \(B_1, B_2 \) with \(x_1 \in A_1 \subset B_1 \) and \(x_2 \in A_2 \subset B_2 \), and by lemma 3 \(\mathcal{G} \) distinguishes \(x_1 \) and \(x_2 \).

(iii) \(\Rightarrow \) (ii) \(\Rightarrow \) (i). If \(A_1 \) and \(A_2 \) are disjoint minimal \(W \)-faces, then the points \(x_1 \in A_1 \) and \(x_2 \in A_2 \) are distinguished by \(W \). Therefore \(x_1 \) and \(x_2 \) are distinguished by \(\mathcal{G} \). Since \(x_1, x_2 \in \partial_w(X) \subset \partial_\mathcal{G}(X) \) there are disjoint minimal \(\mathcal{G} \)-faces \(B_1, B_2 \) with \(x_1 \in B_1 \) and \(x_2 \in B_2 \). Since \(A_1 \) is minimal \(A_1 \subset A_1 \cap B_1 \), so that \(A_1 \subset B_1 \). Similarly \(A_2 \subset B_2 \).

If \(L \) and \(M \) are linear subspaces of \(C(X) \), then we will put
\[\mathcal{L} = \{ f_1 \wedge \cdots \wedge f_r: f_i \in L, \; i = 1 \ldots r \} \]
and
\[\mathcal{M} = \{ f_1 \wedge \cdots \wedge f_r: f_i \in M, \; i = 1 \ldots r \}. \]
Then \(\mathcal{L} \) and \(\mathcal{M} \) are min-stable wedges in \(C(X) \) and if the functions in \(L \) are \(\mathcal{G} \)-affine then \(\mathcal{L} \subset \mathcal{G} \).

Suppose \(L \) is a linear subspace of continuous \(\mathcal{G} \)-affine functions on \(X \). The triple \((X, \mathcal{G}, L) \) is a geometric simplex if given \(f \in - \mathcal{G} \) and \(g \in \mathcal{G} \) with \(f < g \), then there exists
Proposition 1. — \((X, \mathcal{I}, L)\) is a geometric simplex if and only if \(L\) has the weak R.s.p., \(\partial_\mathcal{I}(X) \subset \partial_\mathcal{J}(X)\) and \(L\) distinguishes points of \(\partial_\mathcal{J}(X)\) which are distinguished by \(\mathcal{I}\).

Proof. — Let \((X, \mathcal{I}, L)\) be a geometric simplex and suppose that \(\{f_1, f_2, g_1, g_2\} \subset L\) with \(f_1 \vee f_2 < g_1 \wedge g_2\). Since \(g_1 \wedge g_2 \in \mathcal{J}\) there exists a family \(\Lambda = \{h_i \in \mathcal{I}: h_i < g_1 \wedge g_2, i \in I\}\) filtering up to \(g_1 \wedge g_2\). By Dini's theorem there exists \(h_i \in \Lambda\) such that \(f_1 \vee f_2 < h_i < g_1 \wedge g_2\). Similarly, there exists \(h_i \in -\mathcal{I}\) such that \(f_1 \vee f_2 < h_i < h_i < g_1 \wedge g_2\). Since \((X, \mathcal{I}, L)\) is a geometric simplex there exists \(h \in L\) such that

\[
\begin{align*}
f_1 \vee f_2 &< h \leq h_i \leq g_1 \wedge g_2
\end{align*}
\]

and \(L\) has the weak R.s.p.

Suppose \(x_i \in \partial_\mathcal{I}(X), i = 1, 2,\) and \(f_j \in -\mathcal{I}, j = 1, 2\). Then \(f_j \in -\mathcal{I}\) and by (1)

\[
\begin{align*}
f_j(x_i) &= \inf \{h(x_i): f_j < h \in \mathcal{I}\}, \\
&= \inf \{g(x_i): g \in L, f_j < g < h \in \mathcal{I}\},
\end{align*}
\]

since \((X, \mathcal{I}, L)\) is a geometric simplex. Therefore \(x_i \in \partial_\mathcal{J}(X),\) and \(\partial_\mathcal{I}(X) \subset \partial_\mathcal{J}(X)\). If \(\varepsilon > 0\) then by (2) there exists \(g_1, g_2 \in L\) such that

\[
|g_j(x_i) - f_j(x_i)| < \varepsilon, \quad i, j = 1, 2.
\]

If \(f_1\) and \(f_2\) distinguish \(x_1\) and \(x_2\), and \(\varepsilon\) is small enough, then \(g_1\) and \(g_2\) distinguish \(x_1\) and \(x_2\), and the conditions of the proposition are necessary.

Suppose that \((X, \mathcal{I}, L)\) satisfies the given conditions, and that \(f \in -\mathcal{I}, g \in \mathcal{I}\) with \(f < g\). If \(A\) is a minimal \(\mathcal{I}\)-face, then by lemma 4 \(A\) is contained in a minimal \(\mathcal{J}\)-face \(B\). If \(\alpha\) is the smallest real number such that \(\alpha f \geq f\) on \(B\), then

\[
D = \{x \in B: (\alpha f - f)(x) = 0\} = \{x \in X: (\alpha f - f)(x) = 0\}
\]
is a \(\mathcal{F} \)-face [5, prop. 2.2]. \(\mathcal{D} \) contains a minimal \(\mathcal{G} \)-face \(A' \), and by lemma 4, \(A = A' \). Similarly

\[A \subset \{ x \in B : (g - \beta l)(x) = 0 \}, \]

where \(\beta \) is the greatest real number such that \(\beta l \leq g \) on \(B \). Since \(l \) is strictly positive, \(\alpha < \beta \), and if \(\alpha < \gamma < \beta \), then \(f < \gamma l < g \) on \(B \). By lemma 1, the function \((\gamma l)^p \) is the supremum of an increasing filtering family \(\{ f_i \in \mathcal{D} : i \in I \} \).

Since \(f < (\gamma l)^p \), it follows from Dini's theorem that \(f < f_{i_0} (= h_1 \wedge \cdots \wedge h_n : h_i \in \mathcal{L}, r = 1, \ldots, n) \) for some \(i_0 \in I \).

Therefore there exists \(h \in \mathcal{L} \) with \(f < h \) on \(X \) and \(h < g \) on \(B \).

Suppose that \(f < h_1 \wedge h_2 \) with \(h_1, h_2 \in \mathcal{L} \). Since \(\mathcal{L} \) has the weak R.s.p. and contains a positive function, the family \(\{ k \in \mathcal{L} : k < h_1 \wedge h_2 \} \) filters up. Therefore

\[\bar{k} = \sup \{ k' \in \mathcal{L} : k' < h_1 \wedge h_2 \} = \sup \{ k \in \mathcal{L} : k < h_1 \wedge h_2 \}. \]

Thus \(\bar{k} \) is the supremum of a filtering family of continuous \(\mathcal{L} \)-affine functions and is therefore \(\mathcal{L} \)-affine and lower semicontinuous. Therefore \(\bar{k} \in \mathcal{H} \). It follows from (1) that \(\bar{k} = h_1 \wedge h_2 \) on \(\delta_{\mathcal{H}}(x) \). Since \(\delta_{\mathcal{H}}(X) \subset \delta_{\mathcal{F}}(X) \), the function \(\bar{k} - f \) is strictly positive on \(\delta_{\mathcal{F}}(X) \). By lemma 2, \(\bar{k} > f \). By Dini's theorem there exists \(h \in \mathcal{L} \) such that \(f < h < h_1 \wedge h_2 \), and the family \(\mathcal{F} = \{ h \in \mathcal{L} : f < h \} \) is filtering down.

Therefore the function \(h = \inf \{ h \in \mathcal{L} : f < h \} \) is upper semicontinuous \(\mathcal{L} \)-affine and \(\mathcal{F} \)-affine. If \(A \) is a minimal \(\mathcal{F} \)-face, then there exists \(h \in \mathcal{F} \) with \(h < g \) on \(A \). Therefore \(h < g \) on \(\delta_{\mathcal{F}}(X) \), and by lemma 2, \(h < g \). By Dini's theorem there exists \(h \in \mathcal{L} \) such that \(f < h < g \). Therefore \((X, \mathcal{F}, \mathcal{L}) \) is a geometric simplex.

We may now extend the density theorem in [13].

Theorem 4. — Suppose that \(\mathcal{F} \subset \mathcal{W} \) are min-stable wedges in \(C(X) \), and that \(\mathcal{F} \) contains a positive function \(p \) and a negative function \(q \). Let \(M = \{ f \in C(X) : f \text{ is } \mathcal{W} \text{-affine} \} \) and let \(\mathcal{L} \subset C(X) \) be a linear subspace of \(\mathcal{F} \)-affine functions. If \((X, \mathcal{F}, \mathcal{L}) \) is a geometric simplex and if \(\delta_{\mathcal{W}}(X) \subset \delta_{\mathcal{F}}(X) \) and if \(\mathcal{F} \) distinguishes points of \(\delta_{\mathcal{W}}(X) \) which are distinguished by \(\mathcal{W} \), then \(\mathcal{L} \) is uniformly dense in \(M \).
Proof. — It follows from proposition 1 that \(\partial_W(X) \subset \partial_{2b}(X) \) and that \(2 \) distinguishes points of \(\partial_W(X) \) distinguished by \(W \). Therefore \((X, W, L)\) is a geometric simplex. If \(f \in M \) and \(\varepsilon > 0 \), then by lemma 1 and by Dini's theorem there exist \(h \in -W, k \in W \) such that

\[
f + \varepsilon q < h < k < f + \varepsilon p.
\]

Since \((X, \omega, L)\) is a geometric simplex, there exists \(g \in L \) such that \(f + \varepsilon q < h \leq g \leq k < f + \varepsilon p \), and \(L \) is uniformly dense in \(M \).

Suppose that \(L \subset M \) are linear subspaces of \(C(X) \) containing the constant functions, and that \(L \) has the weak R.s.p. Then \(\mathcal{L} \) and \(\mathfrak{M} \) are min-stable wedges, \(\partial_{2b}(X) = \partial_{L}(X) \) the Choquet boundary of \(L \), and \(\partial_{\mathcal{M}}(X) = \partial_{M}(X) \), the Choquet boundary of \(M \) [15], and \((X, \mathcal{L}, L)\) is a geometric simplex. Since \(L \) contains the constant functions, points are distinguished by \(\mathcal{L} \) (resp. \(\mathfrak{M} \)) if and only if they are separated by \(L \) (resp. \(M \)). We have therefore the following corollary to theorem 4.

Corollary 1. — [13, cor. to th. 5]. If \(\partial_L(X) = \partial_M(X) \) and \(L \) separates the points of \(\partial_M(X) \) which are separated by \(M \), then \(L \) is uniformly dense in \(M \).

We may replace the conditions in proposition 1 and theorem by a pair of conditions very similar to those used by D. A. Edwards [12].

Suppose we are given wedges \(W_0 \) and \(\mathfrak{g}_0 \) such that the min-stable wedges \(\{f_1 \land \cdots \land f_r : f_i \in \omega_0, i = 1, \ldots, r\} \) and \(\{f_1 \land \cdots \land f_r : f_i \in \mathfrak{g}_0, i = 1, \ldots, r\} \) are uniformly dense in \(W \) and \(\mathfrak{g} \) respectively. For example, in corollary 1 we could take \(M = W_0 \) and \(L = \mathfrak{g}_0 \). Since \(\mathfrak{g} \) contains a positive element it follows that \(\mathfrak{g}_0 \) contains a positive element which we may take as \(p \). We consider the following conditions:

(a) If \(x \in \partial_W(X), \varepsilon > 0 \) and \(f_1, f_2 \in \mathfrak{g}_0 \), then there exists \(g \in -\mathfrak{g} \) such that \(g < f_1 \land f_2 \) and \(f_1 \land f_2(x) < g(x) + \varepsilon \).

(a') Same as (a), but with \(g \in -\mathfrak{g}_0 \).

(b) If \(x_1 \) and \(x_2 \in \partial_W(X), \varepsilon > 0 \) and \(0 < f \in W_0 \), then there exists \(g \in \mathfrak{g}_0 \) such that \(|f(x_i) - g(x_i)| < \varepsilon, i = 1, 2 \).

Suppose that \(\mathfrak{g}_0 \) satisfies condition (a). Then there exists \(\{h_1, \ldots, h_n\} \subset -\mathfrak{g}_0 \) such that \(g \leq h_1 \lor \cdots \lor h_n < f_1 \land f_2 \).
Then $h_i < f_1 \land f_2$ and $f_1 \land f_2(x) < h_i(x) + \varepsilon$ for some i with $1 \leq i \leq n$. Therefore (a) implies (a') and since (a') implies (a), the two conditions are equivalent.

Lemma 5. — $\delta_{w}(X) \subset \delta_{\mathcal{G}}(X)$ if and only if \mathcal{G}_0 satisfies condition (a).

Proof. — It follows from (1) that $x \in \delta_{\mathcal{G}}(X)$ if and only if whenever $f \in \mathcal{G}$ there exists $g \in - \mathcal{G}$ with $g < f$ and $f(x) < g(x) + \varepsilon$. Therefore the condition is necessary.

If \mathcal{G}_0 satisfies condition (a) then it satisfies (a'). Consider $x \in \delta_{w}(X), \varepsilon > 0$ and $f \in \mathcal{G}$. If $\delta > 0$ choose $\{f_i, \ldots, f_n\} \subset \mathcal{G}$ such that $|f - f_1 \land \cdots \land f_n| < \delta$. Let

$$c = \min \{f_i(x) : i = 1, \ldots, n\}.$$

By condition (a') there exists $k \in \mathcal{G}_0$ such that $k(x) = -c$ and $\{g_1, \ldots, g_n\} \subset - \mathcal{G}_0$ such that

$$g_i < (f_i + k) \land 0, \quad g_i(x) > -\varepsilon/n, \quad i = 1, \ldots, n.$$

Then

$$g_0 = \sum\{g_i : i = 1, \ldots, n\}$$

$$< (f_1 + k) \land \cdots \land (f_n + k) = f_1 \land \cdots \land f_n + k,$$

and $g_0(x) > -\varepsilon$. Therefore $g_0 - k = h \in - \mathcal{G}_0$ and $h < f_1 \land \cdots \land f_n < f + \delta$ with $h(x) > c - \varepsilon > f(x) - \delta - \varepsilon$.

Choosing δ such that $\delta(1 + p(x)) < \varepsilon$ and then putting $g = h - \delta p$ it follows that $g < f$ and $g(x) > f(x) - 2\varepsilon$. It follows from (1) that $x \in \delta_{\mathcal{G}}(X)$ and that $\delta_{w}(X) \subset \delta_{\mathcal{G}}(X)$.

Lemma 6. — $\delta_{w}(X) \subset \delta_{\mathcal{G}}(X)$ and \mathcal{G} distinguishes points of $\delta_{w}(X)$ which are distinguished by W if and only if \mathcal{G}_0 and W_0 satisfy conditions (a) and (b).

Proof. — If W distinguishes the points x_1 and x_2 of $\delta_{w}(X)$, then there exists $f \in W$ such that

$$f(x_1)p(x_2) \neq f(x_2)p(x_1).$$

Since $p \in W$, we may assume that $f > 0$. If \mathcal{G}_0 satisfies condition (b) and $\varepsilon < 0$, then there exists $g \in \mathcal{G}_0$ such that $|g(x_i) - f(x_i)| < \varepsilon$, $i = 1, 2$. If ε is small enough, then $g(x_1)p(x_2) \neq g(x_2)p(x_1)$, and \mathcal{G} distinguishes x_1 and x_2.
If \mathcal{S}_0 also satisfies condition (a) then $\delta_w(X) \subset \delta_S(X)$, by lemma 4.

Conversely, suppose that $x_1, x_2 \subset \delta_w(X)$, $\varepsilon > 0$ and $0 < f \in W_0$. We consider the following cases:

(i) $f(x_1)p(x_2) = f(x_2)p(x_1)$. Choose real c such that $cp(x_1) = f(x_1)$ and $cp(x_2) = f(x_2)$. Then $cp = g \in \mathcal{S}_0$ and $|f(x_i) - g(x_i)| = 0 < \varepsilon$, $i = 1, 2$.

(ii) $f(x_1)p(x_2) < f(x_2)p(x_1)$. If $\delta_w(X) \subset \delta_S(X)$ and \mathcal{S} distinguishes points of $\delta_w(X)$ distinguished by W, then \mathcal{S} distinguishes x_1 and x_2, and x_1 belongs to a minimal \mathcal{S}-face A. Then the function $0^* \in \mathcal{S}$. It follows from lemma 1 that there exists $k \in \mathcal{S}$ such that $k(x_1) < 0$ and $k(x_2) > 0$. Since \mathcal{S}_0 is a wedge containing p, there exists $h \in \mathcal{S}_0$ such that $h(x_1) = 0$ and $h(x_2) > 0$. Define $g \in \mathcal{S}_0$ by the formula

$$g = \frac{f(x_1)}{p(x_1)} p + \frac{f(x_2)p(x_1) - f(x_1)p(x_2)}{f(x_1)h(x_2)} h.$$

Then $|f(x_i) - g(x_i)| = 0 < \varepsilon$, $i = 1, 2$, and W_0 and \mathcal{S}_0 satisfy the conditions (a) and (b).

Application to axiomatic potential theory.

Let ω be an open relatively compact MP subset [4, § 2] of a harmonic space which satisfies one of the axiomatic systems [4, H_0, ..., H_4] [3, A_1, ..., A_3]. Let

$$W = \{ f \in C(\omega): f \text{ is superharmonic in } \omega \},$$

$$\mathcal{S} = \{ f \in C(\omega): f \text{ extends to a function superharmonic in an open neighbourhood } U_f \text{ of } \omega \},$$

and define L and M as in the introduction. Then $\mathcal{S} \subset W$ are min-stable wedges in $C(\omega)$, M is the space of continuous W-affine functions, and L is the space of continuous \mathcal{S}-affine functions on ω. We suppose that \mathcal{S} contains a positive function p and a negative function q, and distinguishes points of ω^*. We have

Lemma 7. If A is a minimal W-face of ω, then $A \cap \omega^* \neq \emptyset$.

Proof. The function O_A belongs to \hat{W} and is therefore hyperharmonic [4, § 1]. Suppose $A \cap \omega^* = \emptyset$, then $O_{\lambda}^* - p$
is non-negative on $\omega \setminus A$, and for any point $x_0 \in \omega^*$, \[
\liminf \{(0^\omega - p)(x) : x \to x_0\} = \infty.
\] Since ω is an MP set, $0^\omega - p > 0$ and therefore $A = \emptyset$. Therefore $A \cap \omega^* \neq \emptyset$.

We now recall the definitions and some properties of regular and stable points of ω^*. If $f \in C(\omega^*)$ put $\Phi^o_f = \{\nu : \nu$ is hyperharmonic in $\omega\}$ and

\[
\liminf \{\nu(x) : x \in \omega, \ x \to x_0\} \geq f(x_0), \ x \in \omega^*\},
\]
put $\bar{H}^\omega_f = \inf \{\nu : \nu \in \Phi^o_f\}$, and put $\bar{H}^\omega_f = - \bar{H}^\omega_{-f}$. Since $(\mathcal{A} - \mathcal{B})|_{\omega^*}$ is uniformly dense in $C(\omega^*)$ it may be shown as in [7, ch. VIII, § 3] [14] [3, Satz 24], that $\bar{H}^\omega_f = \bar{H}^\omega_{-f} = H^\omega_f$ whenever $f \in C(\omega^*)$. Moreover $f \mapsto H_f$ is a linear map from $C(\omega^*)$ to the bounded continuous functions on ω, which is continuous for the supremum norms. A point $x_0 \in \omega^*$ is regular if $\lim \{H_f(x) : x \in \omega, \ x \to x_0\} = f(x_0)$ whenever $f \in C(\omega^*)$. Since $(\mathcal{A} - \mathcal{B})|_{\omega^*}$ is dense in $C(\omega^*)$ and the map $f \mapsto H_f$ is continuous, x_0 is regular if and only if $\lim \{H_f(x) : x \in \omega, \ x \to x_0\} = f(x_0)$ whenever $f \in - \mathcal{B}|_{\omega^*}$.

If $f \in C(\omega^*)$ then put $\Psi^o_f = \{\nu : \nu$ is hyperharmonic in a neighbourhood of $\omega\}$ and

\[
\liminf \{\nu(x) : x \in \omega, \ x \to x_0\} \geq f(x_0)\},
\]
put $K^o_f = \inf \{\nu : \nu \in \Psi^o_f\}$ and put $K^o_f = - K^o_{-f}$. As in [6, § 2] it may be shown that $K^o_f = K^o_{-f} = K^o_f$, a continuous function on $\overline{\omega}$, harmonic in ω, whenever $f \in C(\omega^*)$. The map $f \mapsto K^o_f$ is a linear map from $C(\omega^*)$ to $C(\overline{\omega})$ continuous for the supremum norms. If $f(x) = K^o_f(x)$ whenever $f \in C(\omega^*)$ then x is a stable point of ω^*. As with regular points, x is stable if and only if $f(x) = K^o_f(x)$ whenever $f \in - \mathcal{B}|_{\omega^*}$.

Suppose that $F \in - \mathcal{B}$, and let F be a continuous subharmonic function defined on an open neighbourhood U_F of $\overline{\omega}$, which equals F on $\overline{\omega}$. If $\overline{\omega} = \bigcap \{\omega_i : i \in I\}$ the intersection of a decreasing filtering family of open subsets of U_F, then (by an abuse of language) $\{H^\omega_{\mathcal{B}} : i \in I\}$ is a decreasing filtering family in L, and $K_F = \inf \{H^\omega_{\mathcal{B}} : i \in I\}$ [6, § 2]. If $x_0 \in \omega^*$ is stable, then

$$F(x_0) = \inf \{H^\omega_{\mathcal{B}}(x_0) : i \in I\} \geq \inf \{h(x_0) : F < h \in \mathcal{B}\}.$$
so that \(x_0 \in \partial g(\omega) \) by (1). Conversely, if \(x_0 \in \partial g(\omega) \cap \omega^* \) and \(F \in -\mathcal{F}, \ G \in \mathcal{F} \) with \(F < G \), then \(F|_{\omega_i} < G|_{\omega_i} \) for some \(i \in I \). Therefore \(F < H^\omega_i < G \) on. Therefore \((\omega, \mathcal{F}, L)\) is a geometric simplex [11, prop. 5] [5, p. 521]. It follows that \(F(\omega) = \inf g(x_0) : F < g \in \mathcal{F} \geq \inf \{ H^\omega_i(x_0) : i \in I \} \geq F(x_0) \). Therefore \(x_0 \) is stable and the following lemma holds.

Lemma 7. — *The set of stable points of \(\omega^* \) is precisely \(\partial g(\omega) \cap \omega^* \).*

Example 2. — *The classical case.* Let \(\omega \) be a bounded open subset of \(\mathbb{R}^n, n > 1 \). The affine functions on \(\mathbb{R}^n \) are harmonic, \(\partial_M(\omega) \) is precisely the set of regular points of \(\omega^* \), while \(\partial_L(\omega) \) is precisely the set of stable points of \(\omega^* \). Since \(L \) contains the constant functions, separates the points of \(\overline{\omega} \), and has the weak R.s.p., the following theorem is an immediate consequence of theorem 2.

Theorem 5. — *L is uniformly dense in \(M \) if and only if every regular point of \(X \) is stable.*

We now return to the general case.

Theorem 6. — *If every regular point of \(\omega^* \) is stable, then \(L \) is uniformly dense in \(M \).*

Proof. — Suppose \(x_i \) belongs to the minimal W-face \(A_i, i = 1, 2 \). Since \(\mathcal{F} \) distinguishes points of \(\omega^* \) it follows from lemma 3, that \(A_i \cap \omega^* \) is a one point set \(\{y_i\} \). If \(F \in -\mathcal{F} \) and \(f = F|_{\omega^*} \) then \(\inf \{ G : G \in \omega, F < G \} \geq H^\omega_f \geq F \) on \(\omega \). Since \(y_i \in \partial_W(\overline{\omega}) \), \(F(y_i) = \inf \{ G(y_i) : G \in W, F < G \} \). Therefore \(\lim \{ H_f(x) : x \in \omega, x \to y_i \} = f(y_i) \), and \(y_i \) is regular. Therefore \(y_i \) is stable. By lemma 7 there exist minimal \(\mathcal{F} \)-faces \(B_i, \ y_i \in B_i, \ i = 1, 2 \). Since \(A_i \cap B_i \neq \emptyset \) and \(A_i \) is minimal, \(A_i \subset B_i \). Therefore \(\partial_W(\overline{\omega}) \subset \partial_{\mathcal{F}}(\overline{\omega}) \). If \(\omega \) distinguishes \(x_1 \) and \(x_2 \) then by lemma 3 \(\omega \) distinguishes \(y_1 \) and \(y_2 \), and \(y_1 \neq y_2 \). Therefore \(\mathcal{F} \) distinguishes \(y_1 \) and \(y_2 \) so that \(B_1 \neq B_2 \), and \(\mathcal{F} \) distinguishes \(x_1 \) and \(x_2 \). It follows from theorem 4 that \(L \) is uniformly dense in \(M \).

Boboc and Cornea [5, th. 4.3], with the additional hypothesis that \(\omega \) is weakly determining, show that \((\overline{\omega}, W, M) \) is a
geometric simplex, and that the set of regular points of ω^* is precisely $\delta_w(\overline{\omega}) \cap \omega^*$. In this case we have a complete generalisation of theorem 5 to axiomatic potential theory.

Corollary 2. — If ω is weakly determining, then L is uniformly dense in M if and only if every regular point of ω^* is stable.

Proof. — If x is a regular point of $\overline{\omega}$ then $x \in \delta_\omega(\overline{\omega})$ [5, th. 4.3]. (ω, W, M) is a geometric simplex so by proposition 1, $x \in \delta_M(\overline{\omega})$. If L is dense in M, then L-faces are M-faces, and x belongs to a minimal L-face A. Since $(\overline{\omega}, \emptyset, L)$ is a geometric simplex, it follows from proposition 1 and lemma 4 that A contains a unique minimal \emptyset-face B and a unique minimal W-face C. Therefore $x \in C \subseteq B$, so that $x \in \delta_\emptyset(\overline{\omega})$ and x is stable by lemma 7. The corollary is now an immediate consequence of theorem 6.

BIBLIOGRAPHY

Manuscrit reçu le 9 juin 1969.

G. F. Vincent-Smith,
Mathematical Institute,
O X I 3LB, 24-29 St Giles,
Oxford (Angleterre).