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ON A QUESTION OF N. TH. VAROPOULOS
AND THE CONSTANT C2(n)

by Rajeev GUPTA & Samya K. RAY (*)

Abstract. — Let Ck[Z1, . . . , Zn] denote the set of all polynomials of degree at
most k in n complex variables and Cn denote the set of all n-tuple T = (T1, . . . , Tn)
of commuting contractions on some Hilbert space H. The interesting inequality

KC
G 6 lim

n→∞
C2(n) 6 2KC

G,

where
Ck(n) = sup

{
‖p(T )‖ : ‖p‖Dn,∞ 6 1, p ∈ Ck[Z1, . . . , Zn],T ∈ Cn

}
and KC

G is the complex Grothendieck constant, is due to Varopoulos. We answer
a long–standing question by showing that the limit limn→∞

C2(n)
KC
G

is strictly big-

ger than 1. Let Cs
2[Z1, . . . , Zn] denote the set of all complex valued homogeneous

polynomials p(z1, . . . , zn) =
∑n

j,k=1 ajkzjzk of degree two in n-variables, where
((ajk)) is a n × n complex symmetric matrix. For each n ∈ N, define the linear
map An : (Cs

2[Z1, . . . , Zn], ‖ · ‖Dn,∞) → (Mn, ‖ · ‖∞→1) to be An(p) = ((ajk)).
We show that the supremum (over n) of the norm of the operators An; n ∈ N, is
bounded below by the constant π2/8. Using a class of operators, first introduced by
Varopoulos, we also construct a large class of explicit polynomials for which the von
Neumann inequality fails. We prove that the original Varopoulos–Kaijser polyno-
mial is extremal among a, suitably chosen, large class of homogeneous polynomials
of degree two. We also study the behaviour of the constant Ck(n) as n→∞.
Résumé. — Soit Ck[Z1, . . . , Zn] l’ensemble de tous les polynômes de degré

au plus k dans n variables complexes et Cn l’ensemble de tous les n-tuples T =
(T1, . . . , Tn) de contractions qui commutent sur un espace de Hilbert H. L’inégalité
intéressante

KC
G 6 lim

n→∞
C2(n) 6 2KC

G,

où
Ck(n) = sup

{
‖p(T )‖ : ‖p‖Dn,∞ 6 1, p ∈ Ck[Z1, . . . , Zn],T ∈ Cn

}
Keywords: Grothendieck Inequality, von Neumann Inequality, Varopoulos Operator,
Grothendieck Constant, Positive Grothendieck Constant.
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2614 Rajeev GUPTA & Samya K. RAY

et KC
G est la constante complexe de Grothendieck, est due à Varopoulos. Nous

répondons à une question de longue date en montrant que limn→∞
C2(n)

KC
G

est stric-

tement plus grand que 1. Soit Cs
2[Z1, . . . , Zn] l’ensemble des polynômes homo-

gènes complexes p(z1, . . . , zn) =
∑n

j,k=1 ajkzjzk de degré deux dans n-variables,
oú ((ajk)) est une matrice symétrique complexe n × n. Pour chaque n ∈ N, on
définit la carte linéaire An : (Cs

2[Z1, . . . , Zn], ‖ · ‖Dn,∞) → (Mn, ‖ · ‖∞→1) par
An(p) = ((ajk)). Nous montrons que le supremum (sur n) de la norme des opé-
rateurs An; n ∈ N, est borné inférieurement par la constante π2/8. En utilisant
une classe d’opérateurs, introduite par Varopoulos, nous construisons aussi une
grande classe de polynômes explicites pour laquelle l’inégalité de von Neumann
n’est pas satisfaite. Nous prouvons que le polynôme de Varopoulos–Kaijser est ex-
trémal parmi une grande classe convenablement choisie de polynômes homogènes
de degré deux. Nous étudions également le comportement de la constante Ck(n)
lorsque n→∞.

1. Introduction

Let C[Z1, . . . , Zn] denote the set of all complex valued polynomials in
n-variables. For any continuous function f : X → C, on a compact set X,
we let ‖f‖X,∞ denote its supremum norm, namely,

‖f‖X,∞ = sup{|f(x)| : x ∈ X}.

Let Dn denote the unit polydisc in Cn. The von Neumann inequality [15]
states that ‖p(T )‖ 6 ‖p‖D,∞ for all p ∈ C[Z] and for any contraction T on
a complex Hilbert space. For any pair of commuting contractions T1, T2,
a generalization of the von Neumann inequality: ‖p(T1, T2)‖ 6 ‖p‖D2,∞,
p ∈ C[Z1, Z2] follows from a deep theorem of Ando [2] on unitary dilation of
a pair of commuting contractions. For n ∈ N, let Cn denote the set of all n-
tuple T = (T1, . . . , Tn) of commuting contractions on some Hilbert space H.
In the paper [22], Varopoulos showed that the von Neumann inequality fails
for T in Cn, for some n > 2. He along with Kaijser [22] and simultaneously
Crabb and Davie [6] produced an explicit example of three commuting con-
tractions T1, T2, T3 and a polynomial p for which ‖p(T1, T2, T3)‖ > ‖p‖D3,∞.

For a fixed k ∈ N, define (see [23] and [19, p. 24]):

Ck(n) = sup
{
‖p(T )‖ : ‖p‖Dn,∞ 6 1, p ∈ Ck[Z1, . . . , Zn], T ∈ Cn

}
and let C(n) denote limk→∞ Ck(n).
Since the counterexample to the von Neumann inequality in three vari-

ables, due to Varopoulos and Kaijser [22], involves a (explicit) homoge-
neous polynomial of degree two therefore C2(3) > 1. From the von Neu-
mann inequality and its generalization to two variables, it follows that

ANNALES DE L’INSTITUT FOURIER



ON A QUESTION OF N. TH. VAROPOULOS AND THE CONSTANT C2(n)2615

C(1) = C(2) = 1. In the paper [23], Varopoulos shows that

(1.1) KC
G 6 lim

n→∞
C2(n) 6 2KC

G,

where KC
G is the complex Grothendieck constant defined below.

Definition 1.1 (Grothendieck Constant). — For a complex (real) array
A :=

((
ajk
))
n×n, define the following norm

(1.2) ‖A‖∞→1 := sup
{
|〈Av,w〉| : ‖v‖`∞(n) 6 1, ‖w‖`∞(n) 6 1

}
,

where v and w are vectors in Cn (resp. Rn). There exists a finite constant
K > 0 such that for any choice of unit vectors (xj)n1 and (yk)n1 in a complex
(resp. real) Hilbert space H, we have

(1.3)
∣∣∣ n∑
j,k=1

ajk〈xj , yk〉
∣∣∣ 6 K‖A‖∞→1

for all n ∈ N and A =
((
ajk
))
. The least such constant is denoted by

KG and is known as the Grothendieck constant. Note that the definition
of KG depends on the underlying field. When it is the field of complex
numbers C (resp. R), this constant is known as the complex (resp. real)
Grothendieck constant and is denoted byKC

G (resp. (KR
G)). It is known that

1.338 < KC
G 6 1.4049, and 1.66 6 KR

G 6
π

2log(1+
√

2) , see [20, §4]. Recently,
it has been proved in [5] that this upper bound of KR

G is strict which settles
a long–standing conjecture of Krivine [12, 13]. We refer the reader to [4]
for some explicit computations of this constant for small values of n. For
more on Grothedieck constant, we refer the reader to [20].

Since it is known that KC
G > 1, the inequality (1.1) is yet another way

to see that the von Neumann inequality fails eventually. We refer to the
inequality (1.1) as the Varopoulos inequality. In the paper [23], Varopoulos
had implicitly asked if limn→∞ C2(n) = KC

G? Recently, first named author
of this paper, has improved the Varopoulos inequality (1.1):

(1.4) KC
G 6 lim

n→∞
C2(n) 6 3

√
3

4 KC
G.

This inequality is proved by first obtaining a bound for the second derivative
of any holomorphic map f : Dn → D, namely, ‖D2f(0)‖∞→1 6 3

√
3

2 .

In this paper, we answer the question of Varopoulos in the negative by
improving the lower bound in the inequality (1.1). Indeed, we prove that
limn→∞ C2(n) > 1.118KC

G.

In what follows, for each p ∈ [1,∞] and n ∈ N, we denote the normed
linear space (Cn, ‖ · ‖p) by `p(n) and when the space is (Rn, ‖ · ‖p) then

TOME 68 (2018), FASCICULE 6



2616 Rajeev GUPTA & Samya K. RAY

we choose to denote it by `pR(n). Let Cs2[Z1, . . . , Zn] denote the set of all
homogeneous polynomials of degree two in n-variables. A homogeneous
polynomial of degree two in n-variables is of the form

p(z1, . . . , zn) =
n∑

j,k=1
ajkzjzk,

where Ap :=
((
ajk
))
is a symmetric matrix associated to p. Define the map

An : Cs2[Z1, . . . , Zn] → Ms
n by the rule An(p) = Ap, where Ms

n is the
set of all symmetric matrices of order n. Equip Cs2[Z1, . . . , Zn] with the
supremum norm ‖ · ‖Dn,∞ andMs

n with the norm ‖ · ‖∞→1. For each n ∈ N,
‖A −1

n ‖ 6 1, therefore ‖An‖ > 1.
In [9], it is shown that limn→∞ ‖An‖ 6 3

√
3/4. In this paper, we prove

limn→∞ ‖An‖ > π2/8, improving the bound limn→∞ ‖An‖ > 1.2323, ob-
tained earlier in an unpublished article by Holbrook and Schoch (see their
related work [11]).
In Section 3, we investigate, in some detail, the constant C2(n). We

exhibit a large class of examples of Varopoulos–Kaijser type and show that
the original Varopoulos–Kaijser example is extremal, in an appropriate
sense, in this large class of polynomials.
Let M+

n (C) (resp. M+
n (R)) denote the set of all n × n complex (real)

non-negative definite matrices.

Definition 1.2 (Positive Grothendieck Constant). — Suppose A :=((
ajk
))
n×n is a complex (real) non-negative definite array then there exists

K > 0, independent of n and A, such that (1.3) holds. The least such
constant is denoted by K+

G(C) (resp. K+
G(R)) and called complex (resp.

real) Positive Grothendieck constant. The values of K+
G(C) and K+

G(R)
are exactly 4/π and π/2 respectively, see [20, p. 259–260] and [18, Remark
following Theorem 5.4]. To the reader, we also refer [17, Theorem 1.3] for
these constants.

The non-negative definite Grothendieck constant plays an important role
in operator theory. We refer [3, Theorem 1.9] for some important connec-
tions.

For any n× n complex matrix A :=
((
ajk
))
, we associate a homogeneous

polynomial of degree two denoted by p
A

and defined by p
A

(z1, . . . , zn) =∑n
j,k=1 ajkzjzk. Suppose p is the following polynomial of degree at most

two in n-variables and of the form

p(z1, . . . , zn) = a0 +
n∑
j=1

ajzj +
n∑

j,k=1
ajkzjzk

ANNALES DE L’INSTITUT FOURIER



ON A QUESTION OF N. TH. VAROPOULOS AND THE CONSTANT C2(n)2617

with ajk = akj (can be assumed without loss of generality) for all j, k =
1, . . . , n. Corresponding to p, one can define the following (n+ 1)× (n+ 1)
symmetric complex matrix

(1.5) A(p) =


a0

1
2a1

1
2a2 · · · 1

2an
1
2a1 a11 a12 · · · a1n
1
2a2 a12 a22 · · · a2n
...

...
...

...
1
2an a1n a2n · · · ann


It can be seen that ‖p‖Dn,∞ = ‖p

A(p)‖Dn+1,∞.We define the following quan-
tity:

C+
2 (n) = sup

{
‖p
A

(T )‖
‖p
A
‖Dn,∞

: 0 6= A ∈M+
n (C), T ∈ Cn

}
and let C+

2 denote the quantity limn→∞ C+
2 (n). It is clear from the def-

initions that C2(n) > C+
2 (n) for each n. In this paper, we prove that

limn→∞ C+
2 (n) = π/2. Since KC

G 6 1.4049 therefore limn→∞ C2(n) >
π/2 > 1.118KC

G.

Acknowledgement. We are very grateful to Prof. Gadadhar Misra and
Prof. Gilles Pisier for several fruitful discussions and suggestions. The au-
thors also express their sincere gratitude to Prof. Sameer Chavan and Prof.
Parasar Mohanty for their constant support. We also thank the referee and
the editor for several constructive suggestions which significantly improved
the presentation of the paper.

2. Improvement of the Lower Bound in the Varopoulos
inequality

In this section we improve the lower bound of the Varopoulos inequality
and as a consequence, we answer negatively a question of Varopoulos posed
in the paper [23]. The following theorem (see [9]) concerns an improvement
in the upper bound of the Varopoulos inequality.

Theorem 2.1. — Suppose p is a polynomial of degree at most 2 in
n-variables and T ∈ Cn. Then ‖p(T )‖ 6 3

√
3

4 KC
G‖p‖Dn,∞.

Throughout this paper, the vectors are assumed to be row vectors unless
specified otherwise. The following series of lemmas are the key ingredients
of this paper.

TOME 68 (2018), FASCICULE 6



2618 Rajeev GUPTA & Samya K. RAY

Lemma 2.2. — For any symmetric n × n matrix A =
((
ajk
))
, we have

the equality:

sup
‖xj‖`261

∣∣∣∣∣
n∑

j,k=1
ajk〈xj , xk〉

∣∣∣∣∣ = sup
‖Rj‖`2

R
61

∣∣∣∣∣
n∑

j,k=1
ajk〈Rj , Rk〉

∣∣∣∣∣.
Proof. — Fix xj ∈ Cm with ‖xj‖`2(m) 6 1 for j = 1, . . . , n. Define

Rj =
(xj+xj

2 , i
xj−xj

2
)
for j = 1, . . . , n. We see that

〈Rj , Rk〉 =
m∑
p=1

(
x

(p)
j + x

(p)
j

2

)(
x

(p)
k + x

(p)
k

2

)

+ i2
m∑
p=1

(
x

(p)
j − x

(p)
j

2

)(
x

(p)
k − x

(p)
k

2

)

=
m∑
p=1

(
<x(p)

j <x
(p)
k + =x(p)

j =x
(p)
k

)

= <
(

m∑
p=1

x
(p)
j x

(p)
j

)

= 〈xj , xk〉+ 〈xk, xj〉
2 ,

where <z and =z denote the real and imaginary part of z respectively. In
particular, we get that ‖Rj‖`2

R(2m) = ‖xj‖`2(m) for each j = 1, . . . , n. Since
A is a symmetric matrix therefore

n∑
j,k=1

ajk〈xj , xk〉 =
n∑

j,k=1
ajk〈xk, xj〉

=
n∑

j,k=1
ajk
〈xj , xk〉+ 〈xk, xj〉

2

=
n∑

j,k=1
ajk〈Rj , Rk〉.

This shows that for each m ∈ N and symmetric matrix A, one gets the
following identity

sup
‖xj‖`2(m)61

∣∣∣∑ ajk〈xj , xk〉
∣∣∣ = sup

‖Rj‖`2
R(2m)61

∣∣∣∑ ajk〈Rj , Rk〉
∣∣∣.

This completes the proof. �

ANNALES DE L’INSTITUT FOURIER



ON A QUESTION OF N. TH. VAROPOULOS AND THE CONSTANT C2(n)2619

Remark 2.3. — For any matrix A, one can associate a symmetric matrix
S(A) = (A+At)/2, which has the property ‖p

A
‖Dn,∞ = ‖p

S(A)‖Dn,∞.More-
over, if A is a non-negative definite matrix then S(A) is a real non-negative
definite matrix.

Lemma 2.4. — Suppose A =
((
ajk
))

is a non-negative definite n × n

matrix. Then

sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk

∣∣∣∣∣ = sup
sj=±1

n∑
j,k=1

ajksjsk.

Proof. — Suppose A is a n × n complex non-negative definite matrix.
From Remark 2.3, we know that S(A) is a real non-negative definite matrix
with ‖p

A
‖Dn,∞ = ‖p

S(A)‖Dn,∞. Thus, to prove this lemma, it suffices to work
with real non-negative definite matrices only.
Let (z0

1 , . . . , z
0
n) be a maximizing vector for ‖p

A
‖Dn,∞ i.e. (z0

1 , . . . , z
0
n)

satisfies

sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk

∣∣∣∣∣ =

∣∣∣∣∣
n∑

j,k=1
ajkz

0
j z

0
k

∣∣∣∣∣.
Define z̃j = e−iφ/2z0

j for j = 1, . . . , n, where φ = arg
(∑n

j,k=1 ajkz
0
j z

0
k

)
.

Then, we have the following

n∑
j,k=1

ajkz̃j z̃k =

∣∣∣∣∣
n∑

j,k=1
ajkz

0
j z

0
k

∣∣∣∣∣.
Therefore

n∑
j,k=1

ajkz̃j z̃k +
n∑

j,k=1
ajkz̃j z̃k = 2

∣∣∣∣∣
n∑

j,k=1
ajkz

0
j z

0
k

∣∣∣∣∣
and hence one concludes the following identity

sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk +

n∑
j,k=1

ajkzjzk

∣∣∣∣∣ = 2 sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk

∣∣∣∣∣.
TOME 68 (2018), FASCICULE 6



2620 Rajeev GUPTA & Samya K. RAY

Since A is real non-negative definite matrix therefore we observe the fol-
lowing

1
2 sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk +

n∑
j,k=1

ajkzjzk

∣∣∣∣∣ = sup
θj∈R

∣∣∣∣∣
n∑

j,k=1
ajk cos(θj + θk)

∣∣∣∣∣
= sup
θj∈R

∣∣∣ n∑
j,k=1

ajk(cos θj cos θk − sin θj sin θk)
∣∣∣

=
n∑

j,k=1
ajk cos δj cos δk −

n∑
j,k=1

ajk sin δj sin δk

6
n∑

j,k=1
ajk cos δj cos δk

6 sup
sj=±1

n∑
j,k=1

ajksjsk,

where δj , j = 1, . . . , n, are chosen such that
∑n
j,k=1 ajk cos(θj + θk) is pos-

itive and attains maximum in modulus at θj = δj for j = 1, . . . , n. The
last inequality in above computation can be deduced from the fact that
“For any convex subset Ω of Rn and for any non-negative definite matrix
A, the function f : Ω → R defined by f(x) = 〈Ax, x〉 is convex” (see [16,
Corollary 3.9.5]). Thus we get the identity

sup
zj∈T

∣∣∣∣∣
n∑

j,k=1
ajkzjzk

∣∣∣∣∣ = sup
sj=±1

n∑
j,k=1

ajksjsk.

This proves the claim. �

We now prove the main theorem as a corollary of Lemma 2.2 and Lem-
ma 2.4. For the proof, it would be convenient to introduce, what we call,
Varopoulos operators.

Let H be a separable Hilbert space and {ej}j∈N be an orthonormal basis
for H. For any x ∈ H, define x] : H → C by x](y) =

∑
j xjyj , where x =∑

j xjej and y =
∑
j yjej . For x, y ∈ H, we set

[
x], y

]
= x](y). Then H] :={

x] : x ∈ H
}

is a Hilbert space when equipped with the operator norm.
Since the map φ : H → H] defined by φ(x) = x] is a linear onto isometry,
therefore H] is linearly (as opposed to the usual anti-linear identification)
isometrically isomorphic to H. The following definition is taken from the
Ph.D. thesis of the first named author of this paper [8] submitted to the
Indian Institute of Science in 2015.

ANNALES DE L’INSTITUT FOURIER



ON A QUESTION OF N. TH. VAROPOULOS AND THE CONSTANT C2(n)2621

Definition 2.5 (Varopoulos Operator). — LetH be a separable Hilbert
space. For x, y ∈ H, define the Varopoulos operator Tx,y : C ⊕ H ⊕ C →
C⊕H⊕C, corresponding to the pair (x, y), to be the linear transformation
with the matrix representation:

Tx,y =

0 x] 0
0 0 y

0 0 0

 .

Notice that for any pairs (x1, y1) and (x2, y2) in H⊕H, the corresponding
Varopoulos operators Tx1,y1 and Tx2,y2 commute if and only if [x]1, y2] =
[x]2, y1]. If x = y, then we set Tx := Tx,x. Since for any x1, x2 ∈ H, we
have [x]1, x2] = [x]2, x1], the corresponding Varopoulos operators Tx1 and
Tx2 commute.

Theorem 2.6. — C+
2 = π/2.

Proof. — Suppose A is n × n non-negative definite matrix and suppose
that (T1, . . . , Tn) is a tuple in Cn, then,

p
A

(T1, . . . , Tn) = p
S(A)(T1, . . . , Tn).

If bjk denotes the (j, k) entry of the matrix S(A) then for every x, y ∈ H,
we have the following

sup
‖x‖61, ‖y‖61

|〈p
S(A)(T1, . . . , Tn)x, y〉| = sup

‖x‖61, ‖y‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈Tjx, T ∗k y〉

∣∣∣∣∣
6 sup
‖xj‖61, ‖yk‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈xj , yk〉

∣∣∣∣∣
6 sup
‖xj‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈xj , xk〉

∣∣∣∣∣.
The last inequality is explained by the following computation, which can
essentially be found in [1]. Since ((bjk)) is a non-negative definite matrix
therefore there exist V1, . . . , Vn ∈ Cn such that bjk = 〈Vj , Vk〉 for each
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j, k = 1, . . . , n.

sup
‖xj‖61
‖yk‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈xj , yk〉

∣∣∣∣∣ = sup
‖xj‖61
‖yk‖61

∣∣∣∣∣
m∑
p=1

〈
n∑
j=1

xjpVj ,

n∑
k=1

ykpVk

〉∣∣∣∣∣
6 sup
‖xj‖61
‖yk‖61

m∑
p=1

∣∣∣∣∣
〈

n∑
j=1

xjpVj ,

n∑
k=1

ykpVk

〉∣∣∣∣∣
6 sup
‖xj‖61

 m∑
p=1

∥∥∥∥∥
n∑
j=1

xjpVj

∥∥∥∥∥
2
1/2

sup
‖yk‖61

 m∑
p=1

∥∥∥∥∥
n∑
k=1

ykpVk

∥∥∥∥∥
2
1/2

= sup
‖xj‖61

m∑
p=1

∥∥∥∥∥
n∑
j=1

xjpVj

∥∥∥∥∥
2

= sup
‖xj‖61

m∑
p=1

〈
n∑
j=1

xjpVj ,

n∑
k=1

xkpVk

〉

= sup
‖xj‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈xj , xk〉

∣∣∣∣∣.

Therefore, we get the following inequality

sup
‖x‖61, ‖y‖61

|〈p
S(A)(T1, . . . , Tn)x, y〉| 6 sup

‖xj‖61

∣∣∣∣∣
n∑

j,k=1
bjk〈xj , xk〉

∣∣∣∣∣.
Also note that

‖((bjk))‖`∞
R (n)→`1

R(n) = sup
sj ,tk∈[−1,1]

∣∣∣∣∣
n∑

j,k=1
bjksjtk

∣∣∣∣∣
= sup
sj ,tk∈[−1,1]

∣∣∣∣∣
〈

n∑
j=1

sjVj ,

n∑
k=1

tkVk

〉∣∣∣∣∣
6 sup
sj ,tk∈[−1,1]

∥∥∥∥∥
n∑
j=1

sjVj

∥∥∥∥∥
2
1/2∥∥∥∥∥

n∑
k=1

tkVk

∥∥∥∥∥
2
1/2
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= sup
sj∈[−1,1]

∥∥∥∥∥
n∑
j=1

sjVj

∥∥∥∥∥
2

= sup
sj∈[−1,1]

∣∣∣∣∣
n∑

j,k=1
bjksjsk

∣∣∣∣∣.
Thus we get the identity ‖((bjk))‖`∞

R (n)→`1
R(n) = ‖p

S(A)‖[−1,1]n,∞. By this
identity and Lemma 2.4 we get the following

(2.1) sup
A∈M+

n (C)\{0}

supT∈Cn ‖pA(T1, . . . , Tn)‖
‖p
A
‖Dn,∞

6 sup
B∈M+

n (R)\{0}

sup‖xj‖`261
∣∣∑n

j,k=1 bjk〈xj , xk〉
∣∣

‖B‖`∞
R (n)→`1

R(n)
.

Using the definition of C+
2 , Lemma 2.2 and the inequality (2.1), we get the

following

C+
2 6 sup

B∈M+
n (R)\{0}

sup‖Rj‖`2
R
61
∣∣∑n

j,k=1 bjk〈Rj , Rk〉
∣∣

‖B‖`∞
R (n)→`1

R(n)
= K+

G(R) = π/2.

Fix an n×n non-negative definite matrix A and xj ∈ Cm, j = 1, . . . , n, for
some m ∈ N. Define the Varopoulos operator Tj (= TRj ) corresponding to
the vector Rj ∈ R2m (⊂ C2m), where Rj =

(xj+xj
2 , i

xj−xj
2
)
for j = 1, . . . , n.

Then, taking the form of p
A

(T1, . . . , Tn) into account, we get

‖p
A

(T1, . . . , Tn)‖ =
n∑

j,k=1
ajk〈Rj , Rk〉 =

n∑
j,k=1

(
ajk + akj

2

)
〈Rj , Rk〉.

We use Lemma 2.4 to subsequently obtain

sup
A∈M+

n (C)\{0}

supT∈Cn ‖pA(T1, . . . , Tn)‖
‖p
A
‖Dn,∞

> sup
B∈M+

n (R)\{0}

sup‖Rj‖`2
R
61
∣∣∑n

j,k=1 bjk〈Rj , Rk〉
∣∣

‖B‖`∞
R (n)→`1

R(n)
.

This proves the theorem. �

Theorem 2.6 shows that if we restrict ourselves to the set of homogeneous
polynomials of degree two coming from the real non-negative definite ma-
trices, then we obtain an analogous inequality to that of Varopoulos, where
the factor 2 on the right disappears and the constant KC

G gets replaced by
K+
G(R), that is,

sup
n,pA

‖p
A

(T1, . . . , Tn)‖ = K+
G(R),
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where supremum is taken over all homogeneous polynomials p
A

of supre-
mum norm at most 1 with A being a non-negative definite matrix, the
tuple (T1, . . . , Tn) being arbitrary in Cn and n ∈ N. The next corollary
shows that limn→∞ C2(n)/KC

G > 1. This, in turn, answers a long–standing
question of Varopoulos, raised in [23], in negative.

Corollary 2.7. — For some ε > 0, we have the inequality

lim
n→∞

C2(n) > (1 + ε)KC
G.

Proof. — We know that C2(n) > C+
2 (n) for each n ∈ N andKC

G 6 1.4049
therefore we have the following

lim
n→∞

C2(n) > lim
n→∞

C+
2 (n) = π/2 > KC

G.

To complete the proof one can take ε = 0.118. �

A variant of Corollary 2.7 on Lp-spaces can be found in [21].
In the next theorem, we compute a lower bound for the norm of An as n

tends to infinity. This improves a bound obtained earlier in an unpublished
paper of Holbrook and Schoch where they had proved that limn→∞ ‖An‖ >
1.2323.

Theorem 2.8. — limn→∞ ‖An‖ > π2

8 .

Proof. — Fix a natural number l. Since limn→∞ C+
2 (n) = π/2, there

exist n ∈ N and a real non-negative definite matrix Al = ((a(l)
jk )) of size n

such that
supT∈Cn

∥∥∑ a
(l)
jkTjTk

∥∥
supzj∈T

∣∣∑ a
(l)
jkzjzk

∣∣ > π/2− 1/l.

By Lemma 2.2 and the fact that K+
G(C) = 4/π, we get the following for

the matrix Al

4/π >
sup‖xj‖`261

∑n
j,k=1 a

(l)
jk 〈xj , xk〉

‖Al‖`∞(n)→`1(n)

=
sup‖Rj‖`2

R
61
∑n
j,k=1 a

(l)
jk 〈Rj , Rk〉

‖Al‖`∞(n)→`1(n)

=
supT∈Cn

∥∥∑ a
(l)
jkTjTk

∥∥
supzj∈T

∣∣∑ a
(l)
jkzjzk

∣∣ · supzj∈T
∥∥∑ a

(l)
jkzjzk

∥∥
‖Al‖`∞(n)→`1(n)

> (π/2− 1/l)
‖p
Al
‖Dn,∞

‖Al‖`∞(n)→`1(n)
.
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Rewriting the inequality appearing above, we see that, for each l ∈ N, there
exists a symmetric matrix Al such that for the corresponding polynomial
p
Al
, we have the following estimate

‖Al‖`∞(n)→`1(n)

‖p
Al
‖Dn,∞

>
(π/2− 1/l)

4/π .

Taking supremum over all the natural numbers l on both the sides, we get
the following inequality

sup
l∈N

‖Al‖`∞(n)→`1(n)

‖p
Al
‖Dn,∞

>
π2

8 ≈ 1.2337.

The result follows immediately from here. �

3. Varopoulos–Kaijser type examples and the constant
C2(n)

In this section, we focus on the constant C2(n) in more detail. We discuss
the asymptotic behaviour of C2(n) and exhibit an explicit class of exam-
ples of Varopoulos–Kaijser type. For this, we mainly rely on a construction
which appeared in [7]. In this case, our main tool is a very general max-
imizing lemma which can also be of independent interest. For n = 3, we
successfully construct a very wide class of examples like Varopoulos–Kaijser
for which the von Neumann inequality fails and show that the Varopoulos–
Kaijser example is extremal on the class of certain 3×3 symmetric matrices
including symmetric sign matrices.
In [7], the authors produced an explicit set of real non-negative definite

matrices for which the positive Grothendieck constant goes up to 1.5. We
briefly describe their matrices as follows:
For l = k(k−1), define Fk = {v1, . . . , vk(k−1)}, the set of all k-dimensional

vectors with two non-zero components, either 1 and 1 or 1 and −1, ap-
pearing in that order. Define a real l × l non-negative definite matrix
Ak = ((aij))16i,j6l as aij = 〈vi, vj〉. In [7], the authors showed that

sup‖Xi‖2=1
∑l
i,j=1 aij〈Xi, Xj〉

supωi∈{1,−1}
∑l
i,j=1 aijωiωj

= 3k − 3
2k − 1 .

Thus, in view of Lemma 2.4, we get a large class of Varopoulos–Kaijser
like examples for which the von Neumann inequality fails and C2(k(k−1)) >
3k−3
2k−1 . Notice that 3k−3

2k−1 is an increasing function in k and increases to 3
2

as k tends to infinity. Hence for this explicit class of matrices, we get the
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lower bound of limn→∞ C2(n) to be equal to 3
2 . Though we already got the

lower bound of limn→∞ C2(n) to be equal to π
2 , it will be interesting to get

an estimate of C2(n) as a function of n.
Motivated by the example of Varopoulos and Kaijser, provided in [22],

we develop the following maximizing lemma which enables us to compute
the supremum norm of polynomials.

Lemma 3.1 (Maximizing Lemma). — Let Ω be a bounded domain in
Rn. Suppose a function F = (f1, . . . , fm) : Ω ⊆ Rn → Cm is a continuously
differentiable and bounded function with fj non-vanishing for j = 1, . . . ,m.
Then we have the following{
x ∈ Ω : ‖F (x)‖`∞(m) = ‖F‖Ω,∞

}
⊆

m⋃
j=1

{
x ∈ Ω : dimR

n∨
k=1

∂fj
∂xk

(x) 6 1
}
,

where
∨
{v1, . . . , vn} denotes the subspace spanned by the vectors v1, . . . , vn

and dimR denotes the dimension of the space over the field of real numbers
R.

Proof. — We notice the following identity

{x ∈ Ω : ‖F (x)‖`∞(m) = ‖F‖Ω,∞} ⊆
m⋃
j=1

{
x ∈ Ω : |fj(x)| = ‖fj‖Ω,∞

}
.

For fj : Ω ⊆ Rn → C, we have

(3.1) |fj |2 = (<fj)2 + (=fj)2.

Differentiating (3.1) with respect to xk on both the sides, we get the fol-
lowing

(3.2) ∂

∂xk
|fj |2 = 2<fj<

∂fj
∂xk

+ 2=fj=
∂fj
∂xk

.

By (3.2) and the fact that, at the point of maximum of |fj |, all the partial
derivatives of |fj |2 are zero, we obtain

(3.3)
〈

(<fj ,=fj),
(
< ∂fj
∂xk

,= ∂fj
∂xk

)〉
= 0, ∀ 1 6 k 6 n.

From (3.3), we observe that, at the point of maximum of |fj |2, the two
dimensional vectors

(
< ∂fj∂xk

,= ∂fj∂xk

)
, 1 6 k 6 n, lie on a line passing through

the origin in R2. Therefore,

(3.4)
{
x ∈ Ω : |fj(x)| = ‖fj‖Ω,∞

}
⊆

{
x ∈ Ω : dimR

n∨
k=1

∂fj
∂xk

(x) 6 1
}
.

This completes the proof. �
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Remark 3.2. — To disprove the von Neumann inequality in three vari-
ables, Varopoulos and Kaijser [22] considered an explicit homogeneous poly-
nomial of degree two in three variables. While the computation of the supre-
mum norm of this particular polynomial is briefly indicated in their paper,
we indicate below, using Lemma 3.1, how to compute the supremum norm
of the Varopoulos–Kaijser polynomial. Of course, this recipe applies to the
entire class of Varopoulos polynomials.

The Varopoulos–Kaijser polynomial is the following homogeneous poly-
nomial of degree two

p(z1, z2, z3) = z2
1 + z2

2 + z2
3 − 2z1z2 − 2z2z3 − 2z3z1.

Without loss of generality, we can take supremum over {(z1, z2, z3) =
(1, eiθ, eiφ) : θ, φ ∈ R} in the expression of p(z1, z2, z3) to compute the
quantity ‖p‖D3,∞. If we consider the function g(θ, φ) = 1 + e2iθ + e2iφ −
2eiθ − 2eiφ − 2ei(θ+φ) then ‖p‖D3,∞ = supθ,φ∈R |g(θ, φ)|. Taking partial
derivatives with respect to θ and φ of g, we get the following expressions

∂g

∂θ
(θ, φ) = 2ie2iθ − 2ieiθ − 2iei(θ+φ)

∂g

∂φ
(θ, φ) = 2ie2iφ − 2ieiφ − 2iei(θ+φ).

Applying Lemma 3.1, we obtain that, at the point of maximum of |g|, the
vectors 1

2i
∂g
∂θ ,

1
2i
∂g
∂φ and g(θ, φ)− 1

2i
(
∂g
∂θ + ∂g

∂φ

)
lie on a line passing through

the origin in R2. Note that

g(θ, φ)− 1
2i

(
∂g

∂θ
+ ∂g

∂φ

)
= 1− eiθ − eiφ

1
2i
∂g

∂θ
− 1

2i
∂g

∂φ
= (eiθ − eiφ)(eiθ + eiφ − 1).

Therefore, at the point of maximum, 1−eiθ−eiφ and (eiθ−eiφ)(eiθ+eiφ−1)
lie on a line passing through the origin in R2. Since 1 − eiθ − eiφ and
eiθ + eiφ − 1 are always collinear, one must have 1 − eiθ − eiφ = 0 or
arg(eiθ − eiφ) ∈ {0, π}. From this, it can be concluded that ‖p‖D3,∞ = 5.

We would like to bring the attention of the reader to [10] where the
computation of the supremum norm of this polynomial has also been done.

3.1. Extremal behaviour of Varopoulos–Kaijser example

In this subsection, we show that the Varopoulos–Kaijser example is ex-
tremal, in a certain sense, if we restrict ourselves to a class of symmetric
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3 × 3 matrices which includes the symmetric sign matrices. Sign matrices
are the matrices of which each entry is either 1 or −1. Varopoulos–Kaijser
example gives a lower bound for the quantity C2(δ3) and using extreme
point method, we establish an upper bound for the same. For this we need
the following definitions.

Definition 3.3 (Correlation Matrix). — A correlation matrix is a com-
plex non-negative definite matrix whose all diagonal elements are equal to
1. We denote the set of all n× n correlation matrices by C (n).

For every natural number n, define the set δn by

δn =
{

(Tx1 , . . . , Txn) : xj ∈ `2R with ‖xj‖ 6 1 for j = 1, . . . , n
}
.

Define C2(δn) := sup
{
‖p(T )‖ : T ∈ δn, p ∈ Ps2(n) with ‖p‖Dn,∞ 6 1

}
.

For the rest of this section, we consider only the tuples of commuting and
contractive Varopoulos operators in δn. From the definition, it follows that
C2(δn) 6 C2(n). We prove the following bound on C2(δ3).

Remark 3.4. — Given x1, . . . , xn ∈ `2, we can define the vector Rj =(xj+xj
2 , i

xj−xj
2
)
for j = 1, . . . , n. As noticed in Lemma 2.2, we know that

〈Rj , Rk〉 = 〈xj ,xk〉+〈xk,xj〉
2 . Hence for any degree two homogeneous polyno-

mial p(z1, . . . , zn) =
∑n
j,k=1 ajkzjzk, where ((ajk)) is a symmetric matrix,

we get that

sup
T∈δn

‖p(T )‖ = sup
‖xj‖`261

∣∣∣∣∣
n∑

j,k=1
ajk〈xj , xk〉

∣∣∣∣∣.
Theorem 3.5. — 1.2 6 C2(δ3) 6 3

√
3

4 .

Proof. — The fact that C2(δ3) > 1.2 follows from [10].
Given a complex n× n matrix A, we define the following quantity

β(A) := sup
B∈C (n)

|〈A,B〉|.

Every correlation matrix B can be written as ((〈xi, xj〉)) for some unit
vectors xi, 1 6 i 6 n, and vice versa. Let U denote the unit ball of
Cs[Z1, . . . , Zn] with respect to supremum norm over the polydisc Dn. Sup-
pose Ap denote the symmetric matrix corresponding to p ∈ Cs[Z1, . . . , Zn].
Then, using Remark 3.4, we get

sup
p∈U

β(Ap) = sup
p∈U

sup
‖xi‖`2 =1

∣∣∣∣∣
n∑

i,j=1
aij〈xi, xj〉

∣∣∣∣∣
= C2(δn).
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The map B 7→ 〈A,B〉 is linear in B and C (n) is a compact convex set, we
conclude that

(3.5) β(Ap) = sup
B∈E(C (n))

|〈Ap, B〉|,

where E(C (n)) is the set of all extreme points of C (n). Since all the ele-
ments of E(C (n)) have rank less than or equal to

√
n ([14]) therefore when

n = 3, we conclude that the extreme correlation matrices have rank one. If
the correlation matrix ((〈xi, xj〉)) is of rank 1, then

∨
{xi; 1 6 i 6 n} is one

dimensional. Using (3.5) and [9], for n = 3, we obtain the following

β(Ap) = sup
|zi|=1

∣∣∣∣∣
n∑

i,j=1
aijziz̄j

∣∣∣∣∣
6 ‖Ap‖∞→1

6
3
√

3
4 sup
|zi|=1

∣∣∣∣∣
n∑

i,j=1
aijzizj

∣∣∣∣∣.
This completes the proof of the theorem. �

Remark 3.6. — In an unpublished work, Holbrook and Schoch have shown
that C2(δ3) > 1.2323. Their method rely on explicit construction of a two
degree homogeneous polynomial as in Varopoulos–Kaijser (replacing the
coefficients −2 in the Varopoulos–Kaijser polynomial by something like
−2.5959). In view of this and Theorem 3.5, we have 1.2323 6 C2(δ3) 6
3
√

3
4 ≈ 1.2990.

The following table shows that Varopoulos–Kaijser polynomial is ex-
tremal among the set of all symmetric sign matrices of order 3 as long
as the ratio ‖p(T1, T2, T3)‖/‖p‖D3,∞ is concerned, where T1, T2 and T3 are
commuting Varopoulos operators. The total number of symmetric sign ma-
trices of order 3 is 26. To compute ‖p‖D3,∞ and ‖p(T1, T2, T3)‖, without loss
of generality, we can assume that every entry in first row and first column
of Ap, symmetric matrix corresponding to p, is one. Since ‖p‖D3,∞ and
‖p(T1, T2, T3)‖ are invariant under SApS−1, for every permutation matrix
S of order 3, therefore it leaves us with the following 6 inequivalent matri-
ces, for which, we use Lemma 3.1 to compute the supremum norm of the

TOME 68 (2018), FASCICULE 6



2630 Rajeev GUPTA & Samya K. RAY

polynomials.

Ap ‖p‖D3,∞ ‖p(T1, T2, T3)‖ 1 1 1
1 −1 1
1 1 −1

 5 5

 1 1 1
1 1 −1
1 −1 1

 5 6

 1 1 1
1 1 1
1 1 −1

 5
√

2 7

 1 1 1
1 1 −1
1 −1 −1

 7 5

 1 1 1
1 −1 −1
1 −1 −1

 √
41 4

 1 1 1
1 1 1
1 1 1

 9 9

We show that Varopoulos–Kaijser polynomial is also extremal among the
following matrices

S :=
{

Bα =
(

1 1 1
1 1 α
1 α 1

)
: α ∈ R

}
.

For α > 0, the ratio ‖p(T1, T2, T3)‖/‖p‖D3,∞ is always 1. Hence we consider
the case when α < 0. Explicit computation shows that, for every symmetric
matrix Bα in S, the corresponding homogeneous polynomial pBα of degree
two satisfies the following

‖pBα ‖D3,∞ = sup
θ,φ∈R

{
|1+eiθ+eiφ+eiθ(1+eiθ+αeiθ)+eiφ(1+eiφ+αeiθ)|

}
.

Suppose f(θ, φ) = |1+eiθ+eiφ+eiθ(1+eiθ+αeiθ)+eiφ(1+eiφ+αeiθ)|. Using
Lemma 3.1, at point of maximum of f , we get that 1+eiθ+eiφ, eiθ(1+eiθ+
αeiθ) and eiφ(1+eiφ+αeiθ) are collinear. Subtracting the third vector from
the second vector, we get 1+eiθ+eiφ, (eiθ−eiφ)(1+eiθ+eiφ) are collinear.
We break the computation essentially into the following two cases

Case 1. — If 1 + eiθ + eiφ is zero then the maximum of f is 2− 2α.
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Case 2. — Suppose 1 + eiθ + eiφ 6= 0. Then 1 and eiθ − eiφ are collinear
and therefore at a point of maximum of f, we get that θ = φ or θ = φ+ π.

We deal with this case in the form of following two subcases.

(1) When θ = φ then we need to maximize f(θ, θ) = |1 + 4eiθ + 2(1 +
α)e2iθ| over θ ∈ R. We observe that f(θ, θ) = (17 + 4(1 + α)2 +
8(3 + 2α) cos θ+ 4(1 +α) cos 2θ)1/2. At critical point θ0 of f, we get
that

cos θ0 = − 3 + 2α
2(1 + α) or sin θ0 = 0.

If α > −5/4 then the only possibility is sin θ0 = 0 i.e. eiθ0 = ±1.
In this case, maximum of f is either |7 + 2α| or 1 − 2α. As case
1 suggests, the quantity 1 − 2α can not be the maximum. In this
subcase if α is at most −5/4 then at cos θ0 = − 3+2α

2(1+α) ,

f(θ0, θ0) =
(

17 + 4(1 + α)2 − 2(3 + 2α)2

1 + α
− 4(1 + α)

)1/2

.

(2) When θ = φ+π then maximum of f is 3− 2α. This subcase proves
the redundancy of case 1 as far as the maximum of f is concerned.

Comparison of all the possible cases and explicit computation tells us
that for α < 0, the norm of the homogeneous polynomial pBα of degree
two, is the following continuous function

‖pBα ‖D3,∞ =
{

7 + 2α, α > −1
3− 2α, α 6 −1

We define the following quantity MBα = sup|zj |=1
∣∣∑ ajkzjzk

∣∣. By Re-
mark 3.4 and from [14], we see that MBα

= supT∈δ3 ‖pBα (T )‖. Corre-
sponding to every matrix Bα in the class S, we get

MBα
= sup
|zj |=1

∣∣3 + 2(<z1z2 + α<z2z3 + <z3z1)
∣∣

= sup
θ,φ∈R

∣∣3 + 2(cos θ + cosφ+ α cos(θ − φ))
∣∣

Define the function h(θ, φ) = 3 + 2(cos θ + cosφ+ α cos(θ − φ)). Then the
critical points of the function h are the solutions of sin θ+α sin(θ−φ) = 0
and sinφ − α sin(θ − φ) = 0. Therefore the critical points (θ0, φ0) satisfy
sin θ0 + sinφ0 = 0. Thus, we get that θ0 = −φ0 or θ0 = −φ0 + π or θ0 =
φ0 + π.
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Case 1. — If θ0 = −φ0 then

h(θ0, φ0) = 3 + 2(2 cos θ0 + α cos 2θ0)

= 4α cos2 θ0 + 4 cos θ0 + 3− 2α
= g(t), say,

where t = cos θ0.

If α > −1/2 then there is no critical point of g in (0, 1). Hence the
maximum is 3 − 2α or |7 + 2α|. Between these, in the case when α ∈
(−1/2, 0), clearly, 3− 2α is bigger. If α 6 −1/2 then the maximum of g(t)
is among 3−2α−1/α or |7+2α| or 3−2α. A straightforward computation
shows that 3− 2α− 1/α is bigger than the other two values. Therefore we
have the following

MBα
=
{

3− 2α, α > − 1
2

3− 2α− 1/α, α 6 − 1
2 .

Computations done till now leads to the following graph of the ratio Q :=
MBα

‖p
Bα
‖D3,∞

Q =


3−2α
7+2α , α ∈ (−1/2, 0)
3−2α−1/α

7+2α , α ∈ [−1,−1/2]
3−2α−1/α

3−2α , α ∈ (−∞,−1).
The ratio Q is increasing in (−∞,−1) and decreasing in (−1, 0). Thus
maximum of the ratio Q is at −1 and hence Varopoulos–Kaijser polynomial
is the best in the class we have specified.
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