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TOPOLOGICAL EQUIVALENCE OF HOLOMORPHIC
FOLIATION GERMS OF RANK 1 WITH ISOLATED

SINGULARITY IN THE POINCARÉ DOMAIN

by Thomas ECKL & Michael LÖNNE (*)

Abstract. — We show that the topological equivalence class of holomorphic
foliation germs of rank 1 with an isolated singularity of Poincaré type is determined
by the topological equivalence class of the real intersection foliation of the (suitably
normalized) foliation germ with a sphere centered in the singularity. We use this
Reconstruction Theorem to completely classify topological equivalence classes of
plane holomorphic foliation germs of Poincaré type and discuss a conjecture on the
classification in dimension > 3.
Résumé. — Nous démontrons que la classe d’équivalence topologique des

germes de feuilletages holomorphiques de rang 1 avec une singularité isolée de
type Poincaré est déterminée par la classe d’équivalence topologique du feuilletage
réel d’intersection du germe du feuilletage (normalisé) avec une sphère centrée
dans la singularité. Nous utilisons ce Theorème de Reconstruction afin de classi-
fier complètement les classes d’équivalence topologique des germes de feuilletages
holomorphiques planes de type Poincaré et nous discutons une conjecture sur la
classification en dimension > 3.

1. Introduction

As for isolated singularities of analytic set germs (see [3] in the case of
plane curve germs) a standard technique to study the topology of holo-
morphic foliation germs with isolated singularity looks at the intersection
of their integral manifolds with spheres centered in the origin (see [13]
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for a more general Morse-theoretic approach). The technique was partic-
ularly successful when analyzing holomorphic foliation germs represented
by vector fields, that is, foliation germs with 1-dimensional leaves: Guck-
enheimer [8] and Camacho, Kuiper and Palis [5] (who use polycylinders
instead of spheres) classify foliation germs represented by generic lineariz-
able vector fields, whereas Camacho and Sad [6] treat resonant cases of
plane foliation germs represented by holomorphic vector fields of Siegel
type.
Note that Ito [11] and Ito and Scardua [12] investigate a kind of reverse

situation: They show that a holomorphic vector field everywhere transversal
to a sphere has exactly one singularity in the ball bounded by the sphere,
but they do not further investigate the intersection foliation and its relation
to the original holomorphic vector field.

In this paper we first prove a reconstruction theorem for holomorphic
foliation germs represented by a vector field of Poincaré type, that is, the
linear part of the vector field has eigenvalues whose convex hull in C does
not contain 0 ∈ C: The topological equivalence class of such a holomorphic
foliation germ is uniquely determined by the real-analytic foliation obtained
on a sphere around the singularity when intersecting it with all the leaves of
a holomorphically equivalent, normalized foliation germ. One direction of
this topological equivalence was already observed by Arnol′d [1]; he showed
that the original foliation is topologically equivalent to the cone foliation
over the intersection foliation. For more details on the other direction see
Theorem 3.2 and the preceding discussion in Sections 2 and 3.
A similar reconstruction theorem for holomorphic foliation germs rep-

resented by vector fields of Siegel type (that is, not of Poincaré type and
the linear part has only non-zero eigenvalues) seems possible. The main
obstacles to prove such a theorem are missing normal forms and the fact
that leaves of such foliation germs may not intersect spheres around the
singularity transversally, but tangentially. In fact, results of Brunella and
Sad [4] suggest that at least in C2 transversality of the leaves to spheres
implies that the holomorphic foliation is of Poincaré type. However, in suf-
ficiently normal situations also in the Siegel case the intersection of leaves
and sphere still combine to a real-analytic foliation on the sphere, and the
tangential locus is the polar variety of Limón and Seade [13] with useful
properties.
In Sections 4 to 7 we use the Reconstruction Theorem 3.2 to completely

classify topological equivalence classes of plane holomorphic foliation germs
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TOPOLOGICAL EQUIVALENCE OF HOLOMORPHIC GERMS 563

represented by vector fields of Poincaré type. Some of the cases in this clas-
sification are well-known, for example by Guckenheimer’s Stability Theo-
rem [8] on foliation germs given by vector fields whose linear part has
R-linearly independent eigenvalues. Nevertheless we describe the topology
of the associated intersection foliations in these cases in full detail because
this description is missing in the literature and may be useful for classifi-
cation in higher dimensions. In Section 8 we speculate how to extend the
2-dimensional picture and Guckenheimer’s Stability to higher-dimensional
foliation germs represented by vector fields of Poincaré type.

Recently, Marín and Mattei presented a classification of topological
equivalence classes of plane holomorphic foliation germs satisfying weak
genericity assumptions [14], by exhibiting an invariant based on the reduc-
tion of plane holomorphic foliation singularities and the holonomy around
irreducible exceptional components of the reduction. However this classi-
fication does not cover the resonant cases discussed in Section 5 because
these are not of generic general type, in the terminology of [14] (see Re-
mark 5.5). In any case, Marín and Mattei give no explicit lists of topological
equivalent foliation germs.

Similarly, Ilyashenko and Yakovenko do not use their calculation of ho-
lonomy along the unique closed leaf of resonant foliation germs [10, 27.C]
to classify these germs.

2. Preliminaries on holomorphic foliation germs of rank 1

In this section we collect well-known definitions and results on holomor-
phic foliations with as much details as necessary to fix notations and certain
choices simplifying the later arguments. In essence, all of the following can
be found in the monograph [10].

Definition 2.1. — A germ of a holomorphic foliation of rank 1 in Cn
with an isolated singularity in 0 ∈ Cn is an equivalence class of pairs [U, θ]
where U ⊂ Cn is an open neighborhood of 0 with holomorphic coordinates
z1, . . . , zn and

θ = f1
∂

∂z1
+ · · ·+ fn

∂

∂zn
is a holomorphic vector field such that f1, . . . , fn ∈ O(U) vanish simulta-
neously only in 0.
Two such pairs [U, θ] and [U ′, θ′] are equivalent if there exists an open

neighborhood V ⊂ U ∩ U ′ of 0 ∈ Cn and a function h ∈ O∗(V ) such that

h · θ|V = θ′|V .
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564 Thomas ECKL & Michael LÖNNE

We denote such holomorphic foliation germs by F .
This definition is equivalent to other definitions of holomorphic foliation

germs, see the discussion in [10, I.2]. In particular, if [U, θ] represents a
holomorphic foliation germ F of rank 1 in Cn with an isolated singularity
in 0 ∈ Cn then for all p ∈ U−{0} there exists an open neighborhood V ⊂ U
of p such that the foliation restricted to V is the standard holomorphic
foliation in suitable holomorphic coordinates w1, . . . , wn on V centred in p,
that is,

θ(w1) = · · · = θ(wn−1) = 0.

Furthermore, the integral curves of θ in U are covered by the local leaves
or plaques of these local standard holomorphic foliations given by the in-
tersection of the level sets of w1, . . . , wn−1. These integral curves are called
the leaves of F .

We will consider the following topological equivalence relation on holo-
morphic foliation germs:

Definition 2.2. — Two holomorphic foliation germs F , F ′ of rank 1
with an isolated singularity in 0 ∈ Cn and represented by [U, θ], [U ′, θ′] are
called topologically equivalent if there exists a homeomorphism φ : V → V ′

of open neighborhoods V ⊂ U , V ′ ⊂ U ′ of 0 such that φ(0) = 0 and the
leaves of F in V are mapped onto the leaves of F ′ in V ′ by φ.

If φ is biholomorphic we say that F and F ′ are holomorphically equiva-
lent.

We will focus on a special type of holomorphic foliation germs:

Definition 2.3. — A holomorphic foliation germ of rank 1 with an
isolated singularity in 0 ∈ Cn represented by [U, θ] is said to be of Poincaré
type if the eigenvalues λ1, . . . , λn ∈ C of the linear part

A =
(
∂fj
∂zi

(0)
)
i,j=1,...,n

of θ =
∑n
j=1 fj

∂
∂zj

generate a convex hull not containing 0 ∈ C. Then the
tuple of eigenvalues (λ1, . . . , λn) ∈ Cn is said to be in the Poincaré domain.

The classical theorems of Poincaré and Poincaré–Dulac (see [2, §24.D
and E]) state that all holomorphic foliation germs of rank 1 with an isolated
singularity in 0 ∈ Cn of Poincaré type are even holomorphically equivalent
to such germs F of Poincaré type represented by an open subset U ⊂ Cn

ANNALES DE L’INSTITUT FOURIER
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containing 0 and a holomorphic vector field θ =
∑n
i=1 fi(z)

∂
∂zi

for which
the following hold:

(i) In U , the fi(z) can be developed into powers series in the variables
z1, . . . , zn.

(ii) The linear part A =
(
∂fj
∂zi

(0)
)
i,j=1,...,n

of θ is in Jordan normal
form.

(iii) If λ1, . . . , λn are the eigenvalues of A appearing with their algebraic
multiplicity, then the non-vanishing monomials zm1

1 . . . zmnn in fi(z),
with mi ∈ N0, satisfy

λi =
n∑
j=1

mjλj .

Note that condition (ii) implies that the linear term in fi(z) has the
form λizi or λizi + zi+1. In the latter case λi = λi+1 by the properties of
the Jordan normal form, hence all the non-vanishing monomials in these
linear terms satisfy condition (iii). For m = (m1, . . . ,mn) ∈ Nn0 a relation
λi =

∑n
j=1mjλj is called a resonance of the eigenvalues λ1, . . . , λn, and

the monomial zm := zm1
1 . . . zmnn is called a resonant monomial if it appears

in fi(z).

Remark 2.4. — If (λ1, . . . , λn) ∈ Cn is in the Poincaré domain then there
are only finitely many resonances λi =

∑n
j=1mjλj . Furthermore, a reso-

nance relation with λi on the left hand side is either the trivial resonance
relation λi = λi, or λi does not appear on the right hand side at all, that
is mi = 0. For proofs, see [2, §24.B]. Note finally that we do not require∑
imi > 2 as in [2] but only distinguish between the trivial resonant mono-

mial zi in fi(z) and non-trivial resonant monomials.

Remark 2.5. — Let F be a holomorphic foliation germ satisfying (i), (ii)
and (iii). For the tuple (λ1, . . . , λn) ∈ Cn in the Poincaré domain there
exists a maximal real constant c > 0 such that∣∣∣∣∣

n∑
i=1

λiti

∣∣∣∣∣ > c ·
n∑
i=1

ti,

for all real numbers t1, . . . , tn > 0. The number c can be interpreted as
the distance of the convex hull of λ1, . . . , λn in C from 0. By separately
rescaling the coordinates we can achieve that the entries of the matrix A
on the superdiagonal are arbitrarily small. If the entries are c

2n we will call
F normalized (see the next section).

TOME 69 (2019), FASCICULE 2



566 Thomas ECKL & Michael LÖNNE

Remark 2.6. — If n = 2 then every normalized holomorphic foliation
germ of rank 1 with an isolated singularity in 0 ∈ Cn of Poincaré type is
represented by a vector field of one of the following types:

(1) θ = λz1
∂
∂z1

+ z2
∂
∂z2

, where λ ∈ C− R,
(2) θ = λz1

∂
∂z1

+ z2
∂
∂z2

, where λ ∈ R>0,
(3) θ = (mz1 + zm2 ) ∂

∂z1
+ z2

∂
∂z2

, where m > 2, or
(4) θ = (z1 + 1

4z2) ∂
∂z1

+ z2
∂
∂z2

because the constant c of Remark 2.5 is
1 in this case.

3. The intersection foliation

In this section S2n−1
ε denotes the (real) 2n− 1-dimensional sphere in Cn

centered in 0 ∈ Cn with radius ε, and B2n
ε denotes the (real) 2n-dimensional

ball in Cn centered in 0 ∈ Cn with radius ε.
F is always a normalized holomorphic foliation germ of rank 1 with an

isolated singularity in 0 ∈ Cn of Poincaré type, and [U, θ] represents F ,
with θ =

∑n
i=1 fi(z)

∂
∂zi

. Furthermore, λ1, . . . , λn are the eigenvalues of the
linear part of θ appearing with their algebraic multiplicity, and c > 0 is
the real constant for the tuple (λ1, . . . , λn) ∈ Cn in the Poincaré domain
introduced in Remark 2.5.
Arnol′d [1, Thm. 5] observed that the leaves of holomorphic foliation

germs F as above intersect spheres S2n−1
ε with small enough radius ε ev-

erywhere transversally. In particular, in each point p ∈ S2n−1
ε the (real)

tangent spaces of the leaf of F through p and of S2n−1
ε intersect in a (real)

1-dimensional subspace. This yields a 1-dimensional distribution on the real
C∞-manifold S2n−1

ε denoted by F ∩ S2n−1
ε . This distribution is integrable

because it is 1-dimensional, see [16]. Therefore we obtain a real foliation
on S2n−1

ε with 1-dimensional leaves, also denoted by F ∩ S2n−1
ε and called

the real intersection foliation or trace foliation of F with S2n−1
ε .

Its leaves can be canonically oriented: In each point p ∈ S2n−1
ε choose

those vectors in the tangent subspace given by the distribution F ∩ S2n−1
ε

in p which together with the tangent vectors of the leaf of F through p

pointing away from 0 ∈ Cn represent the positive orientation of the complex
structure on the leaf. Taking in each point p ∈ S2n−1

ε a unit vector oriented
in that way yields a nowhere vanishing vector field on S2n−1

ε whose flow,
denoted by ΦF , has integral curves coinciding with the leaves of F ∩S2n−1

ε .

Definition 3.1. — Two real 1-dimensional foliations F ,G on the sphere
S2n−1 are called topologically equivalent if there exists a homeomorphism
φ : S2n−1 → S2n−1 mapping the leaves of F onto the leaves of G.

ANNALES DE L’INSTITUT FOURIER
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In [1], Arnol′d continued to show that for ε small enough the foliation
F ∩B2n−1

ε is topologically equivalent to the foliation of B2n−1
ε by the cones

over the leaves of F ∩ S2n−1
ε with vertex 0 ∈ Cn, and this equivalence is

realised by a homeomorphism ofB2n−1
ε on itself. This obviously implies that

topological equivalence of F and G follows from topological equivalence of
F ∩ S2n−1

ε and G ∩ S2n−1
ε .

It seems to be a well-accepted fact that the converse is also true, but
because of lack of reference (and in particular of a recipe to construct the
topological equivalence of the intersection foliations) we decided to present
this proof and construction in all details.

Theorem 3.2 (Reconstruction Theorem). — Two normalized holomor-
phic foliation germs F ,G with an isolated singularity in 0 ∈ Cn of Poincaré
type are topologically equivalent if, and only if the real intersection folia-
tions F ∩ S2n−1

ε and G ∩ S2n−1
ε , 0 < ε� 1, are topologically equivalent.

Proof. — As discussed above Arnol′d showed that F∩B2n−1
ε respectively

G ∩ B2n−1
ε is topologically equivalent to the foliation F̂ respectively Ĝ of

B2n−1
ε by the cones over the leaves of F∩S2n−1

ε resp. G∩S2n−1
ε with vertex

0 ∈ Cn. As already noticed that shows one direction of the Theorem.
To prove that a topological equivalence of F and G induces a topological

equivalence of the intersection foliations F ∩ S2n−1
ε and G ∩ S2n−1

ε , it is
enough to construct the latter one from a topological equivalence of the
cone foliations F̂ and Ĝ, in the sense of Definition 2.2.

By possibly decreasing ε to ε′ this topological equivalence can be realised
by an embedding HC : B2n

ε′ ↪→ B2n
ε such that HC(0) = 0, leaves of the

foliation cone over F̂ ∩ S2n−1
ε′ are mapped into leaves of the foliation cone

over Ĝ∩S2n−1
ε and the orientation of both the ambient space and the leaves

is preserved. Composing HC with the radial projection r : B2n
ε − {0} →

S2n−1
ε produces a continuous map

h : S2n−1
ε′

HC
↪−→ B2n

ε − {0}
r−→ S2n−1

ε

Since HC may map S2n−1
ε′ to a topological manifold in B2n

ε intersecting
the same radial line more than once, h may not be injective, and hence
not the wanted homeomorphism. But from h we will be able to construct
a homeomorphism g : S2n−1

ε′ → S2n−1
ε defining a topological equivalence of

F̂ ∩S2n−1
ε′ with Ĝ ∩S2n−1

ε . This shows the theorem since the cone structure
of F̂ implies that F̂ ∩ S2n−1

ε′ is topologically equivalent to F̂ ∩ S2n−1
ε , and

by construction, F̂ ∩ S2n−1
ε = F ∩ S2n−1

ε and Ĝ ∩ S2n−1
ε = G ∩ S2n−1

ε .
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Let LF̂,x denote the leaf of F̂ ∩ S2n−1
ε′ through x ∈ S2n−1

ε′ , and LĜ,y the
leaf of Ĝ ∩ S2n−1

ε through y ∈ S2n−1
ε . Let CF̂,x denote the radial cone in

B2n
ε′ with vertex in 0 over the leaf LF̂,x ⊂ S2n−1

ε′ , and similarly CĜ,y the
radial cone in B2n

ε with vertex in 0 over the leaf LĜ,y ⊂ S
2n−1
ε .

Claim 1. — h is a surjective map, and h(LF̂,x) = LĜ,h(x) for each
x ∈ S2n−1

ε′ .

Proof. — There exists ε′′ � ε such that B2n
ε′′ ⊂ HC(B2n

ε′ ), as HC is
an embedding fixing 0. Consequently, for every y ∈ S2n−1

ε , the segment
[y, 0] ⊂ B2n

ε intersects HC(B2n
ε′ ) in a point HC(x), with x ∈ S2n−1

ε′ . Hence
h(x) = y, and the surjectivity of h is shown.
The equality LĜ,h(x) = h(LF̂,x) follows from the fact that by defini-

tion, the topological equivalence HC maps CF̂,x bijectively onto CĜ,h(x) ∩
HC(B2n

ε′ ). �

We want to relate h to the flows ΦF̂ : S2n−1
ε′ × R → S2n−1

ε′ and ΦĜ :
S2n−1
ε × R → S2n−1

ε whose integral curves are the leaves of the real inter-
section foliations F̂ ∩ S2n−1

ε′ and Ĝ ∩ S2n−1
ε . Note that in general, ΦF̂ and

ΦĜ will not commute with h, that is

(h ◦ ΦF̂ )(x, t) 6= ΦĜ(h(x), t).

To obtain the correct relation, we lift ΦF̂ to a flow ΦF̃ on S2n−1
ε′ × R, by

setting

ΦF̃ ((x, t′), t) := (ΦF̂ (x, t), t+ t′), x ∈ S2n−1
ε′ , t, t′ ∈ R.

The integral curves of ΦF̃ define a foliation F̃ on S2n−1
ε′ × R whose leaves

project onto the leaves of F̂ on S2n−1
ε′ . Similarly,

ΦG̃((y, s′), s) := (ΦĜ(y, s), s+ s′), y ∈ S2n−1
ε , s, s′ ∈ R

defines a flow ΦG̃ and a foliation G̃ on S2n−1
ε ×R whose leaves project onto

the leaves of Ĝ on S2n−1
ε .

Let p1, p2 respectively q1, q2 denote the projections from S2n−1
ε′ × R re-

spectively S2n−1
ε × R to the first and second component. If U ⊂ S2n−1

ε′ re-
spectively V ⊂ S2n−1

ε are foliation charts of F̂ respectively Ĝ, then p−1
1 (U)

respectively q−1
1 (V ) are foliation charts of F̃ respectively G̃. Consequently,

h : S2n−1
ε′ → S2n−1

ε can be lifted exactly in one way to a continuous map

H̃ : S2n−1
ε′ × R→ S2n−1

ε × R
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TOPOLOGICAL EQUIVALENCE OF HOLOMORPHIC GERMS 569

such that p2 = q2 ◦ H̃, H̃(x, 0) = (h(x), 0) for all x ∈ S2n−1
ε′ and the leaves

of F̃ are mapped into the leaves of G̃. In particular, q1◦H̃ = h◦p1, and since
(ΦF̂ (x, t), t) = ΦF̃ ((x, 0), t) the point H̃(ΦF̂ (x, t), t) ∈ S2n−1

ε × R must be
in the same G̃-leaf as H̃(x, 0) = (h(x), 0). Hence there is an s ∈ R such that

ΦG̃((h(x), 0), s) = H̃(ΦF̂ (x, t), t),

and the defining equations of ΦG̃ and H̃ imply that

ΦĜ((h(x), s), s) = (h(ΦF̂ (x, t)), (q2 ◦ H̃)(ΦF̂ (x, t), t)).

Setting τ := q2 ◦ H̃ ◦ (ΦF̂ ×p2) : S2n−1
ε′ ×R→ R and comparing the second

and the first components yield s = τ(x, t) and

(3.1) h(ΦF̂ (x, t)) = ΦĜ((h(x), τ(x, t)).

This is the requested relation between h, ΦF̂ and ΦĜ .
By construction we have

(3.2) τ(x, 0) = 0.

To obtain further properties of τ we need to investigate the leaves LF̂,x
and LĜ,y of the real intersection foliations F̂ ∩ S2n−1

ε′ and Ĝ ∩ S2n−1
ε in

more details. First of all, we must carefully distinguish between the leaf
topology on LF̂,x = ΦF̂ ({x} × R) and LĜ,y = ΦĜ({y} × R) defined as the
finest topology such that ΦF̂|{x}×R respectively ΦĜ|{y}×R are continuous,
and the inclusion topology induced by the inclusion in S2n−1

ε′ respectively
S2n−1
ε . The leaf topology is always finer than the inclusion topology, and

the two topologies only coincide if the leaf is locally closed in S2n−1
ε′ respec-

tively S2n−1
ε . If LF̂,x respectively LĜ,y are not bijective images of {x} ×R

respectively {y}×R under ΦF̂ respectively ΦĜ then ΦF̂|{x}×R respectively
ΦĜ|{y}×R are periodic maps, and the images LF̂,x respectively LĜ,y are com-
pact both in leaf topology and inclusion topology. In particular, in that case
LF̂,x respectively LĜ,y are embedded circles in S2n−1

ε′ respectively S2n−1
ε .

Note also that ΦF̂|{x}×R and ΦĜ|{y}×R are universal coverings of LF̂,x and
LĜ,y endowed with the leaf topology.

Claim 2. — The leaf LF̂,x ⊂ S2n−1
ε′ is an embedded circle if, and only

if the leaf LĜ,h(x) ⊂ S
2n−1
ε is an embedded circle.

Proof. — Assume that LF̂,x is an embedded circle, hence compact. Since
h(LF̂,x) = LĜ,h(x) by Claim 1 and h is continuous in the inclusion topology,
LĜ,h(x) must be compact, hence closed. Then leaf and inclusion topology on

TOME 69 (2019), FASCICULE 2
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LĜ,h(x) coincide, so LĜ,h(x) cannot be homeomorphic to R in leaf topology.
Consequently, LĜ,h(x) is an embedded circle.
On the other hand, if LĜ,h(x) is an embedded circle then the cone leaf

CĜ,h(x) and hence the intersection CĜ,h(x) ∩ HC(S2n−1
ε′ ) is compact. But

the topological equivalence H−1
C maps CĜ,h(x) ∩ (HC(S2n−1

ε′ ) onto LF̂,x. So
LF̂,x is compact in the inclusion topology, hence compact in the coinciding
leaf topology, and hence an embedded circle, not a line. �

Using (3.1) and the functorial property of the flows ΦF̂ and ΦĜ we cal-
culate

ΦĜ(h(x), τ(x, t) + τ(ΦF̂ (x, t), t′)) = ΦĜ(ΦĜ(h(x), τ(x, t)), τ(ΦF̂ (x, t), t′))
= ΦĜ(h(ΦF̂ (x, t)), τ(ΦF̂ (x, t), t′))
= h(ΦF̂ (ΦF̂ (x, t), t′)) = h(ΦF̂ (x, t+ t′))
= ΦĜ(h(x), τ(x, t+ t′)).

If ΦĜ(h(x), · ) is injective this implies

(3.3) τ(x, t+ t′) = τ(x, t) + τ(ΦF̂ (x, t), t′).

If LF̂,x and LĜ,h(x) are embedded circles then ΦF̂|{x}×R and ΦG|{h(x)}×R

are periodic maps with periods TF̂,x and TG,h(x). Consequently,

τ(x, t+ t′) = τ(x, t) + τ(ΦF̂ (x, t), t′) + k(t, t′) · TG,h(x),

where k(t, t′) is an integer continuously depending on t, t′, hence a constant
k. Setting t = t′ = 0 we obtain k = k(0, 0) = 0 and thus (3.3).

In this situation, τ(x, · ) : R → R is the lifting of h : LF̂,x → LĜ,h(x) to
the universal coverings of the leaves along the flows ΦF̂ : {x} × R→ LF̂,x
and ΦĜ : {h(x)}×R→ LĜ,h(x). Since liftings preserve fibers of the coverings
this implies

τ(x, t+ TF̂,x) = τ(x, t) + l · TĜ,h(x).

Since HC(LF̂,x) is an embedded circle in CĜ,h(x) with 0 in its interior,
h : LF̂,x → LĜ,h(x) is homotopic to a homeomorphism. Since furthermore
HC preserves orientation, we conclude l = 1 and obtain:

(3.4) τ(x, t+ TF̂,x) = τ(x, t) + TĜ,h(x).

As a last property of τ we show:

(3.5) lim
t→∞

τ(x, t) =∞ and lim
t→−∞

τ(x, t) = −∞ :
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If LF̂,x and LĜ,h(x) are embedded circles, this follows from (3.4). Otherwise,
both ΦF̂|{x}×R and ΦĜ|{h(x)}×R are bijective. In that case, for all y ∈ LĜ,h(x)
the set of t ∈ R such that

y = h(ΦF̂ (x, t)) = ΦĜ(h(x), τ(x, t))

is bounded because the intersection of the line segment [y, 0] withHC(LF̂,x)
equals [y, 0] ∩ HC(S2n−1

ε′ ), hence is compact. On the other hand, |τ(x, t)|
may be arbitarily large, as h(LF̂,x) = LĜ,h(x). Both facts together contra-
dict limt→±∞ |τ(x, t)| 6= ∞. The signs are again as claimed because HC

preserves orientation.
The aim is now to modify τ to a continuous map σ : S2n−1

ε′ × R → R
which is strictly increasing and surjective for fixed x ∈ S2n−1

ε′ but still
satisfies a functorial property analogous to (3.3). We use σ to modify h to
a topological equivalence g of F̂ ∩ S2n−1

ε′ and Ĝ ∩ S2n−1
ε .

The modification of τ to σ and hence from h to g is done in two steps:
First, we cut off any “moving backwards” of the image of the leaf LF̂,x on
the leaf LĜ,h(x) by keeping the map stationary whenever such a backwards
move starts. Then we smoothen the stationary intervals to obtain a bijec-
tive map. For the image HC(LF̂,x) in CĜ,h(x) these steps may locally be
visualized as follows:

hhhhh�
���
�

A
A
�
��@

@@

HC(L
F̂,x

)
C
Ĝ,h(x)

L
Ĝ,h(x)

−−−→
hhhhh�

��

@
@@ −−−→

hhhhh�
��CC�
�
��J
JJ

Continuity of τ and (3.5) imply that µ(x, t) := maxt′6t{τ(x, t′)} defines
a continuous function µ : S2n−1

ε′ ×R→ R which is surjective and increasing
for fixed x. It holds that

(3.6)

µ(x, t+ t′) = max
t′′6t+t′

{τ(x, t′′)} = max
t′′′6t′

{τ(x, t′′′ + t)}

= max
t′′′6t′

{τ(Φ̂̂F (x, t), t′′′) + τ(x, t)}

= µ(ΦF̂ (x, t), t′) + τ(x, t).

µ(x, · ) is not necessarily strictly increasing. To modify µ to a strictly
increasing function without destroying (3.6) we introduce the growth func-
tion

γδ(x, t) := min
t<t′
{t′ : τ(x, t′) = τ(x, t) + δ} − t > 0,
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for a fixed δ > 0. It is continuous on S2n−1
ε′ × R, hence averaging µ by γδ

leads to the continuous function

σ(x, t) := 1
γδ(x, t)

∫ t+γδ(x,t)

t

µ(x, t′)dt′

which is strictly increasing and surjective onto R for fixed x, hence contin-
uously invertible. Using (3.3) we see that γδ(x, t+ t′) = γδ(ΦF̂ (x, t), t′) and
together with (3.6) this implies

(3.7) σ(x, t+ t′) = σ(ΦF̂ (x, t), t′) + τ(x, t).

Claim 3. — The map g : S2n−1
ε′ → S2n−1

ε , x 7→ ΦĜ(h(x), σ(x, 0)) defines
a homeomorphism inducing a topological equivalence of F̂ ∩ S2n−1

ε′ and
Ĝ ∩ S2n−1

ε .

Proof. — If ΦĜ(h(x), σ(x, 0)) = ΦĜ(h(y), σ(y, 0)) then h(y) is in the
same Ĝ-leaf as h(x), hence y is in the same F̂-leaf as x, hence there is
t ∈ R such that y = ΦF̂ (x, t). Using (3.1), (3.7) and the functorial proper-
ties of the flow ΦĜ we calculate

ΦĜ(h(x), σ(x, 0)) = ΦĜ(h(y), σ(y, 0)) = ΦĜ(h(ΦF̂ (x, t)), σ(ΦF̂ (x, t), 0))
= ΦĜ(ΦĜ(h(x), τ(x, t)), σ(ΦF̂ (x, t), 0))
= ΦĜ(h(x), τ(x, t) + σ(ΦF̂ (x, t), 0))
= ΦĜ(h(x), σ(x, t)).

If ΦĜ|{h(x)}×R is bijective, this implies σ(x, 0) = σ(x, t), hence t = 0 by
injectivity of σ for fixed x, hence y = ΦF̂ (x, 0) = x. If ΦĜ|{h(x)}×R is
periodic with period TĜ,h(x) and hence ΦF̂|{x}×R is periodic with period
TF̂,x then for some k ∈ Z we have

σ(x, t) = σ(x, 0) + k · TĜ,h(x) = σ(x, 0) + k · τ(x, TF̂,x) = σ(x, k · TF̂,x),

by (3.4) and (3.7). Injectivity of σ implies t = k · TF̂,x, hence y = ΦF̂ (x, k ·
TF̂,x) = x. So g is injective.

If y ∈ S2n−1
ε then there exists x ∈ S2n−1

ε′ such that y = h(x), since h is
surjective. Then y = ΦF̂ (h(x), 0). Since σ(x, · ) is surjective onto R there
exists t ∈ R such that

y = ΦĜ(h(x), σ(x, t)) = ΦĜ(h(x), τ(x, t) + σ(ΦF̂ (x, t), 0))
= ΦĜ(ΦĜ(h(x), τ(x, t)), σ(ΦF̂ (x, t), 0))
= ΦĜ(h(ΦF̂ (x, t)), σ(ΦF̂ (x, t), 0))
= g(ΦF̂ (x, t)),
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by (3.7), (3.1) and the functorial property of the flow ΦĜ . Hence g is sur-
jective.
As a bijective continuous map from a compact topological space to a

Hausdorff space, g is a homeomorphism. g is also mapping leaves of F̂ ∩
S2n−1
ε′ to leaves of Ĝ ∩S2n−1

ε , so g is a topological equivalence of F̂ ∩S2n−1
ε′

and Ĝ ∩ S2n−1
ε . �

This finishes the proof of the theorem. �

4. The case of R-linearly independent eigenvalues in
dimension 2

In this section, we only consider holomorphic foliation germs F around
0 ∈ C2 represented by vector fields of the form

λx
∂

∂x
+ y

∂

∂y
, λ ∈ C− R.

These foliation germs are invariant under the maps C2 → C2, (x, y) 7→
r(x, y) for all r ∈ R>0. Hence there is a real intersection foliation F ∩ S3

ε

for all ε ∈ R>0 as in Section 3, and we assume from now on ε = 1.

Lemma 4.1. — Let S1 × S1 act on S3 by (x, y) 7→ (xeit1 , yeit2). Then
the intersection foliation F ∩ S3 is invariant under this action.

Proof. — The 1-form ydx−λxdy corresponding to λx ∂
∂x + y ∂

∂y is pulled
back to

yeit2d(xeit1)− λxeit1d(yeit2) = ei(t1+t2)(ydx− λxdy)

by the action of S1 × S1. Hence the tangent directions of the intersection
foliation F ∩ S3 are not changed, and the foliation is invariant under the
action. �

For 0 < εx, εy < 1, denote the torus {(x, y) ∈ S3 : |x| = εx} by T xεx and
the torus {(x, y) ∈ S3 : |y| = εy} by T yεy . Then T

x
εx = T y√

1−ε2
x

.

Lemma 4.2. — T xεx intersects all the leaves of the intersection foliation
F ∩ S3 not lying on the coordinate axes exactly once and transversally.

Proof. — The real tangent vectors to the torus T xεx in a point (x, y) are
those real tangent vectors that are annihilated by the real differential forms

d(xx) = xdx+ xdx and d(yy) = ydy + ydy.
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The real tangent vectors to the leaf L(x,y) through (x, y) ∈ T xεx in (x, y) are
the R-linear combinations of the real and imaginary part of λx ∂

∂x + y ∂
∂y .

Since

(ydy + ydy)(λx ∂

∂x
+ y

∂

∂y
) = yy ∈ R and y 6= 0

only the imaginary part of λx ∂
∂x + y ∂

∂y can be tangent to T xεx . Since

(xdx+ xdx)(λx ∂

∂x
+ y

∂

∂y
) = λxx and x 6= 0

this can only be the case if Im(λ) = 0. But we assumed λ ∈ C− R, hence
the real tangent spaces of T xεx and L(x,y) intersect transversally, hence the
leaf L(x,y) ∩ S3 of F ∩ S3 and T xεx intersect transversally.
In particular, on a leaf of F ∩S3 different from {x = 0} and {y = 0} the

absolute value of the x-coordinate must always strictly increase or decrease.
Consequently, such a leaf intersects T xεx exactly once. �

For 0 < εx, εy < 1 and t ∈ R denote the disk {(x,
√

1− |x|2eit) ∈ S3 :
|x| < εx} by Dx

t,εx and the disk {(
√

1− |y|2eit, y) ∈ S3 : |y| < εy} by Dy
t,εy .

Lemma 4.3. — Dx
t,εx and Dy

t,εy intersect all the leaves of the intersection
foliation F ∩ S3 everywhere transversally.

Proof. — By the S1 × S1-invariance of the leaves of F ∩ S3 shown in
Lemma 4.1 we can assume that t = 0. Since Dx

0,εx is an open subset of
{y2 = 1 − |x|2} ⊂ C2, a smooth manifold for |x| < 1, the real tangent
vectors to Dx

0,εx are exactly those annihilated by the real and the imaginary
part of the differential form

ω = d(y2 + |x|2 − 1) = 2ydy + xdx+ xdx.

We have

ωRe = ydy + ydy + xdx+ xdx and ωIm = −i(ydy − ydy).

Let θ(x, y) denote the complex tangent vector λx ∂
∂x +y ∂

∂y to the leaf L(x,y)

through (x, y) ∈ Dx
0,εx . Then ωIm(θ(x, y)) = −iy2 ∈ iR − {0} since y ∈

R−{0}. But the real part of θ(x, y) is not tangent to both {y2 = 1− |x|2}
and S3 = {xx+ yy = 1} either:

ωRe(θ(x, y)) = 2y2 + λxx and d(xx+ yy)(θ(x, y)) = λxx+ yy,

hence the real part of the first number vanishes for Reλ = − 2y2

|x|2 , the second
for Reλ = − yy

|x|2 . Since y 6= 0 this cannot happen for the same λ. �
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Figure 4.1.

Figure 4.1 visualizes the behaviour of leaves of F ∩S3 in the cut-up solid
torus

⋃
06εx6ε T

x
εx (respectively

⋃
06εy6ε T

y
εy ) as decribed by Lemmas 4.2

and 4.3.

Theorem 4.4. — Let λ1x
∂
∂x + y ∂

∂y and λ2x
∂
∂x + y ∂

∂y represent two
holomorphic foliation germs F1,F2 in 0 ∈ C2, with λ1, λ2 ∈ C − R. Then
F1 and F2 are topologically equivalent.

Proof. — We will construct a topological equivalence of the intersection
foliations F1 ∩ S3 and F2 ∩ S3. Then the statement follows by the Recon-
struction Theorem 3.2.
Lemmas 4.2 and 4.3 show that every leaf of Fi in the tubular torus

{(x, y) ∈ S3 : 0 < |x| 6 1
2} is parametrized on the one hand by the

absolute value εx of the x-coordinate, on the other hand by the argument t
of the y-coordinate. The parametrisation by εx yields the homeomorphisms

Φ(i)
x : T1/2 × (0, 1/2]→ {(x, y) ∈ S3 : 0 < |x| 6 1/2}

mapping a pair (x, y) × εx to the unique intersection point of the leaf of
Fi ∩ S3 through (x, y) with T xεx .

Then Φ(2)
x ◦ (Φ(1)

x )−1 is a homeomorphism of the tubular torus {(x, y) ∈
S3 : 0 < |x| 6 1

2} into itself but might not be extendable to a homeomor-
phism of the solid torus {(x, y) ∈ S3 : 0 6 |x| 6 1

2}. To achieve that we
reparametrize the εx-interval (0, 1

2 ] using the second parametrization by the
argument of the y-coordinate: Every leaf L(x,y) through a point (x, y) ∈ T x1

2
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defines an invertible function φ
(i)
x : (0, 1

2 ] → [0,∞), mapping εx to t − t0
where t is the argument of the y-coordinate of the intersection point of
L(x,y) with T xεx and t0 is the argument of y. These functions are the same
for all such leaves because of the S1 × S1-invariance, and we always have
φ

(i)
x ( 1

2 ) = 0. Then

Φ(2)
x ◦

[
idTx 1

2
×((φ(2)

x )−1 ◦ φ(1)
x )
]
◦ (Φ(1)

x )−1

maps Dx
t, 1

2
and T xεx , 0 < εx 6 1

2 onto themselves. This implies that the
identity map on {x = 0}∩S3 extends this composition of maps to a home-
omorphism Φx of the solid torus {(x, y) ∈ S3 : 0 < |x| 6 1

2} mapping leaves
of F1 ∩S3 to leaves of F2 ∩S3. Furthermore, the restriction of Φx to T x1

2
is

the identity map.
In the same way we can construct a homeomorphism Φy of the solid

torus {(x, y) ∈ S3 : 0 < |y| 6 1
2} mapping leaves of F1 ∩ S3 to leaves of

F2∩S3. Since again the restriction of Φy to T x1
2
is the identity map Φx and

Φy glue to a topological equivalence of the intersection foliations F1 ∩ S3

and F2 ∩ S3. �

Remark 4.5. — The theorem is Guckenheimer’s result in dimension 2 [8].
The proof above yields the construction of an explicit topological equiva-
lence which is missing in Guckenheimer’s original argument. Another ex-
plicit topological equivalence is constructed in [5] using polycylinders in-
stead of balls.
Independently of intersection foliations, there exist a, b ∈ C with Re(a),

Re(b) > −1 such that (x, y) 7→ (x|x|a, y|y|b) is a topological equivalence of
F1 and F2 if Im(λ1) Im(λ2) > 0 (otherwise, divide λ2x

∂
∂x + y ∂

∂y by λ2 and
exchange x and y). This equivalence was pointed out by the anonymous
referee.

5. The resonant case in dimension 2

In this section, we only consider holomorphic foliation germs Fm around
0 ∈ C2 represented by vector fields θm of the form

(mx+ ym) ∂
∂x

+ y
∂

∂y
, m > 1.

Note that all these foliation germs are equal to the germs in Remark 2.6(3)
and (4), up to possibly rescaling the x-coordinate.
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Lemma 5.1. — The leaves of Fm intersect all spheres S3
ε , 0 < ε 6 1,

transversally. In particular the real intersection foliation Fm ∩ S3 on S3 =
S3

1 exists.

Proof. — The leaf of Fm through p = (x, y) does not intersect S3
ε

transversally in p if, and only if the holomorphic tangent vector θm(p)
is tangent to S3

ε in p if, and only if

(xdx+ ydy + xdx+ ydy)
(

(mx+ ym) ∂
∂x

+ y
∂

∂y

)
= xx+ yy + (m− 1)xx+ xym = 0.

But this is impossible since xx+ yy = ε2, (m− 1)xx > 0 and

|xym| = |x| · |y|m < εm+1 6 ε2,

since |x|, |y| 6 ε but never |x| = |y| = ε. �

Next, we analyse the leaves of the intersection foliations Fm ∩ S3.

Proposition 5.2. — The only closed leaf of Fm ∩ S3 is {y = 0} ∩ S3.
The closure of any leaf L(a,b) through a point (a, b) ∈ S3 − {y = 0} is
L(a,b) ∪ ({y = 0} ∩ S3). For a certain εy = εy(L(a,b)) with 0 < εy 6 1 the
leaf L(a,b) intersects a torus T yε′y

• in two distinct points if 0 < ε′y < εy,
• in one point if ε′y = εy and
• not at all if ε′y > εy.

Proof. — The holomorphic map

λ(a,b) : C→ C2, t 7→ ((a+ bmt)emt, bet)

defines the integral curve of the vector field (mx + ym) ∂
∂x + y ∂

∂y through
λ(a,b)(0) = (a, b), that is the leaf of Fm through (a, b). If (a, b) ∈ S3 the leaf
of Fm ∩ S3 through (a, b) is the λ(a,b)-image of the branch through t = 0
of the curve in C implicitely given by

1 = em(t+t)(aa+ bmat+ ab
m
t+ (bb)mtt) + bbet+t.

Decomposing t = tR+ itI into real and imaginary part and rearranging the
equation we obtain

(∗) (bb)mt2I + 2 Im(abm)tI + aa+ 2 Re(bma)tR
+ (bb)mt2R + bbe2(1−m)tR − e−2mtR = 0.

This is a quadratic equation in tI , with coefficients of t2I and tI independent
of tR.

TOME 69 (2019), FASCICULE 2



578 Thomas ECKL & Michael LÖNNE

Claim 4. — For tR 6 0 the constant term of (∗) is increasing with tR.

Proof. — When we derive the constant term with respect to tR we obtain
the gradient

2 Re(bma) + 2(bb)mtR + 2(1−m)bbe2(1−m)tR + 2me−2mtR

which is > 2e−2mtR + 2tR + 2(1 −m)e2tR − 2 for tR 6 0 since (a, b) ∈ S3

implies |a|, |b| 6 1 and |Re(bma)| < 1. But the function x 7→ e−2mx + x +
(1−m)e2x − 1 has derivative −2me−2mx + 2(1−m)e2x + 1 < 0 for x 6 0,
hence the gradient is always > 0 for tR 6 0, as it is > 0 for tR = 0. �

If tR → ∞ the constant term also tends to ∞. So we conclude: There
exists a t0 > 0 such that for all tR < t0 there are two solutions tI to the
equation (∗) symmetric to − Im(abm)

(bb)m
, and one solution tI = − Im(abm)

(bb)m
if

tR = t0.
In particular, if tR → −∞ we have y = bet → 0 which implies the claim

on the closure of L(a,b). Since this leaf intersects a torus T yε′y in all points
(a′, b′) of the leaf where |b′| = ε′y the last claim follows. In particular, the
maximal εy such that L(a,b) ∩ T yεy 6= ∅ is given by εy = |et0b|. �

Corollary 5.3. — All the leaves of Fm ∩ S3 away from {y = 0} are
uniquely parametrised by the points of the set

{(a, b) ∈ S3 : Im(abm) = 0, b 6= 0}.

Proof. — Since there is only one point on a leaf L(a,b) with maximal
distance εy(L(a,b)) to {y = 0}, these points uniquely parametrise all leaves
of Fm away from {y = 0}. Furthermore, (a, b) is such a point on L(a,b) if
for t = 0 the linear and constant term of (∗) vanish. This is exactly the
case when Im(abm) = 0 since aa+ bb = 1. �

Theorem 5.4. — The intersection foliations Fm ∩ S3 are not topologi-
cally equivalent for different m = 1, 2, . . . .

Proof. — Assume that Φ : S3 → S3 is a topological equivalence of Fm1∩
S3 with Fm2 ∩ S3. Then Φ maps the only closed leaf of Fm1 to the only
closed leaf of Fm2 , that is, {y = 0} ∩ S3 to itself. Hence Φ maps the open
complement U1 := S3 −

⋃
06εy6ε1

T yεy of the solid torus
⋃

06εy6ε1
T yεy to

an open set Φ(U1) in S3 not intersecting {y = 0} ∩ S3 but containing
{x = 0} ∩ S3 if ε1 is small enough, by a compactness argument.
Let U1 be the union of all leaves of Fm1 ∩ S3 intersecting U1. Then the

complement V1 := S3 − (U1 ∪ {y = 0}) consists of leaves of the foliation
Fm1 ∩ S3. Corollary 5.3 shows that these leaves are uniquely parametrised
by points of {Im(abm1) = 0} ∩

⋃
0<εy6ε1

T yεy .
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Note that for 0 < εy < 1 the intersection {Im(abm) = 0} ∩ T yεy consists
of m connected curves given by m arg(b)− arg(a) ∈ π · Z on the torus T yεy ,
each of them of homology class (m, 1) with respect to the generating cycles
{arg(x) = 0} ∩ T yεy and {arg(y) = 0} ∩ T yεy . These curves are visualized in
Figure 5.1 when m = 2, as the red and the blue curve on the torus T yεy cut
up along a disk Dy

t . Hence {Im(abm) = 0}∩
⋃

0<εy6ε1
T yεy has m connected

components, and all of them can be retracted to a curve of homology class
(m, 1) in T yε1

. Since S3 − {y = 0} can be retracted to S3 ∩ {x = 0}, the
homology class of this curve in S3 − {y = 0} is m times the generator
represented by S3 ∩ {x = 0}.

The flow on S3 associated to Fm1 induces a retraction of V1 to
{Im(abm1) = 0}∩

⋃
0<εy6ε1

T yεy , hence V1 consists of m1 connected compo-
nents V ′1 , . . . , V

(m1)
1 . These components are visualized in Figure 5.1 when

m1 = 2, as the two regions enclosed by the red and the blue surfaces in the
cut-up solid torus

⋃
06εy6ε1

T yεy . By construction, Φ(V1) does not intersect
the complement of a solid torus, U2 := S3 −

⋃
06εy6ε2

T yεy if ε2 is close
enough to 1. Constructing V2 from U2 using Fm2 as V1 was constructed
from U1 using Fm1 , this implies Φ(V1) ⊂ V2, and Φ(V ′1) lies in one of the
m2 connected components of V2, say V ′2 .
Consequently, we have a commutative diagram of homeomorphisms and

embeddings,

V ′1
Φ−→ Φ(V ′1) ⊂ V ′2

∩ ∩ ∩
S3 − {y = 0} Φ−→ S3 − {y = 0} = S3 − {y = 0}.

This diagram induces the commutative diagram of group homomorphisms
of homology group

Z ·±1−→ Z −→ Z
·m1 ↓ ↓ ·m2

Z = Z = Z
The left and right vertical homomorphism are given by multiplications with
m1 andm2 because of the retractions constructed above, whereas the upper
right homomorphism is given by multiplication with an arbitrary integer
n.

Consequently, we obtain ±m1 = ±n ·m2, hence m1 > m2. Exchanging
the roles ofm1 andm2 we also obtainm1 6 m2 and thereforem1 = m2. �

Remark 5.5. — The holomorphic foliation germs Fm discussed in this
section are not of general type, in the terminology of [14]: One feature of
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Figure 5.1.

plane holomorphic foliation germs of general type is that the singularities
of the reduction are represented by vector fields without a linear part with
eigenvalue 0. But from (mx + ym) ∂

∂x + y ∂
∂y respectively the holomorphic

1-form ydx − (mx + ym)dy representing the same holomorphic foliation
germ we obtain 1-forms

t(1−m+ tmxm−1)dx− (mx+ tmxm)dt

respectively vector fields

(mx+ tmxm) ∂
∂x

+ t(1−m+ tmxm−1) ∂
∂t

in the (x, t)-chart with (x, y) = (x, xt) and

yds+ (s(1−m) + ym−1)dy respectively y
∂

∂y
+ ((m− 1)s+ ym−1) ∂

∂s

in the (s, y)-chart with (x, y) = (sy, y), by blowing up C2 in 0.
If m = 1 the blown-up foliation in the (x, t)-chart is represented by

x ∂
∂x + t2 ∂

∂t , yielding a reduced singularity in (x, t) = (0, 0) but not one of
general type.
Ifm > 2 the blown-up foliation has a singularity of type Fm−1 in (s, y) =

(0, 0). Thus further reducing this singularity will finally lead to another
reduced singularity not of general type.
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6. The non-resonant case of R-linearly dependent
eigenvalues in dimension 2

In this section, we only consider holomorphic foliation germs Fλ around
0 ∈ C2 represented by vector fields of the form

λx
∂

∂x
+ y

∂

∂y
, λ ∈ R>0.

As in Section 4 these foliation germs are invariant under rescaling with
positive real constants. Hence it is enough to consider the real intersection
foliations Fλ ∩ S3

1 = Fλ ∩ S3.

Lemma 6.1. — Every leaf of the intersection foliation Fλ ∩ S3 lies on a
torus T xεx , 0 6 εx 6 1.

Proof. — The flow of the vector field λx ∂
∂x + y ∂

∂y is given by (a, b, t) 7→
(aeλt, bet). Since λ ∈ R>0 the intersection of the associated integral mani-
fold through a point (a, b) ∈ S3 with S3 is parametrised by t 7→ (aeλit, beit).
Thus the leaf of Fλ ∩ S3 through (a, b) lies on the torus Tx(|a|). �

6.1. λ ∈ Q>0

Assume that λ = p
q , where p, q ∈ N are relatively prime.

Proposition 6.2. — Every leaf of the intersection foliation Fλ ∩ S3 is
closed. A leaf on the torus Tx(εx), 0 < εx < 1, is a curve of type (p, q),
where p describes the winding number of the leaf around {x = 0} ∩ S3

and q the winding number around {y = 0} ∩ S3. The holonomy in a point
(0, eit) ∈ {x = 0} ∩ S3 following the leaf in counter-clockwise direction is
given by the germ of the map Dt

x(εx) → Dt
x(εx), 0 < εx � 1, multiplying

the x-coordinate by e2πi· pq . Similarly, the holonomy of the leaf in a point
(eit, 0) following the leaf in counter-clockwise direction is described by the
germ of the mapDt

y(εy)→ Dt
y(εy) multiplying the y-coordinate with e2πi· qp .

The holonomy in all points of S3 away from {x = 0} ∪ {y = 0} is the
identity.

Proof. — Fλ is also represented by the vector field px ∂
∂x+qy ∂

∂y . The flow
of this vector field is given by (a, b, t) 7→ (aept, beqt), and the intersection of
the associated integral manifold through (a, b) with S3 is parametrised as
t 7→ (aepit, beqit), t ∈ R. These parametrisations are periodic, with period

2π
gcd(p,q) = 2π. The claims of the proposition follow. �
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Corollary 6.3. — Two foliation germs Fλ, Fµ, λ, µ ∈ Q>0, are topo-
logically equivalent if, and only if λ = µ or = 1

µ .

Proof. — By the Reconstruction Theorem 3.2 we only have to decide
whether the intersection foliations Fλ ∩ S3 and Fµ ∩ S3 are topologically
equivalent or not. Now, the topological types of the holonomy along closed
paths on leaves of these real foliation are topologically invariant, in partic-
ular the order of the holonomy germ. Consequently, Proposition 6.2 implies
that only F p

q
∩S3 and F q

p
∩S3 can be topologically equivalent, and in that

case the equivalence is given by (x, y) 7→ (y, x). �

6.2. λ ∈ R>0 −Q>0

As in the proof of Lemma 6.1 the leaf of the intersection foliation Fλ∩S3

through a point (a, b) ∈ S3 is parametrised by t 7→ (aeiλt, beit), hence lies
on Tx(|a|). Since λ is irrational the leaf is not closed but dense on the torus
Tx(|a|), for all a ∈ C such that 0 < |a| < 1. Thus we can describe the leaves
of Fλ ∩ S3 as follows:

Lemma 6.4. — The intersection foliation Fλ∩S3 has two closed leaves,
{x = 0} ∩ S3 and {y = 0} ∩ S3, whereas the closure of every other leaf is a
torus Tx(εx), 0 < εx < 1.

Next, we consider the continuous map f : S3 → [0, 1], (x, y) 7→ |x|.
Its fibers are f−1(εx) = Tx(εx), 0 6 εx 6 1. Lemma 6.4 shows that a
topological equivalence Φ of Fλ ∩ S3 with Fµ ∩ S3, λ, µ ∈ R>0 − Q>0,
induces a homeomorphism φ : [0, 1] → [0, 1] such that φ ◦ f = f ◦ Φ, with
φ({0, 1}) = {0, 1}. Note that φ(0) = 0 and φ(1) = 1 means that Φ maps
the closed leaves {x = 0} ∩ S3 respectively {y = 0} ∩ S3 onto themselves,
whereas φ(0) = 1, φ(1) = 0 indicates that Φ interchanges the closed leaves.
Furthermore, Φ maps the torus Tx(εx) homeomorphically onto the torus

Tx(φ(εx)), 0 < εx < 1. Recall that the (extended) mapping class group of a
2-dimensional torus T 2 ∼= S1×S1 is given by GL(H1(T 2),Z) [7, Thm. 2.5].
Identifying the tori Tx(εx) for different 0 < εx < 1 by rescaling the x- and
the y-coordinate the following statement makes sense:

Proposition 6.5. — If Φ : S3 → S3 is a topological equivalence of Fλ∩
S3 with Fµ ∩S3, λ, µ ∈ R>0−Q>0 then the restriction Φ|Tx(εx) : Tx(εx)→
Tx(φ(εx)) is of one of the types

(±1 0
0 ±1

)
or
( 0 ±1
±1 0

)
in the mapping class

group of a 2-dimensional torus, for all 0 < εx < 1.

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL EQUIVALENCE OF HOLOMORPHIC GERMS 583

Proof. — Interchanging the coordinates yields a homeomorphism Ψ :
S3 → S3, (x, y) 7→ (y, x) whose restriction to tori Tx(εx) is of type ( 0 1

1 0 )
in the mapping class group of a 2-dimensional torus. Composing Ψ with
a topological equivalence Φ of Fλ ∩ S3 with Fµ ∩ S3 such that φ(0) = 1,
φ(1) = 0 yields a topological equivalence Φ′ of Fλ ∩ S3 with F 1

µ
∩ S3 such

that φ′(0) = 0, φ′(1) = 1. Hence, from now on we will only consider that
case.
For all 0 < ε0 < 1 the topological equivalence Φ maps the solid torus⋃
06εx6ε0

Tx(εx) homeomorphically onto the solid torus
⋃

06εx6ε0
Tx(φ(εx))

and
⋃
ε06εx61 Tx(εx) onto

⋃
ε06εx61 Tx(φ(εx)), always mapping the tori

Tx(εx) onto Tx(φ(εx)). The fundamental groups of these solid tori are gen-
erated by Lx := {x = 0}∩S3 respectively Ly := {y = 0}∩S3, and a curve
of type (p, q) on the torus Tx(εx) (for the notation, see Proposition 6.2) is
mapped to the class of q · Lx respectively p · Ly by the inclusion into the
solid tori. Consequently, the homeomorphism Φ must map a curve of type
(p, q) on Tx(εx) to a curve of type (±p,±q) on Tx(φ(εx)). This implies the
claim on the isotopy classes of Φ|Tx(εx). �

To finally classify the holomorphic foliation germs Fλ, λ ∈ R>0 − Q>0,
we consider Kronecker foliations Fλ, λ ∈ R>0, on the 2-dimensional torus
T 2 = S1 × S1. These foliations are given by the orbits of the flow

t ·λ (eia, eib) = (ei(a+λt), ei(b+t)), t, a, b ∈ R.

Proposition 6.6. — Two Kronecker foliations Fλ and Fµ, λ, µ ∈ R,
are topologically equivalent if µ = aλ+b

cλ+d , where
(
a b
c d

)
∈ GL(2,Z).

Proof. — Let Q :=
(
a b
c d

)
∈ GL(2,Z). Then

φQ : T 2 → T 2, (eix, eiy) 7→ (ei(ax+by), ei(cx+dy))

is a homeomorphism with inverse map φQ−1 . Since for s = (cλ+ d)t,

φQ(t ·λ (eix, eiy)) = (ei(ax+by+(aλ+b)t), ei(cx+dy+(cλ+d)t))

= (ei(ax+by+µs), ei(cx+dy+s))

= s ·µ φQ(eix, eiy),

φQ is a topological equivalence of Fλ and Fµ. �

If λ, µ ∈ R>0 − Q>0 the converse is also true, as the following theorem
shows:

Theorem 6.7. — Let φ : T 2 → T 2 be a topological equivalence of
Kronecker foliations Fλ and Fµ, λ, µ ∈ R>0 −Q>0. If φ has the homotopy
type

(
a b
c d

)
in the mapping class group GL(2,Z) of T 2 then µ = aλ+b

cλ+d .
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Proof. — First of all, we may assume that
(
a b
c d

)
= ( 1 0

0 1 ), that is, φ is
isotopic to the identity: If not, Proposition 6.6 shows that Fµ is topologi-
cally equivalent to FQ−1·µ where Q−1 is the inverse matrix of Q =

(
a b
c d

)
.

Furthermore, the topological equivalence φQ−1 is of homotopy type Q−1 ∈
GL(2,Z), so the topological equivalence φQ−1 ◦ φ between Fλ and FQ−1·µ
is of homotopy type ( 1 0

0 1 ). Consequently, if we show that λ = Q−1 ·µ, then
as claimed

µ = Q · λ = aλ+ b

cλ+ d
.

For a given λ ∈ R>0 −Q>0 and a point P = (eia, eib) ∈ T 2, let

L
(λ)
P := {(ei(a+λt), ei(b+t))|t ∈ R} ⊂ T 2

be the leaf of Fλ through P . Following ideas from ergodic theory we express
the “slope” of the leaf L(λ)

P as a quotient of its topological intersection
numbers with two curves representing generators of H1(T 2,Z). To this
purpose we need arbitrarily long pieces of the leaf L(λ)

P starting in P and
ending in P ′ arbitrarily close to P . Here, we measure distances on T 2 using
the metric induced by the Euclidean metric on the universal covering R2.

So consider the preimage p−1(BP (ε)) of a ballBP (ε), 0 < ε� 1 under the
parametrisation p : R → L

(λ)
P ⊂ T 2 given by t 7→ (ei(a+λt), ei(b+t)). Since

λ is irrational, L(λ)
P is dense in T 2, hence p−1(BP (ε)) consists of infinitely

many intervals in arbitrarily large distances to 0 ∈ R. One of the intervals in
p−1(BP (ε)), say I0, contains 0, whereas the images of all the other intervals
have a non-zero distance to P . In particular, if ε→ 0 then the boundaries
of all the intervals not containing 0 tend to ±∞. This observation holds for
the intervals in the preimage of an arbitrary neighborhood basis of P .
Let I1 be the interval in p−1(BP (ε)) closest to the right to I0. As indicated

in Figure 6.1 we can construct a closed path γ(λ)
P,ε : [0, 1]→ T 2 starting and

ending in P , by following the leaf L(λ)
P to a point P ′ ∈ (I1) and connecting

P ′ to P by a path inside BP (ε).
Note that the homotopy class of γ(λ)

P,ε depends neither on the choice of
P ′ nor on the path connecting P ′ and P . Hence we can even construct a
smoothly embedded path in that way. By construction, this path covers
arbitrarily long segments of the leaf L(λ)

P if ε is small enough.
Next, set C1 := {(eit, 1) : t ∈ R} and C2 := {(1, eis) : s ∈ R}. The closed

curves C1, C2 ⊂ T 2 represent generators [C1], [C2] ∈ H1(T 2,Z) intersect-
ing exactly once in the point (1, 1) ∈ T 2. Let [γ(λ)

P,ε ] ∈ H1(T 2,Z) denote
the homological 1-class represented by γ(λ)

P,ε , and consider the topological
intersection numbers [γ(λ)

P,ε ] · [Ci] (see [15, 14.6]).

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL EQUIVALENCE OF HOLOMORPHIC GERMS 585

H
�

�A

H�

�A

BP (ε)

γ
(λ)
P,ε

qP ′ qP ′q
P
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�

Figure 6.1.

Claim 5. — λ = limε→0
[γ(λ)
P,ε

]·[C2]

[γ(λ)
P,ε

]·[C1]
.

Proof. — We calculate the intersection numbers using their differential-
topological interpretation, for smoothly embedded paths γ(λ)

P,ε (see [9, 5.2]).
Since L(λ)

P intersects C1 and C2 everywhere with the same orientation, we
just need to count the intersection points in γ

(λ)
P,ε ∩ Ci. Assuming for the

moment that P 6∈ C1 ∪ C2, for small enough ε we only need to count the
intersection points of the part of γ(λ)

P,ε lying on L
(λ)
P with Ci. This part is

the image p([0, bε]) of an interval [0, bε] ⊂ R under the parametrisation
p : R→ L

(λ)
P introduced above. Then[

λbε
2π

]
6 |p([0, bε]) ∩ C2| 6

[
λbε
2π

]
+ 1

and
[
bε
2π

]
6 |p([0, bε]) ∩ C1| 6

[
bε
2π

]
+ 1,

where [x] denotes the maximal integer 6 x ∈ R and |p([0, bε]) ∩ Ci| the
number of intersection points of p([0, bε]) and Ci. As discussed above, bε →
∞ if ε→ 0, and the claim follows.
If P ∈ C1 ∪ C2 the path in γ(λ)

P,ε connecting P ′ with P can be chosen to
intersect Ci only in a number of points bounded from above independently
of ε. Hence the claim also holds in that case. �

Now, we calculate:

λ = lim
ε→0

[γ(λ)
P,ε ] · [C2]

[γ(λ)
P,ε ] · [C1]

= lim
ε→0

[φ(γ(λ)
P,ε)] · [φ(C2)]

[φ(γ(λ)
P,ε)] · [φ(C1)]

= lim
ε→0

[φ(γ(λ)
P,ε)] · [C2]

[φ(γ(λ)
P,ε)] · [C1]

,
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by the Claim and since φ : T 2 → T 2 is a homeomorphism assumed to be
homotopic to the identity. But φ(L(λ)

P ) = L
(µ)
φ(P ), hence φ(γ(λ)

P,ε) is a path
constructed as above for the leaf L(µ)

φ(P ) of Fµ and the neighborhood basis
Uε := φ(BP (ε)) of φ(P ), so the above limit is equal to

lim
ε→0

[γ(µ)
φ(P ),Uε ] · [C2]

[γ(µ)
φ(P ),Uε ] · [C1]

= µ,

once again by the Claim. �

Theorem 6.8. — Two holomorphic foliation germs Fλ,Fµ, µ, λ ∈
R>0 −Q>0, are topologically equivalent if, and only if λ = µ or = 1

µ .

Proof. — By the Reconstruction Theorem 3.2 it is enough to show the
statement for the intersection foliations Fλ ∩ S3 and Fµ ∩ S3.

Exchanging the coordinates yields a topological equivalence Φ of Fλ∩S3

with F 1
λ
∩ S3. On the other hand, let Φ be a topological equivalence of

Fλ ∩ S3 with Fµ ∩ S3. As above, for 0 < εx < 1 the restriction Φ|Tx(εx)
maps the torus Tx(εx) to another torus Tx(ε′x) and induces a topological
equivalence of the Kronecker foliations Fλ = Fλ|Tx(εx) and Fµ = Fµ|Tx(ε′x).
Proposition 6.5 shows that Φ|Tx(εx) must be of type

(±1 0
0 ±1

)
or
( 0 ±1
±1 0

)
in the mapping class group of a 2-dimensional torus. Then Theorem 6.7
implies that λ = µ or λ = 1

µ . �

7. Topological equivalence classes in dimension 2

In each of the Sections 4, 5, 6.1 and 6.2 we identified the topological
equivalence classes of plane holomorphic foliation germs represented by
vector fields of a certain type, and the list in Remark 2.6 shows that every
plane holomorphic foliation germ is of one of these types. Consequently,
the classification is completed by the following statement:

Theorem 7.1. — The topological equivalence classes determined in
Sections 4, 5, 6.1 and 6.2 are pairwise distinct.

Proof. — If the eigenvalues of the linear part of the representing vector
field are R-linearly independent then there exists two closed leaves in the
intersection foliation, and the closure of any other leaf of the intersection
foliation consists of the leaf and these two closed leaves (see the results of
Section 4). If the eigenvalues are R-linearly dependent and have resonances
then there is only one closed leaf in the intersection foliation (see the results
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of Section 5). If the eigenvalues are Q-linearly dependent but the vector
field is non-resonant then every leaf in the intersection foliation is closed
(see the results of Section 6.1). Finally, if the eigenvalues are R-linearly
dependent but Q-linearly independent then all leaves in the intersection
foliation besides the two closed leaves have as closure a torus (see the
results of Section 6.2).
Thus, in each of the four cases, there exist leaves of the intersection

foliation with topological properties not occuring in the other cases. Hence
the Reconstruction Theorem 3.2 shows the theorem. �

8. Topological equivalence classes in dimension > 3

Guckenheimer’s Stability Theorem generalizes Theorem 4.4 to arbitrary
dimensions:

Theorem 8.1 ([8]). — Let
∑n
i=1 λizi

∂
∂zi

and
∑n
i=1 µizi

∂
∂zi

represent
two holomorphic foliation germs with an isolated singularity in 0 ∈ Cn
such that λ1, . . . , λn respectively µ1, . . . , µn are in the Poincaré domain
and pairwise R-linearly independent. Then F1 and F2 are topologically
equivalent.

Guckenheimer also showed that F1 and F2 are topologically equivalent
if, under the same assumptions on the λi, the vector field θ2 representing
F2 is obtained from

∑n
i=1 λizi

∂
∂zi

representing F1 by a sufficiently small
holomorphic perturbation. This implies the following classification result:

Proposition 8.2. — Let F1 and F2 be two holomorphic foliation germs
of rank 1 with an isolated singularity in 0 ∈ Cn represented by [U1, θ1] and
[U2, θ2] such that the eigenvalues of the linear parts of the vector fields θ1
respectively θ2 are in the Poincaré domain and pairwise R-linearly inde-
pendent. Then F1 and F2 are topologically equivalent.

Proof. — Assume that θ1 =
∑n
i=1 fi(z)

∂
∂zi

and θ2 =
∑n
i=1 gi(z)

∂
∂zi

. As
discussed in Section 2 we can assume that the non-linear terms of the
power series fi(z) and gi(z) consist of resonant monomials zm1

1 . . . zmnn with
respect to the eigenvalues λ1, . . . , λn of the linear part of θ1 respectively
zn1

1 . . . znnn with repect to the eigenvalues µ1, . . . , µn of the linear part of
θn, that is, the λ1, . . . , λn respectively µ1, . . . , µn satisfy the resonance λi =∑n
j=1mjλj respectively µi =

∑n
j=1 njµj for some integers mj , nj > 0.

Since λ1, . . . , λn respectively µ1, . . . , µn are in the Poincaré domain there
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are only finitely many of these resonant monomials, hence fi(z) and gi(z)
are polynomials.
Possibly after a holomorphic coordinate change we can furthermore as-

sume that the real parts of all the λi and µi are positive and that

0 < Reλ1 < · · · < Reλn respectively 0 < Reµ1 < · · · < Reµn.

Thus, resonances λi =
∑n
j=1mjλj respectively µi =

∑n
j=1 njµj always

satisfy mj = nj = 0 for j > i. Consequently, rescaling the ith coordinate
zi by a real factor εi such that 0 < ε1 � ε2 � · · · � εn changes the vector
fields θ1, θ2 to vector fields with non-linear parts arbitarily close to 0.
So Guckenheimer’s Stability Theorem implies that F1 respectively F2 are

topologically equivalent to the foliations represented by the linear parts∑n
i=1 λizi

∂
∂zi

respectively
∑n
i=1 µizi

∂
∂zi

of θ1 respectively θ2, and these
foliations are topologically equivalent by Theorem 8.1. �

Under the assumptions of the proposition the appearence of resonant
monomials involving only R-linearly independent eigenvalues does not in-
fluence the topological equivalence class. So for more general situations we
introduce the following notion:

Definition 8.3. — Let (λ1, . . . , λn) ∈ Cn be a set of complex numbers
in the Poincaré domain. A resonance λi =

∑n
j=1mjλj is called inessential

if not all the λj ∈ C with mj 6= 0 lie on the same real ray starting in the
origin. Otherwise the resonance is called essential.

The 2-dimensional classification in Sections 4–7 shows that R-linear
(in)dependence of the two eigenvalues of the linear part of a representing
vector field distinguishes the topological equivalence class of holomorphic
foliation germs of rank 1 with an isolated singularity in 0 ∈ C2 of Poincaré
type. In higher dimension we extend this dichotomy to the following invari-
ant:

Definition 8.4. — The ray configuration of a tuple (λ1, . . . , λn) ∈ Cn
is the ordered partition of this set into subsets consisting of those λi ∈ C
lying on the same real ray starting in the origin, and the subsets are ordered
by increasing angle of this ray with the positive real axis.
Two ray configurations are called equivalent if the sizes of the partition

subsets, in the order of the partition, are equal, or become equal after
reversing the order of one of the partitions.

Finally, the 2-dimensional classification shows that topologically equiva-
lent plane holomorphic foliation germs of rank 1 with an isolated singularity
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in 0 ∈ C2 of Poincaré type having equivalent ray configurations are also
holomorphically equivalent.

Combining all these observations we predict the following behaviour of
such foliation germs in arbitrary dimensions:

Conjecture 8.5. — Two holomorphic foliation germs of rank 1 with an
isolated singularity in 0 ∈ Cn of Poincaré type are topologically equivalent
if and only if the following two conditions are satisfied:

(1) The ray configurations of the tuples of eigenvalues of the linear part
of a vector field representing the foliation germs are equivalent.

(2) For every two corresponding partition subsets {i1, . . . , ik},
{j1, . . . , jk} ⊂ {1, . . . , n} of the two ray configurations, the restric-
tions of the two foliation germs to the linear subspaces

L1 := {zl = 0 : l 6= i1, . . . , ik} , L2 := {zm = 0 : m 6= j1, . . . , jk} ⊂ Cn

are holomorphically equivalent.

In particular, the conjecture predicts in full generality that the appear-
ence of inessential resonant monomials does not influence the topological
equivalence class.

In dimension 3 inessential resonances occur only in cases covered by
Guckenheimer’s Stability Theorem since eigenvalues on 3 different rays are
needed to produce such a resonance.
In dimension 4 inessential resonances not described by Guckenheimer’s

Stability Theorem may occur with ray configuration (1, 1, 2), of the form
λ2 = nλ1 + mλ3 + lλ4 where n,m, l are integers with n > 1, m, l > 0 and
m+ l > 1.
Then the conjecture predicts that the holomorphic foliation germs given

by the vector fields

λ1x
∂

∂x
+ (λ2y + xnzmwl) ∂

∂y
+ λ3z

∂

∂z
+ λ4w

∂

∂w

and

λ1x
∂

∂x
+ λ2y

∂

∂y
+ λ3z

∂

∂z
+ λ4w

∂

∂w

are topologically equivalent. The conjecture also predicts that the topolog-
ical equivalence class of the latter linear foliation germ only depends on the
topological equivalence class of the plane holomorphic foliation germ given
by λ3z

∂
∂z + λ4w

∂
∂w .
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