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A FINITE DIMENSIONAL APPROACH TO
BRAMHAM’S APPROXIMATION THEOREM

by Patrice LE CALVEZ (*)

Abstract. — Using pseudoholomorphic curve techniques from symplectic ge-
ometry, Barney Bramham proved recently that every smooth irrational pseudo-
rotation of the unit disk is the limit, for the C0 topology, of a sequence of smooth
periodic diffeomorphisms. We give here a finite dimensional proof of this result that
works in the case where the pseudo-rotation is smoothly conjugate to a rotation on
the boundary circle. The proof extends to C1 pseudo rotations and is based on the
dynamical study of the gradient flow associated to a generating family of functions
given by Chaperon’s broken geodesics method.
Résumé. — À l’aide de la théorie des courbes pseudo-holomorphes de la géo-

métrie symplectique, Barney Bramham a récemment montré que toute pseudo-
rotation irrationnelle lisse du disque unité est limite, pour la topologie C0, d’une
suite de difféomorphismes lisses périodiques. Nous donnons ici une preuve du ré-
sultat dans un cadre de dimension finie, valable quand la pseudo-rotation est dif-
férentiablement conjuguée à une rotation sur le bord du disque. La preuve, qui
s’étend aux pseudo-rotations de classe C1, est basée sur l’étude dynamique du flot
de gradient associé à une famille génératrice de fonctions, obtenue par la méthode
des géodésiques brisées de Chaperon.

1. Introduction

We will denote by D the closed unit disk of the Euclidean plane and
by S the unit circle. An irrational pseudo-rotation is an area preserving
homeomorphism f of D that fixes 0 and that does not possess any other
periodic point. To such a homeomorphism is associated an irrational num-
ber α 6∈ Q/Z characterized by the following: every point admits α as a

Keywords: Irrational pseudo-rotation, generating function, rotation number, dominated
decomposition.
Math. classification: 37D30, 37E30, 37E45, 37J10.
(*) I would like to thank Barney Bramham for instructive and useful conversations and
Wang Jiaowen for fruitful discussions about the writing of this paper.
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rotation number. To give a precise meaning to this sentence, choose a lift
f̃ of f |D\{0} to the universal covering space D̃ = R × (0, 1]. There exists
α ∈ R satisfying α + Z = α such that for every compact set Ξ ⊂ D \ {0},
and every ε > 0, one can find N > 1 such that

n > N and z̃ ∈ π−1(Ξ) ∩ f̃−n(π−1(Ξ))⇒

∣∣∣∣∣p1(f̃n(z̃))− p1(z̃)
n

− α

∣∣∣∣∣ 6 ε,
where π : (θ, r) 7→ (r cos 2πθ, r sin 2πθ) is the covering projection and
p1 : (θ, r) 7→ θ the projection on the first factor. In particular the Poincaré
rotation number of f |S is α. In the case where f is a Ck diffeomorphism,
1 6 k 6 ∞, we will say that f is a Ck irrational pseudo-rotation. Con-
structions of dynamically interesting irrational pseudo-rotations are based
on the method of fast periodic approximations, starting from the seminal
paper of Anosov and Katok [1] (see [9], [10], [11], [12] for further devel-
opments about this method, see [4], [3], [13] for other results on irrational
pseudo-rotations).

Barney Bramham has recently proved the following (see [6]):

Theorem 1.1. — Every C∞ irrational pseudo-rotation f is the limit,
for the C0 topology, of a sequence of periodic C∞ diffeomorphisms.

The result is more precise. Let (qn)n>0 be a sequence of positive integers
such that the sequence (qnα)n>0 converges to 0 in T1 = R/Z. One can
construct a sequence of homeomorphisms (fn)n>0 fixing 0 and satisfying
(fn)qn = Id that converges to f for the C0 topology. Such a map fn is
C0 conjugate to a rotation of rational angle (mod. π). Approximating the
conjugacy by a C∞ diffeomorphism permits to approximate fn by a C∞
diffeomorphism of the same period.

The proof of Theorem 1.1 uses pseudoholomorphic curve techniques from
symplectic geometry. Trying to find a finite dimensional proof of this re-
sult is natural, as some results of symplectic geometry admit finite di-
mensional proofs by the use of generating families. A seminal example is
Chaperon’s proof of Conley–Zehnder’s Theorem via the broken geodesics
method (see [8]): if F is the time one map of a Hamiltonian flow on the
torus T2r = R2r/Z2r, a function can be constructed on a space T2r × R2n

whose critical points are in bijection with the contractible fixed points of F .
Studying the dynamics of the gradient vector field ξ permits to minimize the
number of critical points. Writing F as a composition of diffeomorphisms
C1 close to the identity is the way Chaperon constructs a generating family.
Decomposing F in monotone twist maps alternatively positive or negative

ANNALES DE L’INSTITUT FOURIER
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is another possible way. It is the fact that F is isotopic to the identity
that is essential in the construction of the vector field ξ, but in the general
case ξ has no reason to be a gradient vector field and its dynamics may be
more complicated. Nevertheless, if r = 1 the vector field will satisfy some
“canonical dissipative properties” and its dynamics can be surprisingly well
understood (see [15] for the case where F is decomposed in monotone twist
maps). Among the applications, one can note the following approximation
result (see [16]): every minimal C1 diffeomorphism F of T2 that is isotopic
to the identity is a limit for the C0 topology of a sequence of periodic dif-
feomorphisms. The proofs given in [6] and [16] share a thing in common:
the construction of a foliation satisfying a certain “dynamically transverse
property” on which a finite group acts, the approximating map being natu-
rally related to this action. In [6] the foliation is defined on R×D×T1 and
the leaves are either pseudoholomorphic cylinders or pseudoholomorphic
half cylinders transverse to the boundary; in [16], the foliation is singu-
lar and naturally conjugate to the foliation by orbits of ξ on an invariant
torus. Therefore it is natural to look for a proof of Bramham’s theorem by
a method close to the one given in [16]. The original proof of Theorem 1.1
is divided in two cases: the case where the restriction of f to S is smoothly
conjugate to a rotation, and the case where it is not. We succeeded to treat
the first case, with some improvements due to the fact that we work in the
C1 category but unfortunately could not get the general case. Therefore
we will prove:

Theorem 1.2. — Every C1 irrational pseudo-rotation f , whose restric-
tion to S is C1 conjugate to a rotation, is the limit, for the C0 topology, of
a sequence of periodic smooth diffeomorphisms.

Observe that it is sufficient to prove Theorem 1.2 in the case where
the restriction to S is a rotation. Indeed, every C1 diffeomorphism of S
can be extended to a C1 area preserving diffeomorphism of D (see [5] for
example). So, every C1 irrational pseudo-rotation, whose restriction to S
is C1 conjugate to a rotation, is itself conjugate to a C1 irrational pseudo-
rotation, whose restriction to S is a rotation.
Let us explain the ideas of the proof. The first difficulty arises from

the fact that f is defined on a surface with boundary. If one supposes
that f |S is a rotation, one can extend easily our map to the whole plane.
Inside a small neighborhood of D we extend our map by an integrable
polar twist map and outside by a rotation whose angle is irrational (mod.
π) and close (but different) from 2πα. This implies that S is accumulated
from outside by invariant circles Sp/q on which the map is periodic with

TOME 66 (2016), FASCICULE 5
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a rotation number p/q that is a convergent of α, where α + Z = α. Our
extended map is piecewise C1 and one can construct a generating family of
functions that are C1 with Lipschitz derivatives (see Section 2). We could
have chosen to decompose f in monotone twist maps in order to apply
directly the results of [14] and [15], we have preferred to use a decomposition
in maps close to the identity like in [8] to underline the fact that the way
we construct the generating family is not important. One knows that for
every q > 1, the fixed points set of fq corresponds to the singular points
set of a gradient vector field ξq defined on a space Eq depending on q.
In particular each circle Sp/q ⊂ R2 corresponds to a curve Σp/q ⊂ Eq of
singularities of ξq. In Section 2 we will recall the immediate properties of
ξq, in particular its invariance by the natural action of Z/qZ on Eq. A
crucial point is the fact that ξq is A Lipschitz with a constant A that does
not depend on q. An important consequence is the existence of a uniform
inequality between the L2 norm of an orbit (the square root of the energy)
and its L∞ norm. In Section 4 we give the proofs of Theorem 1.2. The
fundamental result (Proposition 4.1) is the fact that Σp/q bounds a disk
∆p/q ⊂ Eq that contains the singular point corresponding to the fixed point
0 and that is invariant by the flow and by the Z/qZ action. Moreover the
dynamics on ∆p/q is North-South and the non trivial orbits have the same
energy. This energy can be explicitely computed and is small if p/q is a
convergent of α. Consequently the vector field is uniformly small on ∆p/q.
The approximation map will be related to ξq|∆p/q

, as it is done in [16].
It must be noticed that the arguments of this section are nothing but the
finite dimensional analogous of the arguments of [6]. The rest of the paper
is devoted to the proof of Proposition 4.1. If the vector field would have
been C1, one could have used the results of [15] and the following remark:
the set {0}∪Sp/q is a maximal unlinked fixed point set of fq, which means
that there exists an isotopy from identity to fq that fixes every point of
{0} ∪ Sp/q and there is no larger subset of the fixed point set of fq that
satisfies this property. The vector field being Lipschitz, one must adapt
what is known in the C1 case to this wider situation. In Section 5 we
recall the existence of a dominated structure by presenting a canonical
filtration on the product flow on Eq ×Eq, postponing the technical proofs
to the appendix. In Section 6 we explain how ∆p/q appears as an “invariant
manifold” of this dominated structure. We have tried to write the article
as self-contained as possible.

ANNALES DE L’INSTITUT FOURIER



BRAMHAM’S APPROXIMATION THEOREM 2173

2. Extension and decomposition of a pseudo-rotation

Let f be an orientation preserving homeomorphism of the Euclidean
plane. We will say that f is untwisted if the map

(x, y) 7→ (p1(f(x, y)), y)

is a homeomorphism, which means that there exist two continuous functions
g, g′ on R2 such that

f(x, y) = (X,Y )⇔
{
x = g(X, y),
Y = g′(X, y).

In this case, the maps X 7→ g(X, y) and y 7→ g′(X, y) are orientation
preserving homeomorphisms of R. If moreover, f is area preserving, the
continuous form xdy+Y dX is exact: there exists a C1 function h : R2 → R
such that

g = ∂h

∂y
, g′ = ∂h

∂X
.

The function h, defined up to an additive constant is a generating function
of f .

We will be interested in untwisted homeomorphisms satisfying some Lip-
schitz conditions. Let f be an orientation preserving homeomorphism of the
Euclidean plane and K > 1. We will say that f is a K Lipschitz untwisted
homeomorphism if

(i) f is untwisted;
(ii) f is K bi-Lipschitz;
(iii) the maps X 7→ g(X, y) and y 7→ g′(X, y) are K bi-Lipschitz;
(iv) the maps y 7→ g(X, y) and X 7→ g′(X, y) are K Lipschitz.
Let f be a C1 diffeomorphism of R2 and denote by

Jac(f) =
(
∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

)
its Jacobian matrix. One can verify that f is a K Lipschitz untwisted
homeomorphism if and only if the eigenvalues of the matrix Jac(f)tJac(f)
lie between K−2 and K2 and if the following conditions are fulfilled

K−1 6
∂X

∂x
6 K, K−1 6 det(Jac(f))−1 ∂X

∂x
6 K

and ∣∣∣∣∂X∂y
∣∣∣∣ 6 K∂X

∂x
,

∣∣∣∣∂Y∂x
∣∣∣∣ 6 K∂X

∂x
.

TOME 66 (2016), FASCICULE 5
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In particular all these conditions are satisfied if Jac(f) is (uniformly) suf-
ficiently close to the identity matrix.
Until the end of Section 5 we suppose given a C1 pseudo-rotation of

rotation number α that coincides with a rotation on S. We choose a real
representant α of α and an irrational number β > α such that (α, β)∩Z = ∅.
We extend our map to a homeomorphism f of the whole plane defined in
polar coordinates as follows:

f(θ, r) =
{

(θ + 2π(α+ r − 1), r) if r ∈ [1, 1 + β − α],
(θ + 2πβ, r) if r > 1 + β − α.

We get a piecewise C1 area preserving transformation that satisfies the
following properties:

— 0 is the unique fixed point of f ;
— there is no periodic point of period q if (qα, qβ) ∩ Z = ∅;
— if (qα, qβ) ∩ Z 6= ∅, the set of periodic points of period q can be

written
⋃
α<p/q<β Sp/q, where Sp/q is the circle of center 0 and

radius 1 + p/q − α.

Proposition 2.1. — For every K > 1, one can find a decomposition
f = fm ◦ · · · ◦f1, where each fi is an area preserving K Lipschitz untwisted
homeomorphism that fixes 0 and induces a rotation on every circle of origin
0 and radius r > 1.

Proof. — Denote by f ′ the plane homeomorphism defined in polar coor-
dinates as follows:

f ′(θ, r) =


(θ + 2πα, r) if r ∈ [0, 1],
(θ + 2π(α+ r − 1), r) if r ∈ [1, 1 + β − α],
(θ + 2πβ, r) if r > 1 + β − α.

One gets f ′ = (f ′m′)m
′ , where

f ′m′(θ, r) =


θ + 2πα/m′, r) if r ∈ [0, 1],
θ + 2π(α+ r − 1)/m′, r) if r ∈ [1, 1 + β − α],
(θ + 2πβ/m′, r) if r > 1 + β − α.

If m′ is large enough, f ′m′ is an area preserving K Lipschitz untwisted
homeomorphism. Indeed it induces a diffeomorphism on each surface of
equation

r 6 1, 1 6 r 6 1 + β − α, 1 + β − α 6 r
and the Jacobian at every point is uniformly close to the identity.

ANNALES DE L’INSTITUT FOURIER
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One can write f = f ′′ ◦f ′ where f ′′ coincides with the identity outside D
and is an area preserving C1 diffeomorphism, when restricted to D. To get
the proposition one can use the path-connectedness of the group Diff1

∗∗(D)
of area preserving C1 diffeomorphisms of D that fix 0 and every point of S,
when furnished with the C1 topology(1) . Indeed, for every neighborhood
U of the identity in Diff1

∗∗(D), one can write f ′′|D = f ′′m′′ ◦ · · · ◦ f ′′1 where
f ′′i ∈ U . Choosing U sufficiently close to the identity and extending f ′′i
by the identity map outside D, one gets a decomposition of f ′′ into area
preserving K Lipschitz untwisted homeomorphisms. It remains to write
m = m′ +m′′ and to define

fi =
{
f ′m′ if i 6 m′,
f ′′i−m′ if m′ < i 6 m. �

Remark 2.2. — To each map fi is naturally associated an isotopy
(fi,t)t∈[0,2] starting from the identity: writing fi(x, y) = (X,Y ), one sets

fi,t(x, y) =
{

((1− t)x+ tX, y) if t ∈ [0, 1]
(X, (2− t)y + (t− 1)Y ) if t ∈ [1, 2]

One gets an isotopy (ft)t∈[0,2m] joining the identity to f and fixing the
origin by writing

ft = f1+i,t−2i ◦ fi ◦ · · · ◦ f1 if t ∈ [2i, 2i+ 2].

This isotopy can be lifted to the universal cover R× (0,+∞) of R2 \ {0} to
an isotopy from the identity to a certain lift f̃ of f |R2\{0}. The real rotation
number (as explained in the introduction) defined by the restriction of f̃
to the universal cover D̃ = R× (0, 1) of D \ {0} is α.

Remark 2.3. — By choosing m′ sufficiently large in the proof of Propo-
sition 1, one can suppose that for every i ∈ {1, . . . ,m} and every r > 1, the
rotation that coincides with fi on the circle of origin 0 and radius r is a K
Lipschitz untwisted homeomorphism. This fact will be used in Section 5.

3. The generating family and the gradient flow

We fix K > 1 and a decomposition f = fm ◦ · · · ◦ f1 given by Proposi-
tion 2.1. We define two families (gi)16i6m, (g′i)16i6m of continuous maps

(1)Having been unable to find a written proof of the path-connectedness of Diff1
∗∗(D) in

the litterature, we have written one in the appendix (Lemma 7.1)

TOME 66 (2016), FASCICULE 5
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as follows

fi(x, y) = (X,Y )⇔
{
x = gi(X, y),
Y = g′i(X, y),

and a family (hi)16i6m of C1 maps, such that

gi = ∂hi
∂y

, g′i = ∂hi
∂X

.

We extend the families

(fi)16i6m, (gi)16i6m, (g′i)16i6m, (hi)16i6m,

to m periodic families

(fi)i∈Z, (gi)i∈Z, (g′i)i∈Z, (hi)i∈Z.

We fix in this section an integer q > 2 such that (qα, qβ) ∩ Z 6= ∅. To
lighten the notations, unlike in the introduction we do not refer to q while
defining objects. We consider the finite dimensional vector space

E =
{

z = (zi)i∈Z ∈ (R2)Z
∣∣ zi+mq = zi, for all i ∈ Z

}
,

furnished with the scalar product

〈(zi)i∈Z, (z′i)i∈Z〉 =
∑

0<i6mq
xix
′
i + yiy

′
i,

where zi = (xi, yi) and z′i = (x′i, y′i). We denote by ‖ ‖ the associated
Euclidean norm and write

d(z, Z) = inf
z′∈Z
‖z− z′‖

for the distance of a point z to a set Z ⊂ E.
We define on E a vector field ξ = (ξi)i∈Z by writing

ξi(z) =
(
yi − g′i−1(xi, yi−1), xi − gi(xi+1, yi)

)
.

Note that ξ is invariant by the (q periodic) shift

ϕ : E → E ,

(zi)i∈Z 7→ (zi+m)i∈Z.

Indeed, ϕ being a linear map, one has

ξ(ϕ(z)) =
(
yi+m− g′i−1(xi+m, yi+m−1), xi+m− gi(xi+m+1, yi+m)

)
i∈Z

=
(
yi+m− g′i+m−1(xi+m, yi+m−1), xi+m− gi+m(xi+m+1, yi+m)

)
i∈Z

= ϕ(ξ(z))
= Dϕ(z).ξ(z).

In this section, we will state some easy facts about ξ.

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.1. — The vector field is A Lipschitz, where A =
√

6K2 + 3.

Proof. — For every z = (zi)i∈Z and z′ = (z′i)i∈Z, one has∣∣(yi − g′i−1(xi, yi−1))− (y′i − g′i−1(x′i, y′i−1))
∣∣

6 |yi − y′i|+K|xi − x′i|+K|yi−1 − y′i−1|

and∣∣(xi − gi(xi+1, yi))− (x′i − gi(x′i+1, y
′
i))
∣∣

6 |xi − x′i|+K|xi+1 − x′i+1|+K|yi − y′i|.

By Cauchy–Schwarz inequality, one knows that

(a+ b+ c)2 6 3(a2 + b2 + c2),

which implies that

‖ξi(z)− ξi(z′)‖2 6 3(K2 + 1)(|xi − x′i|2 + |yi − y′i|2)

+ 3K2(|xi+1 − x′i+1|2 + |yi−1 − y′i−1|2)

and that
‖ξ(z)− ξ(z′)‖2 6 (6K2 + 3)‖z− z′‖2. �

One deduces that the associated differential system{
ẋi = yi − g′i−1(xi, yi−1),
ẏi = xi − gi(xi+1, yi),

defines a flow on E. We will denote by zt the image at time t of a point
z ∈ E by this flow, and more generally by Zt the image of a subset Z ⊂ E.

Lemma 3.2. — For every (z, z′) ∈ E2 and every t ∈ R, one has

e−A|t|‖z− z′‖ 6 ‖zt − z′t‖ 6 eA|t|‖z− z′‖

and
e−A|t|‖ξ(z)‖ 6 ‖ξ(zt)‖ 6 eA|t|‖ξ(z)‖.

Proof. — Let us begin with the first double inequality. For every (z, z′) ∈
E2 and t > 0, one has

‖zt − z′t‖ 6 ‖z− z′‖+ ‖(zt − z′t)− (z− z′)‖

= ‖z− z′‖+
∥∥∥∥∫ t

0
ξ(zs)− ξ(z′s) ds

∥∥∥∥
6 ‖z− z′‖+A

∫ t

0
‖zs − z′s‖ ds

TOME 66 (2016), FASCICULE 5
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which implies by Gronwall’s Lemma that ‖zt − z′t‖ 6 eAt‖z − z′‖. The
inequality on the right, for t 6 0 can be proven similarly and the inequality
on the left can be deduced immediately from the one on the right.
Writing this double inequality with z′ = zs, dividing by s and letting s

tend to 0 permits to obtain the second double inequality. �

For every i ∈ Z, define the maps

Qi : E → R2,

z 7→ (gi(xi+1, yi), yi),

and

Q′i : E → R2,

z 7→ (xi, g′i−1(xi, yi−1)).

By definition of gi and g′i, one knows that

fi((gi(xi+1, yi), yi) = (xi+1, g
′
i(xi+1, yi)),

which means that fi ◦Qi(z) = Q′i+1(z). Observe also that

ξi = J ◦ (Q′i −Qi),

where J(x, y) = (−y, x). In particular z is a singularity of ξ if and only if
Qi(z) = Q′i(z) for every i ∈ Z. One deduces that Q1 induces a bijection
between the set of singularities of ξ and the set of fixed points of fq. Indeed,
if z is a singularity of ξ, we have fi ◦Qi(z) = Qi+1(z) and consequently

fq ◦Q1(z) = fmq ◦ · · · ◦ f1 ◦Q1(z) = Qmq+1(z) = Q1(z).

Conversely, suppose that fq(z) = z, and consider the sequence z = (zi)i∈Z,
where z1 = z and zi+1 = fi(zi). It belongs to E because fq(z) = z and is a
singularity of ξ because gi(xi+1, yi) = xi and g′i(xi+1, yi) = yi+1. Moreover
we have Q1(z) = (g1(x2, y1), y1) = (x1, y1) = z. The set of singularities
consists of the constant sequence 0 = (0)i∈Z, whose image by Q1 is the
common fixed point 0 of all fi, and of finitely many smooth closed curves
(Σp)p∈(qα,qβ)∩Z, each curve Σp being sent homeomorphically onto Sp/q by
Q1 (and in fact by each Qi or Q′i). Observe that ξ is C1 in a neighborhood of
0 and C∞ in a neighborhood of Σp because each fi is a C1 diffeomorphism
in a neighborhood of 0 and a C∞ diffeomorphism in a neighborhood of Sp/q.

Observe that ξ is the gradient vector field of the function

h : z 7→
∑

0<i6mq
xiyi − hi−1(xi, yi−1)

ANNALES DE L’INSTITUT FOURIER
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and that h is invariant by ϕ. The vector field ξ being a gradient vector
field, one can define the energy of an orbit (zt)t∈R to be∫ +∞

−∞
‖ξ(zt)‖2 dt = lim

t→+∞
h(zt)− lim

t→−∞
h(zt).

Lemma 3.3. — For every z ∈ E, one has

‖ξ(z)‖2 6 A
∫ +∞

−∞
‖ξ(zt)‖2 dt = A

(
lim

t→+∞
h(zt)− lim

t→−∞
h(zt)

)
.

Proof. — It is an immediate consequence of the inequality

e−A|t|‖ξ(z)‖ 6 ‖ξ(zt)‖

given by Lemma 3.2. �

Lemma 3.4. — For every z ∈ Σp, one has

h(z)− h(0) = π(p− qα)
(

1 + (p/q − α) + (p/q − α)2

3

)
.

Proof. — Recall that Q1 sends Σp onto the circle Sp/q and denote by
Dp/q ⊂ R2 the disk bounded by Sp/q. The quantity h(z) − h(0) is the
difference of action between the two corresponding fixed points of fq. It is
equal to the opposite of the area displaced by an arc joining 0 to Q1(z)
along an isotopy of R2 that fixes 0 and Q1(z). In our case, it is independent
of z, the set Σp being contained in the critical set of h, and its dynamical
meaning is the following: it is equal to the opposite of the rotation number
of the Lebesgue measure in the annulus Dp/q \ {0} defined by the map fq
for the lift to the universal covering space that fixes all the points of the
boundary line. It is easy to compute. The rotation number of the Lebesgue
measure restricted to D \ {0} is equal to π(qα− p), therefore:

h(z)− h(0) = π(p− qα)−
∫ 1+p/q−α

1
2πr((r + α− 1)q − p) dr

= π(p− qα)
(

1 + (p/q − α) + (p/q − α)2

3

)
. �

4. The main proposition and its consequences

In this section we will give a proof of Theorem 1.2. It will follow from
Proposition 4.1, whose proof is postponed to Section 6. The arguments are
very close to the ones given by Bramham in [6]: we replace pseudoholomor-
phic curves by orbits of the gradient flow but the spirit of the proof is the
same.
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Proposition 4.1. — The curve Σp bounds a topological disk ∆p ⊂ Eq
that satisfies the following:

(i) ∆p contains the constant sequence 0;
(ii) ∆p is invariant by ϕ;
(iii) each projection z 7→ (xi, yi−1), i ∈ Z, is one to one on ∆p;
(iv) each projection z 7→ (xi, yi), i ∈ Z, is one to one on ∆p;
(v) ∆p is invariant by the flow;
(vi) for every z ∈ ∆p \ ({0} ∪ Σp), one has limt→−∞ zt = 0 and

limt→+∞ d(zt,Σp) = 0.

Let us explain now why this proposition implies Theorem 1.2.
Proof of Theorem 1.2. — Let us begin by writing

C(p, q) = π(p− qα)
(

1 + (p/q − α) + (p/q − α)2

3

)
.

The assertion (iii) tells us that the maps Qi|∆p
and Q′i|∆p

, i ∈ Z, induce
homeomorphisms from ∆p to Dp/q. One gets a family of homeomorphisms
(f̂i)i∈Z of Dp/q by writing:

f̂i = (Qi+1|∆p
) ◦ (Qi|∆p

)−1.

This family is m periodic because ∆p is invariant by ϕ. Moreover f̂ =
f̂m ◦ · · · ◦ f̂1 is q periodic because

f̂ = (Qm+1|∆p
) ◦ (Q1|∆p

)−1 = (Q1|∆p
) ◦ (ϕ|∆q

) ◦ (Q1|∆p
)−1.

Observe now that

fi|Dp/q
= (Q′i+1|∆p

) ◦ (Qi|∆p)−1

and that
f̂i − fi|Dp/q

= J ◦ ξi+1 ◦ (Qi|∆p)−1.

By Lemma 3.3 and Lemma 3.4, one deduces that

sup
z∈Dp/q

|f̂i(z)− fi(z)| 6 A1/2C(p, q)1/2.

Observe also that f̂i fixes 0 and coincides with fi on Sp/q.

On the disk Dp/q, one can write

f̂ − f = f̂m ◦ f̂m−1 ◦ · · · ◦ f̂1 − fm ◦ f̂m−1 ◦ · · · ◦ f̂1

+ fm ◦ f̂m−1 ◦ · · · ◦ f̂1 − fm ◦ fm−1 ◦ · · · ◦ f̂1

+ . . . . . . . . .

+ fm ◦ · · · ◦ f2 ◦ f̂1 − fm ◦ · · · ◦ f2 ◦ f1.
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By definition of K Lipschitz untwisted homeomorphisms, one gets

sup
z∈Dp/q

|f̂(z)− f(z)| 6 (1 +K + · · ·+Km−1)A1/2C(p, q)1/2.

Let us consider now the homothety H of ratio 1 + p/q − α and set
f̌ = H−1 ◦ f̂ ◦H. On the disk D one can write

f̌ − f = (H−1 ◦ f̂ ◦H −H−1 ◦ f ◦H) + (H−1 ◦ f ◦H − f ◦H) + (f ◦H − f).

Using the fact that f is Km Lipschitz, one gets

sup
z∈D
|f̌(z)−f(z)| 6 (1+K+· · ·+Km−1)A1/2C(p, q)1/2 +(1+Km)(p/q−α).

We will get the same upper bound for supz∈D |f̌−1(z) − f−1(z)|. One can
choose p and q, with p−qα arbitrarily small, which means that the quantity
on the right side itself can be chosen arbitrarily small. �

Remark 4.2. — Keeping the notation above, one gets

Id− fq = f̂mq ◦ f̂mq−1 ◦ · · · ◦ f̂1 − fm ◦ f̂mq−1 ◦ · · · ◦ f̂1

+ fmq ◦ f̂mq−1 ◦ · · · ◦ f̂1 − fmq ◦ fmq−1 ◦ · · · ◦ f̂1

+ . . . . . . . . .

+ fmq ◦ · · · ◦ f2 ◦ f̂1 − fmq ◦ · · · ◦ f2 ◦ f1.

which implies that

sup
z∈Dp/q

|z − fq(z)| 6 (1 +K + · · ·+Kmq−1)A1/2C(p, q)1/2,

and that

sup
z∈D
|z−fq(z)| 6 (1+K+ · · ·+Kmq−1)A1/2C(p, q)1/2 +(1+Kmq)(p/q−α̃).

One gets a similar inequality for supz∈D |z−f−q(z)|. Extending in a similar
way our original diffeomorphism with the help of a negative polar twist map
will give us a similar inequality for couples (p, q) such that p/q < α. If α
satisfies the following super Liouville condition: for every µ ∈ (0, 1), there
exists two sequences of integers (qn)n>0 and (pn)n>0, with qn > 0, such that
|qnα− pn| 6 µqn , then there exists a sequence (rn)n>0 such that (frn)n>0
converges to the identity on D for the C0 topology. One says that f is C0

rigid. This is a C1 version, but with the additional assumption of being C1

conjugate to the rotation, of the following recent result of Bramham [7]:

Theorem 4.3. — Every C∞ irrational pseudo rotation f of rotation
number α is C0 rigid if it satisfies the following super Liouville condition:
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for every µ ∈ (0, 1), there exists a sequence of integers (qn)n>0 such that
d(qnα, 0) 6 µqn .

5. Canonical dominated structure for the gradient flow

In this section, we will do a deeper study of the vector field ξ. The fact
that ξ is a gradient flow has no importance here. What is crucial is the
fact that ξ is tridiagonal and monotonically symmetric (we will explain
the meaning of this). We refer to [14] or [15] for detailed proofs. In what
follows, the function sign assigns +1 to a positive number and −1 to a
negative number.
Let us consider the set

V =
{

z ∈ E
∣∣ xi 6= 0 and yi 6= 0 for all i ∈ Z

}
and the function L on V defined by the formula

L(z) = 1
4
∑

0<i6mq
sign(xi) (sign(yi)− sign(yi−1)) ,

= 1
4
∑

0<i6mq
sign(yi) (sign(xi)− sign(xi+1)) .

It extends continuously to the open set

W =
{

z ∈ E
∣∣ xi = 0⇒ yi−1yi > 0, yi = 0⇒ xixi+1 > 0

}
.

Let us first explain the meaning of L. For every z ∈ E, one can define a
loop γz : [0, 2mq]→ R2 by writing:

γz(t) =
{

((1 + 2i− t)xi + (t− 2i)xi+1, yi) if t ∈ [2i, 2i+ 1],
(xi+1, (2 + 2i− t)yi + (t− 2i− 1)yi+1) if t ∈ [2i+ 1, 2i+ 2].

The fact that z belongs to W means that the image of this loop does not
meet 0. Write 0x+, 0x−, 0y+, 0y− for the half lines generated by the vectors
(1, 0), (−1, 0), (0, 1), (0,−1) respectively. The formulas given above tell us
that

L(z) = 1
2(0x+ ∧ γz + 0x− ∧ γz) = 1

2(0y+ ∧ γz + 0y− ∧ γz),

where ∧ means the algebraic intersection number. The integer L(z) is noth-
ing but the indice of the loop γz relative to 0. In particular, L is integer
valued and takes its values in {−[mq/2], . . . , [mq/2]}.
Let us state the fundamental result, whose proof is postponed to the

appendix:
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Proposition 5.1. — If z, z are two distinct points of E such that
z′ − z 6∈ W , then there exists ε > 0 such that z′t − zt ∈ W if 0 < |t| 6 ε.
Moreover, for every t ∈ (0, ε], one has

L(z′t − zt) = L(z′ε − zε) > L(z′−ε − z−ε) = L(z′−t − z−t).

For every p ∈ {−[mq/2], . . . , [mq/2]}, let us write

Wp =
{

z ∈W
∣∣L(z) = p

}
and define

W+
p = Int

Cl

 ⋃
p′>p

Wp′

, W−p = Int

Cl

 ⋃
p′6p

Wp′

,
where Int and Cl mean the interior and the closure respectively. Similarly
write

Wp =
{

(z, z′) ∈ E × E
∣∣ z′ − z ∈Wp

}
,

W+
p =

{
(z, z′) ∈ E × E

∣∣ z′ − z ∈W+
p

}
,

W−p =
{

(z, z′) ∈ E × E
∣∣ z′ − z ∈W−p

}
.

Proposition 5.1 gives us a canonical filtration on the product flow defined
on E × E \ diag, where diag = {(z, z′) ∈ E × E | z = z′}. Each set W+

p is
an attracting set of the product flow on E × E \ diag and each set W−p a
repulsing set. More precisely, if (z, z′) ∈ Cl(W+

p )\diag, then (zt, z′t) ∈ W+
p

for every t > 0; if (z, z′) ∈ Cl(W−p ) \ diag, then (zt, z′t) ∈ W−p for every
t < 0. Consequently, the boundary of W+

p and W−p in E × E \ diag are 1
codimensional topological submanifolds.
In particular, if z and z′ are two singularities, then z′ − z ∈ W and

L(z′ − z) is well defined. Let us explain the meaning of this integer. Re-
call that to each map f:(x, y) → (X,Y ) is naturally associated an isotopy
(fi,t)t∈[0,2] starting from the identity defined as follows

fi,t(x, y) =
{

((1− t)x+ tX, y) if t ∈ [0, 1],
(X, (2− t)y + (t− 1)Y ) if t ∈ [1, 2],

and an isotopy (f [q]
t )t∈[0,2mq] joining the identity to fq, where

f
[q]
t = f1+i,t−2i ◦ fi ◦ · · · ◦ f1 if t ∈ [2i, 2i+ 2].

The integer L(z′ − z) is equal to the linking number of the two corre-
sponding fixed points of fq for this natural isotopy naturally defined by
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the decomposition of f , in other words to the topological degree of the
map

t 7→ f
[q]
t (z′)− f [q]

t (z)
|f [q]
t (z′)− f [q]

t (z)|
from the “circle” [0, 2mq]|0=2mq to the unit circle. In particular, if p/q ∈
(α, β), then (0, z) ∈ Wp for every z ∈ Σp and (z, z′) ∈ Wp for every z and
z′ in Σp.

The reason why Proposition 5.1 is true due to the fact that the vector
field is tridiagonal and monotonically symmetric. Writing the coordinates
in the following order

. . . , yi−1, xi, yi, xi+1, . . .

the corresponding coordinate of ξ depends only on this coordinate and its
two neighbours. Moreover it depends monotonically on each of the neigh-
bouring coordinates and for two neighbouring coordinates, the “cross mono-
tonicities” are the same. In our example, ẋi depends only on xi, yi−1 and
yi, is a decreasing function of yi−1 and an increasing function of yi whereas
ẏi depends only on yi, xi and xi+1, is an increasing function of xi and a
decreasing function of xi+1. To every tridiagonal and monotonically sym-
metric vector field is associated a natural function L satisfying Proposi-
tion 5.1. An important case is the linear case. Suppose that ξ∗ is a linear
tridiagonal and monotonically symmetric vector field on our space E. We
obtain a dominated splitting (that has been known for a long time, see [17]
for example): there exists a linear decomposition

E =
⊕

p∈{−[mq/2],...,[mq/2]}

Ep

in invariant subspaces where

Ep \ {0} =
{

z ∈ E | etξ∗(z) ∈Wp for all t ∈ R
}
,

and the real parts of the eigenvalues of ξ∗|E∗,p′ are larger than the real
parts of the eigenvalues of ξ∗|Ep , if p′ < p (here etξ∗ means the exponential
of the linear map tξ∗). Moreover, the spaces

E+
p =

⊕
p′>p

Ep′ , E
−
p =

⊕
p′6p

Ep′

satisfy
E+
p \ {0} =

{
z ∈ E

∣∣ etξ∗(z) ∈W+
p for all t ∈ R

}
and

E−p \ {0} =
{

z ∈ E
∣∣ etξ∗(z) ∈W−p for all t ∈ R

}
.
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In the case of a tridiagonal and monotonically symmetric C1 vector field,
with non zero cross derivatives, one gets such a decomposition of the tan-
gent space at every singularity, for the linearized flow. The proof of Propo-
sition 5.1, in the C1 case is given in [14]. Starting with two distinct points
z and z′ such that z′ − z 6∈ W , polynomial approximations obtained by
successive integrations permit to determine the sign of the coordinates of
z′t − zt, for small values of t. A more precise study, replacing polynomial
approximations by explicit inequalities is given in [15, Lemma 2.5.1] and
permits to extend Proposition 5.1 to the compactification of E × E \ diag
obtained by blowing up the diagonal and then to get a similar result for
the linearized vector field on the tangent bundle. One proves in that way
the existence of a global dynamically coherent dominated splitting (the
definition is recalled in the next section). The proof of Proposition 5.1 that
uses [15, Lemma 2.5.1] extends word to word to our Lipschitz case. How-
ever, Proposition 5.2 stated below, needed in the next section, necessitates
an extension of this lemma to the case where vanishing conditions on the
coordinates of z′ − z, are replaced by smallness conditions. Its proof, post-
poned in the appendix, will be a direct consequence of Lemma 7.1, the
main result of the appendix.
Let us define

Ei =
{

z ∈ E
∣∣ i′ 6= i⇒ xi′ = 0 and i′ 6= i− 1⇒ yi′ = 0

}
and

E′i =
{

z ∈ E
∣∣ i′ 6= i⇒ xi′ = 0 and i′ 6= i⇒ yi′ = 0

}
.

Write πi : E → Ei and π′i : E → E′i for the orthogonal projections on Ei
and E′i respectively, write πi⊥ : E → Ei⊥ and π′i⊥ : E → E′i⊥ for the
orthogonal projections on Ei⊥ and E′i⊥.
Proposition 5.2. — For every t > 0, there exists a constant Nt > 0

such that for every pair of points z, z′ in E satisfying z′s − zs ∈ W if
s ∈ [−t, t], and for every i ∈ Z, one has

‖πi⊥(z′ − z)‖ 6 Nt ‖πi(z′ − z)‖

and
‖π′i⊥(z′ − z)‖ 6 Nt ‖π′i(z′ − z)‖.

6. Proof of Proposition 4.1

The goal of this section is to prove Proposition 4.1, We will begin with
a preliminary result (Proposition 6.1) that states the existence of a topo-
logical plane Πp, containing 0 and Σp, invariant by ϕ, such that for every
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t ∈ R and every i ∈ Z, the projections z 7→ (xi, yi−1), and z 7→ (xi, yi) send
homeomorphically (Πp)t, the image of Πp by the flow at time t, onto R2.
This last fact will be a consequence of the inclusion(

(Πp)t × (Πp)t
)
\ diag ⊂ Wp.

The disk ∆p ⊂ Πp bounded by Σp satisfies the assertions (i) to (iv) of
Proposition 4.1. In the second part of the section, we will prove that it is
invariant by the flow (assertion v)) and that for every z ∈ ∆p \ ({0}∪Σp),
one has limt→−∞ zt = 0 and limt→+∞ d(zt,Σp) = 0 (assertion (vi)).
As explained in the previous section, a tridiagonal and monotonically

symmetric C1 vector field on E, with non zero cross derivatives, admits a
dominated splitting, which means a decomposition of the tangent bundle

TE =
⊕

p∈{−[mq/2],...,[mq/2]}

Ep(z),

invariant by the linearized flow, with relative expanding properties, and
this splitting is dynamically coherent, which means that every field⊕

p06p6p1

Ep(z),

is integrable. This is a consequence of Proposition 5.1 stated in [15]. The
coherency is obtained via graph transformations. One can integrate the
fields ⊕

p06p

Ep(z),
⊕
p6p1

Ep(z),

and then take the intersection of the integral manifolds. In particular a
plane Πp tangent to the bundle Ep(z) is characterized by the property(

(Πp)t × (Πp)t
)
\ diag ⊂ Wp for all t ∈ R.

Here the vector field is no longer C1, the decomposition

TE =
⊕

p∈{−[mq/2],...,[mq/2]}

Ep(z)

does not exist but fortunately the graph transformation exists: there exist
topological manifolds Γ+

p and Γ−p satisfying

dim(Γ+
p ) + dim(Γ−p ) = mq + 2

and such that for every t ∈ R, one has(
(Γ+
p )t × (Γ+

p )t
)
\ diag ⊂ W+

p ,
(
(Γ−p )t × (Γ−p )t

)
\ diag ⊂ W−p .

In case where the vector field is C1, the manifolds Γ+
p and Γ−p are C1

and the fact that Πp = Γ+
p ∩ Γ−p is a C1 plane follows almost immediately
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from the Implicit Function Theorem. In our situation, to prove that Πp =
Γ+
p ∩ Γ−p is a plane, we will need a Lipschitz Implicit Function Theorem

which means that some Lipschitz conditions about the manifolds Γ+
p , Γ−p

and Πp must be satisfied. This is the reason one needs Proposition 5.2.

Proposition 6.1. — For every p ∈ (qα, qβ)∩Z, there exists a set Πp ⊂
E, the image of a proper topological embedding of R2, such that:

(i) Πp contains {0} ∪ Σp;
(ii) Πp is invariant by ϕ;
(iii) ((Πp)t × (Πp)t) \ diag ⊂ Wp, for every t ∈ R.

Proof. — As explained in Remark 2.3 at the end of Section 2, the ro-
tation f∗,i that coincides with fi on the circle Sp/q is an area preserv-
ing K Lipschitz untwisted homeomorphism. One gets a decomposition
f∗ = f∗,m ◦ · · · ◦ f∗,1 of the rotation of angle 2πp/q. To this decomposi-
tion is associated a linear vector field ξ∗ on E which is the gradient of a
quadratic form. Its kernel being homeomorphic to the fixed points set of
(f∗)q, is a plane. Since ξ∗ coincides with ξ on {0} ∪ Σp, its kernel con-
tains this set: it is the plane generated by Σp. Applying what has been
said in Section 5, one knows that there exists a linear (and orthogonal)
decomposition

E =
⊕

p′∈{−[mq/2],...,[mq/2]}

Ep′ ,

where
Ep′ \ {0} =

{
z ∈ E

∣∣ etξ∗(z) ∈Wp′ for all t ∈ R
}
,

and that the spaces

E+
p′ =

⊕
p′′>p′

Ep′′ , E−p′ =
⊕
p′′6p′

Ep′′ ,

satisfy
E+
p′ \ {0} =

{
z ∈ E

∣∣ etξ∗(z) ∈W+
p′ for all t ∈ R

}
and

E−p′ \ {0} =
{

z ∈ E
∣∣ etξ∗(z) ∈W−p′ for all t ∈ R

}
.

Observe that Ep is the kernel of ξ∗ and that Ep, E+
p and E−p are invariant

by ϕ because ξ∗ is invariant by ϕ. Write

π+
p : E → E+

p , π−p : E → E−p

for the orthogonal projections. Every vector “sufficiently close” to E+
p or

E−p must belong to W+
p or W−p respectively. This implies that there exists

a constant M > 1 such that:

(z, z′) ∈ W+
p ⇒ ‖π−p−1(z)− π−p−1(z′)‖ 6M‖π+

p (z)− π+
p (z′)‖,
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and

(z, z′) ∈ W−p ⇒ ‖π+
p+1(z)− π+

p+1(z′)‖ 6M‖π−p (z)− π−p (z′)‖.

Identifying the space E = E+
p ⊕ E−p−1 with the product E+

p × E−p−1, we
write Γψ ⊂ E for the graph of a function ψ : E+

p → E−p−1. We define

G+
p =

{
ψ : E+

p → E−p−1
∣∣ (Γψ × Γψ) \ diag ⊂ W+

p

}
and

G+
p =

{
ψ : E+

p → E−p−1
∣∣ (Γψ × Γψ) \ diag ⊂ Cl(W+

p )
}
.

Note that G+
p is closed for the compact-open topology, note also that

every function in G+
p is M Lipschitz, by definition of the constant M .

Lemma 6.2. — The vector field ξ induces a positive semi-flow (t, ψ) 7→
ψt on G+

p , such that Γψt = (Γψ)t. Moreover, one has ψt ∈ G+
p for every

ψ ∈ G+
p and every t > 0.

Proof. — By Proposition 5.1, for every ψ ∈ G+
p and every t > 0, one has(

(Γψ)t × (Γψ)t
)
\ diag ⊂ Cl(W+

p ).

Consequently (Γψ)t projects injectively into E+
p . In fact it projects surjec-

tively. Indeed, the map

z 7→ πp((z + ψ(z))t)

is more than an injective and continuous transformation of E+
p . One de-

duces from Lemma 3.2 that it is MeAt bi-Lipschitz. In particular it is a
homeomorphism of E+

p . This means that (Γψ)t is the graph of a continuous
function ψt ∈ G+

p . The continuity of the map

(t, ψ) 7→ ψt,

when G+
p is furnished with the compact-open topology, follows easily. The

fact that ψt belongs to G+
p for every t > 0 is an immediate consequence of

Proposition 5.1. �

Similarly, one can identify E with the product E−p ×E+
p+1, write Γ′ψ′ ⊂ E

for the graph of a function ψ′ : E−p → E+
p+1 and define

G−p =
{
ψ′ : E−p → E+

p+1
∣∣ (Γ′ψ′ × Γ′ψ′) \ diag ⊂ W−p

}
and

G−p =
{
ψ : E−p → E+

p+1
∣∣ (Γ′ψ′ × Γ′ψ′) \ diag ⊂ Cl(W−p )

}
.

We can define a negative semi-flow (t, ψ′) 7→ ψ′t on G−p such that Γ′ψ′t =
(Γ′ψ′)t and we have ψ′t ∈ G−p for every ψ′ ∈ G−p and every t < 0.
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If z ∈ E−p−1 denote by ψz ∈ G+
p the constant map equal to z, and similarly

if z′ ∈ E+
p+1 denote by ψ′z′ ∈ G−p the constant map equal to z′. The graphs

of these families of maps give us two transverse foliations. Let us study
the time evolution of these foliations. For every t > 0, every z ∈ E−p−1 and
every z′ ∈ E+

p+1, we define the set

Πz,z′,t = Γψt
z
∩ Γ′

ψ′−t

z′
.

Lemma 6.3. — Let us fix i ∈ Z. The set Πz,z′,t is the graph of a map
θi,t : Ei → Ei⊥ and the graph of a map θ′i,t : E′i → E′i⊥. Moreover, θi,t
and θ′i,t are Nt Lipschitz, where Nt is defined by Proposition 5.2.

Proof. — For every s ∈ [−t, t], one has

(Πz,z′,t)s ⊂ Γψt+s
z
∩ Γ′

ψ′−t+s

z′
,

which implies that

((Πz,z′,t)s × (Πz,z′,t)s) \ diag ⊂ W+
p ∩W−p =Wp.

Therefore Πz,z′,t projects injectively on Ei and E′i. We want to prove that
it projects surjectively. Fix z∗ ∈ Ei and look at the map

Θ : Ei⊥ → E−p−1 × E
+
p+1,

z 7→
(
π−p−1((z∗ + z)−t), π+

p+1((z∗ + z)t)
)
.

Observe that
z∗ + z ∈ Ππ−

p−1((z∗+z)−t),π+
p+1((z∗+z)t),t,

which implies that Θ is injective. Let us prove that it is MeAt bi-Lipschitz
if E−p−1 × E

+
p+1 is furnished with the supremum norm. The fact that it is

eAt Lipschitz is an immediate consequence of Lemma 3.2. To prove that
the inverse is MeAt Lipschitz, one can note that for every z, z′ in Ei⊥, one
has (z∗ + z, z∗ + z′) 6∈ W because (z∗ + z′) − (z∗ + z) has two vanishing
consecutive coordinates. So either

(z∗ + z, z∗ + z′) ∈ Cl(W−p−1)

or
(z∗ + z, z∗ + z′) ∈ Cl(W+

p+1).
One deduces that (

(z∗ + z)−t, (z∗ + z′)−t
)
∈ W−p−1

or (
(z∗ + z)t, (z∗ + z′)t

)
∈ W+

p+1,
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which implies that

‖π−p−1((z∗ + z)−t)− π−p−1((z∗ + z′)−t)‖ >M−1e−At‖z− z′‖

or
‖π+

p+1((z∗ + z)−t)− π+
p+1((z∗ + z′)−t)‖ >M−1e−At‖z− z′‖.

We deduce from the fact that Θ is MeAt bi-Lipschitz that Θ is a homeo-
morphism, which implies that Πz,z′,t is the graph of a function θi,t : Ei →
Ei⊥. By Proposition 5.2, the fact that ((Πz,z′,t)s × (Πz,z′,t)s) \ diag ⊂Wp,
for every s ∈ [−t, t], implies that this graph is Nt Lipschitz. We can define
a similar map θ′i,t : E′i → E′i⊥ and it will also be Nt Lipschitz. �

Let us finish the proof of Proposition 6.1. For every t > 0, define

Πp,t = Γψt
0
∩ Γ′

ψ′−t
0

=
(
E+
p

)t ∩ (E−p )−t .
Each graph Γψt

0
and Γ′

ψ−t
0

contains {0} ∪Σp because this is the case for
E+
p and E−p : one deduces that Πp,t contains {0} ∪ Σp.
Each graph Γψt

0
and Γ′

ψ−t
0

is invariant by ϕ because this is the case for E+
p

and E−p and because ξ is invariant by ϕ: one deduces that Πp,t is invariant
by ϕ.
For every t > 1 and every i ∈ Z , one may write Πp,t as the graph of a

function θi,t : Ei → Ei⊥ and as the graph of a function θi,t : E′i → E′i⊥

and all these functions are Nt Lipschitz.
Using Ascoli’s Theorem, one may find for every i ∈ Z a map θi : Ei →

Ei⊥, a map θ′i : E′i → E′i⊥, both Nt Lipschitz for every t > 0, and a
sequence (tn)n>0 satisfying limn→+∞ tn = +∞, such that each sequence
(θi,tn)n>0 converges to θi and each sequence (θ′i,tn)n>0 converges to θ′i for
the compact-open topology. The graphs of θi and θ′i are equal and inde-
pendant of i. The topological plane Πp obtained in that way is invariant
by ϕ, contains {0} ∪ Γp and satisfies(

(Πp)t × (Πt
p)
)
\ diag ⊂ Wp

for every t ∈ R. �

Proof of Proposition 4.1. — Let Πp be a plane given by Proposition 6.1.
The curve Σp bounds a disk ∆p ⊂ Πp. This disk is invariant by ϕ because it
is the case for Πp and Σp, so the assertion (i) is satisfied. The assertions (iii)
and (iv) being true on Πp are of course true on ∆p. The map Q1 sends
homeomorphically Πp onto R2 and satisfies Q1(0) = 0. Moreover its sends
Σp onto Sp/q, which implies that it sends ∆p onto Dp/q. Consequently one
has 0 ∈ ∆p, which means that (i) is true.
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Let us prove now that for every z ∈ ∆p \ ({0} ∪ Σp), one has

lim
t→−∞

zt = 0, lim
t→+∞

d(zt,Σp) = 0.

Observe that Σp bounds the disk (∆p)t ⊂ (Πp)t, which is also sent homeo-
morphically onto Dp/q by each Qi and Q′i. Consequently, the orbit of every
point z ∈ ∆p \ ({0} ∪ Σq) is bounded. The flow of ξ being a gradient flow,
the sets α(z) and ω(z) are not empty, either reduced to 0 or included in
one of the curves of singularities. The only possible circle is Σp, because
(0, zt) ∈Wp for every t ∈ R and (0, z′) ∈Wp′ for every z′ ∈ Σp′ . Using the
fact that h(z′) > h(0) if z′ ∈ Σp, one deduces that (vi) is satisfied.

It remains to prove (v), which means that ∆p is invariant by the flow.
It is sufficient to prove that the disk ∆p is independent of the plane Πp

given by Proposition 6.1. Indeed (Πp)t also satisfies the properties stated
in Proposition 6.1, and Σp bounds the disk (∆p)t ⊂ (Πp)t. We will give
a proof by contradiction, supposing that Πp and Π′p are two planes given
by Proposition 6.1, such that Σp bounds two distinct disks ∆p ⊂ Πp and
∆′p ⊂ Π′p.

Suppose that z ∈ ∆p \∆′p. The map Q1 induces homeomorphisms from
∆p and ∆′p onto Dp/q, so there exists z′ ∈ ∆′p such that Q1(z′) = Q1(z),
which implies that (z, z′) 6∈ W. Therefore, one has (z, z′) ∈ Cl(W+

p+1) or
(z, z′) ∈ Cl(W−p−1). In the first case, there exist p′ > p and T > 0 such that
(zt, z′t) ∈ Wp′ for every t > T . In the second case, there exist p′ < p and
T < 0 such that (zt, z′t) ∈ Wp′ for every t < T . Let us consider the second
case. The fact that limt→−∞ zt = 0 and that (0, zt) ∈ Wp implies that the
line generated by zt is approaching the space Ep(0) when t tends to −∞.
We have a similar result for z′t. The fact that (zt+s, z′t+s) ∈ Wp′ for every
s ∈ (−∞,−t+T ) implies that the line generated by zt−z′t is approaching
the space Ep′(0) when t tends to −∞.

As we know that the eigenvalues of Dξ(0)|Ep′ (0) are smaller than the
eigenvalues of Dξ(0)|Ep(0), we deduce that there exist C > 0, C ′ > 0 and
µ > µ′ such that, for −t large enough, one has

‖zt‖ 6 Ceµt, ‖z′t‖ 6 Ceµt, ‖zt − z′t‖ > C ′eµ
′t,

which is impossible.
Let us consider the first case. The fact that Σp × Σp \ diag is included

in Wp implies that 0 is an eigenvalue of Dξ(z′′)|Ep(z′′) for every z′′ ∈ Σq.
Consequently, there exists a uniform upper bound µ′ > 0 of the spectrum
of Dξ(z′′)|Ep′ (z′′). The fact that ω(z) and ω(z′) are included in Σp and that
(zt, z′t) ∈ Wp′ for every t > T implies that limt→+∞ ‖zt − z′t‖ = 0. More-
over if t is large, then for every s ∈ (−T − t,+∞) one has (zt+s, z′t+s) ∈

TOME 66 (2016), FASCICULE 5



2192 Patrice LE CALVEZ

Wp′ . This implies that if t is large and z′t is close to a point z′′ ∈ Σp, then
it is also the case for zt and the line generated by zt−z′t is close to Ep′(z′′).
Consequently, if t is large, then

‖zt+1 − z′t+1‖ > ‖zt − z′t‖,

which is impossible. �

Remark 6.4. — The uniqueness property that has been stated in the
previous proof permits us to give a construction of ∆p. Let Πp,t =

(
E+
p

)t∩(
E−p
)−t be the plane defined in the proof of Proposition 6.1 and ∆p,t ⊂ Πp,t

the disk bounded by Σt, then one has

∆p = lim
t→+∞

∆p,t,

for each natural topology (induced by the Hausdorff distance, associated
to the C0 topology on maps θi : Ei → Ei⊥ or on maps θ′i : E′i → E′i⊥).
The uniqueness property, and consequently its invariance by the flow is a
consequence of the fact that {0} ∪ Sp/q is a maximal unlinked fixed point
set of fq. The fact that ξ is a gradient flow was not essential in the proof,
nevertheless the proof is easier in this case (see [15, Proposition 5.2.1]).

7. Appendix

The goal of the appendix is to give a proof of Proposition 5.2. This
proposition will result from the technical Lemma 7.1. A particular case of
this lemma, that we will explain in detail, implies Proposition 5.1. The
proof of Lemma 7.1, in this particular case, is nothing but the proof of [15,
Lemma 2.5.1]. We will look at a wider situation than the one studied in
the present paper by looking at a general tridiagonal and monotonically
symmetric Lipschitz vector field.

We fix an integer r > 2 and consider the finite dimensional vector space

F =
{

x = (xi)i∈Z ∈ RZ ∣∣ xi+r = xi, for all i ∈ Z
}
.

Unlike in Section 3, we furnish F with the sup norm ‖ ‖ where ‖x‖ =
maxi∈Z |xi|.

We consider on F a tridiagonal and monotonically symmetric Lipschitz
vector field ζ = (ζi)i∈Z. More precisely we suppose that

ζi(x) = ζi(xi−1, xi, xi+1),

where
— the map x 7→ ζi(xi−1, x, xi+1) is K Lipschitz;
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— the maps x 7→ ζi(x, xi, xi+1) and x 7→ ζi(xi−1, xi, x) are K bi-
Lipschitz homeomorphisms;

— if x 7→ ζi(xi−1, xi, x) is increasing, then x 7→ ζi+1(x, xi+1, xi+2) is
increasing and we set σi = 1;

— if x 7→ ζi(xi−1, xi, x) is decreasing, then x 7→ ζi+1(x, xi+1, xi+2) is
decreasing and we set σi = −1.

Here again, we write xt for the image at time t of a point x by the flow.
We will prove the following:

Lemma 7.1. — For every integer l > 2 and every real number µ ∈ (0, 1],
there exists:

— a sequence of polynomials (Pk)k>0 in R[X1, X2] depending on K,
l and µ, such that Pk(0, X2) = akX

k
2 with ak > 0 if k 6 [l/2] + 1;

— a sequence of polynomials (Qk)k>0 in R[X1, X2] depending on K,
l, and µ, such that Qk(0, X2) = bkX

k
2 with bk > 0;

— real numbers ε0 > 0 and t0 > 0,
which verify the following:

For every ε ∈ [0, ε0] and for every x, x′ such that

|xi − x′i| > µ‖x− x′‖,
|xi+1 − x′i+1| 6 ε‖x− x′‖,

. . . . . . . . .

|xi+l − x′i+l| 6 ε‖x− x′‖,
|xi+l+1 − x′i+l+1| > µ‖x− x′‖,

the following inequalities are satisfied for every t ∈ [−t0, t0] \ {0}:

σ′i+k sign(t)k(xti+k − x′ti+k) > Pk(ε, |t|) ‖x− x′‖,
|xti+k+1 − x′ti+k+1| 6 Qk(ε, |t|) ‖x− x′‖,

. . . . . . . . .

|xti+l−k − x′ti+l−k| 6 Qk(ε, |t|) ‖x− x′‖,

σ′i+l+1−k sign(t)k(xti+l+1−k − x′ti+l+1−k) > Pk(ε, |t|) ‖x− x′‖,

where
σ′i+k = sign(xi − x′i)σi . . . σi+k−1

and
σ′i+l+1−k = sign(xi+l+1 − x′i+l+1)σi+l+1−k . . . σi+l.
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Moreover if l = 2m− 1 is odd and σ′i+m−1σi+m−1 = σ′i+m+1σi+m, then

σ′i+m sign(t)m(xti+m − x′ti+m) > 2Pm(ε, |t|) ‖x− x′‖,

where
σ′i+m = σ′i+m−1σi+m−1 = σ′i+m+1σi+m.

Proof. — By replacing the vector field ξ with −ξ, one changes every σi
into −σi. Thus it is sufficient to prove the lemma for t > 0. Let us begin
by defining two sequences (ak)k>0 and (bk)k>0 by the induction equations

ak+1 = k−1 (K−1ak − 2Kbk
)
, bk+1 = 3Kk−1bk

and the initial conditions

a0 = µ/2, b0 = δ,

where δ > 0 is chosen sufficiently small to ensure that ak is positive if
k 6 [l/2] + 1. The number δ depends on K, l and µ. Suppose moreover
than δ 6 µ and write

ε0 = δ

2 , t0 = log(δ/2)
3K .

Let us continue by defining two sequences of polynomials (Pk)k>0,
(Qk)k>0 in R[X1, X2] by the recursive equations

∂

∂X2
Pk+1 = K−1Pk − 2KQk, Pk+1(X1, 0) = −X1,

∂

∂X2
Qk+1 = 3KQk(X1, X2), Qk+1(X1, 0) = X1,

and the initial conditions

P0 = µ/2, Q0 = δ.

Observe that

Pk(0, X2) = akX
k
2 , Qk(0, X2) = bkX

k
2 .

Note also that Qk(x1, x2) > 0 if x1 > 0 and x2 > 0.

We will prove by induction on k ∈ {0, . . . , [l/2]} that for every t ∈ (0, t0],
one has

σ′i+k(xti+k − x′ti+k) > Pk(ε, t) ‖x− x′‖
σ′i+l+1−k(xti+l+1−k − x′ti+l+1−k) > Pk(ε, t) ‖x− x′‖

and
|xtj − x′tj | 6 Qk(ε, t) ‖x− x′‖

if i+ k < j < i+ l + 1− k.
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By hypothesis, the vector field is 3K Lipschitz. Using Gronwall’s Lemma,
like in Lemma 3.2, one deduces that

e−3Kt‖xt − x′t‖ 6 ‖xt − x′t‖ 6 e3Kt‖x− x′‖.

Therefore, for every i ∈ Z, one has

|xi − x′i| 6 e3Kt‖x− x′‖,

which implies
|ẋi − ẋ′i| 6 3Ke3Kt‖x− x′‖,

and so
|(xti − x′ti)− (xi − x′i)| 6 e3Kt‖x− x′‖.

By definition of ε0 and t0 one deduces that the induction hypothesis is
satisfied for k = 0.

Suppose that the induction hypothesis has been proven until k, where
k < [l/2] and let us prove it for k + 1. One has

ẋi+k+1 − ẋ′i+k+1

= ζi+k+1(xi+k, xi+k+1, xi+k+2)− ζi+k+1(x′i+k, xi+k+1, xi+k+2)
+ ζi+k+1(x′i+k, xi+k+1, xi+k+2)− ζi+k+1(x′i+k, x′i+k+1, xi+k+2)
+ ζi+k+1(x′i+k, x′i+k+1, xi+k+2)− ζi+k+1(x′i+k, x′i+k+1, x

′
i+k+2).

By definition of σi+k+1, σ′i+k+1 and by hypothesis, one deduces that

σ′i+k+1(ẋti+k+1 − ẋ′ti+k+1) >
(
K−1Pk(ε, t)− 2KQk(ε, t)

)
‖x− x′‖.

Consequently, one has

σ′i+k+1((xti+k+1 − x′ti+k+1)− (xi+k+1 − ẋ′i+k+1))

>

(∫ t

0
(K−1Pk(ε, u)− 2KQk(ε, u)) du

)
‖x− x′‖,

which implies that

σ′i+k+1(xti+k+1 − x′ti+k+1)

>

(∫ t

0
K−1Pk(ε, u)− 2KQk(ε, u) du− ε

)
‖x− x′‖

= Pk+1(ε, t)‖x− x′‖.

The same proof gives us

σi+l−k(xti+l−k − x′ti+l−k) > Pk+1(ε, t) ‖x− x′‖.
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Now, let us fix j ∈ {k + 2, . . . , l − k − 1}. One has

|ẋtj − ẋ′tj | 6 3KQk(ε, t)‖x− x′‖

and so

|(xtj − x′tj)− (xi − x′i))| 6
(∫ t

0
3KQk(ε, u) du

)
‖x− x′‖

which implies

|xtj − x′tj | 6
(∫ t

0
3KQk(ε, u) du+ ε

)
‖x− x′‖ = Qk+1(ε, t)‖x− x′‖

It remains to study the case where l = 2m−1 is odd and σ′i+m−1σi+m−1 =
σ′i+m+1σi+m. One has

σ′i+m(ẋti+m − ẋ′ti+m) >
(
2K−1Pm−1(ε, t)−KQm−1(ε, t)

)
‖x− x′‖

which implies

σ′i+m(xti+m − x′ti+m)

>

(∫ t

0
2K−1Pm−1(ε, u)−KQm−1(ε, u) du− ε

)
‖x− x′‖

>

(∫ t

0
2K−1Pm−1(ε, u)− 4KQm−1(ε, u) du− 2ε

)
‖x− x′‖

= 2Pm(ε, t)‖x− x′‖ �

Let us explain why Proposition 5.1 can be deduced from Lemma 7.1 in
the case where ε = 0. The function defined by the formula

L(x) =
∑

0<i6r
σi sign(xi) sign(xi+1)

extends naturally to the open set

U = {x ∈ F | xi = 0⇒ σi−1σi xi−1xi+1 < 0}.

Supposing ε = 0, Lemma 7.1 permits to determine the sign of every xtj−x′tj ,
j ∈ {i, . . . , i + l + 1}, |t| ∈ (0, t0], with the exception of xti+m − x′ti+m, in
the case where j = 2m− 1 is odd and σ′i+m−1σi+m−1 6= σ′i+m+1σi+m. One
has

sign(xti+k − x′ti+k) = sign(t)k σ′i+k,

sign(xti+l+1−k − x′ti+l+1−k) = sign(t)k σ′i+l+1−k.
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Recall that σ′i+k = σi+k−1σ
′
i+k−1 and σ′i+l+1−k = σi+l+1−kσ

′
i+l+2−k, if

1 6 k 6 [l/2], which implies that

sign(xtj − x′tj) sign(xtj+1 − x′tj+1) = sign(t)σj σ′jσ′j+1 = sign(t),

if j ∈ {i, . . . , i+ [l/2]− 1, i+ [l/2] + 1, . . . , i+ l}.

In the case where t is positive, the value of∑
i6j6i+l

σj sign(xtj − x′tj) sign(xtj+1 − x′tj+1)

is 

l + σi+m σ
′
i+mσ

′
i+m+1 if l = 2m is even,

l + 1 if l = 2m− 1 is odd and
σ′i+m−1σi+m−1 = σ′i+m+1σi+m,

l − 1 if l = 2m− 1 is odd and
σ′i+m−1σi+m−1 6= σ′i+m+1σi+m.

In the case where t is negative, it is

−l + σi+m σ
′
i+mσ

′
i+m+1 if l = 2m is even,

−l − 1 if l = 2m− 1 is odd and
σ′i+m−1σi+m−1 = σ′i+m+1σi+m,

−l + 1 if l = 2m− 1 is odd and
σ′i+m−1σi+m−1 6= σ′i+m+1σi+m.

The difference between the two values is a positive multiple of 4, except in
the case where l = 1 and σ′iσi 6= σ′i+2σi+1, which means that

σisign(xi − x′i) 6= σi+1sign(xi+2 − x′i+2).

Consequently, if x, x′ are two distinct points of F such that x′ − x 6∈ U ,
there exists t0 > 0 such that x′t − xt ∈ U if 0 < |t| 6 t0. Moreover, for
t ∈ (0, t0]) one has

L(x′t − xt) = L(x′t0 − xt0) > L(x′−t0 − x−t0) = L(x′−t − x−t) .

The proof given above in the case where ε = 0 is nothing but the proof
of [15, Lemma 2.5.1]. It implies Proposition 5.1 when applied to the vector
field ξ because L = L/4.

Lemma 7.1 tells us more. For every l > 2 and µ, there exists t0 such
that for every t ∈ (0, t0], there exists ε such that Pk(ε, t) > 0 for every
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k 6 [l/2] + 1. Indeed one has Pk(0, t) = akt
k > 0. Consequently, if x and

x′ satisfies

|xi − x′i| > µ‖x− x′‖
|xi+1 − x′i+1| 6 ε‖x− x′‖

. . . . . . . . .

|xi+l − x′i+l| 6 ε‖x− x′‖
|xi+l+1 − x′i+l+1| > µ‖x− x′‖

one can determine the signs of xtj − x′tj , j ∈ {i, . . . , i + l + 1}, with the
exception of xti+m − x′ti+m, in the case where j = 2m − 1 is odd and
σ′i+m−1σi+m−1 6= σ′i+m+1σi+m. Like in the case where ε = 0, the value of∑

i6j6i+l
σj sign(xtj − x′tj) sign(xtj+1 − x′tj+1)

is larger at time t than at time −t except if l = 1 and σisign(xi − x′i) 6=
σi+1sign(xi+2 − x′i+2).

As a consequence, if one defines, for t > 0, the sets

Xt =
{

(x,x′) ∈ F 2 ∣∣ |s| 6 t⇒ xs − x′s ∈ U
}

and
Yt =

{
x− x′

‖x− x′‖

∣∣∣∣ (x,x′) ∈ Xt
}
,

one deduces that the closure of Yt is included in U . This implies Proposi-
tion 5.2.

Let us conclude this appendix with the following result:

Lemma 7.2. — The space Diff1
∗∗(D) of area preserving C1 diffeomor-

phisms of D that fix 0 and every point of S is path-connected when fur-
nished with the C1 topology.

Proof. — Let us begin by proving that the space Diff1
∗(D) of area pre-

serving C1 diffeomorphisms of D that fix every point of S is path-connected
when furnished with the C1 topology. Let us consider the symplectic polar
system of coordinates (θ, λ) ∈ T1 × (0,+∞) defined on on R2 \ {0} by

(x, y) = (
√
λ cos 2πθ,

√
λ sin 2πθ).

Every Φ ∈ Diff1
∗(D) induces a C1 area preserving diffeomorphism, defined

in a neighborhood of T1×{1} in T1×(0, 1] that fixes every point of T1×{1}.
The image of a circle λ = λ0 is a graph λ = ψ(θ) if λ0 is close to 1. This
implies that Φ is defined by a generating function in a neighborhood of
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T1 × {1}: if one writes Φ(θ, λ) = (Θ,Λ), one knows that (Θ, λ) defines a
system of coordinates in a neighborhood of T1×{1} in T1× (0, 1] and that
(θ − Θ)dλ + (Λ − λ)dΘ is a C1 exact form. There exists a C2 function S
defined on an annulus T1 × [1− η0, 1} such that

θ −Θ = ∂S

∂λ
, Λ− λ = ∂S

∂Θ
and such that

∂2S

∂Θ∂λ > −1.

The circle λ = 1 being invariant and contained in the fixed points set of Φ,
one has

∂S

∂Θ(Θ, 1] = ∂S

∂λ
(Θ, 1) = 0

which implies
∂2S

∂Θ∂λ (Θ, 1) = 0.

Let ν : [0,+∞)→ [0, 1] be a C2 function such that

ν(t) =
{

1 if t ∈ [0, 1/3],
0 if t > 2/3.

For every η ∈ (0, η0] define

Sη : (Θ, λ) 7→ ν

(
1− λ
η

)
S(Θ, λ).

One has
∂2Sη
∂Θ∂λ = ν

(
1− λ
η

)
∂2S

∂Θ∂λ −
1
η
ν′
(

1− λ
η

)
∂S

∂Θ .

The fact that ∂S
∂Θ(Θ, 1) = ∂2S

∂Θ∂λ (Θ, 1) = 0 implies that the quantity 1
η

∂S

∂Θ
tends to zero uniformly on the annulus of equation 1− η 6 λ 6 1, when η
tends to 0. As a consequence, if η is sufficiently small, one has

∂2S

∂Θ∂λ > −1

on T1 × [1− η0, 1]. The equations

θ −Θ = s
∂Sη
∂λ

, Λ− λ = s
∂Sη
∂Θ

define a family (Φη,s)s∈[0,1] of area preserving C1 diffeomorphisms on the
annulus of equation 1− η0 6 λ 6 1 that fix all points in a neighborhood of
the circle λ = 1− η0. Extending these maps by the identity on D, one gets
a continous arc in Diff1

∗(D) that joins the identity to a diffeomorphism Φη,1
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that coincides with Φ in a neighborhood of S. One can write Φ = Φ′ ◦Φη,1,
where Φ′ coincides with the identity in a neighborhood of S. It remains to
prove that Φ′ can be joined to the identity in Diff1

∗(D). A classical result of
Zehnder [18], whose proof uses generating functions, states that every C1

symplectic diffeomorphism on a compact symplectic manifold is the limit,
for the C1 topology of a sequence of C∞ symplectic diffeomorphisms. If U
is a neighborhood of the identity in Diff1

∗(D), Zehnder’s proof permits us to
write Φ′ = Φ′′ ◦ Φ′′′, where Φ′′ belongs to U and Φ′′′ is an area preserving
C∞ diffeomorphism of D, both of them coinciding with the identity in
a neighborhood of S. If U is sufficiently small, Φ′′ will be defined by a
generating function: there exist a real number η1 > 0 and a C2 function h
defined on the disk X2 + y2 6 1 such that

Φ′′(x, y) = (X,Y )⇔
{
x = ∂h/∂y(X, y)
Y = ∂h/∂X(X, y),

where
∂2h

∂X∂y
> 0

and
h(X, y) = Xy if 1− η1 6 X

2 + y2 6 1.

Writing hs(X, y) = sh(X, y) + (1− s)Xy, for s ∈ [0, 1], the equations

Φ′′s (x, y) = (X,Y )⇔
{
x = ∂hs/∂y(X, y)
Y = ∂hs/∂X(X, y).

define a continous arc in Diff1
∗(D) that joins the identity to Φ′′. The fact

that Φ′′′ can be joined to the identity comes from the following classical
result whose proof uses a similar result, due to Smale, in the non area
preserving case and the classical Moser’s Lemma on volume forms (see [2]
for example): the space of area preserving C∞ diffeomorphisms of D, that
coincides with the identity on a neighborhood of S is path-connected when
furnished with the C∞ topology.

Let us prove now that Diff1
∗∗(D) is path-connected. It is sufficient to

prove that for every compact set Ξ in the interior of D, there exists a
continuous family (Ψz)z∈Ξ in Diff1

∗(D) such that Ψz(z) = 0. Indeed, every
Φ ∈ Diff1

∗∗(D) can be joined to the identity by a path s 7→ Φs in Diff1
∗(D).

If Ξ is chosen to contain the image of the path s 7→ Φs(0), then the path
s 7→ ΨΦs(0) ◦ Φs joins Φ to the identity in Diff1

∗∗(D).

ANNALES DE L’INSTITUT FOURIER



BRAMHAM’S APPROXIMATION THEOREM 2201

For every r ∈ (0, 1) one can find a C2 function νr : [0, 1]→ R such that

ν(t) =
{

1 if t ∈ [0, r],
0 if t > 1.

Denote by (Ψs
1)s∈R and (Ψs

2)s∈R the Hamiltonian flows (for the usual sym-
plectic form dx ∧ dy) induced by the function

H1 : (x, y) 7→ −yνr(x2 + y2), H1 : (x, y) 7→ xνr(x2 + y2)

respectively, and for every z = (x, y) ∈ R2 set Ψz = Ψx
1 ◦Ψy

2. Observe that
if x2 + y2 6 r, then Ψz(z) = 0. �
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