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DISTRIBUTION OF CHERN–SIMONS INVARIANTS

by Julien MARCHÉ (*)

Abstract. — Let M be a closed 3-manifold with a finite set X(M) of conju-
gacy classes of representations ρ : π1(M) → SU2. We study here the distribution of
the values of the Chern–Simons function CS : X(M) → R/2πZ. We observe in some
examples that it resembles the distribution of quadratic residues. In particular for
specific sequences of 3-manifolds, the invariants tends to become equidistributed
on the circle with white noise fluctuations of order |X(M)|−1/2. We prove that for
a manifold with toric boundary the Chern–Simons invariants of the Dehn fillings
Mp/q have the same behaviour when p and q go to infinity and compute fluctuations
at first order.
Résumé. — Soit M une 3-variété sans bord avec un ensemble fini de classes

de conjugaison de représentations ρ : π1(M) → SU2. On étudie la répartition des
valeurs de la fonction de Chern–Simons CS : X(M) → R/2πZ. On observe dans
quelques exemples qu’elle ressemble à la répartition des résidus quadratiques. En
particulier, pour quelques suites de 3-variétés, ces invariants tendent à se répar-
tir uniformément sur le cercle avec des fluctuations de type bruit blanc d’ordre
|X(M)|−1/2. On prouve que pour une variété à bord torique, les invariants de
Chern–Simons des remplissages de Dehn Mp/q ont le même comportement quand
p et q tendent vers l’infini et on calcule les fluctuations au premier ordre.

1. Introduction

1.1. Distribution of quadratic residues

Let p be a prime number congruent to 1 modulo 4. We consider the
normalised counting measure on the circle T = R/2πZ defined by quadratic
residues modulo p, that is:

µp = 1
p

p−1∑
k=0

δ 2πk2
p

Keywords: Chern–Simons, 3-manifold, equidistribution, Gauss sum.
2010 Mathematics Subject Classification: 10X99, 14A12, 11L05.
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754 Julien MARCHÉ

where δx denotes the Dirac measure at x ∈ T. We investigate the limit of µp
when p goes to infinity and to that purpose, we consider its `-th momentum
i.e. µ`p =

∫
ei `θ dµp(θ) = 1

p

∑p−1
k=0 exp(2 iπ`k2/p). We have µ`p = 1 if p|`,

and else by the Gauss sum formula, µ`p =
(
`
p

) 1√
p where

(
`
p

)
is the Legendre

symbol.
This shows that µp converges to the uniform measure µ∞ defined by∫
fdµ∞ = 1

2π
∫ 2π

0 f(x)dx whereas the renormalized measure √p(µp − µ∞)
(that we call fluctuation) has l-th momentum ±1 depending on the residue
of l modulo p and hence is a kind of “white noise”. By this we mean that
the modulus of the l-th Fourier coefficient of µ does not depend on l.

On the other hand, such Gauss sums appear naturally in the context
of Chern–Simons invariants of 3-manifolds. Consider an oriented and com-
pact 3-manifold M and define its character variety as the set X(M) =
Hom(π1(M),SU2)/ SU2. In what follows, we will confuse between repre-
sentations and their conjugacy classes. The Chern–Simons invariant may
be viewed as a locally constant map CS : X(M) → T. We refer to [3] for
background on Chern–Simons invariants and give here a quick definition
for the convenience of the reader.

Definition 1.1. — Let ν be the Haar measure of SU2 i.e. the unique
Borel measure invariant by translation and normalised by ν(SU2) = 2π
and let π : M̃ → M be the universal cover of M . There is an equivariant
map F : M̃ → SU2 in the sense that F (γx) = ρ(γ)F (x) for all γ ∈ π1(M)
and x ∈ M̃ . The form F ∗ν is invariant hence can be written F ∗ν = π∗νF .
We set

CS(ρ) =
∫
M

νF mod 2πZ

and claim that it is independent on the choice of equivariant map F

modulo 2π.

Definition 1.2. — LetM be a 3-manifold whose character variety is fi-
nite. We define its Chern–Simons measure as µM = 1

|X(M)|
∑
ρ∈X(M) δCS(ρ).

The aim of this article is to describe some sequences of 3-manifolds Mn

for which the measure µMn converges. In all cases we could handle, the
limit measure is µ∞ and the fluctuations have a similar behaviour with
the case of the distribution of quadratic residues. In the first section, we
present some examples and state our main theorem which concerns the case
of the Dehn fillings of a given 3-manifold with toric boundary. In the second
section, we place this problem in the more general context of intersection
of Legendrian submanifolds and prove the main result. In the last section,
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DISTRIBUTION OF CHERN–SIMONS INVARIANTS 755

we address the same question in the case where all manifolds are coverings
of a given one.

1.2. Distribution of Chern–Simons invariants

1.2.1. Lens spaces

For instance, if M = L(p, q) is a lens space, then π1(M) = Z/pZ and
X(M) = {ρn, n ∈ Z/pZ} where ρn maps the generator of Z/pZ to a matrix
with eigenvalues e±

2 iπn
p . We know from [3] that CS(ρn) = 2π q

∗n2

p where
qq∗ = 1 mod p. Hence, the Chern–Simons invariants of L(p, q) behave ex-
actly like quadratic residues when p goes to infinity.

1.2.2. Brieskorn spheres

To give a more complicated but still manageable example, consider the
Brieskorn sphere M = Σ(p1, p2, p3) where p1, p2, p3 are distinct primes.
This is a homology sphere whose irreducible representations in SU2 have
the form ρn1,n2,n3 where 0 < n1 < p1, 0 < n2 < p2, 0 < n3 < p3. From [3]
we have

CS(ρn1,n2,n3) = 2π (n1p2p3 + p1n2p3 + p1p2n3)2

4p1p2p3
.

Setting n = n1p2p3 + p1n2p3 + p1p2n3, we observe that, due to Chinese
remainder theorem, n describes (Z/p1p2p3Z)× when ni describes (Z/piZ)×
for i = 1, 2, 3. Hence, we compute that the following `-th momentum:

µ`p1p2p3
= 1
|X(M)|

∑
ρ∈X(M)

exp(i `CS(ρ)) ∼ 1
p1p2p3

p1p2p3−1∑
n=0

e
iπ`n2

2p1p2p3 .

Assuming ` is coprime with p = p1p2p3 we get from [1] the following
estimates where εn = 1 is n = 1 mod 4 and εn = i if n = 3 mod 4:

µ`p ∼


εp√
p

(`/4
p

)
if ` = 0 mod 4

0 if ` = 2 mod 4
1+i

2√pεl

(
p
`

)
otherwise.

Again we obtain that µp converges to the uniform measure when p goes
to infinity. The renormalised measure √p(µp − µ∞) have `-th momentum
with modulus equal to 1, 1√

2 , 0,
1√
2 depending on ` mod 4.
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756 Julien MARCHÉ

1.3. Dehn Fillings

The main question we address in this article is the following: fix a mani-
foldM with boundary ∂M = T×T. For any p

q ∈ P1(Q), we denote by Tp/q
the curve on T2 parametrised by (pt, qt) for t in T. We define the manifold
Mp/q by Dehn filling i.e. the result of gluingM with a solid torus such that
Tp/q bounds a disc.

We recall from [3] that in the case where M has boundary, there is a
principal T-bundle with connection L → X(∂M) such that the Chern–
Simons invariant is a flat section of Res∗ L

L

��
X(M)

CS
99

Res // X(∂M)

where Res(ρ) = ρ ◦ i∗ and i : ∂M → M is the inclusion. This shows that
if Res is an immersion, which we will soon assume, X(M) is 1-dimensional
and Res is Legendrian.

We will denote by |dθ| the natural density on X(T) = T/(θ ∼ −θ).
We also have X(T2) = T2/(x, y) ∼ (−x,−y) and for any p, q the map

Resp/q : X(T2)→ X(Tp/q) is given by (x, y) 7→ px+ qy.
Moreover, for any p

q , ` > 0 and 0 6 k 6 `, there are natural flat sections
CSk/`p/q of L` over the preimage Res−1

p/q(
πk
` ). These sections are constructed

using coordinates in Definition 2.4. They are called Bohr–Sommerfeld sec-
tions and they coincide for k = 0 with CS`. See [3] or [2] for a detailed
description.

Theorem 1.3. — Let M be a 3-manifold with ∂M = T2 satisfying the
hypothesis of Section 2.4. Let p, q, r, s be integers satisfying ps − qr = 1
and for any integer n, set pn = pn− r and qn = qn− s. Then setting

µ`n = 1
n

∑
ρ∈X(Mpn/qn )

ei `CS(ρ)

we get first

µ0
n =

∫
X(M)

Res∗r/s |dθ|+O

(
1
n

)
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and for ` > 0

µ`n = 1√
2n

l∑
k=0

∑
ρ,k/Resr/s(ρ)=π kl

exp
(
−2 iπnk

2

4` +i `CS(ρ)− i CSk/lr/s(ρ)
)

+O

(
1
n

)
.

Hence, we recover the behaviour that we observed for Lens spaces and
Brieskorn spheres. The measure converges to a uniform measure µ∞ and the
renormalised measure

√
n(µn−µ∞) has an oscillating behaviour controlled

by representations in X(M) with rational angle along Tr/s.

2. Intersection of Legendrian subvarieties

We will prove Theorem 1.3 in the more general situation of curves im-
mersed in a torus. Indeed, the problem makes sense in an even more general
setting that we present here.

2.1. Prequantum bundles

Definition 2.1. — Let (M,ω) be a symplectic manifold. A prequantum
bundle is a principal T-bundle with connection whose curvature is ω.
It is well-known that the set of isomorphism classes of prequantum bun-

dles is homogeneous under H1(M,T) and non-empty if and only if ω van-
ishes in H2(M,T). Let us give three examples:

(i) Take R2 × T with coordinates (x, y, θ) and set λ = dθ + 1
2π (xdy −

ydx). This gives a prequantum bundle on R2. Dividing by the action
of Z2 given by

(2.1) (m,n) · (x, y, θ) = (x+ 2πm, y + 2πn, θ +my − nx)

gives a prequantum bundle π : L→ T2.
(ii) Any complex projective manifold M ⊂ Pn(C) has such a struc-

ture by restricting the tautological bundle whose curvature is the
restriction of the Fubini–Study 2-form.

(iii) The Chern–Simons bundle over the character variety of a surface.
In all these cases, there is a natural subgroup of the group of symplec-

tomorphisms of (M,ω) which acts on the prequantum bundle. The group
SL2(Z) acts in the first case and the mapping class group in the third case.
In the second case, a group acting linearly on Cn+1 and preserving M will
give an example.

TOME 69 (2019), FASCICULE 2
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2.2. Legendrian submanifolds and their pairing

Consider a prequantum bundle π : L → M where M has dimension 2n
and denote by λ ∈ Ω1(L) the connection 1-form. By Legendrian immersion
we will mean an immersion i : N → L where N is a manifold of dimension
n such that i∗λ = 0. This condition implies that i is transverse to the fibres
of π and hence π ◦ i : N →M is a Lagrangian immersion.

Definition 2.2.
(1) Given i1 : N1 → L and i2 : N2 → L two Legrendrian immersions,

we will say that they are transverse if it is the case of π ◦ i1 and
π ◦ i2.

(2) Given such transverse Legendrian immersions and an intersection
point, i.e. x1 ∈ N1 and x2 ∈ N2 such that π(i1(x1)) = π(i2(x2)) we
define their phase φ(i1(x1), i2(x2)) as the element θ ∈ T such that
i2(x2) = i1(x1) + θ.

(3) The phase measure φ(i1, i2) is the measure on the circle defined by

φ(i1, i2) =
∑

π(i1(x1))=π(i2(x2))

δφ(i1(x1),i2(x2)) .

IfM is a 3-manifold obtained asM = M1∪M2 then, assuming transver-
sality, the Chern–Simons measure of M is given by µM = φ(CS1,CS2)
where CSi : X(Mi)→ L is the Chern–Simons invariant with values in the
Chern–Simons bundle.

2.3. Immersed curves in the torus

Consider the prequantum bundle π : L → T2 given in the first item of
Example 2.1. We consider a fixed Legendrian immersion i : [a, b]→ L and
for any coprime integers p, q the Legendrian immersion

ip/q : T→ L, ip/q(t) = (pt, qt, 0) .

Our aim here is to study the behaviour of φ(i, ip/q) when (p, q)→∞.
We first lift i to an immersion I : [a, b] → R2 × R of the form I(t) =

(x(t), y(t), θ(t)). By assumption we have θ̇ = − 1
2π (xẏ − yẋ). For instance,

lifting ip/q we get simply the map Ip/q : t 7→ (pt, qt, 0).
Let r, s be integers such that A = ( p rq s ) has determinant 1. Take FA :

R2 → R the function

FA(x, y) = 1
2π (sx− ry)(qx− py) .

ANNALES DE L’INSTITUT FOURIER
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A direct computation shows that this function satisfies (m,n).Ip/q(t) =
(pt+2πm, qt+2πn, F (pt+2πm, qt+2πn)). We obtain from it the following
formula:

(2.2) φ(i, ip/q) =
∑

a6t6b,qx(t)−py(t)∈2πZ

δθ(t)−F (x(t),y(t)) .

If we put i = i0/1 this formula becomes φ(i0/1, ip/q) =
∑p−1
k=0 δ2π rk2

p

. This
measure is related to the usual Gauss sum in the sense that denoting by q∗
an inverse of q mod p we have:∫

ei θ dφ(i0/1, ip/q)(θ) =
∑

k∈Z/qZ

exp
(

2 iπ q
∗k2

p

)
.

This formula is the same as the one obtained for the Lens spaces in
Subsection 1.2.1. The two Legendrian immersions i0/1 and ip/q correspond
to the two solid tori which glued together provide L(p, q).
Suppose that pn = pn− r and qn = qn− s. A Bézout matrix is given by

An =
( pn−r p
qn−s q

)
. Up to the action of SL2(Z), we can suppose that p = s = 1

and q = r = 0 in which case FAn(x, y) = − y
2π (x + ny). We get from

Equation (2.2) the following formula for µ`n = 1
n

∫
ei `θ dφ(i, ipn/−1)(θ):

(2.3) µ`n = 1
n

∑
x(t)+ny(t)∈2πZ

a6t6b

exp
(

i `
(
θ(t) + y(t)

2π (x(t) + ny(t))
))

.

Taking ` = 0, we are simply counting the number of solutions of x(t) +
ny(t) ∈ 2πZ for t ∈ [a, b]. Assuming that y is monotonic, the number of
solutions for t ∈ [a, b] is asymptotic to |y(b)− y(a)|. Hence the asymptotic
density of intersection points is i∗|dy| and we get

lim
n→∞

µ0
n =

∫ b

a

i∗|dy| .

To treat the case ` > 0, we need the following version of the Poisson
formula:

Lemma 2.3. — If f, g : [a, b] → R are respectively C1 and continuous
and f is piecewise monotonic, then if further f(a), f(b) /∈ 2πZ we have∑

a6t6b,f(t)∈2πZ

g(t) = 1
2π
∑
k∈Z

∫ b

a

e− i kf(t) |f ′(t)|g(t) dt .

Applying it here, we get

µ`n = 1
2π
∑
k∈Z

∫ b

a

e− i k(x+ny)+i `(θ+ y
2π (x+ny))

∣∣∣∣ ẋn + ẏ

∣∣∣∣dt .
TOME 69 (2019), FASCICULE 2
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We apply a stationary phase expansion in this integral, the phase being
Φ = −ky + ly2/2π and its derivative being Φ̇ = (−k + ly/π)ẏ. We find
two types of critical points: the horizontal tangents ẏ = 0 and the points
of rational height y = π kl . We observe that when ẏ = 0 the amplitude is
O( 1

n ) and hence these contributions can be neglected compared with the
other ones, where y = π kl .
We compute Φ̈ = l

π ẏ
2 + (−k + ly/π)ÿ = l

π ẏ
2 and Φ = −πk

2

2l . As Φ̈ > 0,
the stationary phase approximation gives

µln = 1√
2n

∑
y=πk

l

e− in k2π
2l −i kx2 +i lθ +O

(
1
n

)
.

In order to give the final result, we give the following definition:

Definition 2.4. — The map t 7→ (t, π kl ,
kt
2 ) defines a flat section of L`

that we denote by ik/`1/0.

We can sum up the discussion by stating the following proposition.

Proposition 2.5. — Let i : T → L be a Legendrian immersion and
suppose that π ◦ i is transverse to ipn/−1 for n large enough and to the
circles of equation y = πξ for ξ ∈ Q.
Then writing i(t) = (x(t), y(t), θ(t)) and µ`n = 1

n

∫
ei `θ dφ(i, ipn/−1)(θ)

we have for all ` > 0:

µ`n = 1√
2n

∑
k∈Z/2`Z

∑
t∈T,y(t)=πk/`

e− inπ k2
2` +iφ

(
i(t),ik/l1/0(x(t))

)
+O

(
1
n

)
.

2.4. Application to Chern–Simons invariants

Let M be a 3-manifold with ∂M = T× T. We assume that X(M) is at
most 1-dimensional and that the restriction map Res : X(M) → X(∂M)
is an immersion on the smooth part and map the singular points to non-
torsion points. Then we know that Res(X(M)) is transverse to Tp/q for all
but a finite number of p/q, see [4].
Consider the projection map π : T2 → X(∂M) which is a 2-fold ramified

covering. We may decompose X(M) as a union of segments [ai, bi] whose
extremities contain all singular points. The restriction map Res can be
lifted to T2 and the Chern–Simons invariant may be viewed as a map
CS : [ai, bi] → L. Hence, we may apply to it the results of Proposition 2.5
and obtain Theorem 1.3.
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We may comment that the flat sections ik/`1/0 of L` over the line y = πk
`

induces through the quotient (x, y, θ) ∼ (−x,−y,−θ) a flat section of L`

that we denoted CSk/l0/1 over the subvariety Res−1
0/1(πk` ).

3. Chern–Simons invariants of coverings

3.1. General setting

Beyond Dehn fillings, we can ask for the limit of the Chern–Simons mea-
sure of any sequence of 3-manifolds. A natural class to look at is the case
of coverings of a same manifold M . Among that category, one can restrict
to the family of cyclic coverings. One can even specify the problem to the
following case.

Question 3.1. — Let p : M → T be a fibration over the circle and Mn

be the pull-back of the self-covering of T given by z 7→ zn. What is the
asymptotic behaviour of µMn?

This problem can be formulated in the following way. Let Σ be the fiber
of M and f ∈ Mod(Σ) be its monodromy. Any representation ρ ∈ X(M)
restricts to a representation Res(ρ) ∈ X(Σ) invariant by the action f∗ of
f on X(Σ). Reciprocally, any irreducible representation ρ ∈ X(Σ) fixed by
f∗ correspond to two irreducible representations in X(M).

The Chern–Simons invariant corresponding to a fixed point may be com-
puted in the following way: pick a path γ : [0, 1]→ X(Σ) joining the trivial
representation to ρ and consider the closed path obtained by composing
γ with f(γ) in the opposite direction. Then its holonomy along L is the
Chern–Simons invariant of the corresponding representation.
Understanding the asymptotic behaviour of µMn

consists in understand-
ing the fixed points of fn∗ on X(Σ) and the distribution of Chern–Simons
invariants of these fixed points, a problem which seems to be out of reach
for the moment.

3.2. Torus bundles over the circle

In this elementary case, the computation can be done. Let A ∈ SL2(Z)
act on R2/Z2. Its fixed points form a group GA = {v ∈ Q2, Av = v mod
Z2}/Z2. If Tr(A) 6= 2, which we suppose from now, GA is isomorphic to
Coker(A− Id) and has cardinality |det(A− Id)|.

TOME 69 (2019), FASCICULE 2
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Following the construction explained above, the phase is a map f : GA →
Q/Z given by f([v]) = det(v,Av) mod Z. Hence, the measure we are trying
to understand is the following:

µA = 1
|det(A− Id)|

∑
v∈GA

δ2π det(v,Av) .

Consider the `-th moment µ`A of µA. It is a kind of Gauss sum that can
be computed explicitly. The map f is a quadratic form on GA with values
in Q/Z. Its associated bilinear form is b(v, w) = det(v,Aw) + det(w,Av) =
det(v, (A−A−1)w). As A+A−1 = Tr(A) Id and det(A−Id) = 2−Tr(A) we
get b(v, w) = 2 det(v, (A − Id)w) mod Z. Hence, if 2` is invertible in GA,
then `b is non-degenerate and standard arguments (see [5] for instance)
show that |µ`A| = |det(A− Id)|−1/2. Hence we still get the same kind of
asymptotic behaviour for the Chern–Simons measure of the torus bundles
over the circle.
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