Université Grenoble Alpes

ANNALES DE
LINSTITUT FOURIER

Jeremy DANIEL

On somes characteristic classes of flat bundles in complex
geometry

Tome 69, n° 2 (2019), p. 729-751.
<http://aif.centre-mersenne.org/item /AIF_2019__69_2_729_0>

© Association des Annales de l'institut Fourier, 2019,
Certains droits réservés.

Cet article est mis & disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION — PAS DE MODIFICATION 3.0 FRANCE.

http://creativecommons.org/licenses/by-nd/3.0/fr/

s

MERSENNE

Les Annales de I'institut Fourier sont membres du
Centre Mersenne pour I’édition scientifique ouverte
Www.centre-mersenne.org


www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2019__69_2_729_0
http://creativecommons.org/licenses/by-nd/3.0/fr/

Ann. Inst. Fourier, Grenoble
69, 2 (2019) 729-751

ON SOMES CHARACTERISTIC CLASSES OF FLAT
BUNDLES IN COMPLEX GEOMETRY

by Jeremy DANIEL

ABSTRACT. — On a compact Kéahler manifold X, any semisimple flat bundle
carries a harmonic metric. It can be used to define some characteristic classes of the
flat bundle, in the cohomology of X. We show that these cohomology classes come
from an infinite-dimensional space, constructed with loop groups, an analogue of
the period domains used in Hodge theory.

RESUME. —  Sur une variété kihlérienne compacte X, tout fibré plat semi-
simple admet une métrique harmonique. On peut grace a elle définir certaines
classes caractéristiques du fibré plat, dans la cohomologie de X . Nous montrons que
ces classes de cohomologie proviennent d’un espace de dimension infinie construit a
partir de groupes de lacets, cet espace étant un analogue des domaines de périodes
de la théorie de Hodge.

1. Introduction

It is an open problem to determine which finitely presented groups I'
can be realized as the fundamental group of a compact Kéhler manifold.
Some obstructions come from classical Hodge theory, the simplest of which
asserting that b1 (') has to be even, because of the Hodge decomposition
on H'(X). Other results are obtained via non-abelian Hodge theory, see
e.g [19, Section 4] or [1, Chapter 7] for a general survey.

It would in particular be valuable to obtain restrictions on the cohomol-
ogy groups H*(T') for k > 2. In this direction, the following conjecture has
focused a lot of attention:

CONJECTURE 1.1 (Carlson-Toledo). — IfT is infinite and is the funda-

mental group of a compact Kédhler manifold, then there exists a subgroup
I" C T of finite index such that H*(I',R) # 0.

Keywords: harmonic bundles, non-abelian Hodge theory, flat bundles, loop groups, pe-
riod domains.
2010 Mathematics Subject Classification: 57R20, 22E67, 58 A14.



730 Jeremy DANIEL

Let T" be such a group and assume that I' admits a nonrigid irreducible
representation in GL,,(C), that is, a representation which can be deformed
to a non-conjugate one. Then, a theorem of Reznikov ([18, Proposition 9.1])
asserts that H?(I',R) # 0. This was proved in another way in [8] and we
will explain briefly the proof since it is one motivation of the present paper.

Let I' = m(X) and p be as above and denote by E, the flat bundle
on X associated with p. By the theorem of Corlette and Donaldson, there
exists a harmonic metric h on E,; we denote by ¢ € A°(X,End(E,)) the
Higgs field and by ¢* € A%1(X,End(E,)) its adjoint with respect to h, see
Section 2.1 for these notions. The differential form

(1.1) Bap = %Tr(qﬂcb*)

is closed and defines a cohomology class in H2(X,R). Using the machinery
of loop groups and infinite-dimensional period domains developed in [8], we
have proved that this class is integral on the universal cover 7 : X — X:

(1.2) 7B, € H*(X, 7).

The cohomologies of T, X and X are related by a spectral sequence that
gives the following exact sequence in low-degree cohomology:

0 — H*(T,R) — H*(X,R) — H*(X,R)".

If p and p’ are in the same connected component in the moduli space of
representations, then 7*[f2 , — B2 /] has to be zero in H? (X,R) because of
equation (1.2). Hence, |2, — f2,,/] lives in H?(I', R). On the other hand,
one shows that the function p — [B2,] € H?*(X,R) cannot be constant
unless p is rigid; this concludes the proof.

Our first motivation for this paper is to generalize equation (1.2) in the
following way. The differential forms
(1.3) Bok,p = ﬁ Tr ((qb A ¢*)k)
are closed and define cohomology classes in H?*(X,R). We will show that
the pullback of these classes on the universal cover X are integral, after a
suitable normalization. We can now explain the results and proofs of this
paper.

Very roughly, the infinite-dimensional period domain D is a complex
Hilbert manifold, which is homogeneous under the action of a real loop
group, that we denote A, GL(n,C). The representation p : I' = GL(n,C)
can be lifted to a representation p: I' = A, GL(n,C). The main theorem
of [8] states that the datum of E, endowed with the harmonic metric h
is equivalent to the datum of a holomorphic map F : X — D, which is
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CHARACTERISTIC CLASSES OF FLAT BUNDLES 731

equivariant under p and satisfies another condition of horizontality. The
map F' is called the period map.

In Section 3, we give explicit de Rham representatives for the cohomology
of a connected component Dy of D:

THEOREM 1.2. — The cohomology algebra H®(Dy, Q) is a polynomial
algebra generated by elements (zo)k=1,...n—1 in H*(Dy, Q). De Rham rep-
resentatives, that are (A, GL(n, C))o-invariant, are given by

(14) (ng)v((sl’}/, ceey 62k’}/)

_ W . /S S0 T (o) (8) - Eotor 1) ()b o) (9)) .

Here, &(0) =~~"(0)0:7(0).

We slightly abuse notations by considering elements of D as loops; this
will be valid under some identifications explained in Section 3.

We remark that a similar result is well known for the based loop group
QSU(n), see e.g. [16, Proposition 4.11.3]. To a large extent, Theorem 1.2
should be considered as a twisted version of this result.

The next step consists in relating the forms fay, , defined in equation (1.3)
with the forms zo,. We recall that F' : X — D is the period map and we
denote by 7 : X — X the universal cover of X.

THEOREM 1.3.
F*(2a1) = 2(—1)" 11" By, .

The proof of this theorem is a direct computation that uses the tools
of [8]. In particular this gives the desired integrality statement. We em-
phasize that such an integrality statement has no reason to be true on X
itself. Indeed, for k = 1, one shows that the class 2 , has to vary when the
representation p can be deformed. A similar statement should be true for
k > 2, but it does not look so easy to construct explicit examples.

The question of which representations p give integral cohomology classes
[B2k,p), beginning with the case k = 1 on a curve, seems interesting. In this
direction, we show the following;:

THEOREM 1.4. — If the flat bundle E,, underlies a variation of complex
Hodge structures, then the classes [Bax,,] live in H*(X,Z).

This follows from a classical computation of the curvature of the Hodge
bundles.

TOME 69 (2019), FASCICULE 2



732 Jeremy DANIEL

Organization of the paper. In Section 2, we recall some facts about
characteristic classes of flat bundles and we explain the consequences of
the existence of a harmonic metric. Some results about Kamber—Tondeur
classes are included but are not needed for our results. Section 3 is devoted
to the period domain D; we recall its relation with harmonic metrics and
then study its cohomology. In the final section 4, we prove Theorems 1.3
and 1.4.

Notations. By a vector bundle, we mean a complex vector bundle of
finite rank. If p : I' — GL(n, C) is a representation of the fundamental group
of a complex manifold X, we write E, for the induced flat bundle and D
for the flat connection. Gothic letters are used to denote the Lie algebras
of the corresponding Lie groups. Depending on the context, the letter p
denotes the space of Hermitian matrices in gl(n,C) (resp. in sl(n, C)).

Acknowledgments. I thank Bruno Klingler, Takuro Mochizuki and
Carlos Simpson for some useful discussions about the topic of this paper.
I also thank the referee for their careful reading.

2. Preliminaries

We are interested in flat bundles over complex manifolds which carry
a harmonic metric. Our aim is to emphasize that the vanishing of the
Kamber—Tondeur classes, which are odd degree characteristic classes of a
flat bundle, and the existence of the even degree characteristic classes (o
are both related to the harmonic metric. This suggests that the character-
istic classes PBof might be defined in a setting of pure differential geometry,
when the Kamber—Tondeur classes vanish.

2.1. Harmonic metrics

Definitions. Let X be a complex manifold and let p : 71 (X) — GL(n, C)
be a linear representation. If & is a Hermitian metric on the flat bundle E,,,
there is a unique decomposition of the flat connection

(2.1) D=V+w

such that:
e V is a metric connection for h: dh(u,v) = h(Vu,v) + h(u, Vv);

ANNALES DE L’INSTITUT FOURIER
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e w is a Hermitian 1-form with values in End(E,): h(wu,v) =
h(u, wv);

for every local sections u and v of E,.
We decompose V and w in (1,0) and (0, 1)-types:
V=0+0
w=0¢+o".

We emphasize that ¢ and ¢* are adjoint, meaning that ¢(Y) and ¢*(Y)
are h-adjoint, for every Y in T*9X.

DEFINITION 2.1. — The metric h is harmonic if the differential operator
0 + ¢ has vanishing square. In this case, we call ¢ the Higgs field.

By considerations of types, this is equivalent to the three following con-
ditions:
e 9> = 0; by the Koszul-Malgrange integrability theorem, 0 is then
the Dolbeault operator of a holomorphic structure on F,;
e J¢ = 0; saying that ¢ is holomorphic for this structure;
e O Np=0.

LEMMA 2.2. — If h is a harmonic metric, then V¢ = V¢* = 0.
Proof. — Since D is a flat connection,
D? = (VP +wAw)+Vw=0.

Both terms in the middle have to vanish since the first one is anti-Hermitian
with respect to h, whereas the second is Hermitian. Decomposing Vw in
types gives

dp + (0 + 0¢*) + 0p* =0

and the three terms have to vanish separately. Since d¢ = 0 is one of the
conditions for a harmonic metric, the four terms vanish. O

Existence result. If X is a compact Kéhler manifold, the existence of a
harmonic metric is not very restrictive as shown by the following theorem.

THEOREM (Corlette-Donaldson). — If X is a compact Kéhler manifold,
the flat bundle E, admits a harmonic metric if and only if the representation
p Is semisimple.

The harmonic metric is unique up to multiplication by a positive constant
on each irreducible flat subbundle of E,,.

TOME 69 (2019), FASCICULE 2



734 Jeremy DANIEL

We emphasize that ¢ and ¢* do not depend on the choice of a harmonic
metric. This existence result gives one of the two directions needed for the
fundamental theorem in non-abelian Hodge theory, that gives a correspon-
dence between flat and Higgs bundles, see e.g. [19] or [13].

2.2. Characteristic classes of flat bundles

Chern classes. Let X be a differentiable manifold and E be a vec-
tor bundle over X. The Chern classes of E are the simplest characteristic
classes that one can define; they live in the even degree cohomology of X.
We briefly recall their topological and geometrical constructions for anal-
ogy with the characteristic classes of flat bundles defined below; a basic
reference for this material is [15].

The vector bundle F is associated with a GL(n, C)-principal bundle P —
X. We denote by EGL(n, C) — BGL(n, C) the universal GL(n, C)-principal
bundle. Then, there exists a map f : X — BGL(n,C), unique up to homo-
topy, such that P is isomorphic to the pullback bundle f* EGL(n,C). The
cohomology algebra of BGL(n,C) is given by

H*(BGL(n,C),Z) = Z|cy, . . ., cnl,
where ¢y, is of degree 2k. The Chern classes of E are given by
cx(E) := f*(cx) € H*(X,Z).
We can also use Chern—Weil theory to construct the Chern classes. Let

Py, be the invariant polynomials on the Lie algebra gl(n,C) such that, for
any z in gl(n,C),

det ( - t—) ZPk

Let V be an arbitrary connection on F. Its curvature Fy is a 2-form with
values in gl(n, C). We define ¢, (E, V) = P, (Fv). This is a closed 2k-form on
X and it is a de Rham representative of c;(E) in H?*(X,R). In particular,
the cohomology class of ¢;(F, V) is independent of the connection V.

Kamber—Tondeur classes. From now on, we consider the case where
E = E, is the flat bundle associated to a representation p : m(X) —
GL(n,C). The Chern classes of E vanish since one can compute them with
the flat connection D, whose curvature Fp vanishes. We can nevertheless
define other characteristic classes, both in a topological and geometrical
ways. These Kamber—Tondeur classes, also known as Borel classes, first
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CHARACTERISTIC CLASSES OF FLAT BUNDLES 735

appeared in [12]. They can be considered as the imaginary parts of the
Cheeger—Simons differential characters of [7]. The following discussion is
inspired from [2, p. 304-306] .

Since E, is a flat bundle, it is associated with a GL(n,C)s principal
bundle P, — X, where GL(n,C)s is the group GL(n,C) endowed with
the discrete topology. There is a map f : X — BGL(n,C)s, unique up
to homotopy, such that P, — X is isomorphic to the pullback of the uni-
versal bundle EGL(n,C)s — BGL(n,C)s. By definition, the cohomology
H*(BGL(n,C)s) is the cohomology of the discrete group H*(GL(n,C)s).
One can also consider the continuous cohomology H?(GL(n,C)) computed
by using only continous cochains, and there is a forgetful map

H?(GL(n,C)) — H*(GL(n,C)s);

we refer to [22] and the references therein. The Kamber—Tondeur classes
are in the image of the composite map

(2.2)  H?(GL(n,C)) — H*(GL(n,C);) = H*(BGL(n,C)s) — H*(X).

By the Van Est isomorphism (see e.g. [22, p. 519]), the continuous co-
homology H?(GL(n,C)) is equal to the cohomology of the manifold U(n).
In Subsection 3.2, we will recall that H*(U(n)) is an exterior algebra on
generators o, as, . .., Qa,—1, where asgq1 is of degree 2k+1. The Kamber—
Tondeur classes ao11(E,) can be defined as the image of these generators
aop+1 under the map (2.2), up to some normalization constants.

An explicit construction of the Kamber—Tondeur classes can be given by
using an auxiliary metric h. Here, we follow closely [9]. Let h be a Hermitian
metric on E, and let w be the 1-form with values in End(E,) defined by
equation (2.1). Then, up to some normalization constants, the Kamber—
Tondeur classes asagy1(E,) are the cohomology classes of the closed forms

(2.3) 2t1(Ep, h) = Tr(w? 1),

Characteristic classes and harmonic metrics. We now assume that
X is a complex manifold and that the flat bundle F, admits a harmonic
metric. The following result first appeared in [17] as a crucial step for
proving the Bloch conjecture.

PROPOSITION 2.3. — If a flat bundle E, over X admits a harmonic
metric, then the Kamber-Tondeur classes cop41(E,) vanish for k > 1.

Proof. — We use the harmonic metric h in equation (2.3) to compute
de Rham representatives of the Kamber—Tondeur classes. We recall that
w = ¢+ ¢* and that ¢ A ¢ = ¢* A ®* = 0. Hence, in the wedge product

TOME 69 (2019), FASCICULE 2



736 Jeremy DANIEL

w2k only the terms (AP )A. .. (pAP*)Ad and (¢*AP)A---A(P* Ap) Ap*
do not vanish. However, their trace vanishes since
Tr((@AP )N (dAG)NP) =Tr(dA(GAP") N ... (9N GTY))
=Tr((pAP)ANS*A...)=0. O

On the other hand, we can use the harmonic metric to define other
cohomology classes. This paper deals with these characteristic classes.

PROPOSITION 2.4. — Let E, be a flat bundle over X that admits a
harmonic metric. Then, the differential forms

1
2.4 = ———Tr((¢p A o*)F
(24) ok = e T (0167
are closed and define real cohomology classes.

Proof. — If w is a form with values in End(E,) and V is an arbitrary

connection on F,, then
dTr(w) = Tr(Vw).

We can use for V the metric connection given in equation (2.1). By
Lemma 2.2, we obtain that dfay , is closed.

That these classes are real follows easily from the properties of the trace
and the fact that ¢ and ¢* are adjoint. |

We can compute the behaviour of these forms under direct sum and
tensor product of flat bundles:

PROPOSITION 2.5. — Let E, and E, be flat bundles over X, with har-
monic metrics hg, and hg ,. Then the flat bundles E, & E, (resp. E,QE,)
carry the harmonic metrics hg, © hEp, (resp. hg, ® hEp,),

Moreover, for these metrics, the following equations hold:

(2.5) Bok.pop = Bak,p + Pok,pr
(2.6) Bak,pp = tk(Ey) Bak,p + 1K(E)) Bak,pr -

Proof. — The statement about the harmonic metrics is an easy computa-
tion, see e.g. [19, p. 18] for the tensor product. The Higgs field of E, & E,y is
(¢, dp) and its adjoint is (¢}, ¢7,). Equation (2.5) is then straightforward.

The Higgs field ¢ of E, ® E, is ¢, ® 1 +1® ¢, and its adjoint ¢* is
¢, @1+ 1@ ¢;,. Hence, the wedge product ¢ A ¢ is given by

0" = ¢p0s @1+ 1Q Gp by + ¢, @ P% — G5 D @,

By taking the k-th power, we get something of the form
(60")" = (6p05)" ©1+1@ (8 p)" + -+

ANNALES DE L’INSTITUT FOURIER
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and one has to show that the sum of the terms in the dots has no trace.
This is a tedious computation and we prefer to postpone the proof of equa-
tion (2.6) to the end of Section 4.1, where we will use the results of this
paper. O

3. Infinite-dimensional period domain

We recall some of the results of [8] that give the relation between flat
bundles with harmonic metric and the period domain D. We then focus on
the study of its cohomology and give explicit de Rham generators.

3.1. Results of [§]

Period domain. Let A GL(n,C) be the loop group of GL(n,C), that is
the set of maps from S* to GL(n, C) that satisfy some regularity conditions.
The group structure is given by pointwise multiplication.

Remark 3.1. — The precise regularity that we ask is in general irrelevant.
We assume that a real number s > 3/2 is fixed and, unless otherwise stated,
elements in A GL(n, C) are loops with H® Sobolev regularity, in particular,
these loops are of C!-class. With this convention, A GL(n, C) is a complex
Hilbert—Lie group.

We denote by o : GL(n,C) — GL(n,C), A — (A*)~! the Cartan involu-
tion of GL(n, C).

DEFINITION 3.2. — The twisted loop group is

Ay GL(n,C) := {y € AGL(n,C) | a(y(\) = y(=\),A € S}.
The period domain is
D := A, GL(n,C)/ U(n),

where U(n) is identified to the closed subgroup of constant loops with values
in U(n).

The period domain is a real Hilbert manifold. It has in fact an invariant
complex structure J. Indeed, at the base-point, vectors in the tangent space
can be decomposed in Fourier series as

X)) =D A X"+ > A",

n<0 n>0

TOME 69 (2019), FASCICULE 2



738 Jeremy DANIEL

with A, in gl(n,C) satisfying A_,, = (—1)"T*A%. The complex structure
J acts on X as
(JX)A) =i A" =iy A\
n<0 n>0

It follows easily from the polar decomposition
GL(n,C) = exp(p). U(n)

that the period domain is diffeomorphic to the space Q, GL(n,C) defined
as
Q, GL(n,C) :={y € A, GL(n,C) | v(1) € exp(p)}.

Period map. We shall explain how these infinite-dimensional spaces are
related to flat bundles with a harmonic metric, over a complex manifold
X. Given such a bundle E,, we define connections Dy, for A in S*, by

Dy :=V+ Ao+ "
One checks that D, is flat, we denote its monodromy by

px 2 m(X) = GL(n,C).
This circle of representations can be considered as a single representation
with values in A GL(n, C):

p:mi(X) = AGL(n,C),y = (A = pa(7)).

In fact, p takes its values in A, GL(n,C). We call p the total monodromy
of the harmonic bundle.

By using the flat connection D, we can develop the harmonic metric A
and get a p-equivariant map f : X — GL(n,C)/U(n), the target space
being the space of Hermitian metrics. There is a projection map

p:D=A,GL(n,C)/U(n) - GL(n,C)/ U(n),
which is induced from the evaluation map at 1 € S*.

The main theorem of [8] is the following:

THEOREM 3.3. — If E, is a flat bundle with a harmonic metric, one can
define a period map F : X — D. This map is holomorphic and equivariant
under the total monodromy of the harmonic bundle. Moreover, F' lifts the
developing map of the metric f, with respect to the projection map p.

Of crucial importance for us will be the identification of the differential
of the period map. The following proposition is a reformulation of the
discussion in paragraph 3.2.4 of [8].

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 3.4. — Let x be in X and let ~, be in A, GL(n,C) such
that F(x) = v, -0, where o is the base-point in D. We write ;! : Tr@)D —
T,D for the isomorphism induced by v, *.

Using Fourier series in T, D, the map ~, ! o d,F is of the form

Vol od, F =g A7+ @i,

where ¢, is 1-form on T, X with values in End(C") and ¢ is its adjoint
with respect to the standard metric on C™.

Moreover, there is an isometry A, from E, endowed with the harmonic
metric to C" endowed with the standard metric, such that qu T, X —
End(C") and ¢,, : T, X — End(FE,) are conjugated under \;.

Remark 3.5. — We see that the differential of F' (translated to the base-
point of D) only involves the powers —1 and 1 of . This is the property of
horizontality of the period map.

3.2. Cohomological aspects

Homotopy type. The Lie group GL(n, C) retracts on its maximal com-
pact subgroup U(n) by the map r(exp(X)k) = k, where X is in p and k is
in U(n). We can use this retraction pointwise on a loop v in A, GL(n,C) to
show that the period domain D has the homotopy type of A, U(n)/ U(n) =
Q, U(n), where the index p, for periodic, stands for the loops that satisfy
v(A) = v(=A). By reparametrization, the space of periodic loops is home-
omorphic to the space of loops, so that:

LEMMA 3.6. — The period domain D has the homotopy type of QU(n).

Since 71 (U(n)) = Z, mo(QU(n)) = Z: this is well-known for continuous
loops and can be proved by approximation arguments for other regularities.
We recall from [8] that D can be seen as an open subset in QU(n). Under
this embedding, mo(D) = 2Z, since a loop in A, GL(n,C) has an even
winding number.

We will only be interested in the connected component of the basepoint
in D, that we denote Dy.

LEMMA 3.7. — The space Dy has the homotopy type of the quotient
space Ay SL(n,C)/SU(n) (equivalently of QSU(n)).

Proof. — Let j : GL(n,C) — C* x SL(n,C) be the diffeomorphism
given by
J(A) = (det A, A x Dy),

TOME 69 (2019), FASCICULE 2



740 Jeremy DANIEL

where D 4 is the diagonal matrix

1

(det A)~1

A loop v in A GL(n,C) is in A, GL(n, C) if and only if the loop jo-~ is in
A,C* x A, SL(n, C). The connected component of A,C* has the homotopy
type of the space AgS' of loops in S! with winding number zero. Since this
space is contractible, we get that the connected component of A, GL(n,C)
has the homotopy type of A, SL(n,C). We conclude the proof by taking
quotients; the homotopy equivalence A, SL(n, C)/ SU(n) = QSU(n) follows
from Lemma 3.6. O

Cohomology of SL(n,C). Let w = g~'dg be the Maurer—Cartan form
of SL(n,C). For k =1,...,n — 1, the forms

1

(2mi)Ft Tr(w?*1)

(31) Tok+1 =

are bi-invariant and define real cohomology classes in H*(SL(n,C),R).
10)]).

These cohomology classes are in fact rational (see for instance [6, (3
For future reference, we note that

1
(3.2) s is in H*(SL(n,C),Z) = Z

and is in fact an integral generator.
It is well-known that

(SL(’I’L (C) Q) A[l’g, e 7.’1}271,1],

where the right hand side is a free exterior algebra over the cohomology
classes zak11, see e.g. [4, Theorem 8.2], and the references therein.

Path fibration for the period domain. We will need explicit de
Rham generators of the cohomology of Dy. By Lemma 3.7, it has the ho-
motopy type of QSU(n), whose cohomology is well-known, see [16, Sec-
tion 4.11]. We could use this result on © SU(n) to solve our problem. We
prefer to compute it directly, by defining an analogue of the path fibration
that is used for the loop space 2 SU(n).

We define the twisted path space PSSL(n,C) as

PSSL(n,C):={~:[0,7] = SL(n,C) s.t.vis continuous and v(0) € exp(p)}

ANNALES DE L’INSTITUT FOURIER
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and we denote by Q¢ SL(n, C) the continuous version of Q, SL(n, C): that
is the space of continuous loops 7 : St — SL(n,C), such that o(y()\)) =
(=) for any X in St and (0) is in exp(p).

Let x : P¢SL(n,C) — SL(n,C),~y — ~(0) - ().

LEMMA 3.8. — The map x is a topological fibration; its fiber over the
neutral element is homeomorphic to Q¢ SL(n, C).

Proof. — We emphasize that the only regularity condition on loops is
the continuity. The fact that y is a topological fibration works as in the
usual setting of untwisted loop groups. The fiber over the neutral elements
is made of loops v such that v(r) = v(0)~* = o(v(0)). Such a loop defines
a loop 4 in Q¢ SL(n,C) by (e'?) = ~(0) if 0 is in [0,7] and F(e'?) =
o(y(6—m)) if 0 is in |7, 27]. The condition on + implies that ¥ is continuous;
the map ~y — 7 is clearly a homeomorphism from the fiber over the neutral
element to Q¢ SL(n, C). O

The topological fibration
Q¢ SL(n,C) —— P¢SL(n,C)

lx
SL(n,C)
gives a spectral sequence
EY? = HP(SL(n,C)) ® H1(Q% SL(n,C)) = HPT (P:(SL(n,C))).

Since PS(SL(n,C)) is contractible, the spectral sequence abuts to the co-
homology of a point. We get the following proposition, as in the untwisted
case.

LEMMA 3.9. — The cohomology of QS SL(n,C) is given by
H.(Qg SL(TL, (C)a Q) = @[y% Yqy - >y2n72},

where yoy, is a rational class of degree 2k that transgresses Tog1.

Proof. — The proof of this lemma is an application of the notion of
transgression that we briefly explain; a formal treatment can be found
in [3, Paragraph 5].

Consider a representative of the class xog11; we still denote it by zogy1.
Its pullback x*zor4+1 is a cocycle, hence a coboundary since PSSL(n,C)
has no cohomology. We write x*xort+1 = O7y2k. Let yor be the class in
H?(Q¢ SL(n,C)) of the restriction t*yar, where ¢ : Q¢ SL(n,C) —
P¢SL(n, C) is the inclusion. We say that yof, transgresses (the class) zog41.
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It is then an exercise using the spectral sequence to show that the classes
yar are generators of the cohomology algebra of QS (SL(n,C)). O

LEMMA 3.10. — The inclusion Q, SL(n,C) — Q¢ SL(n,C) is a homo-
topy equivalence.

Proof. — This is proved in great generality in [21, Theorem 4.6], for
untwisted free loops spaces. This paper also deals with based loop spaces
in Section 4.3

The interested reader can mimick the proofs for the twisted version. O

ProOPOSITION 3.11. — The cohomology of Dy is given by
H.(D07 Q) = Q[y27 Yay - - ay2n—2]7

where Yo, is a rational class of degree 2k that transgresses xaj41-

Proof. — This immediately follows from the previous lemmas and the
homotopy equivalence Dy = Q, SL(n, C). |

One has to be careful with the use of the word transgression in the propo-
sition since the period domain Dy appears only up to homotopy equivalence
in the twisted path fibration.

3.3. Proof of Theorem 1.2

Our aim is to give explicit de Rham representatives for the classes yo
that transgress the generators xa11 of the cohomology of SL(n,C). We
proceed in three steps.

Transgressed classes in the twisted path fibration. Let
e :[0,7] x PSSL(n,C) — SL(n,C)

be the evaluation map. We consider singular cocycles in SL(n, C) that rep-
resent the cohomology classes z3,...,z2,-1 and we denote them in the
same way. On the space [0, 7] x P¢SL(n,C), we have the cocycles e*xap+1
and we define the cochains o5 by

(3.3) ok = (€*@2p,11)\[0, 7] € C?*(PSSL(n, C), Q).

In this formula, the backslash stands for the slant product (see e.g. [14,
Chapter 13]) which is the analogue of the operation of integration along
fibers in differential geometry. We denote by o5 the restriction of gsx on

Q¢ SL(n, C), that is identified to the fiber over the neutral element in the
twisted path fibration.
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LEMMA 3.12. — The cochains ysp, are cocycles and their cohomology
classes transgress the classes —Tog11.

Proof. — Using the discussion on transgression in the proof of
Lemma 3.9, we have to compute 07y .

OYor, = 0 ((e*x2k+1)\[07 ﬂ)

= —(e*x2r4+1)\0[0, 7] since xai41 is closed
= —(Pr(z2r+1) = Po(@2641)),

where py and p, are the evaluation maps P¢SL(n,C) — SL(n,C) at 0
and 7.

On the other hand, x*(zar+1) = pi(zak+1) + p§(z2k+1). The map pg
factorizes through exp(p); we write py = ¢ o mg, where 7y : P, SL(n,C) —
exp(p) and ¢ : exp(p) — SL(n,C). Since exp(p) has no cohomology, there
exists a cochain 7o in exp(p) such that pf(zarr1) = 75 (0y2k)-

We get that O(g2r — 27572k) = X*(—22k+1). The restriction of gop —
27§ yar to the fiber Q¢ SL(n,C) is (cohomologous to) yz. This proves the
lemma. 0

PROPOSITION 3.13. — On Q¢ SL(n,C), the singular cocycle yay, is co-

homologous to —((eg1)*zak+1)\S*, where

es1 : ST x Q¢ SL(n,C) — SL(n,C)
is the evaluation map.

Proof. — Loops v in Q¢ SL(n, C) satisfy o(v(\)) = v(—A) and the path
cin Py SL(n,C) that corresponds to v is given by (o ). Since the circle St
decomposes as two half-circles, we have to show that both half-circles give
the same contribution. On the other hand, o*x254+1 = Zog+1 in cohomology
since the inclusion SU(n) — SL(n,C) is a homotopy equivalence. It easily
follows that integrating over S! is the same as integrating twice over the
half-circle parametrized by [0, 7. O

Transgressed classes in de Rham cohomology. We can eventually
work on €, SL(n,C). We recall that we assume that loops are in a H®
Sobolev space, with s > %, so that loops are of C'-class. In particular, the
evaluation map eg1 appearing in Proposition 3.13 is of C!-class and we can
give de Rham representatives of the cohomology classes ys.

Since we are only interested in having generators of the cohomology of
Q, SL(n, C), we will not care about the sign of ya, so that yo, transgresses
either xop or —xoy.
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PRrOPOSITION 3.14. — De Rham representatives for yop, are given by
the differential forms

(3.4) (Yor)y = (k + ;) W /Sl Tr (w(vf(e))wg’f) dé.
Here, wy is the 1-form on Q, SL(n, C) given by (wg)(dv) = v~1(0)(67)(6).

Proof. — Let 7y be a loop in Q¢ SL(n, C). By Proposition 3.13, de Rham
representatives for yop are given by

1

(ka‘)'Y(él’y’ R 62/1:7) =5 /5;1 ((esl)*x2k+1)7(9) (507 51’-% R 62k‘7)d0

2

One computes easily that

((631)*£2k+1)v(9) (59, 51’}/, .. 62k7) = $2k+1( (9) (51’}/(9) . ,(5%7(9)).

Also, observe that by the commutativity property of the trace,

Tr (w14 (6), 6:17(6), - - -, 6267(9)))
= (2k + 1) Tr (w(7/(0))w?* (5:17(0), . . ., 5217(6))) -

Using the definition of the forms xor4+1 (equation (3.1)), we conclude this
computation. O

Invariant forms. Our final step is to give other de Rham representatives
for the transgressed classes. As forms on Dy, they will be invariant under
the action of A, GL(n,C)o.

LEMMA 3.15. — The forms (k+ %)*lygk are cohomologous to the forms
Zok given by

(35) (ng) ((51’}/, .. (Sgk’y)

2771’f+1 / Z Tr 50(1)() --50(%—1)(‘9)&(%)(9)) dé,

where (£;)(0) = v~1(0)3;7(0).
Proof. — We define a (2k — 1)-form por_1 by

Uok—1 = W /Sl Tr (w(+/(6))wz* ) do.
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We compute its differential:

s = ey [T (07 O (005 1)) @0

- W /51 Tr ((—wew (v (0)) + 7~ H(0)dv (0)) Awp"
—w(v/(0))wg") do

- W/S Tr (7_1(9)d’)’/(9) A wgkfl) do

(((y=H(0)dy(0)) + w(+/(8))we) A w2ET) o,

|

~~

[N}

3
Nl

Ead

+

—
o

-

so that dpor—1 = (K + %)*1y2k — 2o O
Now, we can prove Theorem 1.2 of the introduction.

Proof of Theorem 1.2. — First, we insist that elements in Dy are not
loops themselves and the forms zs; given in the Theorem should for the
moment be considered as forms on 2, SL(n, C). Now, we remark that these
forms 2ok can be defined on A, SL(n,C) with the same formula and they
are clearly invariant under left multiplication by A, SL(n,C). They are also
invariant under right multiplication by the action of SU(n): this follows
immediately from the commutativity property of the trace and the fact
that, since a loop k in SU(n) is constant, multiplication by k commutes
with derivation.

This shows that the forms 29 are well-defined in A, SL(n,C)/SU(n) by
taking any ~ that lifts it to A, SL(n,C). This concludes the proof for the
period domain corresponding to the group SL(n, C). The similar statement
for the connected component Dy of the period domain for GL(n, C) follows
from Lemma 3.7. |

4. Characteristic classes of harmonic bundles

Now that we have described explicitly the cohomology of the period
domain, we can compute the pullback of the cohomogy classes by the period
map. This will give a proof of Theorem 1.3 and an integrality result as
an easy corollary. We then study the special case of variations of Hodge
structures and show that, in this case, the integrality result holds on X,
and not only on its universal cover X.
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4.1. Identification of the cohomology classes

Let X be a complex manifold and p : 71(X) — GL(n,C) be a linear
representation. We assume that the associated flat bundle E, carries a
harmonic metric h. By Section 3.1, there is a map F : X — D, which is
holomorphic, equivariant under the total monodromy p and horizontal, see
Proposition 3.4 and the remark following it. We can prove Theorem 1.3 of
the introduction that we recall:

THEOREM. — The following equality of 2k-forms holds:
F*(ng) = 2(—1)k+17r*ﬁ2k,p.

Proof. — Let x be in X. By Proposition 3.4, the differential d, F is given,
as a function of 6, by

Yol odoF =gy 1 gh e,

where 7, € A, GL(n,C) is such that F(z) = ~(x).0. Moreover, ¢, and
QE; are conjugated (by the same endomorphism) to ¢, and ¢}. Since the
definition of the forms zoj involves only a trace, we can do the computations
as if v, o d, F were equal to ¢,e” % +¢* e'?. We get that

(41) F*ng(Xl,...,ng)
y 1 —if * i6
= _ZW'/SITY<Z e(0)(d(Xo))e™ " —0" (Xo)) €'")

ogES,
(D Xpamy) e =" (Xo(ar)) eia)> de.

The factor —i comes from the derivative. In order to compute this expres-
sion, we recall that ¢ A ¢ = 0. This implies that a product involving two
consecutive terms of the kind qS(XU(l))e’iGqS(XU(H_l))e*iG will be can-
celled with another product involved in another permutation; of course the
same is true with ¢*. This gives:

F*ng(Xl, e ,ng)

= FU’CH%D,C - Tr ( > e(0)(O(Xo1)d" (Xog) - - 6" (Xo(2n))

( oeS,

- ¢*(X0(1))¢(Xa(2)) s ¢(XU(2k))> .
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By the commutativity property of the trace, the two summands (including
the minus sign) are the same, so that

F*ng(Xl, e ,ng)
2(—1)k+?

GO o ( Z £(@)0(Xo))0" (Xo@) - "¢*(Xa(2k))> .

ocSy,

By the definition of Ba,, (equation (2.4)), we get
F*ng = 2(—1)k+1ﬂ'*ﬁ2k’p.
That concludes the proof of Theorem 1.3. g

COROLLARY 4.1. — There exist universal rational constants qsp such
that, on the universal cover X :

Qo [Bar.,) € H** (X, 7).

Remark 4.2. — Following equation (3.2), one finds that ¢ = % The
reader who is interested in the other constants should consult page 237

of [5].

Using Theorem 1.3, we can finally prove Proposition 2.5, which deals
about the behaviour of the characteristic classes under tensor products.

Proof of Proposition 2.5. — The idea of the proof is to transfer the
computation of the characteristic classes of a tensor product of flat bundles
to a computation in the cohomology of the linear group.

Let E be a harmonic bundle of rank n and let E’ be a harmonic bundle
of rank m, over some complex manifold X. For any positive integer i, we
write D; for the period domain

D; := A, GL(i, C) /U (3).

We have period maps Fg : X - D, and Fg : X — D,,. Moreover, since
the computation is local, we can assume that X = X.

We consider now the period domain D,,,,,. The group GL(nm,C) can be
thought as the group of automorphisms of the vector space C" ® C™ so
that we get a map GL(n, C) x GL(m, C) — GL(nm, C). This induces a map
of the corresponding twisted loop groups and finally a map of the period
domains since U(n) x U(m) is sent to U(nm). We write

Jp : Dp X Dyy = Dy,

for this map.
The period map for the harmonic bundle E® E’ is given by jo (Fg, Fg/).
Let 2ok nm be the cohomology class in H?!(D,,,). By Theorem 1.3, if we
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compute j5 2ok nm in H2* (D, x D,y,), we will obtain a relation between the
characteristic classes on £ ® E’' and those on E and E’.

The classes 2o, were defined by transgressing classes o471 in the corre-
sponding special linear groups. If we denote by

jst : SL(n,C) x SL(m,C) — SL(nm,C)

the natural map between special linear groups, then it is clear that the maps
jsr and jp appear in a commutative diagram that relates the twisted path
fibrations of SL(n,C), SL(m, C) and SL(nm, C). This proves that the class
G5 2ok nm transgresses the class j&; Tokt1.nm in H2*1(SL(n, C)xSL(m, C)).

By the following lemma, j&; Tok+1,nm = M - Tag41,n + N - Tagt1,m. Lhis
proves that j5zoknm and m - 2o n + n - 22, transgress the same class,
hence they are equal. This concludes the proof of Proposition 2.5. |

LEMMA 4.3. — The following equality holds:
j§L$2k+1,nm =M Tokt1in TN L2kt1,m-

Proof. — We write w; the Maurer—Cartan form in SL(7, C). The pullback
of wpm is given by
T wnm = wp @1+ 1Q wyy,.
We compute its (2k + 1)-th power:

2k+1
. 2+ 1\ iy
reitt =3 (] Jeroui
=0

Taking the traces:
2k+1
Tr(j*w?k ) = Z <2k + 1) Tr(w!) A Tr(w?k177),
=0 N
In this sum, except for j = 0 or 5 = 2k + 1, one of the two factors in the
wedge product vanishes since the traces of the even powers of the Maurer—
Cartan form vanish. This proves the lemma. O

4.2. Variations of Hodge structures

Definitions. We consider variations of (complex polarized) Hodge struc-
tures. It is a classical principle due to Simpson that flat bundles that carry
a harmonic metric should be considered as a generalization of a variation
of Hodge structures. This has been made more precise by the notions of
twistor structure [20] and of loop Hodge structure [8].
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DEFINITION 4.4. — Let E, be a bundle, with flat connection D, that
is endowed with a harmonic metric h. A variation of Hodge structures on
(E,, D, h) is a smooth vector bundle decomposition

E,=E*

kEZ
such that:

e The decomposition is orthogonal with respect to h;

e The metric connection V, see equation (2.1), preserves the decom-
position;

e The Higgs field ¢ is a (1,0)-form with values in @, Hom(E}, E,_1);

e Its adjoint ¢* is a (0, 1)-form with values in @, Hom(Ej, Ej41).

We observe that the last property is a consequence of the others. Let us
write ¢ = >, ¢ and ¢* = >, ¢} for the adapted decompositions of the
Higgs field and its adjoint.

Curvature computations. The bundle Fj has a holomorphic structure
whose Dolbeault operator is 9, the (0, 1)-part of V. The Chern connection
of Ej with respect to this holomorphic structure and the harmonic metric
is V.

LEMMA 4.5. — The Chern curvature of E* is given by
F(Vpr) = —=(0h_1 A O + drs1 A &)
Proof. — This is well-known, see e.g. [11]. The equality D? = 0 gives
F(V)+oANd"+ "N =0.

We obtain the formula for F(V g«) by restricting everything to Ej. a

LEMMA 4.6. — For any positive integer [,

F(Vee)' = (=D ((@5_1 A o) + (Srs1 A 07)') -
Proof. — By Lemma 4.5, it is sufficient to remark that
(@k—1 A Ok) A (Prgr A dg) = (Pry1 A Pk) A (D1 A k) = 0.

This follows from ¢ A ¢ = ¢* A ¢p* = 0. |

Interpretation of the forms 35 ,. We want to show that the forms
Bak,p can be computed using the curvature of a bundle over X.

DEFINITION 4.7. — If E, = @ E}, is a variation of Hodge structures
over X, we denote by £, the bundle @ EP*.
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Remark 4.8. — A variant of the determinant of £, is considered in [10],
equation (7.13).
PROPOSITION 4.9. — The Chern character ch(E,, V) of £, is given by
1

Chl(gp, V) = —ﬁﬁgk.

Proof. — By definition, ch;(&,,V) = %(ﬁ)lTr(Fv(Sp)l). By Lemma 4.6,
we get

GINERY ' ! 1
e, ¥) = 5 (5 ) SR (T4 A 01)) 4 (G A 6301)

k

1 . l
— 5 (55) Sk (6 A 00) = (05 A 1))
’ k

I\D‘_

™

/i
e <2> zijr(wz_lwwl)

1
= —ﬁﬁ%-

3

We have proved Theorem 1.4 of the introduction:

THEOREM. — If the flat bundle E, is endowed with a variation of Hodge
structures, then the forms oy, , have integral cohomology classes.
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