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GLOBAL REGULARITY FOR MINIMAL SETS NEAR A
UNION OF TWO PLANES

by Xiangyu LIANG

Abstract. — We discuss the global regularity of 2 dimensional minimal sets
that are near a union of two planes, and prove that every global minimal set in R4

that looks like a union of two almost orthogonal planes at infinity is a cone. The
main point is to use the topological properties of a minimal set at a large scale to
control its behavior at smaller scales.
Résumé. — On traite la régularité globale des ensembles minimaux 2-dimen-

sionnels qui sont proches d’une union de deux plans, et on démontre que tout
ensemble minimal proche d’une union de deux plans presque orthogonaux à l’infini
dans R4 est un cône. L’enjeu est de contrôler le comportement d’un ensemble
minimal à petite échelle par la topologie à grande échelle.

1. Introduction

This paper deals with the local (resp. global) regularity of two-dimen-
sional minimal sets in R4 that look like the union of two almost orthogonal
planes locally (resp. at infinity). The motivation is that we want to decide
whether all global minimal sets in Rn are cones.

This Bernstein type of problem is of typical interest for all kinds of mini-
mizing problems in geometric measure theory and calculus of variations. It
is natural to ask how does a global minimizer look like, as soon as we know
already the local regularity for minimizers. Well known examples are the
global regularity for complete 2-dimensional minimal surfaces in R3, area or
size minimizing currents in Rn, or global minimizers for the Mumford-Shah
functional. Some of them admit very good descriptions. See [3, 5, 13, 14]
for further information.

Keywords: Minimal sets, blow-in limit, existence of singularities, Hausdorff measure,
elliptic systems.
Math. classification: 28A75, 49Q10, 49Q20, 49K99.



2068 Xiangyu LIANG

Here our notion of minimality is defined in the setting of sets. Roughly
speaking, we say that a set E is minimal when there is no deformation
F = ϕ(E), where ϕ is Lipschitz and ϕ(x)− x is compactly supported, for
which the Hausdorff measure H2(F ) is smaller than H2(E). More precisely,

Definition 1.1 (Almgren competitor (Al competitor for short)). — Let
E be a closed set in an open subset U of Rn and d 6 n− 1 be an integer.
An Almgren competitor for E is a closed set F ⊂ U that can be written
as F = ϕ1(E), where ϕt : U → U is a family of continuous mappings such
that

ϕ0(x) = x for x ∈ U ;(1.1)
the mapping (t, x)→ ϕt(x) of [0, 1]× U to U is continuous;(1.2)

ϕ1 is Lipschitz,(1.3)

and if we set Wt = {x ∈ U ; ϕt(x) 6= x} and Ŵ =
⋃
t∈[0.1][Wt ∪ ϕt(Wt)],

then

(1.4) Ŵ is relatively compact in U.

Such a ϕ1 is called a deformation in U , and F is also called a deformation
of E in U .

Definition 1.2 ((Almgren) minimal sets). — Let 0 < d < n be inte-
gers, U an open set of Rn. A closed set E in U is said to be (Almgren)
minimal of dimension d in U if

(1.5) Hd(E ∩B) <∞ for every compact ball B ⊂ U,

and

(1.6) Hd(E\F ) 6 Hd(F\E)

for all Al competitors F for E.

This notion was introduced by Almgren [2] to modernize Plateau’s prob-
lem, which aims at understanding physical objects, such as soap films, that
minimize the area while spanning a given boundary. The study of regularity
and existence for these sets is one of the canonical interests in geometric
measure theory.

The Bernstein type problem aims at deciding whether every minimal set
in Rn is a cone. The general idea is the following.

Let E be a d−dimensional reduced Almgren minimal set in Rn. Reduced
means that there is no unnecessary points. More precisely, we say that E
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GLOBAL REGULARITY FOR MINIMAL SETS 2069

is reduced when

(1.7) Hd(E ∩B(x, r)) > 0 for x ∈ E and r > 0.

Recall that the definition of minimal sets is invariant modulo sets of
measure zero, and it is not hard to see that for each Almgren minimal set
E, its closed support E∗ (the reduced set E∗ ⊂ E with H2(E\E∗) = 0) is a
reduced Almgren minimal set. Hence we can restrict ourselves to discussing
only reduced minimal sets.
Now fix any x ∈ E, and set

(1.8) θx(r) = r−dHd(E ∩B(x, r)).

This density function θx is nondecreasing for r ∈]0,∞[ (cf. e.g. [6, Propo-
sition 5.16]). In particular the two values

(1.9) θ(x) = lim
t→0+

θx(t) and θ∞(x) = lim
t→∞

θx(t)

exist, and are called density of E at x, and density of E at infinity re-
spectively. It is easy to see that θ∞(x) does not depend on x, hence we
shall denote it by θ∞. Also, by the global Ahlfors regularity of minimal
sets (cf. [8, Proposition 4.1], with δ =∞, k = 1, U = Rn), (1.8) is bounded
on r, hence θ∞ is always finite.

It is known that if E is a minimal set, x ∈ E, and θx(r) is a constant
function of r, then E is a minimal cone centered on x (cf. e.g. [6, Theo-
rem 6.2]). Thus by the monotonicity of the density functions θx(r) for any
x ∈ E, if we can find a point x ∈ E such that θ(x) = θ∞, then E is a cone
and we are done.
On the other hand, the possible values for θ(x) and θ∞ for any E and

x ∈ E are not arbitrary. By [6, Proposition 7.31], for each x, θ(x) is equal
to the density at the origin of a d−dimensional Al-minimal cone in Rn.
Also, since θ∞ is finite, an argument around [6, (18.33)], which is similar
to the proof of [6, Proposition 7.31], gives that θ∞ is also equal to the
density at the origin of a d−dimensional Al-minimal cone in Rn. In other
words, if we denote by Θd,n the set of all possible numbers that could be
the density at the origin of a d−dimensional Almgren-minimal cone in Rn,
then θ∞ ∈ Θd,n, and for any x ∈ E, θ(x) ∈ Θd,n.
Thus we restrict the range of θ∞ and θ(x). Recall that the set Θd,n is

possibly very small for any d and n. For example, Θ2,3 contains only three
values: 1 (the density of a plane), 1.5 (the density of a Y set, which is the
union of three closed half planes with a common boundary L, and that
meet along the line L with 120◦ angles), and dT (is the density of a T set,

TOME 66 (2016), FASCICULE 5



2070 Xiangyu LIANG

i.e., the cone over the 1-skeleton of a regular tetrahedron centered at 0).
(See the figure below).

a Y set
Figure 1. Various soap film examples.  (Section 2.1) 

A. Skew quadrilateral. B. Mobius band.

C. Catenoid. D. Catenoid with disk.

E. Tetrahedral film. F. Trefoil knot film.

a T set

Recall that the reason why θ∞ has to lie in Θd,n is that, for any Al-
minimal set E, all its blow-in limits have to be Al-minimal cones (cf. Argu-
ment around [6, (18.33)]). A blow-in limit of E is the limit of any converging
(for the Hausdorff distance) subsequence of

(1.10) Er = r−1E, r →∞.

Hence the value of θ∞ implies that at sufficiently large scales, E looks
like an Al-minimal cone of density θ∞.
This is the same reason why θ(x) ∈ Θd,n. Here we look at the behavior

of Er when r → 0, and the limit of any converging subsequence is called
a blow-up limit (it is unknown whether it is unique). Such a limit is also
an Al-minimal cone C (cf. [6, Proposition 7.31]). This means, at some very
small scales around each x, E looks like (i.e. very near with respect to the
Hausdorff distance) some Al-minimal cone C of density θ(x). In this case
we call x a C type point of E.

After the discussion above, our problem will be solved if we can prove
that every minimal cone C satisfies the following property:

There exists ε = εC > 0, such that for every minimal set E,
if d0,1(C,E) < ε, then there exists x ∈ E ∩B(0, 1) whose
density θ(x) is the same as that of C at the origin.

(1.11)

Here dx,r stands for the relative distance in the ball B(x, r): for any
closed sets E and F ,

(1.12) dx,r(E,F ) = 1
r

max
{

sup{d(y, F ) : y ∈ E ∩B(x, r)},

sup{d(y,E) : y ∈ F ∩B(x, r)}
}
.

The discussion above uses only the values of densities at small scale and
at infinity. A geometric intepretation is: there exists x ∈ E ∩ B(0, 1) such

ANNALES DE L’INSTITUT FOURIER
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that a blow-up limit Cx of E at x admits the same density as C at the
origin.

So far we know that (1.11) is true for the planes and Y sets (see [6,
Proposition 16.24]). We do not know any minimal cone that does not verify
the property (1.11). But there are at least two minimal cones for which we
do not know whether (1.11) holds, either: the T set, and the sets Y ×Y ∈ R4,
whose minimality has recently been proved in [11]. The topology of the set
Y × Y is more complicated than that of T sets, and the situation of T sets
is already tricky, see [12] for more detail.
In this paper we prove the property (1.11) for the unions of two almost

orthogonal planes. Recall that in [10], we have proved the following

Theorem 1.3 (minimality of the union of two almost orthogonal planes,
cf. [10, Thm 1.24]). — There exists 0 < θ0 <

π
2 , such that if P 1 and P 2 are

two planes in R4 whose characteristic angles (α1, α2) satisfy α2 > α1 > θ,
then their union P 1 ∪ P 2 is a minimal cone in R4.

Here the characteristic angles describe the relative position between
planes. Two planes P 1 and P 2 have characteristic angles (α1, α2) means
that there exists an orthonormal basis {ei}16i64 of R4 such that P 1

α is
generated by e1 and e2, and P 2

α is generated by cosα1e1 + sinα1e3 and
cosα2e2 + sinα2e4. Each pair of α = (α1, α2) with α2 > α1 > θ0 gives a
minimal cone Pα = P 1 ∪α P 2, and the origin is called a singularity of type
Pα in the set Pα. These gives a continuous family of minimal cones with
the same density at the origin, any two of which are not C1 equivalent to
each other. But still, we give them a general name, that is, each singularity
of type Pα is a singular point of type 2P.
So let us state our main results.

Theorem 1.4. — There is an angle θ1 ∈ [θ0,
π
2 ), (where θ0 is the θ0 in

Theorem 1.3), and λ > 0, such that for any α = (α1, α2) with α2 > α1 > θ1,
if E is a 2-dimensional reduced Almgren minimal set in U ⊂ R4, B(x, r) ⊂
U , and there is a reduced minimal cone Pα + x of type Pα centered at x
such that dx,r(E,Pα+x) 6 λ, then E ∩B(x, r/100) contains (at least) one
2P type point.

A direct corollary to this is the expected global regularity for minimal
sets that look like a union of two plane at the infinity:

Theorem 6.1. — Let θ1 be as in Theorem 1.4. Then for any α =
(α1, α2) with α2 > α1 > θ1, if E is a 2-dimensional reduced Almgren min-
imal set in R4 such that one blow-in limit of E at infinity is Pα (i.e., there

TOME 66 (2016), FASCICULE 5



2072 Xiangyu LIANG

exists a sequence of numbers rn → ∞, and the sequence of sets r−1
n (E)

converge to Pα under the Hausdorff distance as n → ∞), then E is a Pα
set.
Besides the global regularity, the property (1.11) helps also to control

the the relative distances dx,r between a minimal set and minimal cones in
the balls B(x, r) and the local speed of decay of the density function θx(r),
because this property gives a lower bound of θx(r). When we prove (1.11)
for a minimal cone C, we can get nicer local regularity results, that is, if a
minimal set is very near C in a ball, then it should be equivalent to C in
a smaller ball through a bi-Hölder homeomorphism (C1 diffeomorphism in
good cases). So here Theorem 1.4 has another useful corollary:
Theorem 6.2. — Let θ1 be as in Theorem 1.4. Then there exists a

ε > 0 such that for any α = (α1, α2) with α2 > α1 > θ1, if E is a 2-
dimensional reduced Almgren minimal set in U ⊂ R4, B(x, 300r) ⊂ U

(r < 1), and there is a reduced minimal cone Pα + x of type Pα centered
at x such that dx,200r(E,Pα + x) 6 ε, then there exists C1 diffeomorphism
Φ : B(x, 2r)→ Φ(B(x, 2r)), such that |Φ(y)− y| 6 10−2r for y ∈ B(x, 2r),
and E ∩B(x, r) = Φ(Pα + x) ∩B(x, r).
The proof of Theorem 1.4 will keep us busy until the end of Section 6,

but let us already try to explain how it goes.
First notice that Theorem 1.4 is invariant under translation with respect

to x, and homogenous with respect to r, so we can only restrict to the case
where x = 0 and r = 1.
Section 2 is devoted to giving some regularity properties for a minimal

set E that is close to Pα, but does not contain any point of type 2P. In
particular, we use a stopping time argument to find a critical region, outside
of which everything goes fine, and inside of which things begin to go bad.
Here “bad” means that the set begins to get far away from Pα. The main
idea is to control the measure of E in the good region by finer estimates,
since there we have good regularity properties; and for the bad region we
only control its measure roughly by projections. Part of the argument will
be similar to the proof of minimality of Pα.
Section 3 is quite short, where we sum up a little what happens, and give

a competitor for E, using minimal graphs. We also state a basic estimate
for minimal graphs, for later use.
Section 4 is devoted to giving some useful control on the measure of the

competitor defined in Section 3.
In Section 5 we conclude, using harmonic extensions and projection prop-

erties of the competitor.

ANNALES DE L’INSTITUT FOURIER
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We discuss the global regularity and local C1 regularity of minimal sets
that are near a Pα cone in Section 6.
In this article, some of the results and arguments cited in [6] exist also

in some other (earlier) references, e.g. [17]. But for simplify the article, the
author will cite [6] systematically throughout this article.

Some useful notation

In all that follows, minimal set means Almgren minimal set;
– [a, b] is the line segment with end points a and b;
– B(x, r) is the open ball with radius r and centered on x;
– B(x, r) is the closed ball with radius r and center x;
–
−→
ab is the vector b− a;

– Hd is the Hausdorff measure of dimension d ;
– dH(E,F ) = max{sup{d(y, F ) : y ∈ E}, sup{d(y,E) : y ∈ F}} is
the Hausdorff distance between two sets E and F .

– dx,r : the relative distance with respect to the ball B(x, r), is de-
fined by

dx,r(E,F ) = 1
r

max{sup{d(y, F ) : y ∈ E ∩B(x, r)},

sup{d(y,E) : y ∈ F ∩B(x, r)}}.

2. A stopping time argument, and regularity and
projection properties for minimal sets near Pα

In this section we use a stopping time argument to control some large
scale behavior for minimal sets that near Pα. Let us first introduce some
notation.
Fix an orthonormal basis {ei}16i64 of R4. For each α= (α1, α2)∈ [0, π2 ]2

and i = 1, 2, denote by Pα = P 1
α ∪ P 2

α, where P 1
α is the plane generated

by e1 and e2, and P 2
α is the plane generated by cosα1e1 + sinα1e3 and

cosα2e2 + sinα2e4. (Hence P 1
α and P 2

α are two planes in R4 with charac-
teristic angles (α1, α2)). Set

(2.1) Ciα(x, r) = (piα)−1(B(0, r) ∩ P iα) + x,

where piα is the orthogonal projection on P iα, and

(2.2) Dα(x, r) = C1
α(x, r) ∩ C2

α(x, r).

TOME 66 (2016), FASCICULE 5



2074 Xiangyu LIANG

So Ciα(x, r) is a cylinder and Dα(x, r) is the intersection of two cylinders. It
is not hard to see that Dα(x, r) ⊃ B(x, r) and Dα(0, 1)∩Pα = B(0, 1)∩Pα.
We say that two sets E,F are εr near each other in an open set U if

(2.3) dr,U (E,F ) < ε,

where

(2.4) dr,U (E,F ) = 1
r

max{sup{d(y, F ) : y ∈ E ∩ U},

sup{d(y,E) : y ∈ F ∩ U}}.

We set also
dαx,r(E,F ) = dr,Dα(x,r)(E,F )

= 1
r

max{sup{d(y, F ) : y ∈ E ∩Dα(x, r)},

sup{d(y,E) : y ∈ F ∩Dα(x, r)}}.

(2.5)

Remark 2.1. — We should be clear about the fact that

(2.6) dr,U (E,F ) 6= 1
r
dH(E ∩ U,F ∩ U).

To see this, we can take U = Dα(x, r), and set En = ∂Dα(x, r + 1
n ) and

Fn = ∂Dα(x, r − 1
n ). Then we have

(2.7) dαx,r(En, Fn)→ 0

and

(2.8) 1
r
dH(En ∩Dα(x, r), Fn ∩Dα(x, r)) = 1

r
dH(En ∩Dα(x, r), ∅) =∞.

So dr,U measures rather how the part of one set in the open set U could be
approximated by the other set, and vice versa. However we always have

(2.9) dαx,r(E,F ) 6 1
r
dH(E ∩Dα(x, r), F ∩Dα(x, r)).

Now we give the proposition below, obtained by a stopping time argu-
ment.

Proposition 2.2. — There exists ε0 > 0, such that for any ε < ε0,
and α > π

3 , if E is a closed reduced set which is minimal in Dα(0, 1),
dα0,1(E,Pα) < ε

10 , and E contains no 2P point in B(0, 1
100 ), then there

exists rE ∈]0, 1
2 [ and oE ∈ B(0, 12ε) such that E is 2εrE near Pα + oE

in Dα(oE , 2rE(1 − 12ε)), but not εrE near Pα + q in Dα(oE , rE) for any
q ∈ R4.

Remark 2.3. — The construction and estimates in the proof will also
be used later.

ANNALES DE L’INSTITUT FOURIER
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Proof of Proposition 2.2. — We fix any ε and α = (α1, α2) > π
3 , and set

si = 2−i for i > 0. Set D(x, r) = Dα(x, r), dx,r = dαx,r for short.
We proceed in the following way.
– Step 1: Denote by q0 = q1 = O, then in D(q0, s0), E is εs0 near Pα+q1

by hypothesis.
– Step 2: If inD(q1, s1), the set E is not εs1 near Pα+q for any q, we stop;

if not, there exists a q2 such that E is εs1 near Pα+q2 in D(q1, s1). Here we
also ask ε to be small enough (say, ε < 1

100 ) so that q2 ∈ D(q1,
1
2s1), thanks

to the conclusion of Step 1. Then in D(q1, s1), we have simultaneously :

dq1,s1(E,Pα + q1) 6 s−1
1 dq0,s0(E,Pα + q1)

6 2ε ; dq1,s1(E,Pα + q2) 6 ε.
(2.10)

Let us verify that (2.10) implies that dq1,
1
2 s1(Pα + q1, Pα + q2) 6 12ε

when ε is small, say, ε < 1
100 . In fact, for each z ∈ D(q1,

1
2s1) ∩ (Pα + q1),

we have d(z, E) 6 dq0,s0(E,Pα + q1) 6 ε, hence there exists y ∈ E such
that d(z, y) 6 ε. But since z ∈ D(q1,

1
2s1), we have y ∈ D(q1,

1
2s1 + ε) ⊂

D(q1, s1), and hence d(y, Pα + q2) 6 s−1
1 dq1,s1(E,Pα + q2) 6 2ε, therefore

d(z, Pα + q2) 6 d(z, y) + d(y, Pα + q2) 6 3ε.
On the other hand, suppose z ∈ D(q1,

1
2s1)∩(Pα+q2), we have d(z, E) 6

s−1
1 dq1,s1(Pα + q2, E) 6 2ε, hence there exists y ∈ E such that d(z, y) 6 2ε.
But since z ∈ D(q1,

1
2s1), we have y ∈ D(q1,

1
2s1 + 2ε) ⊂ D(q0, s0), and

hence d(y, Pα + q1) 6 dq0,s0(E,Pα + q1) 6 ε, which implies d(z, Pα + q1) 6
d(z, y) + d(y, Pα + q1) 6 3ε.

As a result

(2.11) dq1,
1
2 s1(Pα + q1, Pα + q2) 6 (1

2s1)−1 × 3ε = 12ε,

hence dq1,
1
2 s1(q1, q2) 6 24ε, and therefore d(q1, q2) 6 6ε = 12εs1.

Now we define our iteration process (notice that it depends on ε, so we
also call it a ε-process).
Suppose that all {qi}i6n have already been defined, with

(2.12) d(qi, qi+1) 6 12siε = 12× 2−iε

for 0 6 i 6 n− 1, and hence

(2.13) d(qi, qj) 6 24εsmin(i,j) = 2−min(i,j) × 24ε

for 0 6 i, j 6 n. Moreover, for all i 6 n − 1, E is εsi near Pα + qi+1 in
D(qi, si). We say that the process does not stop at step n. In this case
– Step n+1: We look at the situation in D(qn, sn).

If E is not ε near any Pα+q in this ball of radius sn, we stop, since we have
found the ok = qn, rk = sn as desired. In fact, since d(qn−1, qn)6 12εsn−1,

TOME 66 (2016), FASCICULE 5



2076 Xiangyu LIANG

we have D(qn, 2sn(1− 12ε)) = D(qn, sn−1(1− 12ε)) ⊂ D(qn−1, sn−1), and
hence

dqn,2sn(1−12ε)(Pα + qn, E) 6 (1− 12ε)−1dqn−1,sn−1(Pα + qn, E)

6
ε

1− 12ε .
(2.14)

Moreover

(2.15) d(ok, O) = d(qn, q1) 6 2−min(1,n) × 24ε = 12ε.

Otherwise, we can find a qn+1 ∈ R4 such that E is still εsn near Pα+qn+1
in D(qn, sn). Then since ε is small, qn+1 ∈ D(qn, 1

2sn). Moreover we have
as before d(qn+1, qn) 6 12εsn, and for i 6 n− 1,

d(qi, qn+1) 6
n∑
j=i

d(qj , qj+1)

6
n∑
j=i

12× 2−jε 6 2−j × 24ε = 2−min(i,n+1) × 24ε.
(2.16)

Thus we have obtained our qn+1.
Now all we have to do is to prove that for every ε small enough, this

process has to stop at a finite step. For this purpose we need the following
proposition.

Proposition 2.4. — There exists θ′1 ∈ [θ0,
π
2 ), and for any l ∈]0, 1

2 ],
there exists εl ∈]0, 1

2 [, such that for any α > θ′1, ε 6 εl, and E as in
Proposition 2.2, if the ε−process does not stop before the step n, then

(1) The part E ∩ (Dα(0, 39
40 )\Dα(qn, 1

10sn)) is composed of two disjoint
pieces Gi, i = 1, 2, such that:

(2.17) Gi is the graph of a C1 map

gi : Ciα(0, 39
40)\Ciα(qn,

1
10sn) ∩ P iα → P iα

⊥

with

(2.18) ||∇gi||∞ < l 6
1
2 ;

(2) For every 1
10sn 6 t 6 sn

(2.19) E ∩ (Dα(0, 1)\Dα(qn, t)) = G1
t ∪G2

t

where G1
t , G

2
t do not meet each other. Moreover

(2.20) P iα ∩ (Dα(0, 1)\Ciα(qn, t)) ⊂ piα(Git)

where piα is the orthogonal projection on P iα, i = 1, 2;

ANNALES DE L’INSTITUT FOURIER
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Remark 2.5. — If we take the optimal εl for each l such that Proposi-
tion 2.4 holds, then obviously for any l 6 l′, εl 6 εl′ .

We will not prove this proposition, see [10, Proposition 6.1(1)-(2)] for
the proof. But we’ll use it to finish our Proposition 2.2.

Remark 2.6. — In fact we need all the properties stated in [10, Proposi-
tion 6.1] for our set E. For (1) and (2) in [10, Proposition 6.1], the arguments
there can be applied directly here to our set E with no change. But for (3)
and (4), the proof in [10, Proposition 6.1] uses some special property of
Ek, which are not necessarily true for our set E here. Hence we will treat
the property of surjective projections ([10, Proposition 6.1(4)]) later in a
different way.

So let ε0 be the ε 1
2
in Proposition 2.4. Suppose that the ε−process does

not stop at any finite step, and we’ll try to get a contradiction. By Propo-
sition 2.4(1), for any n, E ∩ (Dα(0, 1)\Dα(qn, 1

10sn)) is composed of two
disjoint graphs Gi on [Ciα(0, 1)\Ciα(qn, 1

10sn)] ∩ P iα, i = 1, 2. Denote by
∆n = Dα(qn, sn).
Notice that by (2.16), with ε < 1

100 , the sets ∆n = Dα(qn, sn) are in fact
a sequence of non degenerate compact balls, with

(2.21) ∆n ⊂ ∆n−1, n ∈ N, lim
n→∞

diam(∆n)→ 0,

Hence there exists a point p ∈ B(0, 1
2 ), such that {p} = ∩n∆n. Then p

is also the limit of qn, hence it lies in B(0, 1
100 ). By Proposition (2.4)(1),

for any r ∈ (0, 1
2 ), E ∩ D(p, 1

2 )\D(p, r) is composed of the union of two
disjoint graphs on P iα ∩Ciα(p, 1

2 )\Ciα(p, r). As a result , E ∩D(p, 1
2 )\{p} is

composed of two C1 graphs on P iα ∩Ciα(p, 1
2 )\{p}. Denote by Gi these two

graphs. By (2.18), they are both 1
2 -Lipschitz. Now E is closed hence p ∈ E.

Then for each i = 1, 2, Gi ∪ {p} is a 1
2 -Lipschitz graph on P iα ∩ Ciα(p, 1

2 ),
and hence E ∩Dα(p, 1

2 ) is composed of the disjoint union of these two 1
2 -

Lipschitz graphs. Now we define ϕ : E ∩ Dα(p, 1
2 ) → Pα + p, where the

restriction of ϕ to each Gi∪{p} is just the orthogonal projection to P iα+p.
Then it is easy to check that ϕ is a Lipschitz homeomorphism. That is, E
is bi-Lipschitz homeomorphic to Pα in Dα(p, 1

2 ).
We want to prove that p is a point of type 2P. Take any blow-up limit C

of E at the point p. Then C is a minimal cone. By the bi-Hölder regularity
for 2-dimensional minimal sets, near the point p, E is locally bi-Hölder
equivalent to C. But E is also bi-Lipschitz equivalent to pα near p, hence
the two minimal cones Pα and C are topologically the same. As a conse-
quence, Pα∩∂B(0, 1) and C∩∂B(0, 1) are topologically the same, therefore,
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C ∩ ∂B(0, 1) is the union of two topological circles. But by the description
of 2-dimensional minimal cones (cf. [6, Proposition 14.1]), the intersection
of any minimal cone with the unit sphere is a finite union of great circles
and arcs of great circles that meet at their extremities by group of three
with 120◦ angles. Here in our case, we can deduce that C ∩ ∂B(0, 1) is the
union of two circles. Hence C is a minimal cone of type 2P.
Hence the point p is a point of type 2P. This contradicts the fact that

E ∩B(0, 1
100 ) contains no point of type 2P, because p ∈ B(0, 1

100 ).
Thus we complete the proof of Proposition 2.2. �

Next we still have to prove some property of surjective projection, as
remarked in Remark 2.6.

Proposition 2.7. — Take ε 6 ε0, and take α and E as in Propo-
sition 2.4. Then for any n > 1, if the ε−process does not stop before
the step n, then the orthogonal projections piα : E ∩ Dα(qn, t) → P iα ∩
C
i

α(qn, t), i = 1, 2 are surjective, for all 1
9sn 6 t 6 sn.

Proof. — Fix a such n. Set si = 2−i for i > 0. Set D(x, r) = Dα(x, r),
Ci(x, r) = Ciα(x, r), dx,r = dαx,r for short. By Proposition 2.4(1), the part
E∩(Dα(0, 39

40 )\Dα(qn, 1
10sn)) is composed of two disjoint pieces Gi, i = 1, 2,

such that:

(2.22) Gi is the graph of a C1 map

gi : Ciα(0, 39
40)\Ciα(qn,

1
10sn) ∩ P iα → P iα

⊥

with

(2.23) ||∇gi||∞ <
1
2 .

Thus Gi ∩ ∂Ci(0, 39
40 ) is a nice C1 curve, which is the graph of gi on

P iα ∩ ∂Ci(0, 39
40 ), and gi is 1

2 -Lipschitz. Denote by γi = gi|P iα∩∂Ci(0, 39
40 ).

Then ||γi||∞ 6 ε
10 by hypothesis.

Now we define a set Q as follows. First, Q ⊂ B(0, 1), and Q\D(0, 39
40 ) =

E\D(0, 39
40 ). Inside D(0, 3

4 ), Q ∩D(0, 3
4 ) = Pα ∩D(0, 3

4 ), the union of two
planes. For the part on the annulus D(0, 39

40 )\D(0, 3
4 ), we just use two

graphs of affine functions to join P iα ∩ ∂D(0, 3
4 ) and γi. That is, we define

hi : P iα∩D(0, 39
40 )\D(0, 3

4 )→ P iα
⊥, for any x ∈ P iα∩D(0, 39

40 )\D(0, 3
4 )( 3

4 ,
39
40 ),

hi(x) = |x|− 3
4

39
40−

3
4
γi( 39x

40|x| ).
Thus for any x ∈ D(0, 39

40 )\D(0, 3
4 ), | ∂∂rh

i(x)| = 1
39
40−

3
4
|γi( 39x

40|x| )| 6
40
9

ε
100 6

ε
20 6

1
2000 , and | ∂∂θ (x)| 6 Lip(γi) 6 1

2 , hence the tangent
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direction derivative is less than

(2.24) 1
|x|
| ∂
∂θ

(x)| 6 1
2/

3
4 = 2

3 .

Hence we have

(2.25) Lip hi 6 max{ 1
2000 ,

2
3} = 2

3 .

Thus the map Hi : P iα ∩ D(0, 39
40 )\D(0, 3

4 ) → R4 : x 7→ (x, hi(x)) is
(1 + ( 2

3 )2) 1
2 =

√
13
3 -Lipschitz. So if we denote by Σi the graph of hi, then

H2(Σi) = H2(Hi(P iα ∩D(0, 39
40)\D(0, 3

4))

6 (
√

13
3 )2)H2(P iα ∩D(0, 39

40)\D(0, 3
4))

= 897
1600π 6

9π
16 , i = 1, 2.

(2.26)

Figure 2.1

Let Q = [E\D(0, 39
40 )]∪Σ1 ∪Σ2 ∪ [Pα ∩D(0, 3

4 )], and Q0 = Q∩D(0, 39
40 ).

(See Figure 2.1) Set Qi = Σi∪ [P iα∩D(0, 3
4 )], then Q0 is the almost disjoint

union Q1 ∪Q2. For each i = 1, 2,

(2.27) H2(Qi) = H2(Σi) +H2(P iα ∩D(0, 3
4)) 6 9π

16 + 9π
16 = 9π

8 .
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Notice that the set Q0 is a C1 version of Pα ∩D(0, 3
4 ), and Qi, i = 1, 2

are its two flat parts as P iα.
Now suppose that for some t ∈ [ 1

9sn, sn), for example the projection
p1
α : E ∩D(qn, t) → P 1

α ∩ C1(qn, t) is not surjective. Then we are going to
prove that we can deform E to [Q\Q0] ∪Q2, and deduce a contradiction.

So take a point p∈P 1
α∩C

1(qn, t) which does not admit a pre-image in E∩
D(qn, t). Since the set Et := E∩D(qn, t) is compact, its projection p1

α(Et) is
also compact, which means that we can pick p ∈ P 1

α∩C1(qn, t)\p1
α(Et) and

r ∈ (0, t10 ) such that B(p, r) ∩ P 1
α ⊂ P 1

α ∩ C1(qn, t)\p1
α(Et), and moreover

0 6∈ B(p, 3r).
Now the set Et ⊂ D(qn, t)\p1

α
−1(B(p, r)∩P 1

α). Take an orthogonal union
of two planes P0 = P 1

0 ∪⊥P 2
0 in R4, denote by pi0 the orthogonal projection

on P i0, k = 1, 2, take a point p0 ∈ P 1
0 such that d(p0, o) = 1

2 .
Then we can easily find a Bi-Lipschitz mapping

ϕ : D(qn, t)\p1
α
−1(B(p, r) ∩ P 1

α)→ D(0, 1)\p1
0
−1(B(p0,

1
4) ∩ P 1

0 ),

such that ϕ(Et ∩D(qn, t)\D(qn, 1
10sn)) = P0 ∩D(0, 1)\D(0, 3

4 ) (because in
the annulus D(qn, t)\D(qn, 1

10sn), the set E is still a C1 graph of Pα).
For any point x ∈ D(0, 1), write x = (x1, x2), where xi = pi0(x) ∈

Bi(0, 1), i = 1, 2 (Bi(0, 1) is the unit ball of the plane P i0). We define
ψ : D(0, 1)\p1

0
−1(B((p0,

1
4 ) ∩ P 1

0 ) → D(0, 1) ∩ P0\p1
0
−1(B((p0,

1
4 ) ∩ P 1

0 ) as
follows:

(2.28) ψ(x) =
{

p1
0(x), x2 <

3
4 ;

(x1, 4x2 − 3), x2 > 3
4 .

Then ψ is a Lipschitz map, which maps [C1(0, 1)∩C2(0, 3
4 )]∪[P0∩D(0, 1)]

to P0 ∩ D(0, 1), and ψ|P0∩∂D(0,1) = Id. In particular, ψ(ϕ(Et)) ⊂ P0 ∩
D(0, 1)\p1

0
−1(B(p0,

1
4 ) ∩ P 1

0 ).
Thus the map f1 = ϕ−1 ◦ ψ ◦ ϕ maps Et to Pα ∩D(qn, t)\D(qn, 1

10sn),
and f1|E∩∂D(qn,t) = id.

We can extend f1 to a Lipschitz map from D(0, 39
40 ) → D(0, 39

40 ), such
that f1|E∩D(0, 39

40 )\D(qn,t) = id and f1|D(0, 39
40 )\D(0, 1

2 ) = id.
Then f1 is a deformation of E in D(0, 39

40 ), which sends E ∩D(0, 39
40 ) to

Q0\[B(p, r)∩P 1
α], this is the union of Q2 and Q1 minus a hole B(p, r)∩P 1

α.
So we can keep on the deformation, and take the map f2 which deforms
Q1\[B(p, r)∩P 1

α] to a set E1 = {0}∪ ∂Q1 ∪C of measure zero, where C is
a segment that connects the origin and ∂Q1 and keeps Q2 fixed. Then the
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map f = f2 ◦ f1 sends E\D(0, 39
40 ) to Q2 ∪ E1, hence the measure

(2.29) H2(E ∩D(0, 39
40)) = H2(Q2) 6 9π

8 .

The map f is Lipschitz, and its restriction to Q0 ∩ ∂D(0, 39
40 ) is the

identity. We extend f to a Lipschitz map on D(0, 1), still denoted by f ,
such that f = id near the boundary of D(0, 1). Thus by the minimality of
E, and since f does not move E\D(0, 39

40 ), we have

(2.30) H2(E ∩D(0, 39
40)) 6 H2(f(E ∩D(0, 39

40)) 6 9π
8 .

However since n > 1, we have sn < 1
2 . By Proposition 2.4(1), we have

H2(E ∩D(0, 39
40)) > H2(G1) +H2(G2)

> H2(p1
α(G1)) +H2(p2

α(G2))

=
∑
i=1,2

H2(P iα ∩ Ci(0,
39
40)\Ci(qn,

1
10sn))

>
∑
i=1,2

H2(P iα ∩ Ci(0,
39
40)\Ci(qn,

1
20))

= 2× π((39
40)2 − ( 1

20)2) = 1517
800 π >

9π
8 ,

(2.31)

which leads to a contradiction.
This completes the proof of Proposition 2.7. �

3. A competitor, and estimates for minimal graphs

Let θ′1, α be as in Proposition 2.4, let ε = ε0, µ be chosen later, and let
E be as in Proposition 2.2, that is, dα0,1 < ε

10 , and E contains no 2P type
point in B(0, 1

100 ). We want to construct a competitor for E, and show that
if dα0,1 is sufficiently small, this competitor admits necessarily less measure
than E, and thus leads to a contradiction.

Let us point out that the condition dα0,1 < ε
10 is a general qualitative

one, which guarantees that E satisfies the regularity properties in Proposi-
tion 2.4 and 2.7. To make the necessary finer estimates for measures of E
and its competitor, we still have to get the“λ-near” condition as in Theo-
rem 1.4.
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So by Proposition 2.2, there is a rE ∈]0, 1
2 [, oE ∈ B(0, 1

2ε0) such that the
conclusion in Proposition 2.2 holds for E. Denote by γi : ∂B(0, 1

2 ) ∩ P iα →
P iα
⊥ the C1 curve gi|∂B(0, 1

2 )∩P iα . Suppose that ||γi|∂B(0, 1
2 )∩P iα ||C1 6 µ.

The idea of the construction of the competitor is not complicated. We
take, for each i, a minimal graph Σi which is the graph of a function
f i : B(0, 1

2 ) ∩ P iα → P iα
⊥ such that f i|∂B(0, 1

2 )∩P iα = γi. Take Σ = Σ1 ∪ Σ2.
Then hopefully when µ is small enough, these two graphs are very flat at the
center, so that Σ is very similar to Pα. Thus we can deform E∩Dα(0, 1

2 ) to a
subset of Σ in a Lipschitz manner, while keeping E∩∂Dα(0, 1

2 ) unchanged.
Hence Σ contains a competitor of E in Dα(0, 1

2 ). By the minimality of E,
the measure of Σ has to be larger than that of E ∩ Dα(0, 1). But we are
going to show that when µ is small enough, this is not true.

Before we go down to the following two sections, which will be devoted
to giving some estimates for minimal graphs, let us already explain what
happens.

We want to compare the measures of E ∩ Dα(0, 1
2 ) and Σ. Outside

D(oE , 1
10rE), by Proposition 2.4, E is also composed of two C1 graphs

Gi on the two annuli P iα ∩ B(0, 1
2 )\Ci((oE , 1

10rE). So in this part, our
goal is to compare the surface measure of Σi and Gi, that is, the graph
of f i and gi. Notice that f i and gi coincide on P iα ∩ ∂B(0, 1

2 ); while on
P iα ∩ ∂B(oE , 1

10rE), gi is supposed to be ε-far from any plane, while f i is
almost a plane (see Proposition 3.1 below). Then Section 5 will be devoted
to estimating the difference between these two graphs.
So this will help estimate the difference between measures of E and Σ on

the annulus region Dα(0, 1
2 )\D(oE , 1

10rE). For the part of E∩D(oE , 1
10rE),

we estimate its measure by using projections.
In the rest of the section, let us state some well known results for minimal

graphs.
Denote by B = B(0, 1) ∩ R2 the unit disc in R2. Let γ be a C1 function

from ∂B to R2. Now by [16, Theorem 7.2], there exists a function f : B →
R2, whose graph Σf = {(x, f(x)) : x ∈ B} ⊂ R4 is a minimal surface,
f |∂B = γ, and f ∈ C0(B) ∩ C∞(B). In particular, by the convex hull
property for minimal surfaces, we have

(3.1) ||f ||∞ 6 ||γ||L∞(∂B).

Note that f is a minimal graph means that it is a solution of the following
system

(3.2) div(∇f + det(∇f)(∇f)∗√
1 + S(f)

) = (0, 0),
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where for any C2 function ϕ : R2 → R2,

(3.3) ∇ϕ =
(
ϕ1
x ϕ2

x

ϕ1
y ϕ2

y

)
; (∇ϕ)∗ =

(
ϕ2
y −ϕ1

y

−ϕ2
x ϕ1

x

)
,

and

(3.4) S(ϕ) = |∇(ϕ)|2 + (det∇ϕ)2.

Now suppose that µ = max{||γ||L∞(∂B), ||Dγ||L∞(∂B)} is small, then
by (3.1), ||f ||∞ 6 µ is small. Then the following proposition states that
|∇f |, |∇2f |, |∇3f | are also small in a neighborhood of 0, and are controlled
by µ.
The following result is well known. So we will give the proof in detail,

but only a brief brief explanation, as well as some references.

Proposition 3.1. — There exists µ0 > 0, such that for any µ < µ0,
there exists a constant C(µ), with limµ→0 C(µ) = 0, such that if f is a
minimal graph on B(0, 1), with

(3.5) max{||f |∂B(0,1)||∞, ||Df |∂B(0,1)||∞} 6 µ,

then

(3.6) max
06i63

||∇if ||L∞(B(0, 3
4 )) 6 C(µ).

For the proof, first we apply Allard’s regularity theorem ([1]) on station-
ary varifolds to get the initial estimate for ∇f :

Theorem 3.2 ([1, Regularity theorem, §8]). — Suppose 2 6 d < p <

∞, q = p
p−1 . Corresponding to every ε ∈]0, 1[ there is η > 0 with the

following property:
Suppose 0 < R <∞, 0 < λ <∞, V ∈ Vd(Rn), a ∈ spt||V || and
(1) θd(||V ||, x) > λ for ||V || almost all x ∈ B(a,R);
(2) ||V ||B(a,R) 6 (1 + η)λα(d)Rd;
(3) δV (g) 6 ηλ

1
pR

d
p−1 (

∫
|g|qλ||V ||)

1
q whenever g ∈ X(Rn) and spt g ⊂

B(a,R).
Then there are T ∈ G(n, d) and a continuously differentiable function F :
T → Rn, such that πT ◦ F = 1T ,

(3.7) ||DF (y)−DF (z)|| 6 ε(|y − z|/R)1− dp whenever y, z ∈ T,

and

(3.8) B(a, (1− ε)R) ∩ spt||V || = B(a, (1− ε)R) ∩ image F.
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Minimal surfaces are naturally stationary varifolds. We apply Theo-
rem 3.2 to our set Σf , on taking λ = 1, a = (0, f(0)), R = 1, then (1)
and (3) are automatically true; for (2), we just apply a isoperimetric in-
equality for minimal surface (cf. [4]), and get

(3.9) H2(Σf ∩B(a,R)) 6 H2(Σf ) 6 (1 + µ2)2π.

Hence we can take µ small enough such that (2) holds for some η, such
that (3.7) and (3.8) are true for some ε small, which give us that

(3.10) ||f ||C1,σ(B(0, 8
9 )) 6 C1(µ),

with limµ→0 C1(µ) = 0.
Now we have the C1,α estimate of our minimal graph Σf . Then (3.6)

follows naturally from the standard bootstrap method, which gives an con-
trol on higher order derivatives by lower derivatives of solutions of elliptic
systems, in particular minimal surfaces. See e.g. [15], the treat of non lin-
ear second order systems in Section 9, with corresponding estimates in
Section 4, or [9, 5.2.14, 5.2.15] for more general settings.

4. Estimates for perturbations around a minimal graph

Denote by B = B(0, 1) ∩ R2 the unit disc in R2. Let q ∈ B(0, 1
100 ), and

set Br = B(q, r) for r > 0. Fix any ε and l less than 10−4, let µ < 10−4 be
small. (Here in this section the three are independent; in the next section,
l will be chosen first, and then ε will depend on l, and both will be fixed
at the beginning, while µ will be supposed to be much smaller than these
two, and will be determined later.) Let f be a function from B to R2

whose graph {(x, f(x));x ∈ B} ⊂ R4 is a minimal submanifold in R4,
with ||f |∂B ||C1 6 µ. Let h be a C1 function from Ar := B\Br to R2 with
h|∂B = 0, Lip h 6 l, and there exists a vector M ∈ R2 such that for any
x ∈ ∂Br, |h(x) −M | 6 εr. Denote by Σf and Σf+h the graphs of f and
f + h respectively on the annulus Ar.

Proposition 4.1. — Take all the notations and assumptions above,
then

(4.1) H2(Σf+h)−H2(Σf ) > 1
4

∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0(µ)),

where limµ→0 C0(µ) = 0.
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Proof. — Now let us compare Σf+h and Σf above Ar. We have

H2(Σf+h)−H2(Σf ) =
∫
Ar

√
1 +S(f +h)−

√
1 +S(f)

=
∫
Ar

√
1 +S(f)(

√
1 +S(f +h)

1 +S(f) − 1)

=
∫
Ar

√
1 +S(f)(

√
1 + S(f +h)−S(f)

1 +S(f) − 1).

(4.2)

But

S(f + h)− S(f)

= [|∇(f + h)|2 − |∇f |2] + [(det∇(f + h))2 − (det∇f)2]

= [2<∇f,∇h>+ |∇h|2] + [<(∇f)∗,∇h>+ det∇h)]
·[2 det∇f + det∇h+<(∇f)∗,∇h>].

(4.3)

Notice that |∇f | < 2µ, |(∇f)∗| < 2µ is small, and |det∇f | 6 |∇f |2,
|det∇h| 6 |∇h|2, therefore |S(f + h) − S(f)| < 1 since |∇h| < l is small.
But S(f) > 0, hence |S(f+h)−S(f)

1+S(f) | < 1. For any |x| < 1 we have

(4.4) 1 + x = (1 + x

2 )2 − x2

4 > (1 + x

2 −
x2

4 )2,

hence

(4.5)

√
1 + S(f + h)− S(f)

1 + S(f)

> 1 + 1
2
S(f + h)− S(f)

1 + S(f) − 1
4(S(f + h)− S(f)

1 + S(f) )2,

which gives

H2(Σf+h)−H2(Σf )

>
∫
Ar

√
1 + S(f)(1

2
S(f + h)− S(f)

1 + S(f) − 1
4(S(f + h)− S(f)

1 + S(f) )2)

= 1
2

∫
Ar

S(f + h)− S(f)√
1 + S(f)

− 1
4

∫
Ar

(S(f + h)− S(f))2

(1 + S(f)) 3
2

.

(4.6)
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For the first term, by (4.3),

1
2

∫
Ar

S(f + h)− S(f)√
1 + S(f)

= 1
2

∫
Ar

2<∇f,∇h>+ |∇h|2 + 2 det∇f<(∇f)∗,∇h>√
1 + S(f)

+ 1
2

∫
Ar

2<(∇f)∗,∇h>det∇h+<(∇f)∗,∇h>2 +2 det∇hdet∇f+|det∇h|2√
1 + S(f)

>
∫
Ar

<∇f,∇h>+ 1
2 |∇h|

2 + det∇f<(∇f)∗,∇h>√
1 + S(f)

− (2µ+ l2)
∫
Ar

|∇h|2

(4.7)

But S(f) 6 5µ2, hence 1
1+S(f) >

8
9 , hence we have

(4.8) 1
2

∫
Ar

S(f + h)− S(f)√
1 + S(f)

>
∫
Ar

<
∇f + det∇f(∇f)∗√

1 + S(f)
,∇h>+ 1

3

∫
Ar

|∇h|2.

By (3.2), and the hypothesis that h|∂B = 0, we have∫
Ar

<
∇f + det∇f(∇f)∗√

1 + S(f)
,∇h>

=
∫
∂Ar

<h, [~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>

−
∫
Ar

<div(∇f+det∇f(∇f)∗√
1 + S(f)

), h>

= −
∫
∂Br

<h, [~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>

−
∫
∂Br

<(M + h−M), [~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>

= −<M,

∫
∂Br

[~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>

+
∫
∂Br

<(M − h), [~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>.

(4.9)

For the second term of (4.9), since |M − h| 6 εr, Lipf 6 µ, and
|det∇f | 6 2|∇f |2 6 2µ2 6 µ since µ is small, we have

(4.10) |
∫
∂Br

<(M−h), [~n · ∇f+det∇f(∇f)∗√
1 + S(f)

]>| 6
∫
∂Br

εr(2µ) 6 4πµεr2.
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For the first term of (4.9), first by Taylor expansion at the point 0, we
have, for any x ∈ ∂Br,

∇f(x) = ∇f(0) + x · ∇2f(0) + o1(r),(4.11)
(∇f)∗(x) = (∇f)∗(0) + x · ∇(∇)∗f(0) + o2(r),(4.12)

det(∇f)(x) = det(∇f)(0) + x · ∇ det(∇f)(0) + o3(r),(4.13)
1√

1 + S(f)
(x) = 1√

1 + S(f)
(0) + x · ∇( 1√

1 + S(f)
)(0) + o4(r)(4.14)

where |o1(r)| 6 r2||∇3f ||L∞(B(0,r)), |o2(r)| 6 r2||∇3f ||L∞(B(0,r)), |o3(r)| 6
r2||∇2 det(∇f)||L∞(B(0,r)), |o4(r)| 6 r2||∇2( 1√

1+S(f)
)||L∞(B(0,r)).

Hence we have

∇f+det∇f(∇f)∗√
1+S(f)

= {∇f(0)+x ·∇2f(0)+o1(r)+[det(∇f)(0)+x ·∇ det(∇f)(0)+o3(r)]
[(∇f)∗(0)+x ·∇(∇)∗f(0)+o2(r)]}

[ 1√
1+S(f)

(0)+x ·∇( 1√
1+S(f)

)(0)+o4(r)]

= {[∇f(0)+det(∇f)(0)(∇f)∗(0)]+x · [∇2f(0)+∇ det(∇f)(0)(∇f)∗(0)
+det(∇f)(0)∇(∇)∗f(0)]+o(r)}

[ 1√
1+S(f)

(0)+x ·∇( 1√
1+S(f)

)(0)+o(r)]

= [∇f(0)+det(∇f)(0)(∇f)∗(0)] 1√
1+S(f)

(0)

+x · 1√
1+S(f)

(0)[∇2f(0)+∇det(∇f)(0)(∇f)∗(0)

+det(∇f)(0)∇(∇)∗f(0)]

+[∇f(0)+det(∇f)(0)(∇f)∗(0)][x ·∇( 1√
1+S(f)

)(0)]+o(r),

(4.15)

where all the o(r) in (4.15) satisfied that |o(r)| 6 C0r
2, where

(4.16) C0 = C(||∇f ||L∞B(0,r), ||∇2f ||L∞B(0,r), ||∇3f ||L∞B(0,r))

tends to 0 as ||∇f ||L∞B(0,r), ||∇2f ||L∞B(0,r), ||∇3f ||L∞B(0,r) tend to 0.
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Therefore,

|−<M,

∫
∂Br

[~n · ∇f+det∇f(∇f)∗√
1+S(f)

]>|

6 |<M,

∫
∂Br

[~n · [∇f(0)+det(∇f)(0)(∇f)∗(0)] 1√
1+S(f)

(0)]>|

+ |<M,

∫
∂Br

[~n · (x · 1√
1+S(f)

(0)[∇2f(0)+∇ det(∇f)(0)(∇f)∗(0)

+det(∇f)(0)∇(∇)∗f(0)])]>|

+ |<M,

∫
∂Br

{~n · [∇f(0)+det(∇f)(0)(∇f)∗(0)][x · ∇( 1√
1+S(f)

)(0)]}>|

+ |<M,

∫
∂Br

o(r)>|.

(4.17)

For the first term of (4.17), since [∇f(0)+det(∇f)(0)(∇f)∗(0)] 1√
1+S(f)

(0)
is a constant matrix, which we denote by V , and hence we have

(4.18) <M,

∫
∂Br

~n · [∇f(0) + det(∇f)(0)(∇f)∗(0)] 1√
1 + S(f)

(0)>

= <M, (
∫
∂Br

~n) · V > = 0

because
∫
∂Br

~n = 0.
For the second and third term of (4.17), notice that |x| = r, ∇f 6 µ,

hence their sum is less than

(4.19) Cµr2 + C|∇2f(0)|r2 6 (Cµ+ CC0)r2,

where C0 is as in (4.16) and C does not depend on µ, ε.
For the last, by the previous control on o(r), this term is less than C0r

3.
Altogether we have

(4.20) |−<M,

∫
∂Br

[~n · ∇f + det∇f(∇f)∗√
1 + S(f)

]>| 6 Cr2(µ+ C0).

Combining with (4.10) and (4.8), we have

(4.21) 1
2

∫
Ar

S(f + h)− S(f)√
1 + S(f)

>
1
3

∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0),

where C does not depend on µ, l and ε.
Recall that this is the estimation for the first term of the last line in (4.6).

Now we treat its second term.
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By (4.3), we have

|S(f+h)− S(f)|

= |[2<∇f,∇h>+ |∇h|2]
+[<(∇f)∗,∇h>+det∇h)][2 det∇f+det∇h+<(∇f)∗,∇h>]|

6 2|∇f ||∇h|+ |∇h|2 +[|(∇f)∗||∇h|+ |∇h|2|][2|∇f |2 + |∇h|2 + |(∇f)∗||∇h|]

6 C(|∇f ||∇h|+ |∇h|2) 6 Cµ|∇h|+C|∇h|2,

(4.22)

therefore the second term of (4.6) verifies

−1
4

∫
Ar

(S(f + h)− S(f))2

(1 + S(f)) 3
2

> −1
4

∫
Ar

(S(f + h)− S(f))2

> −1
4

∫
Ar

(Cµ|∇h|+ C|∇h|2)

> −C(µ2 + ||∇h||2∞)
∫
Ar

|∇h|2.

(4.23)

On combining (4.6), (4.21) and (4.23) we get

H2(Σf+h)−H2(Σf )

>
1
3

∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0)− C(µ2 + ||∇h||2∞)
∫
Ar

|∇h|2

> (1
3 − Cµ

2 − Cl2)
∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0).

(4.24)

But Lip h < l is small, hence we have

(4.25) H2(Σf+h)−H2(Σf ) > 1
4

∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0).

Now we apply Proposition 3.1, and get that when r < 3
4 and µ is small

enough,

C0 = C0(||∇f ||L∞B(0,r), ||∇2f ||L∞B(0,r), ||∇3f ||L∞B(0,r))
= C0(C(µ)) = C0(µ),

(4.26)

with limµ→0 C0(µ) = 0. Thus we have

H2(Σf+h)−H2(Σf ) > 1
4

∫
Ar

|∇h|2 − Cr2(µ+ µε+ C0(µ)).(4.27)

This completes the proof of Proposition 4.1. �
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5. Conclusion

Now return to our set E. Recall that α is a pair of angles larger than
θ′1 >

π
3 . E is a reduced closed set that is minimal in B(0, 1), which contains

no 2P type point in B(0, 1
100 ).

Set l = 10−3, and suppose that dα0,1 < µ < min{ ε0
10 ,

l
2}, µ is to be decided

later.
We apply Proposition 2.2 to E, with ε′ = min{ε l

2
, 10−4}, (where ε l

2

corresponds to l
2 in Proposition 2.4), and get our oE and rE . Then rE < 1

4 .
Let γi, gi, as in Section 3. Suppose that

(5.1) ||γi||C1 6 µ, i = 1, 2.

By [16, Theorem 7.2], for each i there exists a function f i : B(0, 1
2 )∩P iα →

P iα
⊥, whose graphs Σi = Σfi = {(x, f(x)) : x ∈ B(0, 1

2 ) ∩ P iα} ⊂ R4 are
minimal surfaces. Denote by Bi(x, r) = B(x, r) ∩ P iα.

On the other hand, we want to show the part of E in the annulus
Dα(oE , rE)\Dα(oE , 1

4rE) is far from any translation of Pα. Recall that
Proposition 2.2 says that E is ε′rE far from any translation of Pα in the
ball Dα(oE , rE). So for having a relatively big distance in the annulus, we
simply use a compactness argument, and can get the following proposition.
(See [10] for the proof).

Proposition 5.1 (cf. [10, Corollary 8.24]). — For every ε > 0, there
exists 0 < δ < ε, and 0 < θ0 <

π
2 , which do not depend on ε, with the

following properties. If θ0 < θ < π
2 , and if E is minimal in Dθ(0, 1) and is

δ near Pθ in Dθ(0, 1)\Dθ(0, 1
4 ), and moreover

(5.2) piθ(E) ⊃ P iθ ∩B(0, 3
4),

then E is ε near Pθ in Dθ(0, 1).

Let δ′ be the δ corresponding to ε′ in Proposition 5.1, we know that E
is not δ′rE near any translation of Pα in Dα(oE , rE)\Dα(oE , 1

4rE). On the
other hand, by definition of oE and rE , we know that the ε′-process does not
stop at the scale 2rE , thus by Proposition 2.4, E∩Dα(oE , rE)\Dα(oE , 1

4rE)
is composed of two fine C1 graphs G1, G2 of two functions gi, i = 1, 2 on
P iα ∩Dα(oE , rE)\Dα(oE , 1

4rE) respectively. Thus G1 ∪G2 is not δ′rE near
any translation of Pα, there exists i = 1, 2 such that Gi is not δ′ near any
translation of P iα in Dα(oE , rE)\Dα(oE , 1

4rE). Suppose this is the case for
i = 1.
Denote by g = g1, f = f1, and h = g − f . We want to apply Proposi-

tion 4.1 to f and h, with B(q, r) = B1(oE , 1
4rE) (hence q = oE , r = 1

4rE).
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Recall that we have set ε′ 6 ε l
2
, hence |∇g| is smaller than l

2 , which gives
|∇h| = |∇(g − f)| is smaller than |∇g| + |∇f | < l

2 + µ < l because µ is
supposed to be less than l

2 .
Also, by Proposition 2.2, G1 is still 2ε′rE near some translation of P 1

α,
hence there exists Mg ∈ P 1

α
⊥ such that |g(x) −Mg| 6 2ε′rE = 8ε′r. But

f is µ-Lipschitz, hence there exists Mf such that |f(x) −Mf | 6 Cµr on
∂B(q, r), which gives |h− (Mg +Mf )| 6 9ε′r < 10−3r on ∂B(q, r), when µ
is small.
Now we can apply Proposition 4.1, and get

H2(G1)−H2(Σ1\C1(oE ,
1
4rE)) = H2(Σf+h)−H2(Σf )

>
1
4

∫
Ar

|∇h|2 − Cr2(µ+ ε′µ+ C0(µ)),

(5.3)

with Ar = B1(0, 1
2 )\B(q, r).

Now we want to estimate
∫
Ar
|∇h|2. Recall that on the one hand

B1(oE , rE)\B1(oE , 1
4rE), the graph of g is δ′rE far from any translation of

P 1
α. On the other hand f is µ-Lipschitz, hence when µ is small, the graph

of h = g − f is 1
2δ
′rE far from any translation of P 1

α.
Firstly we cite here two lemmas for estimating the Dirichlet’s energy of

our perturbation function h.

Lemma 5.2 (cf. [10, Corollary 7.23]). — Let r0 > 0, q ∈ R2 be such that
r0 <

1
2d(q, ∂B(0, 1)), suppose u0 ∈ C1(∂B(q, r0) ∩ R2,R), and denote by

m(u0) = 1
2πr0

∫
∂B(q,r0) u0 its average.

Then for all u ∈ C1((B(0, 1)\B(q, r0)) ∩ R2,R) that satisfies

(5.4) u|∂B(q,r0) = u0

we have

(5.5)
∫
B(0,1)\B(q,r0)

|∇u|2 > 1
4r
−1
0

∫
∂B(q,r0)

|u0 −m(u0)|2.

Lemma 5.3 (cf. [10, Corollary 7.36]). — For all 0 < ε < 1, there exists
C = C(ε) > 100 such that if 0 < r0 < 1, u ∈ C1( B(0, 1)\B(0, r0),R) and

(5.6) u|∂B(0,r0) > δr0 −
δr0

C
and u|∂B(0,1) <

δr0

C

then

(5.7)
∫
B(0,1)\B(0,r0)

|∇u|2 > ε 2πδ2r2
0

| log r0|
.
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Then denote by P = P 1
α for short. Denote by D = Dα. Then h is a map

from P to P⊥, and is therefore from R2 to R2. Write h = (ϕ1, ϕ2), where
ϕi : R2 → R. Then since the graph of h is 1

2δ
′rE far from all translation of

P , there exists j ∈ {1, 2} such that

(5.8) sup
x,y∈P∩D(oE ,rE)\D(oE , 1

4 rE)
|ϕj(x)− ϕj(y)| > 1

4rEδ
′.

Suppose this is true for j = 1. Denote by

(5.9) K = {(z, ϕ1(z)) : z ∈ (D(0, 1
2)\D(ok,

1
4rE)) ∩ P},

then

K is the orthogonal projection of G1 ∩D(0, 1
2)

on a 3-dimensional subspace of R4.
(5.10)

For 1
4rE 6 s 6 rE , define

(5.11) Γs = K ∩ p−1(∂D(oE , s) ∩ P ) = {(x, ϕ1(x))|x ∈ ∂D(oE , s) ∩ P}

the graph of ϕ1 on ∂D(oE , s) ∩ P .
We know that in in D(oE , rE)\D(oE , 1

4rE), the graph of ϕ1 is 1
4δ
′rE far

from P ; then there are two cases:
Case 1 — there exists t ∈ [ 1

4rE , rE ] such that

(5.12) sup
x,y∈Γt

{|ϕ1(x)− ϕ1(y)|} > δ′

C
rE ,

where C = 4C( 1
2 ) is the constant of Lemma 5.3.

Then there exists a, b ∈ Γt such that |ϕ1(a)−ϕ1(b)| > δ′

C rE >
δ′

C t. Since
||∇ϕ1||∞ 6 ||∇ϕ||∞ < 1, we have

(5.13)
∫

Γt
|ϕ1 −m(ϕ1)|2 > t3δ′3

4C3 = (4
3 tδ
′)3( 27

44C3 ).

Now in D(0, 1
2 ) we have d(0, oE) < 6ε′ 6 10ε′ · 1

2 , and s < rE < 1
8 <

1
2 ×

1
2 ,

therefore we can apply Lemma 5.2 and obtain

(5.14)
∫

(D(0, 1
2 )\D(oE ,t))∩P

|∇ϕ1|2 > C(δ′)t2 > C1(δ′)r2
E .

Case 2 — for all 1
4rE 6 s 6 rE ,

(5.15) sup
x,y∈Γs

{|ϕ1(x)− ϕ1(y)|} 6 δ′

C
rE .
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However, since
1
2rEδ

′ 6 sup{|ϕ1(x)− ϕ2(y)| : x, y ∈ P ∩D(oE , rE)\D(oE ,
1
4rE)}

= sup{|ϕ1(x)− ϕ2(y)| : s, s′ ∈ [ 14rE , rE ], x ∈ Γs, y ∈ Γs′},
(5.16)

there exist 1
4rE 6 t < t′ 6 rE such that

(5.17) sup
x∈Γt,y∈Γt′

{|ϕ1(x)− ϕ1(y)|} > 1
2rEδ

′.

Fix t and t′, and without loss of generality, suppose that

(5.18) sup
x∈Γt,y∈Γt′

{ϕ1(x)− ϕ1(y)} > 1
4rEδ

′.

Then

inf
x∈Γt

ϕ1(x)− sup
x∈Γt′

ϕ1(x) > 1
4rEδ

′ − 2δ
′

C
rE = (1− 2

C( 1
2 )

)δ
′

4 rE

> (1− 2
C( 1

2 )
)δ
′

2 t
′

(5.19)

because C = 4C( 1
2 ).

Now look at what happens in the ball D(oE , t′) ∩ P . Apply Lemma 5.3
to the scale t′, we get

(5.20)
∫

(D(oE ,t′)\D(oE ,t))∩P
|∇ϕ1|2 > C(δ′, 1

2)
π( δ

′

2 )2t′2

log t′

t

.

Then since t′

t 6 4, t′ > t > 1
4rE , we have

(5.21)
∫

((D(oE ,t′)\D(oE ,t))∩P
|∇ϕ1|2 > C2(δ′)r2

E .

So in both cases, there exists a constant C =C5(δ′) = min{C1(δ′), C2(δ′)},
which depends only on δ′, such that

(5.22)
∫

(D(0, 1
2 )\D(oE ,tE))∩P

|∇ϕ1|2 > C5(δ′)r2
E .

On the other hand, since |∇ϕ1| 6 |∇h| < 1, we have

(5.23)
∫
Ar

|∇h|2 =
∫

(D(0, 1
2 )\D(oE ,tE))∩P

|∇h|2 > C5(δ′)r2
E .

Thus by (5.3),

(5.24) H2(G1)−H2(Σ1\C1(oE ,
1
4rE)) > C5(δ′)r2

E−Cr2
E(µ+ε′µ+C0(µ)).
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We apply also Proposition 4.1 to i = 2, where all the verifications for g2,
f2, h2 = g2 − f2 are similar to that of g1, f1, g1. Hence we have

H2(G2)−H2(Σ2\C2(oE ,
1
4rE))

>
1
4

∫
P 2
α∩D(0, 1

2 )\D(oE , 1
4 rE)
|∇h|2 − Cr2

E(µ+ ε′µ+ C0(µ))

> −Cr2
E(µ+ ε′µ+ C0(µ)).

(5.25)

Now we still have to estimate the part inside D(oE , 1
4rE). For this pur-

pose we need the following lemma.

Lemma 5.4 (cf. [10, Corollary 2.45]). — Suppose ξ > 0 is such that
arccos(ξ/2) 6 α1 6 α2, and P 1, P 2 are two planes with characteristic
angles (α1, α2). Denote by pi the orthogonal projection on P i, i = 1, 2.
Then if E is a closed 2- rectifiable set satisfying pi(E) ⊃ B(0, 1) ∩ P i, we
have

(5.26) H2(E) > 2π
1 + ξ

.

We apply Lemma 5.4 to the part E ∩ Dα(oE , 1
4rE), and by Propo-

sition 2.7, we get

(5.27) H2(E ∩Dα(oE ,
1
4rE)) > 2π(1

4rE)2 1
1 + 2 cos θ′1

.

On the other hand, notice that Lip f1 < C0(µ) and Lip f2 < C0(µ), we
have

H2(Σi ∩Dα(oE ,
1
4rE)) =

∫
P iα∩Dα(oE , 1

4 rE)

√
1 + S(f)

6
∫
P iα∩Dα(oE , 1

4 rE)

√
1 + C0(µ)2 + C0(µ)4

6
∫
P iα∩Dα(oE , 1

4 rE)
1 + C0(µ)2 + C0(µ)4

2

= π(1
4rE)2(1 + C0(µ)2 + C0(µ)4

2 ),

(5.28)

therefore

(5.29) H2(Σ ∩Dα(oE ,
1
4rE)) 6 2π(1

4rE)2(1 + C0(µ)2 + C0(µ)4

2 ).
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Thus

(5.30) H2(Σ ∩Dα(oE ,
1
4rE))−H2(E ∩Dα(oE ,

1
4rE))

6 2π(1
4rE)2(C0(µ)2 + C0(µ)4

2 + 2 cosα1).

We combine (5.30), (5.25) and (5.24), and get

H2(E ∩D(0, 1
2))−H2(Σ)

=
∑
i=1,2

[H2(Gi −H2(Σ1\C1(oE ,
1
4rE))]

+ [H2(E ∩Dα(oE , rE))−H2(Σ ∩Dα(oE , rE)]

> C5(δ′)r2
E − Cr2

E(µ+ ε′µ+ C0(µ))− Cr2
E(µ+ ε′µ+ C0(µ))

− 2π(1
4rE)2(C0(µ)2 + C0(µ)4

2 + 2 cosα1).

(5.31)

Notice that δ′ is just a constant, depending on ε′, where ε′ is the param-
eter for the ε′-process, and guarantees the regularity for parts of minimal
sets where the ε′−process does not stop. Hence it does not depend on µ or
α. Therefore when α is large enough and µ is small enough,

(5.32) H2(E ∩Dα(0, 1
2))−H2(Σ) > 0.

Recall that Σ contains a deformation of E in Dα(0, 1
2 ), hence (5.32)

contradicts the fact that E is minimal.
This contradiction yields that there exists θ1 ∈]0, π2 [ and µ0 > 0 such

that for any α > θ1, if E is minimal in B(0, 1) with d0,1(E,Pα) < ε′, and
moreover (5.1) holds, then E contains a point of type 2P in B(0, 1

100 ).
Now for guarantee the condition (5.1), we apply Proposition 2.4 again.

Set λ = εµ. Then when d0,1(E,Pα) < λ, our λ-process does not stop before
step 1. Then by (2.18), the curves γi admits Lipschitz constants less than
µ. Thus (5.1) holds.
Thus when d0,1(E,Pα) 6 λ, there exists a point of type 2P in B(0, 1

100 ).
This completes the proof of Theorem 1.4. �
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6. Global regularity and local C1 regularity for minimal
sets that are near 2P type minimal cones

In this section we give two useful corollaries of Theorem 1.4, concerning
global and local regularity for minimal sets that are near 2P type minimal
cones.

Theorem 6.1. — Let θ1 be as in Theorem 1.4. Then for any α =
(α1, α2) with α2 > α1 > θ1, if E is a 2-dimensional reduced Almgren min-
imal set in R4 such that one blow-in limit of E at infinity is Pα (i.e., there
exists a sequence of numbers rn → ∞, and the sequence of sets r−1

n (E)
converge to Pα under the Hausdorff distance as n → ∞), then E is a Pα
set.

Proof. — By hypothesis, there exists R > 0 and a Pα set Pα such that
d0,R(E,Pα) < λ. Then by Theorem 1.4, there exists a 2P type point x ∈ E.
In particular, the density θ(x) of E at x is 2, which is equal to the density
θ∞ of E at infinity. By the monotonicity (cf. [6, Proposition 5.16]) of the
density function θx(r) = r−dHd(E ∩ B(x, r)), it has to be constant for
r ∈]0,∞[. By [6, Theorem 6.2], E is a minimal cone centered at x. As a
result, dx,r(E,Pα + x) is constant for r ∈]0,∞[, since Pα + x is also a cone
centered at x. But by hypothesis, dx,r(E,Pα + x) → 0 as r → ∞, hence
dx,r(E,Pα + x) = 0, which means that E = Pα + x. �

Theorem 6.2. — Let θ1 be as in Theorem 1.4. Then there exists a
ε > 0 such that for any α = (α1, α2) with α2 > α1 > θ1, if E is a 2-
dimensional reduced Almgren minimal set in U ⊂ R4, B(x, 300r) ⊂ U

(r < 1), and there is a reduced minimal cone Pα + x of type Pα centered
at x such that dx,200r(E,Pα + x) 6 ε, then there exists C1 diffeomorphism
Φ : B(x, 2r)→ Φ(B(x, 2r)), such that |Φ(y)− y| 6 10−2r for y ∈ B(x, 2r),
and E ∩B(x, r) = Φ(Pα + x) ∩B(x, r).

To get this theorem as a corollary of Theorem 1.3, we need the following
regularity theorem for minimal sets:

Theorem 6.3 ([7, Corollary 12.25]). — For each choice of n > 3, C1 > 1,
η1 > 0 we can find β > 0 and ε1 > 0 such that the following holds. Let
U ⊂ Rn be open and let E ⊂ U be a reduced minimal set in U . Suppose
that x ∈ E, r0 > 0 is such that B(x, 110r0) ⊂ U ,

(6.1) θx(110r0)− θ(x) 6 ε1,
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and

(6.2) dx,100r0(E,X) 6 ε1

for some full length minimal cone (See the remark below) X centered at x
such that

(6.3) H2(X ∩B(0, 1)) 6 θ(x)

and

(6.4) X is a full length minimal cone,
with constants η1 6 η0/10 and C1 > 1.

Then for 0 < r < r0 there is a C1+β diffeomorphism Φ : B(x, 2r) →
Φ(B(x, 2r)), such that Φ(x) = x, |Φ(y)− y| < 10−2r for y ∈ B(x, 2r), and
E ∩B(x, r) = Φ(X + x) ∩B(x, r).

Remark 6.4. — In particular, if X is a full-length minimal cone, then
there exists ε3 > 0 such that for any minimal set E and any X-type point
x ∈ E, if dx,2r(E,X + x) < ε3, then we have the C1 equivalence described
in the theorem. Here the existence of an X type points guarantees the
condition (6.6), and together with the following Lemma 6.5, (6.1) will also
be satisfied automatically. The full length property (with constant C1 and
η1) is defined in [7, Definition 2.10]. It is not necessary to come into details
of the definition. In fact there is a stronger condition called “full-length
because of angles” (FLBA, see [7] below (14.3)) with constant η1. And
there exists a constant C such that if X is a minimal cone that satisfies
FLBA with constant η1, then it is a full-length minimal cone with constant
C1 = C, η1.
By [7, Lemma 14.4], planes in R4 satisfies FLBA with constant η1 (and

thus any constant smaller than η1). [7, Lemma 14.40] tells us that a minimal
coneX satisfies FLBA with constant η1 if each of the connected components
of X∩∂B(0, 1) satisfies it, and these connected components lie at distances
at least 10η1 from each other. Hence we can take η2 < η1 small, such that
for our family of unions of planes Pα, the two circles of Pα ∩ ∂B(0, 1) are
10η2 far from each other. As a results, for α > θ1, Pα is FLBA with constant
η2, and hence is full-length with constant η2 and C.

Lemma 6.5 ([6] Lemma 16.43). — For each small δ > 0, there is a
constant ε (that only depends on n and d), such that if E and F are
reduced d-dimensional minimal sets in an open set U ⊂ Rn, and if

(6.5) dx,10r/9(E,F ) < ε,
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then

(6.6) Hd(E ∩B(x, r)) 6 Hd(F ∩B(x, (1 + δ)r) + δrd.

Now let us prove Theorem 6.2

Proof of Theorem 6.2. — Let λ be the λ in Theorem 1.4. Let δ be small
such that 10δ < ε1, where ε1 is the one in Theorem 6.3. Let ε4 be the ε(δ)
in Lemma 6.5 that corresponds to δ, with n = 4, d = 2.
Let ε = min{10−3λ, 1

5ε1,
1
5ε4}. Then by Theorem 1.4, dx,r(E,Pα) 6

500dx,200r(E,Pα) 6 1
2λ yields that there exists a point x0 ∈ B(x, 1

100r)
of type Pα′ for some angle α′. As a result, θx0 = 2, which is the density at
origin of every union of two planes. And since x0 ∈ B(x, 1

100r), we have

(6.7) dx0,150r(E,Pα + x0) < 2ε < ε4.

Then by Lemma 6.5,

(6.8) H2(E ∩B(x0, 110r)) 6 H2(Pα ∩B(x0, (1 + δ)110r) + δ(110r)2.

But Pα is a cone, and

(6.9) H2(Pα ∩B(0, 1)) = θ(x),

hence

(6.10) H2(E ∩B(x0, 110r)) 6 θ(x)[(1 + δ)110r]2 + δ(110r)2,

which yields

(6.11) (110r)−2H2(E ∩B(x0, 110r)) 6 θ(x)[(1 + δ)]2 + δ.

Hence

(6.12) θ(x, 110r)− θ(x) < 8δ < ε1.

On the other hand we also have

(6.13) dx0,150r(E,Pα + x0) < 2ε < ε1.

Now by Remark 6.4, Pα is a full-length minimal cone. By (6.9), (6.12),
(6.13), Theorem 6.3 applies, which yields the conclusion of Theorem 6.2. �
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