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DE RHAM AND TWISTED COHOMOLOGY OF
OELJEKLAUS–TOMA MANIFOLDS

by Nicolina ISTRATI & Alexandra OTIMAN (*)

Abstract. — Oeljeklaus–Toma (OT) manifolds are complex non-Kähler man-
ifolds whose construction arises from specific number fields. In this note, we com-
pute their de Rham cohomology in terms of invariants associated to the background
number field. This is done by two distinct approaches, one by averaging over a cer-
tain compact group, and the other one using the Leray–Serre spectral sequence. In
addition, we compute also their twisted cohomology. As an application, we show
that the low degree Chern classes of any complex vector bundle on an OT mani-
fold vanish in the real cohomology. Other applications concern the OT manifolds
admitting locally conformally Kähler (LCK) metrics: we show that there is only
one possible Lee class of an LCK metric, and we determine all the possible twisted
classes of an LCK metric, which implies the nondegeneracy of certain Lefschetz
maps in cohomology.
Résumé. — Les variétés d’Oeljeklaus–Toma (OT) sont des variétés complexes

non-kähleriennes qui sont construites à partir des corps de nombres. Dans cet ar-
ticle, nous calculons leur cohomologie de De Rham en termes d’invariants associés
au corps de nombres associés. Nous faisons cela de deux manières différentes, l’une
en moyennant sur un certain groupe compact, et l’autre en utilisant la suite spec-
trale de Leray–Serre. De plus, nous déterminons aussi leur cohomologie twistée.
Comme application, nous montrons que les classes de Chern de bas degré de tout
fibré vectoriel complexe sur une variété OT s’annulent dans la cohomologie réelle.
D’autres applications concernent les variétés OT admettant des métriques locale-
ment conformément kähleriennes (LCK) : nous montrons qu’il existe une unique
classe de Lee possible pour une métrique LCK et nous determinons toutes les
classes twistées des métriques LCK, ce qui implique que certains morphismes de
Lefschetz en cohomologie sont non-dégénérés.
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1. Introduction

Oeljeklaus–Toma manifolds, introduced by K. Oeljeklaus and M. Toma
in [16], are compact complex non-Kähler manifolds which are higher dimen-
sion analogues of Inoue surfaces of type S0 (see [11]). They are quotients
of Hs×Ct by discrete groups of affine transformations arising from a num-
ber field K and a particular choice of a subgroup of units U of K. They
are commonly referred to as OT manifolds of type (s, t), and denoted by
X(K,U). These manifolds have been of particular interest for locally con-
formally Kähler (LCK) geometry. When they were introduced, OT mani-
folds of type (s, 1) were shown to carry LCK metrics and they constituted
the first examples of manifolds to disprove a conjecture of Vaisman, accord-
ing to which the odd index Betti numbers of an LCK manifold should be
odd. As a matter of fact, in higher dimension, all other explicit examples
of LCK manifolds that are known in the literature admit an LCK metric
with potential (cf. [17]), which makes them share similar properties with
the Hopf manifolds. For this reason, understanding OT manifolds, which
do not admit such metrics, should give more insight into LCK geometry.
So far, significant advances have been made in the study of OT manifolds.

Many of their properties are closely related to the arithmetical properties
of (K,U), as can be seen particularly in the papers of M. Parton and
V. Vuletescu [20] and of O. Braunling [4]. OT manifolds were shown to
carry the structure of a solvmanifold by H. Kasuya [13], and those of type
(s, 1) to contain no non-trivial complex submanifolds by L. Ornea and
M. Verbitsky [18]. A delicate issue seems to be the existence of LCK metrics
on OTmanifolds which are not of type (s, 1). Some progress in this direction
has been made by V. Vuletescu [22] and A. Dubickas [7], but the question
remains open in general.
Concerning the cohomology of OTmanifolds, their first Betti number and

the second one for a certain subclass of manifolds, called of simple type,
were computed in [16]. More recently, H. Kasuya computed in [12] the de
Rham cohomology of OT manifolds of type (s, 1), using their solvmanifold
structure. In this note, we use different methods to compute the de Rham
cohomology algebra as well as the twisted cohomology of any OT manifold
X(K,U). This is done in terms of numerical invariants coming from U ⊂ K,
and the exact statements are Theorem 3.1 and Theorem 5.1. Theorem 3.1
is proved by two different approaches, one by reducing to the invariant
cohomology with respect to a certain compact Lie group, in Section 3, and
the other one using the Leray–Serre spectral sequence, in Section 4. This
last approach is also used to prove Theorem 5.1 in Section 5.
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The last section is devoted to a few applications, focusing on the OT man-
ifolds which admit an LCK metric. We compute the explicit cohomology
for OT manifolds admitting LCK metrics (Proposition 6.4, Proposition 6.7)
and for OT manifolds associated to a certain family of polynomials (Exam-
ple 6.3). Also, we show that the set of possible Lee classes for an LCK metric
on X(K,U) consists of only one element (Proposition 6.5). The problem of
characterizing the set of Lee classes was first considered by Tsukada in [21],
who gave a description for Lee classes of LCK metrics on Vaisman mani-
folds and then by Apostolov and Dloussky in [2], where they characterize
this set for Hopf surfaces, Inoue surfaces S± and Kato surfaces. In [19], it
is described also for Inoue surfaces of type S0 and finally, OT manifolds
complete the list of known LCK manifolds for which this set is known.
Additionally, we determine all the possible twisted classes of LCK forms
on OT manifolds (Corollary 6.10), generalizing a result of [19] showing
that this class cannot vanish. They all turn out to induce a non-degenerate
Lefschetz map in cohomology. A final application (Proposition 6.12) con-
cerns the vanishing of certain real Chern classes of vector bundles on OT
manifolds.

Acknowledgements. We are very grateful to Victor Vuletescu for many
insightful discussions and to Andrei Moroianu, Mihaela Pilca and Massi-
miliano Pontecorvo for a careful reading of a first draft of the paper and
useful suggestions and remarks.

2. Preliminaries

2.1. Oeljeklaus–Toma manifolds

We briefly recall the construction of Oeljeklaus–Toma manifolds, follow-
ing [16], and some of their properties that we will need.

Given two positive numbers s, t > 0, an OT manifold X of type (s, t) is
a compact quotient of X̃ := Hs ×Ct by a discrete group Γ of rank 2(s+ t)
arising from a number field. More specifically, let m = s+ t and n = s+ 2t
and let K be a number field with n embeddings in C, s of them real and 2t
complex conjugated. We shall denote these embeddings by σ1, . . . , σn, with
the convention that the first s are real and σs+t+i = σs+i, for any 1 6 i 6 t.
The ring of integers of K, OK , which as a Z-module is free of rank n, acts
on Hs × Ct via the first m embeddings. If (w, z) = (w1, . . . , ws, z1, . . . , zt)
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2040 Nicolina ISTRATI & Alexandra OTIMAN

denote the holomorphic coordinates on Hs × Ct, the action is given by
translations:

Ta(w, z) = (w1+σ1(a), . . . , ws+σs(a), z1+σs+1(a), . . . zt+σs+t(a)), a∈OK .

It is a free and proper action, and as a smooth manifold, the quotient is
given by:

X̂ := Hs × Ct/OK ∼= (R>0)s × Tn.
Next, one defines inside the group of units O∗K the subgroup of positive
units O∗,+K as:

O∗,+K = {u ∈ O∗K | σi(u) > 0, 1 6 i 6 s}.

This group acts on Hs × Ct by dilatations as:

Ru(w, z) = (σ1(u)w1, . . . , σs(u)ws, σs+1(u)z1, . . . , σs+t(u)zt), u ∈ O∗,+K .

This action is free, but not properly discontinuous. However, as shown
in [16], one can choose a rank s subgroup U in O∗,+K which embeds as a
lattice in (R>0)s via:

j : U → (R>0)s

u 7→ (σ1(u), . . . , σs(u)).

We will denote by UH ∼= U the lattice j(U). In particular, U acts properly
discontinuously on Hs ×Ct. Clearly, U also acts on OK , so that one gets a
free, properly discontinuous action of the semi-direct product Γ := U oOK
on Hs × Ct. The quotient of this action X := Hs × Ct/Γ, denoted by
X(K,U), is the Oeljeklaus–Toma manifold of type (s, t) associated to K
and U .
Since the action of Γ on X̃ is holomorphic, X is a complex manifold.

Moreover, it is compact, because it has in fact the structure of a torus fiber
bundle over another torus:

(2.1) Tn → X(K,U) π−→ Ts.

Indeed, this last assertion can be seen as follows: the natural projection

π̂ : X̂ = (R>0)s × Tn → (R>0)s

is a trivial Tn-fiber bundle over (R>0)s. The group U acts on X̂, but also
on (R>0)s by translations via j, and π̂ is equivariant for this action. As
X = X̂/U and Ts = (R>0)s/U , π̂ descends to the Tn-fiber bundle (2.1).
For later use, it is important to note that π is a flat fiber bundle, meaning

that it has locally constant transition functions. This is equivalent to saying
that it is given by a representation R : π1(Ts) = UH → Diff(Tn), u 7→
Φu. We can make R explicit, after identifying UH with U . Recalling that
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Tn = Rs×Ct/OK and denoting by r = (r1, . . . , rs) the real coordinates on
Rs, for any u ∈ U , Φu is given by:

(2.2) Φu((r, z) mod OK)
= (σ1(u)r1, . . . , σs(u)rs, σs+1(u)z1, . . . , σm(u)zt)) mod OK

which is clearly well defined, since u ·OK = OK , for all u ∈ U .
The tangent bundle of X̂ splits smoothly as TX̂ = E ⊕ V , where E is

the pullback of T (R>0)s and V is the pullback of TTn on X̂ by the natural
projections. These bundles are trivial, and for later use we will need to
fix a global frame of V ∗ ⊗ C over X̂. If z1, . . . , zt denote the holomorphic
coordinates on Ct and w1 = r1 + iv1, . . . , ws = rs + ivs are holomorphic
coordinates on Hs, also viewed as local coordinates on X̂, we choose as a
basis of C∞(X̂, V ∗ ⊗ C) over C∞(X̂,C):

ej = drj for 1 6 j 6 s, es+j = dzj and es+t+j = dzj for 1 6 j 6 t.

In particular, for any 0 6 l 6 n, a frame for
∧l

V ∗ ⊗ C is given by:

(2.3) {eI = ei1 ∧ · · · ∧ eil | I = (0 < i1 < · · · < il 6 n)}.

For any multi-index I = (0 < i1 < · · · < il 6 n), let us denote by σI : U →
C∗ the representation:

(2.4) σI(u) = σi1(u) . . . σil(u).

Then an element u ∈ U acts on eI by u∗eI = σI(u)eI .

2.2. Leray–Serre spectral sequence of a locally trivial fibration

In this section, we review the general properties of the Leray–Serre spec-
tral sequence associated to a fiber bundle. For a thorough presentation of
spectral sequences and the Leray–Serre sequence we refer to [10] and [3].
Let F → X

π−→ B be a locally trivial fibration. For a trivializing open set
U ⊂ B for π, we denote by ϕU an isomorphism ϕU : π−1(U) → U × F ,
and for two trivializing open sets U, V , we denote by gUV = ϕU ◦ ϕ−1

V the
corresponding transition function. Let us also denote by X v the sheaf of
vertical vector fields on X, i.e. the vector fields tangent to the fibers of π.
If Ωk is the sheaf of C-valued smooth k-forms on X, we have the de

Rham complex of X:

K• : . . .
d−→ Ωk(X) d−→ Ωk+1(X) d−→ . . .

TOME 69 (2019), FASCICULE 5
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which is endowed with the following descending filtration:

(2.5) F pKp+q

:= {ω ∈ Ωp+q(X) | ιXq+1 . . . ιX1ω = 0,∀ X1, . . . , Xq+1 ∈ X v(X)}.

By the theory of spectral sequences, this filtration determines a sequence
of double complexes (E•,•r ,dr)r>0 with dr : Ep,qr → Ep+r,q−r+1

r of bidegree
(r,−r+ 1), which computes the cohomology of the complex (K•,d). More
precisely, if we denote by Ep,q∞ := limr→∞Ep,qr , we have:

Hk(X,C) := Hk(K•) = ⊕p+q=kEp,q∞ 0 6 k 6 dimRX.

The complex Er+1, called the (r+1)-th page of E, is defined recurrently
as the cohomology of (Er,dr). We now make explicit the definition of each
page of the spectral sequence. The pages E0 and E1 are simply given by:

Ep,q0 = F pKp+q

F p+1Kp+q , d0 : Ep,q0 → Ep,q+1
0

d0(η̂p,q) = d̂ηp,q+1

Ep,q1 = Ker dp,q0

Im dp,q−1
0

, d1 : Ep,q1 → Ep+1,q
1

d1([η̂]p,qd0
) = [d̂η]p+1,q

d0
.

The second page is again:

Ep,q2 = Ker dp,q1

Im dp−1,q
1

, d2 : Ep,q2 → Ep+2,q−1
2 .

In order to write down d2, one needs now to make sense of the objects of E2.
If [η̂]p,qd0

∈ Ker dp,q1 , then there exists ξ̂ ∈ Ep+1,q−1
0 such that d̂η = d0ξ̂ = d̂ξ,

hence ̂dη − dξ = 0, meaning that dη − dξ ∈ F p+2Kp+q+1. Then:

(2.6) d2([[η̂]d0 ]d1) = [[ ̂dη − dξ]d0 ]d1 .

In general, by induction, one can show that dr : Ep,qr → Ep+r,q−r+1
r is given

by:

(2.7) dr([. . . [[η̂]d0 ]d1 . . . ]dr−1) = [. . . [[ ̂dη − dδ]d0 ]d1 . . . ]dr−1 ,

where δ = ξ1 + · · ·+ ξr−1, and the elements

ξ1 ∈ F p+1Kp+q, . . . , ξr−1 ∈ F p+r−1Kp+q

are chosen via diagram chasing such that dη − dδ ∈ F p+rKp+q+1.
When the fiber bundle π is flat, one has a C∞ splitting of TX = TB⊕TF ,

where, locally, TB is the tangent space of B and TF , of the fiber. The
differential d also splits as dB + dF with d2

B = 0 and d2
F = 0, where dB is
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the derivation in the direction of the basis and dF is the derivation along
the fiber. In this case, the spectral sequence becomes more explicit. We
have an induced splitting of the vector bundle of k-forms:∧k

T ∗X = ⊕p+q=k
∧p

T ∗B ⊗
∧q

T ∗F

and then Ep,q0 = C∞(X,
∧p

T ∗B ⊗
∧q

T ∗F ) for any 0 6 p, q 6 k. Moreover,
one has:

d0 = dF , d1([α]dF ) = [dBα]dF .

For a ∈ Ker dp,q1 represented by η ∈ Ker dF ⊂ Ep,q0 , there exists ξ ∈
Ep+1,q−1

0 so that dBη = dF ξ. One then has:

dη − dξ = dF η + dBη − dF ξ − dBξ = −dBξ ∈ ker dF ⊂ Ep+2,q−1
0

so that, by (2.6), d2 is given by:

d2([[η]dF ]dB ) = −[[dBξ]dF ]dB .

In general, for a given element [. . . [[η]dF ]dB . . . ]dr−1 ∈ Ep,qr , (2.7) tells us
that:

dr([. . . [[η]dF ]dB . . . ]dr−1) = −[. . . [[dBξr−1]dF ] . . . ]dr−1

for some ξr−1 ∈ Ep+r−1,q−r+1
0 such that there exist elements

ξ1 ∈ Ep+1,q−1
0 , . . . , ξr−2 ∈ Ep+r−2,q−r+2

0

that satisfy dη − dξ1 − · · · − dξr−1 ∈ Ep+r,q−r+1
0 , obtained by chasing

diagrams.

2.3. Twisted cohomology

Let M be a compact differentiable manifold, let θ be a complex valued
closed one-form on M and let dθ be the differential operator dθ = d−θ∧· .
Since d2

θ = 0, we have a complex:

0 // Ω0
M (M) dθ // Ω1

M (M) dθ // . . .

whose cohomology H•θ (M) := Ker dθ
Im dθ is called the twisted cohomology

associated to [θ]dR. Indeed, it depends only on the de Rham cohomol-
ogy class of θ. If M is orientable, there is a version of Poincaré duality
that holds for H•θ (M), see for instance [6, Corollary 3.3.12], and that is:
H•θ (M)∗ ∼= HN−•

−θ (M), where N = dimRM . Moreover, we have the follow-
ing result:
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Lemma 2.1. — Let τ ∈ H1(M,C) be a de Rham class. Then the fol-
lowing are equivalent:

(1) H0
τ (M) 6= 0;

(2) τ ∈ H1(M, 2πiZ) ⊂ H1(M,C);
(3) For any k ∈ Z, Hk

τ (M,C) ∼= Hk
dR(M,C).

Proof. — Clearly, if (3) holds then H0
τ (M,C) = H0(M,C) 6= 0, so we

have (1).
Now suppose (1) holds, meaning that if we choose a representative θ ∈ τ ,

there exists a smooth function h : M → C so that hθ = dh, with h not iden-
tically zero. Then we also have hθ = dh, which implies d|h|2 = |h|22 Re θ.
This is a linear first order differential system, so if |h|2 has some zero, then
h would vanish everywhere on M . Thus, we have 2 Re θ = d ln |h|2, and
without any loss of generality, we can now suppose that Re θ = 0.
On the universal cover M̃ , there exists f ∈ C∞(M̃,C) so that θ = df .

Then we find:
d(e−fh) = e−f (−dfh+ dh) = 0

thus h = cef , with c ∈ C a constant. On the other hand, by the uni-
versal coefficient theorem and Hurewicz theorem we have H1(M,C) ∼=
Hom(π1(M),C), and the homomorphism τ : π1(M) → C corresponding
to θ is precisely given by τ(γ) = γ∗f − f , γ ∈ π1(M). Thus, as ef = c−1h

is defined on M , it is π1(M)-invariant as a function on M̃ , so that we have

γ∗ef = efeτ(γ) = ef , ∀ γ ∈ π1(M)

implying that Im τ ⊂ 2πiZ, from which assertion (2) follows.
Similarly, if (2) holds and we choose θ a representative of τ and write

θ = df on M̃ , then as τ(γ) = γ∗f − f ∈ 2πiZ for any γ ∈ π1(M), the
function h = ef is π1(M)-invariant and descends to a well-defined function
h : M → C∗ satisfying dh = hθ. Finally, let us note that in this case
dθ( · ) = hd(h−1 · ), which establishes an isomorphism between the twisted
cohomology H•τ (M) and H•(M,C). �

Remark 2.2. — A result of [5] states that if θ ∈ Ω1
M (M,R) is a non-zero

closed form and there exists a Riemannian metric onM so that θ is parallel
for the corresponding Levi-Civita connection, then we have H•θ (M) = 0.
Note that this is not true if θ is complex valued.

The twisted cohomology can also be seen as the cohomology of cer-
tain flat line bundles. In general, these are parametrized by elements ρ ∈
Hom(π1(M),C∗) as follows: we let Lρ be the induced complex line bundle
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over M , that is the quotient of M̃ × C by the action of π1(M) given by:

γ(x, λ) = (γ(x), ρ(γ)λ), γ ∈ π1(M), (x, λ) ∈ M̃ × C.

Moreover, we endow Lρ with the unique flat connection ∇ whose corre-
sponding parallel sections are exactly the locally constant sections of Lρ.
Denote by d∇ the differential operator acting on Ω•M ⊗ Lτ which is in-
duced by ∇ by the Leibniz rule. Then the cohomology of (Lρ,∇) is the
cohomology denoted by H•(M,Lρ) of the complex:

0 // Ω0
M (M,Lρ)

d∇ // Ω1
M (M,Lρ)

d∇ // . . . .

Equivalently, if we let Lρ be the sheaf of parallel sections of (Lρ,∇), then
we also have a natural isomorphism H•(M,Lρ) ∼= H•(M,Lρ), where the
latter is the sheaf cohomology. Lρ is called a local system, and determines
and is completely determined by (Lρ,∇).
On the other hand, the exponential induces an exact sequence:

(2.8) 0 // H1(M, 2πiZ) // H1(M,C)
exp
// H1(M,C∗) c1 // H2(M,Z)

and all elements ρ ∈ ker c1 ⊂ H1(M,C∗) ∼= Hom(π1(M),C∗) are of the
form exp τ , with τ ∈ Hom(π1(M),C). For the corresponding flat line bundle
(Lρ,∇), the connection has an explicit form. We choose θ ∈ τ a represen-
tative, write θ = dϕ on M̃ , so that s = eϕ determines a global trivializing
section of Lρ. Then ∇ is given by ∇s = θ ⊗ s, and it can be easily seen
that this construction does not depend on the chosen τ ∈ exp−1(ρ), nor on
θ ∈ τ . Moreover, we have a natural isomorphism:

H•θ (M) ∼= H•(M,L∗ρ).

Also note that if H2(M,Z), or also H1(M,Z), has no torsion, then the map
c1 in (2.8) is zero, and then all flat line bundles on M are of this form.
In particular, by Lemma 2.1 we have the following result:

Lemma 2.3. — H•τ (S1,C) = 0 if and only if τ /∈ H1(S1, 2πiZ).

Proof. — The only if part is assured by Lemma 2.1. On the other hand,
if τ /∈ H1(S1, 2πiZ), then also −τ /∈ H1(S1, 2πiZ), thus Lemma 2.1 implies
H0
τ (S1) = H0

−τ (S1) = 0. Finally, by Poincaré duality we find H1
τ (S1) ∼=

H0
−τ (S1)∗ = 0, which concludes the proof. �

This allows us to prove the following, which we will use a number of
times in the sequel:

Lemma 2.4. — Let Ts be the compact s-dimensional torus, let ρ :
π1(Ts) → C∗ be any representation of π1(Ts) on C and let (Lρ,∇) → Ts

TOME 69 (2019), FASCICULE 5
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be the associated flat complex line bundle. Then H•(Ts, Lρ) = 0 if and
only if ρ is not trivial.

Proof. — Let ρ∈Hom(π1(M),C∗) be a non-trivial element. AsH2(Ts,Z)
is a free abelian group, there exists 0 6= τ ∈ H1(Ts,C) so that ρ = exp τ .
We write then Lρ = Lτ .

Let us identify Ts with (S1)s, and let pk : Ts → S1 the projection on
the k-th component, for k ∈ {1, . . . , s}. If we denote by ν a generator of
H1(S1,Z), then τ writes τ =

∑s
k=1 akp

∗
kν, with a1, . . . , as ∈ C, not all

2πiZ-valued. In particular, it follows that

Lτ ∼= p∗1La1ν ⊗ · · · ⊗ p∗sLasν .

Now, by the Künneth formula for local systems (see [6, Corollary 2.3.31])
it follows that:

H•(Ts, Lτ ) ∼= H•(S1, La1ν)⊗ · · · ⊗H•(S1, Lasν).

Since there exists at least one k ∈ {1, . . . , s} with ak /∈ 2πiZ, Lemma 2.3
implies that H•(S1, Lakν) vanishes, and the conclusion follows. �

Notation

In all that follows, the sheaf of complex valued C∞ l-forms on X will
be denoted by ΩlX or simply by Ωl, if there is no ambiguity about the
manifold X, and its global sections will be denoted by ΩlX(X) or by Ωl(X).
Also, for a given OT manifold X of type (s, t) corresponding to (K,U), we
will sometimes denote by Γ := U n OK its fundamental group and by
X̂ := Hs × Ct/OK . Concerning the compact tori that will appear in our
discussion, we will use the notation Tk for the k-dimensional torus viewed
as a smooth manifold (without any additional structure), and T for the
n-dimensional abelian compact Lie group which, in our case, acts on X̂,
where n = 2t + s. As already mentioned, U acts on T by conjugation,
and for any u ∈ U , we will denote by cu ∈ Aut(T) the automorphism
cu(a) = u−1au. For any q ∈ N∗ we will denote by Iq the set of multi-indices
I = (0 < i1 < · · · < iq 6 n) and for I ∈ Iq we will denote by |I| the length
of I which is q. Finally, for a given representation ρ : π1(Ts) = UH → C∗,
we denote by Lρ the induced flat complex line bundle over Ts, and for a
closed one-form θ on X, we denote by ρθ ∈ Hom(U,C∗) = Hom(Γ,C∗) the
representation it induces.
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3. The de Rham cohomology

In the next two sections, we will prove in two different ways the following
result:

Theorem 3.1. — Let X = X(K,U) be an OT manifold of type (s, t)
of complex dimension m. For any l ∈ {0, . . . , 2m} we have:

H l(X,C) ∼=
⊕
p+q=l
|I|=q
σI=1

∧p C{d ln Imw1, . . . ,d ln Imws} ∧ eI .

In particular, the Betti numbers of X are given by:

bl =
∑
p+q=l

(
s

p

)
· ρq,

where ρq is the cardinal of the set {I | |I| = q, σI = 1}.

In this section, we compute the de Rham cohomology of an OT manifold
X by identifying it with the cohomology of invariant forms on X with
respect to a certain compact torus action. In order to be precise, let us
fix an OT manifold X = X(K,U) of type (s, t) and of complex dimension
m = s + t. Recall that T = Tn acts holomorphically by translations on
X̂ = Hs × Ct/OK , but not on X. However, by identifying smooth forms
on X with smooth U -invariant forms on X̂, it makes then sense to speak
of T-invariant forms on X: these will be exactly the U nT-invariant forms
on X̂. Let us denote by A• the graded sheaf of such invariant forms, which
is a subsheaf of Ω•X . The differential d acting on Ω•X fixes A•, so (A•,d) is
a subcomplex of the de Rham complex of X. As in the usual setting of a
manifold endowed with a compact group action, we have the following:

Lemma 3.2. — There exists a projection graded morphism π : Ω•X →
A• commuting with the differential d.

Proof. — The projection morphism will be given by averaging over the
torus action. Let us fix 0 6 l 6 2m, and consider a (local) smooth l-form
η on X, identified with a U -invariant form on X̂. Let µ be the T-invariant
n-form on T with

∫
T µ = 1, and let:

πη :=
∫
T
a∗ηµ(a).

Clearly, πη is a T-invariant form on X̂. In order to see that it descends to a
form on X, we have to show that πη is U -invariant. Indeed, for any u ∈ U ,
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if cu ∈ Aut(T) is the conjugation a 7→ u−1au as before, then we have:

u∗(πη) =
∫
T
(au)∗ηµ(a) =

∫
T
(ucu(a))∗ηµ(a) =

=
∫
T
cu(a)∗ηµ(a) =

∫
T
a∗ηµ(c−1

u (a)) =

=
∫
T
a∗ηµ(a) = πη.

Above, we made the change of variable a 7→ c−1
u (a), and then used the

fact that µ is a constant cu-invariant form on T, so that µ(c−1
u (a)) =

((c−1
u )∗µ)(a) = µ(a).
Finally, it is clear from the definition of π that it commutes with d, and

that π restricted to A• is the identity. �

In the context of a manifold endowed with a compact group action, a
standard result states that the de Rham cohomology of the manifold is the
cohomology of invariant forms. This is still true in our context, and the
proof follows the same lines:

Lemma 3.3. — For any 0 6 l 6 2m, any open set O ⊂ X and any d-
closed form η ∈ ΩlX(O) there exists some β ∈ Ωl−1

X (O) so that πη−η = dβ.
In particular, we have an isomorphism H l[π] : H l(X,C)→ H l(X,A•(X)).

Proof. — Let η ∈ ΩlX(O) be a closed form, let Ô be the preimage of O in
X̂ and, as before, identify η with a form on Ô. Let a ∈ T and let {Φva}v∈R
be a one-parameter subgroup of T with Φ1

a = a. Let ξa be the vector field
on X̂ generated by Φa, and consider the map Fa : R × Ô → Ô, (v, x) 7→
Φva(x) = x+ va. We then have F ∗a η = η1 + dv ∧ η2, with η1(v, · ) = (Φva)∗η
and η2(v, · ) = ιξa(Φva)∗η. If we denote by dX the differential with respect
to the X-variables on R× Ô, then dη = 0 implies:

0 = dF ∗a η = dXη1 + dv ∧ ∂

∂v
η1 − dv ∧ dXη2.

In particular, we have ∂
∂vη1 = dXη2, or also:

a∗η − η =
∫ 1

0

∂

∂v
η1dv =

∫ 1

0
dXη2dv = d

∫ 1

0
η2dv.

Denoting by βa the form
∫ 1

0 η2dv and by β :=
∫
T
βaµ(a), we have πη− η =

dβ, and we are then left with showing that the form β is U -invariant. Let
u ∈ U and a ∈ T. Upon noting that

u−1
∗ ξa = d

dv |v=0(u−1Φva) = d
dv |v=0(Φvcu(a)u

−1) = ξcu(a)
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we have:

u∗βa =
∫ 1

0
u∗ιξa(Φva)∗ηdv =

∫ 1

0
ιu−1
∗ ξa

u∗(Φva)∗ηdv

=
∫ 1

0
ιξcu(a)(uΦvcu(a))∗ηdv =

∫ 1

0
ιξcu(a)(Φ

v
cu(a))∗ηdv = βcu(a).

So, as in the previous lemma, the T-invariance of µ implies then that∫
T βcu(a)µ(a) = β.
For the last assertion, it is enough to see that the inclusion ι : A• → Ω•

induces an isomorphism H(ι) in cohomology. If η ∈ Al(X) verifies η = dα,
α ∈ Ωl−1(X), then η = πη = dπα, so H(ι) is injective. If η ∈ Ωl is a closed
form, then by the above we have H(ι)[πη] = [πη]dR = [η]dR, so H(ι) is
surjective. �

For the sequel, we will fix some l ∈ {0, . . . , 2m}. Recalling that the
tangent bundle of X̂ ∼= (R>0)s×Tn splits smoothly as TX̂ = E⊕V , where
E is the pullback of T (R>0)s and V is the pullback of TTn on X̂, we have:∧l

T ∗X̂ = ⊕lp=0
∧p

E∗ ⊗
∧l−p

V ∗.

If we denote by Alp the sheaf which associates to any open set O ⊂ X

Alp(O) := Al(O) ∩ C∞(Ô,
∧p

E∗ ⊗
∧l−p

V ∗ ⊗ C),

where Ô is the pre-image of O in X̂, then we also have:

(3.1) Al = ⊕lp=0A
l
p.

At the same time, Al can be seen as:

Al(O) = {η ∈ Ωl
X̂

(Ô) | η is U invariant and LZη = 0 ∀ Z ∈ C∞(Ô, V )}

which implies that the differential d is compatible with the grading of A•
given by (3.1), in the sense that d(Alp) ⊂ Al+1

p+1 for any 0 6 p 6 l.
Hence, a form η =

∑l
p=0 ηp ∈ Al(X) splitted with respect to the grad-

ing (3.1) is closed if and only if each ηp is closed. As a consequence, the
complex 0→ A•(X) splits in the subcomplexes:

(3.2) C•p : 0 d // Ap0(X) d // Ap+1
1 (X) d // Ap+2

2 (X) d // . . .

for 0 6 p 6 s. Moreover, if a form η =
∑l
p=0 ηp ∈ Al(X) is exact: η = dβ,

then writing again β =
∑l−1
q=0 βq, we must have ηp+1 = dβp for any 0 6

p 6 l − 1 and η0 = 0. So we see that η is exact if and only if each ηp is.
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Hence, if we let:

H l
p(X,A) :=

ker d : Alp(X)→ Al+1
p+1(X)

Im d : Al−1
p−1(X)→ Alp(X)

= Hp(C•l−p)

then we have:

(3.3) H l(X,A•(X)) = ⊕lp=0H
l
p(X,A).

Now let us take a closer look at the complex C•l . Denoting by dE the
differentiation in the E direction, (C•l ,d) is a subcomplex of:

(C∞(X̂,
∧l

V ∗ ⊗
∧•

E∗ ⊗ C),dE)

which, in turn, is just C∞(X̂,
∧l

V ∗ ⊗ C) tensorized by:

0 // C∞(X̂,C) dE // C∞(X̂, E∗ ⊗ C) dE // C∞(X̂,
∧2

E∗ ⊗ C) // . . .

But recall that, for any 0 6 q 6 l,
∧q

V ∗ ⊗ C is globally trivialized over
X̂ by {eI}I∈Iq , where Iq denotes the set of all multi-indices I = (0 <

i1 < · · · < iq 6 n) and the forms eI were defined in (2.3). Thus, for any
0 6 p 6 l, we have:

C∞(X̂,
∧q

V ∗ ⊗
∧p

E∗ ⊗ C) = ⊕I∈IqC∞(X̂,
∧p

E∗)⊗ CeI .

Moreover, a section η = f ⊗ eI of
∧p

E∗ ⊗ CeI belongs to Ap+|I|p if and
only if it is T-invariant and

(3.4) u∗f = σI(u)−1f for any u ∈ U.

If we denote by EpσI the sheaf of T-invariant sections f of
∧p

E∗⊗C which
are σ−1

I equivariant, i.e. verify (3.4), it follows that we have:

Aq+pp = ⊕I∈IqEpσI ∧ eI .

Moreover, as the eI ’s are closed forms, we have:

d : EpσI ∧ eI → Ep+1
σI ∧ eI ∀ I ∈ Iq.

So finally we get that the complex C•l−p splits into the complexes on X:

(3.5) C•l−p(I) : 0 // E0
σI (X̂) ∧ eI

d // E1
σI (X̂) ∧ eI

d // E2
σI (X̂) ∧ eI

d // . . .

indexed after all I ∈ Il−p. So also the cohomology splits:

(3.6) H l
p(X,A) = ⊕I∈Il−pHp

σI (X,A)

where Hp
σI (X,A) := Hp(C•l−p(I)).
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At the same time, the T-invariant sections of
∧p

E∗⊗C over X̂ naturally
identify with the sections of Ωp(R>0)s over (R>0)s. Hence, the sections of EpσI
coincide then with the sections of ΩpTs ⊗ L∗σI , and we have:

(3.7) Hp
σI (X,A) ∼= Hp(Ts, L∗σI )⊗ eI .

So, putting together (3.7), (3.6), (3.3), Lemma 3.3 and Lemma 2.4, we get:

H l(X,C) ∼= ⊕p+q=l ⊕I∈Iq Hp(Ts, L∗σI )⊗ eI

leading, together with Lemma 2.4, to Theorem 3.1.

4. The Leray–Serre spectral sequence of OT manifolds

Let X = X(K,U) be an OT manifold of type (s, t). In this section, we
are interested in computing its de Rham cohomology using the Leray–Serre
spectral sequence associated to the fibration depicted in (2.1):

Tn → X
π−→ Ts.

We endow the de Rham complex of X with the filtration described in (2.5).
It turns out that the Leray–Serre sequence associated to this filtration
degenerates at the page E2 and we prove this by outlining the special
properties of the OT fiber bundle.
Let us start by noting that we have two fiber bundles over Ts associated

to this fibration:

Ω•(Tn)→ Ω•(Tn)→ Ts(4.1)
H•(Tn,C)→ H•(Tn)→ Ts.(4.2)

Indeed, recall that we have an action of UH on Tn defined in (2.2), with
respect to which π is defined as (R>0)s × Tn/UH → Ts. But then we also
have an induced action of UH on Ω•(Tn) by push-forward, which defines
Ω•(Tn) := (R>0)s × Ω•(Tn)/UH → Ts as an infinite-dimensional vector
bundle over Ts. Also we have an induced action of UH on H•(Tn,C), which
then defines the vector bundle H•(Tn) := (R>0)s ×H•(Tn,C)/UH → Ts.

Fact 1. — The fibration is locally constant.

This means that if Uα ∩Uβ is a connected open subset of Ts, then gαβ :
Uα ∩ Uβ × Tn → Uα ∩ Uβ × Tn only depends on the Tn-variables. This
allows us to make the following identification:

(4.3) Ep,q0 ' Ωp(Ts,Ωq(Tn)).
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Indeed, recall that we have TX = E ⊕ V , where, locally, E is the tangent
bundle of the base Ts and V is the tangent bundle of the fiber Tn, and we
have identified Ep,q0 with C∞(X,

∧p
E∗ ⊗

∧q
V ∗ ⊗ C). Consider η ∈ Ep,q0

and suppose that Uα is an open set of Ts trivializing π via ϕα : π−1(Uα)→
Uα × Tn. Write (ϕα)∗η =

∑
i a
α
i ∧ bαi , where, for each i, aαi is a p-form on

Uα and bαi is an element of C∞(Uα ×Tn,
∧q

T ∗Tn ⊗C) which may depend
on both the coordinates of Uα and of Tn. Of course, the forms aαi and bαi
are not unique. If (Uβ , ϕβ) is another trivializing open set for π intersecting
Uα, then we have:

(ϕβ)∗η = (ϕβ ◦ ϕ−1
α )∗ ◦ (ϕα)∗η = (gβα)∗

∑
i

aαi ∧ bαi .

As gβα is locally constant on Uα ∩ Uβ , (gβα)∗aαi = aαi , therefore (ϕβ)∗η =∑
i a
α
i ∧(gβα)∗bαi . In particular, for each i, the forms {aαi }α glue up to a well-

defined global p-form ai on Ts and η is then an element of Ωp(Ts,Ωq(Tn)).

Fact 2. — Hq(Tn) is a completely reducible local system.

Indeed, as already mentioned, Hq(Tn) is a flat vector bundle defined
by the induced representation [R] : UH → Aut(Hq(Tn,C)). In order to
determine [R], recall that we have fixed a frame for V ∗ over (R>0)s × Tn
given by {e1, . . . , en} in (2.3). As this frame does not depend on (R>0)s, it
induces a frame for T ∗Tn over Tn which we will denote the same, and we
have Hq(Tn,C) =

∧q C{e1, . . . , en} = ⊕I∈IqCeI . Then, for any I and any
u ∈ UH, we have [R](u)eI = [R(u)∗eI ] = σ−1

I (u)eI , or also [R] =
∑
I∈Iq σ

−1
I

under the above direct sum decomposition.
For any multi-index I, let us denote, as before, by LσI → Ts the flat line

bundle defined by the representation σI , so that Hq(Tn) = ⊕I∈IqL∗σI . If
∇I denotes the induced connection on L∗σI and ∇q denotes the induced flat
connection on Hq(Tn), then also ∇q splits with respect to the direct sum
decomposition as ∇q =

∑
I∈Iq ∇

I . In particular, we also obtain:

(4.4) Hp(Ts,Hq(Tn)) ∼= ⊕I∈IqHp(Ts, L∗σI ).

Fact 3. — The base is a torus.

This allows us to compute, via Lemma 2.4:

(4.5) Hp(Ts,Hq(Tn)) ∼= ⊕I∈Iq
σI≡1

Hp(Ts,C)⊗ eI .

Let us now describe the pages of the Leray–Serre sequence of the OT
fibration.

Page 0. — By Fact 1, we have Ep,q0 ' Ωp(Ts,Ωq(Tn)). In order to
determine d0 : Ep,q0 → Ep,q+1

0 , which on X corresponds to differentiation in
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the V -direction, let us first identify the corresponding operator on Ω•(Tn).
Consider the differential of Tn which acts on Ω•(Tn), and then define by
dv the operator acting on (R>0)s×Ω•(Tn) trivially on the first factor, and
as the differential of Tn on the second one. Clearly, this operator commutes
with the action of UH, and so descends to an operator dv on Ω•(Tn). Under
the isomorphism (4.3), we have then d0 = dv, i.e. for η̂ =

∑
ai ⊗ bαi ∈

Ωp(Uα,Ωq(Tn)) we have:

(4.6) d0

(∑
ai ⊗ bαi

)
=
∑

(−1)pai ⊗ dvbαi .

Page 1. — By (4.6) we have Ep,q1 ' Ωp(Ts,Hq(Tn)). The differential
d1 : Ωp(Ts,Hq(Tn))→ Ωp+1(Ts,Hq(Tn)) is identified then with d1 = d∇,
where d∇ is the differential operator on Ts induced by the flat connection
∇ on Hq(Tn).
Page 2. — From above, we deduce that Ep,q2 ' Hp(Ts,Hq(Tn)). Let

[[η]d0 ]d1 ∈ E
p,q
2 be a non-zero element and let η =

∑
ai ⊗ bi locally. Then

[η]d0 =
∑
ai ⊗ [bi]dv . The fact that [η]d0 ∈ ker d1 implies that there exists

γ ∈ Ep+1,q−1
0 so that d∇

∑
(ai ⊗ bi) = dvγ. As in Section 2.2, we have

(d∇ + dv)(
∑
ai ⊗ bi − γ) = −d∇γ ∈ ker dv ⊂ Ep+2,q−1

0 , hence, according
to (2.6), d2 is given by:

(4.7) d2

([∑
ai ⊗ [bi]dv

]
d1

)
= [[−d∇γ]dv ]d1 .

At the same time, by (4.5) in Fact 3, we have that any element [[η]dv ]d1

of Ep,q2 can be represented by a sum:

(4.8) η =
∑
I∈Iq
σI≡1

αI ⊗ eI ∈ Ep,q0

where for each I appearing in the sum, αI ∈ Ωp(Ts) is a closed form
on Ts, and eI , given in (2.3), is U invariant on X̂, and so descends to a
global element of Ωq(Tn) on Ts, verifying d∇eI = 0. In particular, we have
d∇η = 0 = dv(0), so, by (4.7) it follows that d2[[η]dv ]d1 = [[−d∇0]dv ]d1 = 0,
so d2 ≡ 0.
Finally, for any r > 2, any class in Ep,qr can be represented by an element

[. . . [[η]d0 ]d1 . . . ]dr−1 , where η is of the form (4.8). Since dη = (d∇+dv)η = 0,
by (2.7) all ξ1, . . . , ξr−1 can be chosen to be zero, so dr ≡ 0. Thus we have
shown:

Theorem 4.1. — The Leray–Serre spectral sequence of OT manifolds
degenerates at E2.

As a corollary of this, one immediately obtains Theorem 3.1.
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5. Twisted cohomology of OT manifolds

Now we want to compute the twisted cohomology groups of OT manifolds
with respect to any closed one-form. We recall that vj stands for Imwj , for
every 1 6 j 6 s. The exact statement that we will obtain is the following:

Theorem 5.1. — Let X = X(K,U) be an OT manifold of type (s, t)
and of complex dimension m, and let θ =

∑s
k=1 akd ln vk be a closed one-

form on X(K,U), where a1, . . . , as ∈ C. Then for any l ∈ {0, . . . , 2m} we
have:

H l
θ(X,C) ∼=

⊕
p+q=l
|I|=q

ρθ⊗σI=1

∧pC{d ln v1, . . . ,d ln vs} ∧ (va1
1 · · · · · vass )eI .

In particular, the corresponding twisted Betti numbers are given by:

bθl =
∑
p+q=l

(
s

p

)
· ρθq ,

where ρθq is the cardinal of the set {I | |I| = q, ρθ ⊗ σI = 1}.

It is already known from [16] that b1(X) = s, hence any closed one-form
is cohomologous to one of the form π∗η, where η is closed one-form on Ts.
As the twisted cohomology H•θ depends only on the de Rham cohomology
class of θ, and not on θ itself, we can assume that θ is the pullback of a
form from Ts.
We are going to use the same approach as in the previous section. Con-

sider the complex:

K•θ : . . .
dθ−→ Ωp(X) dθ−→ Ωp+1(X) dθ−→ . . .

which we endow with the same descending filtration as before:

F pKp+q
θ := {ω ∈ Ωp+q(X) | ιXq+1 . . . ιX1ω = 0,∀ X1, . . . Xq+1 ∈ X v(X)}.

It is easy to see that it is indeed a filtration, i.e. dθF pKp+q
θ ⊂ F pKp+q+1

θ ,
as a consequence of θ being the pullback of a form from Ts. We study the
spectral sequence associated to Kθ with this filtration, which we denote
also by E•.
Again, we denote by Ωq(Tn) and by Hq(Tn) the vector bundles described

in (4.1) and (4.2), and as before we have the 0-th page:

Ep,q0 =
F pKp+q

θ

F p+1Kp+q
θ

' Ωp(Ts,Ωq(Tn))
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and via this isomorphism, d0 : Ep,q0 → Ep,q+1
0 is given over a trivializing

open set Uα by:

d0

(∑
i

ai ⊗ bαi

)
=
∑

(−1)pai ⊗ dvbαi .

Thus, we again have:

Ep,q1 ' Ωp(Ts,Hq(Tn))

but this time, d1 : Ep,q1 → Ep+1,q
1 is given over a trivializing open set Uα

by:

d1

(∑
ai ⊗ [bαi ]dv

)
=
∑

dai ⊗ [bαi ]dv + (−1)p
∑

ai ∧ ([∇′bαi ]dv − θ ⊗ [bαi ]dv )

where ∇′ is the flat connection on Hq(Tn). Equivalently, if we see θ as
a form on Ts and define Lθ to be the complex flat line bundle over Ts
corresponding to exp[θ]dR ∈ H1(Ts,C∗) ' Hom(π1(Ts),C∗), we have the
following identification:

Ep,q1 ' Ωp(Ts, L∗θ ⊗Hq(Tn))

d1 = d∇

where d∇ the differential operator induced by the corresponding flat con-
nection on L∗θ ⊗Hq(Tn). Thus we obtain the second page:

Ep,q2 ' Ker(d∇)p,q

Im(d∇)p−1,q = Hp(Ts, L∗θ ⊗Hq(Tn)).

Let θ =
∑s
k=1 akd ln vk with ak ∈ C, which induces the representation

ρθ = σa1
1 ⊗· · ·⊗σass ∈ Hom(π1(Ts),C∗). The flat vector bundle L∗θ⊗Hq(Tn)

over Ts is then given by the representation [R]θ : UH → Aut(Hq(Tn)),
[R]θ := (ρθ)−1 ⊗ [R].
We again have:

Theorem 5.2. — The spectral sequence associated to K•θ degenerates
at the second page.

Proof. — As before, we want to show that dr ≡ 0 for r > 2. We notice
that, as Hq(Tn) is a completely reducible local system, then so is L∗θ ⊗
Hq(Tn). The same arguments as in Fact 2 and Fact 3 in Section 3 show
that we have an isomorphism:

Hp(Ts, L∗θ ⊗Hq(Tn)) ∼=
⊕
I∈Iq

Hp(Ts, L∗θ ⊗ L∗σI ) ∼=
⊕
I∈Iq

ρθ⊗σI≡1

Hp(Ts,C)⊗ eI
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where eI is now identified with a global parallel frame of L∗θ ⊗ L∗σI . This
means that any element [[η]dv ]d∇ ∈ Ep,q2 can be represented, globally on
Ts, by:

η =
∑
I∈Iq

ρθ⊗σI≡1

αI ⊗ eI ∈ Ωp(Ts, L∗θ ⊗Ωq(Ts)),

with αI closed one-forms on Ts. Since we have d∇eI = 0 for any I, we obtain
d∇η = 0 = dv0, so d2[[η]dv ]d∇ = [[−d∇0]dv ]d∇ = 0. Moreover, by (2.7) and
by the same arguments used to prove Theorem 4.1, each ξ1, . . . , ξr−1 can
step by step be chosen to be 0 and thus dr ≡ 0, for r > 2. We proved thus
that E2 = E∞. �

We proceed now with the proof of Theorem 5.1:
Proof. — Since E•,•r converges to H•θ (X,C) and E2 = E∞, then

H l
θ(X,C) ∼= ⊕p+q=lEp,q2

∼= ⊕ p+q=l
I∈Iq

ρθ⊗σI≡1

Hp(Ts,C)⊗ eI .

Finally, in order to represent H l
θ(X,C) by U invariant forms on X̂, we need

to tensorize with a global frame ξ of Lθ. If θ =
∑s
k=1 akd ln vk, then ξ is

given by ξ =
∏s
k=1 v

ak
k on X̂, and so the conclusion follows. �

Remark 5.3. — We want to draw attention to the fact that for both
spectral sequences involved in our proofs, the isomorphism E•,•2

∼= H•(B)⊗
H•(F ) alone was not enough to imply the degeneracy of E•,•r at page E2.
An example of fiber bundle F → X → B for which this isomorphism at the
second page holds, but whose corresponding Leray–Serre spectral sequence
does not degenerate at E2 is given by the Hopf fibration S1 → S2n+1 →
CPn.

6. Applications and Examples

Let us start this section by giving the immediate consequence of Theo-
rem 3.1, which is the explicit cohomology of OT manifolds when there are
no trivial representations other than the obvious ones:

Corollary 6.1. — Let (K,U) be a number field together with an ad-
missible group of units U ⊂ K so that U admits no trivial representations
σI other than the ones corresponding to I = ∅ and I = (1, 2, . . . , n), and
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let X be the OT manifold associated to (K,U). The Betti numbers of X
are:

bl = b2m−l =
(
s

l

)
for 0 6 l 6 s

bl = 0 for s < l < n.

Corollary 6.2. — For an OT manifold of type (s, t), all Betti numbers
bl for 0 6 l 6 s and for 2m− s 6 l 6 2m are positive.

Proof. — For 0 6 l 6 s, H l(Ts,C) is a summand of H l(X,C), corre-
sponding to p = l and I = ∅, so σI ≡ 1. Hence:

bl(X) > bl(Ts) =
(
s

l

)
> 0.

The assertion follows for 2m− s 6 l 6 2m by the Poincaré duality. �

We have computed the cohomology algebras of an OT manifold X(K,U)
in terms of numerical invariants associated to (K,U), namely in terms
of the trivial representations σI of U . Clearly, if (K,U) is not simple, in
the sense that there exists an intermediate field extension Q ⊂ K ′ ⊂ K

so that U ⊂ K ′, then there exist trivial representations σI : U → C∗
with 0 < |I| = [K ′ : Q] < [K : Q]. It would be interesting to know
whether the converse is true, i.e. if (K,U) is of simple type, is the set
{I|σI : U → C∗, σI ≡ 1} only formed by ∅ and I = (1, . . . , n)? Let us note
that in [16, Proposition 2.3], the second Betti number of an OT manifold
of simple type was computed, and coincides with ours when there are no
other trivial representations, implying an affirmative answer for the above
question when |I| = 2. We do not address this problem in the present
article, but we give an example where the answer is affirmative, allowing
us to give the explicit Betti numbers of the corresponding manifold:

Example 6.3. — Let p be any odd prime number and take the polynomial
f = Xp−2 ∈ Q[X]. This polynomial has one real root p

√
2 and the complex

roots p
√

2ε, . . . , p
√

2εp−1, where ε is a p-th root of unity. Let K = Q( p
√

2),
which is of type (1, p−1

2 ). We notice first that u = p
√

2− 1 is a unit of OK
since its norm, which is the product of all the embeddings of u in C, is
equal to 1:

( p
√

2− 1) . . . ( p
√

2εp−1 − 1) = (−1)pf(1) = 1.

Since u is also clearly positive, we can then take U to be generated by u.
Let then X = X(K,U) be the corresponding OT manifold. We claim that
there is no index I with p > |I| > 2 and σI ≡ 1. By Corollary 6.1, this will
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imply that the Betti numbers of X will verify b0 = bp+1 = b1 = bp = 1 and
bi = 0 for any i 6= 0, 1, p, p+ 1.
Let us assume by contradiction the existence of such I = (1 6 i1 < · · · <

ik 6 p), with k < p. For any 1 6 j 6 p, we denote by σj the embedding of
K into C mapping p

√
2 to p

√
2εj−1. Then σI ≡ 1 rewrites as:

( p
√

2εi1−1 − 1)( p
√

2εi2−1 − 1) . . . ( p
√

2εik−1 − 1) = 1,

equivalent to:

(6.1) a0
p
√

2k − a1
p
√

2k−1 + · · ·+ (−1)k−1ak−1
p
√

2 + (−1)k − 1 = 0

where al =
∑
j1<···<jl ε

i1+···+îj1 +···+îjl+...ik−k+l, and the symbol ·̂ over an
element marks the fact that the element is missing. Let g be the polynomial:

g = a0X
k − a1X

k−1 + · · ·+ (−1)k−1ak−1X + (−1)k − 1 ∈ Q(ε)[X].

Then (6.1) implies g( p
√

2) = 0, hence g is a multiple of the minimal poly-
nomial of p

√
2 over the field Q(ε). We prove next that this polynomial is

actually Xp−2. Indeed, we have the following two intermediate extensions:

Q ⊂ Q(ε) ⊂ Q(ε, p
√

2)

Q ⊂ Q( p
√

2) ⊂ Q(ε, p
√

2).

We thus obtain:

(6.2)
[Q(ε, p

√
2) : Q] = [Q(ε, p

√
2) : Q(ε)] · [Q(ε) : Q]

= [Q(ε, p
√

2) : Q( p
√

2)] · [Q( p
√

2) : Q].

Since Xp − 2 ∈ Q(ε)[X], we have [Q(ε, p
√

2) : Q(ε)] 6 p. In general, if ε is
an n-th root of unity, [Q(ε) : Q] = ϕ(n), where ϕ(n) is Euler’s function. In
our case ϕ(p) = p− 1, whence (6.2) implies:

[Q(ε, p
√

2) : Q] = (p− 1)[Q(ε, p
√

2) : Q(ε)] = p · [Q(ε, p
√

2) : Q( p
√

2)].

As p and p − 1 are relatively prime, we get moreover that p divides
[Q(ε, p

√
2) : Q(ε)], therefore p = [Q(ε, p

√
2) : Q(ε)]. Thus the minimal poly-

nomial of p
√

2 over the field Q(ε) is Xp − 2, contradicting the fact that
k = deg g < p.

We can also obtain, via Corollary 6.1, the explicit de Rham cohomol-
ogy algebra of OT manifolds of type (s, 1). These manifolds are known to
admit locally conformally Kähler (LCK) metrics, which by definition are
Hermitian metrics induced by Kähler metrics on the universal cover on
which the fundamental group acts by homotheties. Equivalently, they are
Hermitian metrics whose fundamental form Ω verifies dΩ = θ ∧Ω, where θ
is a closed real one-form on the manifold, called the Lee form. Such metrics
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were constructed in [16] on all OT manifolds of type (s, 1), but in general
it is still an open problem to decide whether LCK metrics might exist on
other types of OT manifolds. The existence of an LCK metric translates
into a condition on the numerical data (K,U): if X(K,U) admits an LCK
metric, then, by [16, Proposition 2.9], for any u ∈ U we have:

(6.3) r(u)2 := |σs+1(u)|2 = · · · = |σs+t(u)|2 = (σ1(u) . . . σs(u))−1/t.

In the appendix to [7] of L. Battisti, it was shown in Theorem 8 (p. 271)
that (6.3) is also a sufficient condition for an LCK metric to exist.

Proposition 6.4. — Let X be an OT manifold of type (s, t) admitting
some LCK metric. Its de Rham cohomology algebraH•(X,C) is isomorphic
to the graded algebra over C generated by:

d ln v1, . . . ,d ln vs,dz1 ∧ dz1 ∧ . . . dzt ∧ dzt ∧ dr1 ∧ · · · ∧ drs.

In particular, its Betti numbers are:

bl = b2m−l =
(
s

l

)
for 0 6 l 6 s

bl = 0 for s < l < n.

Proof. — By Corollary 6.1, it suffices to show that U admits no trivial
representations σI other than the two obvious ones. So let I = (0 < i1 <

· · · < ik 6 n) with k > 0 and σI ≡ 1. After eventually renumbering the
coordinates, we can suppose without loss of generality that I is of the form

I = (1, . . . q, j1, . . . jp, s+ t+ 1, . . . s+ t+ l),

with 0 6 q 6 s < j1 < · · · < jp 6 s+ t and 0 6 p, l 6 t.
Since σI = 1 we have |σI | = 1 which, together with (6.3), gives the

relation:
(σ1 . . . σq)−1 = rl+p = (σ1 . . . σs)−

l+p
2t .

As σ1, . . . , σs are R-linearly independent, this relation must be the trivial
one, implying that l + p = 2t and q = s, so I = (1, . . . , n), which finishes
the proof. �

In LCK geometry, it is interesting to know also the twisted cohomology
with respect to the Lee form of the LCK metric. For the OT manifolds, we
first determine the set of all possible de Rham classes of Lee forms of LCK
metrics, then compute the corresponding twisted cohomology. The result
that follows generalizes the result in [19], where it is proven that the set of
possible Lee classes of LCK metrics on Inoue surfaces of type S0, namely
OT-manifolds of type (1, 1), has only one element.
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Proposition 6.5. — Let X = X(K,U) be an OT manifold of type
(s, t). There exists at most one Lee class of an LCK metric on X, namely
the one represented by the U nOK-invariant form on Hs × Ct,

θ = 1
t
d ln

(
s∏

k=1
vk

)
.

Proof. — First note that, as H1(X,R) ∼= Hom(π1(X),R), we can iden-
tify a de Rham class [η]dR with a group morphism τ : π1(X) → R. The
corresponding morphism τ is precisely the automorphy representation: if
η = dϕ on the universal cover X̃, then τ is given by τ(γ) = γ∗ϕ − ϕ, for
any γ ∈ π1(X).

Moreover, if X admits some LCK metric (Ω, η) with η = dϕ on X̃, and
if ΩK := e−ϕΩ is the corresponding Kähler form on X̃, then τ = τ[η] is also
determined by: γ∗ΩK = e−τ(γ)ΩK for any γ ∈ π1(X). Hence, it suffices
to show that for any Kähler metric ΩK on X̃ inducing an LCK metric on
X, the automorphy representation determined by ΩK is precisely the one
corresponding to θ, namely:

τθ(a) = 0 for a ∈ OK

τθ(u) = 1
t

s∑
k=1

ln σk(u) for u ∈ U.

Let now ΩK be a Kähler metric on X̃ on which π1(X) acts by homoth-
eties, and denote by τ the corresponding representation described before.
We recall that under the abelianization morphism U n OK → H1(X,Z),
OK maps to a finite group. This implies that OK will act by isometries on
ΩK . Hence, the form ΩK descends to the manifold X̂ := Hs×Ct/OK . But
the torus T := R2t+s/OK acts holomorphically by translations on X̂, so we
can average ΩK over T to get a new T-invariant Kähler form on X̂:

Ω′K :=
∫
T
a∗ΩKµ(a)

where µ is the constant volume form on T with
∫
T µ = 1. The automorphy

of Ω′K is also τ , as for any u ∈ U we have:

u∗Ω′K =
∫
T
(au)∗ΩKµ(a) =

∫
T
(ucu(a))∗ΩKµ(a)

=
∫
T
c∗u(a)(e−τ(u)ΩK)µ(cu(a)) = e−τ(u)Ω′K .

Now write Ω′K = Ω0 + Ω01 + Ω1 with respect to the splitting

(6.4)
∧2
X̃

=
∧2

Ct ⊕(
∧1

Ct ⊗
∧1

Hs)⊕
∧2

Hs
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and also split d = d0 + d1, with d0 being the differentiation with respect to
the Ct-variables and d1, the Hs-variables. The Ct-invariance of Ω′K implies
that d0Ω′K = 0. The condition dΩ′K = 0 then gives, on the

∧2
Ct ⊗

∧1
Hs -

component, d1Ω0 = 0. So Ω0 =
∑
ij fijdzi ∧ dzj , with fij ∈ C for any

1 6 i, j 6 t.
Now, if u ∈ U , u∗Ω′K = e−τ(u)Ω′K implies that:

fijσs+i(u)σs+j(u) = fije−τ(u) for any 1 6 i, j 6 t.

In particular, since fii 6= 0 for any 1 6 i 6 t, we have:

τ(u) = − ln |σs+1(u)|2 = · · · = − ln |σs+t(u)|2.

But we also have
∏s
k=1 σk

∏s+t
j=s+1 |σj |2 = 1. This implies that τ = τθ, and

the conclusion follows. �

This last result has an immediate corollary concerning the stability of
LCK metrics on OT manifolds, as studied by R. Goto in [9]. In order to
state it, let us first note that, given an LCK structure (Ω, θ) on X, we
have an associated flat line bundle (L,∇) = L[θ], and Ω can be seen as a
d∇-closed section of Ω2

X ⊗ L∗. Conversely, given a flat line bundle (L,∇)
over X, an L-valued positive (1, 1)-form which is d∇-closed induces an LCK
structure on X.

Corollary 6.6. — On an OT manifold of LCK type, the LCK struc-
ture is not stable under small deformations of flat line bundles. More specif-
ically, if (Ω, L,∇) is an LCK structure on an OT manifold X, ε > 0 and
{Lv} is a non-trivial analytic deformation of flat line bundles for |v| < |ε|
with L0 = L, then for any 0 < |v| < ε, there are no Lv-valued LCK
structures.

Next we compute the explicit twisted cohomology groups with respect
to the Lee form:

Proposition 6.7. — Let X be an OT manifold of type (s, t) admitting
an LCK metric and let θ = 1

t

∑s
k=1 d ln vk. Then for any 0 6 l 6 2m, we

have:

H l
θ(X) ∼= (v1 . . . vs)

1
t ⊕tj=1 Cdzj ∧ dzj ⊗

∧l−2 C{d ln v1, . . . ,d ln vs}.

In particular, the corresponding twisted Betti numbers are given by:

dimCH
l
θ(X) = t

(
s

l − 2

)
for any 0 6 l 6 2m.
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Proof. — In order to apply Theorem 5.1, we need to identify, for any
0 6 k 6 n, the set corresponding to [θ]dR:

Jk = {I = (1 6 i1 < i2 · · · < ik 6 n) | σ
1
t
1 . . . σ

1
t
s σi1 . . . σik = 1}.

We shall prove that Jk = ∅ for k 6= 2 and J2 = {(s+j, s+ t+j)|1 6 j 6 t}.
Let us fix k and I ∈ Jk. As before, we can assume that I is of the form:

I = (1, . . . , q, j1, . . . , jp, s+ t+ 1, . . . , s+ t+ l)

such that 0 6 q 6 s < j1 < · · · < jp 6 s+ t, 0 6 p, l 6 t and q + p+ l = k.
Then |(σ1 . . . σs)1/tσI | = 1 together with (6.3) implies:

σ
1
t+1
1 . . . σ

1
t+1
q σ

1
t
q+1 . . . σ

1
t
s = r−(p+l) = (σ1 . . . σs)

p+l
2t .

By the R linear independence of σ1, . . . , σs, this must be the trivial re-
lation. If 0 < q < s, we would get that 1

t + 1 = p+l
2t = 1

t , which is a contra-
diction. If q = s, then we would get that 1

t + 1 = p+l
2t , or also p+ l = 2t+ 2,

contradicting the fact that p+ l 6 2t. Hence q = 0 and we get the relation
1
t = p+l

2t , or also p+ l = 2 = k. In particular, Jk = ∅ for k 6= 2.
Let us note now that the set {(s+ j, s+ t+ j)|j = 1, t} is included in J2.

In order to show that these are all the possible multi-indices, let I = (i1 <
i2) ∈ J2. We already showed that i1 > s. Since σi1σi2 = (σ1 . . . σs)−1/t is
real, we get that σi1σi2 = σi1σi2 . Combining with |σi1 | = |σi2 |, we obtain
σ2
i1

= σ2
i2 , therefore σi1 = ±σi2 . The case σi1 = −σi2 is excluded, because

this would give the following contradiction:

0 > −σi2σi2 = (σ1 . . . σs)−
1
t > 0.

So σi1 = σi2 . But there exists s + t 6 j 6 s + 2t with |i1 − j| = t and
σi1 = σj , so σi2 = σj . We want to show that i2 = j, i.e. I = (j − t, j).

Consider M the Z-submodule of OK generated by U , which is a subring
of OK , and let K ′ be its fraction field. We have U ⊂ M ⊂ K ′ ⊂ K, and
we showed in the above proposition that U has no trivial representations,
so in particular (K,U) is simple, thus K ′ = K. But the relation σi2 = σj
extends to M , and so also to K ′ = K. This last fact is possible only if
i2 = j. �

Remark 6.8. — Notice that since H l
θ(X) does not vanish and θ is real-

valued, by the result of [5] θ is not parallel with respect to any metric g
on X.

Remark 6.9. — In [13], OT manifolds are given a solvmanifold structure,
namely they are shown to be of the form Γ \G, where G is a solvable Lie
group and Γ is a co-compact lattice in G. Consequently, one can consider
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the cohomologies H•(g) and H•θ (g), where g is the Lie algebra of G and
θ is a closed G-invariant form. A natural question is then: does one have
isomorphisms H•dR(X(K,U)) ∼= H•(g) and H•θ (X(K,U)) ∼= H•θ (g)? For a
general solvmanifold, this does not always hold. However, H. Kasuya proved
in [12, Example 4] that on OT manifolds of type (s, 1), this isomorphism
is valid for the de Rham cohomology. In [1, Theorem 4.3], it is proved
that in the twisted cohomology, the isomorphism holds for a subclass of
X(K,U) of type (s, 1), satisfying the so-called Mostow condition. Finally,
since in Theorem 5.1 we represented the corresponding cohomologies by
invariant forms with respect to the action of G described in [13], we obtain
as a consequence that for all OT manifolds X of type (s, t), we have the
isomorphism Hk

θ (X) ∼= Hk
θ (g), although they might not all satisfy the

Mostow condition.

In [19] it was proven that there are no dθ-exact metrics on OT manifolds
of type (s, 1). We give next a generalization of this result, in which we
determine all the possible LCK classes in H2

θ . As a consequence of this, we
obtain a hard Lefschetz-type theorem associated to an LCK metric on an
OT manifold.

Corollary 6.10. — Let X be an OT manifold of type (s, t) with an
LCK structure (Ω, θ), where θ = 1

t

∑s
k=1 d ln vk. Then the twisted class of

Ω in H2
θ (X) is of the form:

(v1 . . . vs)
1
t

t∑
j=1

ajidzj ∧ dzj , aj ∈ R>0 ∀ j ∈ {1, . . . , t}.

In particular, if we let LefΩ denote the Lefschetz operator LefΩ = Ω ∧ ·,
then for any 0 6 l 6 2m− 2, LefΩ induces a morphism in cohomology:

[LefΩ] : H l(X,C)→ H l+2
θ (X)

which is injective for 0 6 l 6 m and surjective for m 6 l 6 2m− 2.

Proof. — Let us start by noting that, as in the case of the de Rham
cohomology, the twisted cohomology with respect to θ is the twisted coho-
mology of T-invariant forms. This is a direct consequence of Theorem 5.1,
but can also be seen by an argument completely analogous to Lemma 3.3
and using the fact that θ vanishes on vector fields tangent to Tn. Hence, by
averaging the form Ω to a T-invariant LCK form Ω′ as in Proposition 6.5,
the twisted class does not change: [Ω]θ = [Ω′]θ ∈ H2

θ (X).
At the same time, we saw that the corresponding Kähler form Ω′K writes

with respect to the splitting (6.4) as Ω′K = Ω0 + Ω01 + Ω1, with Ω0 a
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constant positive form on Ct. Also, given the expression of θ, we have
Ω′ = (v1 . . . vs)1/tΩ′K := ω0+ω01+ω1, where again Ω′ was decomposed with
respect to the splitting (6.4). Clearly, dθω0 = 0, so also dθ(ω01 + ω1) = 0,
thus we can write [Ω′]θ = [ω0]θ + [ω01 + ω1]θ ∈ H2

θ (X). Now, since by
Proposition 6.7, we have:

(6.5) H2
θ (X) ∼= (v1 . . . vs)

1
t ⊕tj=1 Cdzj ∧ dzj ,

it follows that [ω01 + ω1] = 0 ∈ H2
θ (X). Indeed, otherwise we would have

that on X̃, ω01 + ω1 + dθη is valued in
∧2

Ct for some one-form η ∈ Ω1
X(X),

which is impossible. Hence [Ω]θ = [ω0]θ = ω0 under the isomorphism (6.5),
so the first assertion follows. The second assertion follows from the descrip-
tion of the cohomology groups given in Proposition 6.4 and Proposition 6.7
and from the non-degeneracy of [Ω]θ. �

Remark 6.11. — The fact that for any LCK form Ω on X, the operator
LefΩ : H1(X,C) → H3

θ (X) is injective also implies Corollary 6.6 via [9,
Theorem 2.4].

We end this section with one more application concerning the possible
real Chern classes of vector bundles on OT manifolds:

Proposition 6.12. — Let X(K,U) be an OT manifold of type (s, t)
verifying that U admits no trivial representations σI unless |I| ∈ {0, n}.
Then, for any 1 6 k < n/2, every d-closed real (k, k) form on X is exact.
In particular, if E is a complex vector bundle on X, its first [(n−1)/2] real
Chern classes ck(E)R ∈ H2k(X,R) vanish.

Proof. — By Corollary 6.1, we deduce that:

H2k(X,R) ∼=
∧2k R{f1, . . . , fs} for 2k < n

where fl := v−1
l dvl for 1 6 l 6 s. Let us also denote by ϕl = − i

2v
−1
l dwl =

f1,0
l for 1 6 l 6 s, so that fl = ϕl + ϕl.
Let α be a real closed (k, k) form on X. By the above, we can write:

α =
∑
I∈I2k

aIfI + dβ, where for every multi-index I = (i1 < · · · < i2k),
fI = fi1 ∧ · · ·∧ fi2k , aI ∈ R and β ∈ Ω2k−1

X (X) is a real form. In particular,
in bidegree (2k, 0), this reads:

α2k,0 = 0 =
∑
I∈I2k

aIϕI + ∂β2k−1,0.

But, for any I, ϕI is not ∂-exact, and neither is the sum
∑
I aIϕI , unless

it is zero. In order to see this, one could for instance choose a hermitian
metric on X defining an L2 adjoint operator ∂? with respect to which one

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF OT MANIFOLDS 2065

would have ∂?ϕI = 0 for any I. It would follow then that each αI is L2-
orthogonal to Im ∂, and so

∑
I aIϕI = ∂β2k−1,0 = 0. In particular, this

implies that aI = 0 for each I ∈ I2k, and so α = dβ. �

Remark 6.13. — In the literature specialized on topology, there is a com-
plex called Morse–Novikov, associated to a closed one-form θ of Morse type,
i.e. locally given by the differential of a Morse function. It was first con-
sidered by Novikov in [14] and [15], and for a thorough description we
refer to [8]. The construction of this complex is based on the number of
zeros of θ, just as the Morse–Smale complex of a Morse function f is based
on the number of zeros of f and actually these two complexes coincide
when θ = df . If θ is a nowhere vanishing one-form, as the Lee form in
Proposition 6.7 is, the Morse–Novikov complex is trivial, therefore its co-
homology vanishes. However, the twisted cohomology does not vanish, as
our computation indicates; consequently, OT manifolds provide examples
in all dimensions of spaces for which these two cohomologies differ.
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