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SEMICLASSICAL MICROLOCAL NORMAL FORMS
AND GLOBAL SOLUTIONS OF MODIFIED

ONE-DIMENSIONAL KG EQUATIONS

by Jean-Marc DELORT (*)

Abstract. — The method of Klainerman vector fields plays an essential role in
the study of global existence of solutions of nonlinear hyperbolic PDEs, with small,
smooth, decaying Cauchy data. Nevertheless, it turns out that some equations of
physics, like the one dimensional water waves equation with finite depth, do not
possess any Klainerman vector field. The goal of this paper is to design, on a model
equation, a substitute to the Klainerman vector fields method, that allows one to
get global existence results, even in the critical case for which linear scattering
does not hold at infinity. The main idea is to use semiclassical pseudodifferential
operators instead of vector fields, combined with microlocal normal forms, to reduce
the nonlinearity to expressions for which a Leibniz rule holds for these operators.
Résumé. — La méthode des champs de Klainerman joue un rôle essentiel

dans l’étude de l’existence globale de solutions d’équations aux dérivées partielles
hyperboliques non-linéaires à données petites, régulières, décroissantes à l’infini.
Toutefois, certaines équations issues de la physique, comme l’équation des ondes
de gravité en profondeur finie, ne possèdent pas de champ de Klainerman. Le but
de cet article est de développer, sur une équation modèle, un substitut à la méthode
des champs de Klainerman, qui permette d’obtenir des résultats d’existence globale,
même dans le cas critique pour lequel il n’y a pas diffusion linéaire à l’infini. L’idée
essentielle est d’utiliser des opérateurs pseudo-différentiels semi-classiques au lieu
de champs de vecteurs, combinés avec une méthode de formes locales microlocale,
afin de réduire la non-linéarité à des expressions pour lesquelles une règle de Leibniz
est valable pour de tels opérateurs.

Introduction

The goal of this paper is to develop a semiclassical normal forms method
to study global existence of solutions of nonlinear hyperbolic equations

Keywords: Global solution of Klein-Gordon equations, Klainerman vector fields, Mi-
crolocal normal forms, Semiclassical analysis.
Math. classification: 35L71, 35A01, 35B40.
(*) This work has been partially supported by the ANR ANAÉ. It has been initiated
during a visit of the author at Fields Institute, during the “Thematic Program on the
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with small, smooth, decaying Cauchy data, in the critical regime, and when
the problem does not admit Klainerman vector fields. Let us explain our
motivation on a simple model of the form

(0.1) (Dt − p(D))u = N(u)

where (t, x)→ u(t, x) is a C valued function defined on R× R, Dt = 1
i
∂
∂t ,

D = 1
i
∂
∂x , p(ξ) is a real valued Fourier multiplier and N(u) a cubic non-

linearity. If for instance p(ξ) =
√

1 + ξ2, the left hand side of (0.1) is
just the half Klein-Gordon operator acting on u. Such a problem is crit-
ical because the best time decay one can expect for the solution of the
linear equation (Dt − p(D))u = 0 with smooth, decaying Cauchy data
is ‖u(t, ·)‖L∞ = O(t−1/2), so that a cubic nonlinearity N(u) will satisfy
‖N(u(t, ·))‖L2 6 Ct−1‖u(t, ·)‖L2 , with a time factor t−1 just at the limit of
integrability. In the case of the Klein-Gordon equation p(ξ) =

√
1 + ξ2, the

question of global existence has been settled long ago. On space dimension
larger or equal to 3, Klainerman [18] and Shatah [25] have proved indepen-
dently that such equations have global smooth solutions when the Cauchy
data are smooth enough, small enough, and decay rapidly enough at infin-
ity. Klainerman uses the fact that there is a family of vector fields having
nice commutation properties to the linear part of the equation (i.e. vector
fields Z such that [Dt− p(D), Z] is a multiple of Dt− p(D)). On the other
hand, the proof of Shatah relies on normal forms methods. A similar re-
sult has been proved in two dimensions by Simon and Taflin [26] and by
Ozawa, Tsutaya and Tsutsumi [24]. In one dimension, Moriyama, Tonegawa
and Tsutsumi [23] have shown that solutions exist over time intervals of
length ec/ε2 , where ε is the size of the Cauchy data, and Moriyama [22] has
found special nonlinearities for which global existence holds true. In [3, 4],
a general answer has been given, through the determination of a null con-
dition under which global existence holds true in dimension one, for small
compactly supported Cauchy data. It is likely that this null condition is
optimal, i.e. that when it is not satisfied solutions may blow up in finite
time, but this remains unproved. One only knows examples of nonlinear-
ities for which some Cauchy data give rise to blowing up solutions (see
Yordanov [36] and Keel and Tao [17]). Let us mention also that, for one
dimensional Klein-Gordon equations with cubic nonlinearities depending
only on the solution (and not on its derivatives), a simpler proof of the
asymptotics of the solution obtained in [3] has been given by Lindblad and
Soffer [20]. Moreover, related problems, including for systems, have been
studied by Sunagawa [28, 29, 30, 31].

ANNALES DE L’INSTITUT FOURIER
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In all the papers mentioned above concerning one dimensional problems,
two tools play an essential role: normal forms methods and Klainerman
vector fields. The latter are useful since, on the one hand, they commute
approximately to the linear part of the equation and, on the other hand,
their action on the nonlinearity ZN(u) may be expressed from u, Zu using
Leibniz rule. This allows one to prove easily energy estimates for Zku, and
then to deduce from them L∞ bounds for u, through Klainerman-Sobolev
type inequalities.
It turns out that there are natural equations for which such vector fields

do not exist. A very challenging one is the water waves equation with
finite depth and flat bottom. Let us recall some results concerning these
equations. We do not try to give exhaustive references, and refer to the book
of Lannes [19] and to [1, 2] for a more complete bibliography. Local existence
of solutions for the water waves problem with infinite depth and zero surface
tension has been established by Sijue Wu [32, 33]. Similar results in the
case of finite depth and a flat bottom may be found in Chapter 4 of the
book of Lannes [19]. Concerning long time existence with small, smooth,
decaying Cauchy data, Sijue Wu proved global well-posedness in dimension
3 (i.e. for a two-dimensional interface) in [35] and almost global existence
in dimension 2 (i.e. for a one-dimensional interface) in [34] (see also the
recent paper of Hunter, Ifrim and Tataru [14]). The existence of global
solutions in dimension 3 has been established independently by Germain,
Masmoudi and Shatah [10]. Finally, global existence in dimension 2 has
been proved independently by Ionescu and Pusateri [16] and by Alazard
and Delort [1, 2].

The latter results are shown using in an essential way that the infinite
depth water waves equation admits a Klainerman vector field. This is no
longer true for the corresponding equation with a finite depth flat bottom.
Actually, in this case, a simplified model for the equation may be written
under the form (0.1) with p(ξ) = (ξ tanh ξ)1/2 (see section 3.6.2. in [19]).
An idea of the new difficulties one has to face can be easily seen from the
study of the solution of (Dt − p(D))u = 0 with u|t=0 = u0 ∈ S(R) i.e.

(0.2) u(t, x) = 1
2π

∫
ei(tp(ξ)+xξ)û0(ξ) dξ.

The critical points of the phase solve tp′(ξ) + x = 0. Denote by Λ the set
Λ = {(x, ξ);x+ p′(ξ) = 0} given by the preceding condition at time t = 1.
Then Λ has the following form:

TOME 66 (2016), FASCICULE 4
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1

-1

Figure 1. Λ for water waves

It is well-known that the fact that Λ is a graph above ] − 1, 1[−{0}
implies that if K is a compact subset of that set, for x′ in K, u(t, tx′)
behaves asymptotically as c(x′)√

t
eitω(x′), with a phase ω given by

(0.3) ω(x′) = p(dϕ(x′)) + x′dϕ(x′),

where ϕ :]−1, 1[−{0} → R is such that Λ = {(x′, dϕ(x′));x′ ∈]−1, 1[−{0}}.
On the other hand, because of the vertical tangent at x = ±1 in Figure 1,
c(x′) does not stay bounded if x′ → ±1, so that, unlike what happens
in infinite depth,

√
t‖u(t, ·)‖L∞ blows up when t goes to infinity. This is

one the main difficulties one would have to cope with to prove global well-
posedness for the water waves equation for a one dimensional interface,
in the case of finite depth. We do not address this problem here, noticing
however that for other equations for which the set Λ has the same structure
at small frequencies as in Figure 1, global existence of small solutions is
known: we refer to the paper of Hayashi and Naumkin [12] devoted to
modified KdV equations.
The other major difficulty one encounters in the study of an equation of

the form (0.1) with p(ξ) = (ξ tanh ξ)1/2 is due to the fact that there does
not exist a vector field Z with nice commutation properties with Dt−p(D).
As already mentioned, the existence of such a vector field plays an essential
role in the proofs of global well-posedness for the water wave equation in
infinite depth.

ANNALES DE L’INSTITUT FOURIER
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The goal of this paper is to show how this problem may be overcome
on a model equation, for which there does not exist a Klainerman vector
field, but which does not display the extra difficulty related to points with
vertical tangent in Figure 1. More precisely, we consider an equation of the
form (0.1) where p(ξ) is a general function such that the associated set Λ
has the following shape:

1
-1

Figure 2. Λ for modified KG

We refer to Section 1 for the precise assumptions on p. We just notice
here that they hold for any small perturbation of

√
1 + ξ2. With such gen-

eral hypothesis, one cannot expect to find a vector field commuting to
Dt−p(D) modulo a multiple of that operator. A first attempt to overcome
this difficulty could be to try to use the analysis of space-time resonances
introduced independently by Germain, Masmoudi and Shatah in [8, 9] and
Gustafsson, Nakanishi and Tsai [11]. We refer to the paper of Germain [6]
for a general introduction to this method. This approach encompasses in
some way normal forms and Klainerman vector fields, but proved to be
useful as well when no commuting vector field exists. This is the case for in-
stance for systems of Klein-Gordon equations with different speeds in three
dimensions, that have been studied by Germain [7] and Ionescu and Pau-
sader [15]. However, these results hold in high dimension, when solutions of
the linear equation decay at an integrable rate, so that the solutions of the
nonlinear problem will scatter at infinity. This is not the case for our model
problem (0.1). Let us mention also recent works by Lindblad and Soffer [21]
and by Sterbenz [27] dealing with one dimensional Klein-Gordon equations

TOME 66 (2016), FASCICULE 4



1456 Jean-Marc DELORT

with non constant coefficients, that make use of a limited “amount of com-
mutation” between the natural Klainerman vector field and the coefficients
of the nonlinearity.
The strategy we employ in this paper to prove global existence for our

model equation (0.1) in the absence of commuting vector field relies on the
construction, through semiclassical analysis, of pseudodifferential operators
commuting to Dt − p(D), that can replace vector fields when combined
with a microlocal normal forms method. This approach is much related
to the ideas underlying space-time normal forms, as is discussed below
at the beginning of Subsection 2.1, but replaces integration by parts in
Fourier integrals by systematic use of symbolic calculus for semiclassical
pseudodifferential operators – which is itself a consequence of stationary
phase formulas. Let us describe our method on the example of equation

(0.4) (Dt − p(D))u = u3 + |u|2u.

We make first a change of variables and unknowns u(t, x) = 1√
t
v
(
t, xt
)
, that

allows to rewrite (0.4) as

(0.5) (Dt −Oph(λ(x, ξ)))v = h(v3 + |v|2v)

with λ(x, ξ) = xξ+ p(ξ)− ih2 , the semiclassical parameter h being h = 1/t,
and the operator associated to a symbol a being given by

Oph(a)v = 1
2π

∫
eixξa(x, hξ)v̂(ξ) dξ.

One first remarks that the operator L = 1
hOph(x + p′(ξ)), whose symbol

vanishes exactly on the set Λ of Figure 2, commutes exactly to the linear
part of equation (0.5). On the other hand, L is not a vector field, so that no
Leibniz rule holds to compute the action of L on the nonlinearity from v and
Lv. Nevertheless, a Leibniz rule holds for the action of L on |v|2v. Actually,
since Λ in Figure 2 is a graph, we may find a smooth function ϕ :]−1, 1[→ R
such that Λ = {ξ = dϕ(x)}, so that the quotient e(x, ξ) = x+p′(ξ)

ξ−dϕ(x) is
smooth, and |e| stays between two positive constants when (x, ξ) stays in a
compact subset of ]−1, 1[×R. Consequently, one may write, using symbolic
calculus for semiclassical operators,

L = 1
h

Oph(e(ξ − dϕ(x))) = Oph(e)
[ 1
h

Oph(ξ − dϕ(x))
]

+ Oph(r),

ANNALES DE L’INSTITUT FOURIER
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with some other symbol r. If one makes act the main contribution in the
right hand side of the above equality on |v|2v, one gets

Oph(e)
[(
D − 1

h
dϕ(x)

)
(|v|2v)

]
= Oph(e)

[
2|v|2

(
D − 1

h
dϕ(x)

)
v − v2

(
D − 1

h
dϕ(x)

)
v
]
,

that is a quantity whose L2 norm may be bounded by C‖v‖2L∞‖Lv‖L2

(if one re-expresses in the right hand side
(
D − 1

hdϕ(x)
)
v from Lv). In

other words, L obeys a Leibniz rule when acting on |v|2v, so that, only the
contribution v3 in the right hand side of (0.5) is problematic. The idea is
to eliminate this term in a preliminary step by semiclassical normal forms.
One remarks first that if γ(x, ξ) is a cut-off close to Λ, equal to one on a
neighborhood of Λ, one may decompose v = Oph(γ)v + Oph(1− γ)v, and
write the second term, by symbolic calculus, as

Oph
[(1− γ(x, ξ)

x+ p′(ξ)

)
(x+ p′(ξ))

]
v = Oph(e)Oph(x+ p′(ξ))v +O(h)

= hOph(e)Lv +O(h)

for some symbol e. If one plugs this decomposition in each factor in v3, one
writes

(0.6) v3 = (Oph(γ)v)3 + hR(v,Lv)

where R is quadratic in v and linear in Lv. In particular,

L[hR(v,Lv)] = Oph(x+ p′(ξ))R(v,Lv)

is estimated in L2 by C‖v‖2L∞‖Lv‖L2 , i.e. has the same bounds as if
Leibniz rule were holding. Consequently, we just have to get rid of the
first term in the right hand side of (0.6), introducing a new unknown
w = v+Oph(a)[v, v, v], where a is the symbol of a multilinear semiclassical
operator, chosen in such a way that(

Dt −Oph(λ))w = h|w|2w + remainders of higher order in h.

In that way, by what we have seen just above, we are reduced to an equation
where L commutes to the linear part, and obeys a Leibniz rule when acting
on the nonlinearity. The construction of a, which is similar to the original
normal forms method of Shatah [25], is made by division by the function
p(ξ1 +ξ2 +ξ3)−p(ξ1)−p(ξ2)−p(ξ3), and since, in the first term in the right
hand side of (0.6), v has been localized close to Λ, it is enough to check
that the division may be performed when ξ1, ξ2, ξ3 are all close to dϕ(x). In
other words, the condition to be checked is that p(3dϕ(x))−3p(dϕ(x)) 6= 0

TOME 66 (2016), FASCICULE 4



1458 Jean-Marc DELORT

for any x in ]−1, 1[. Such a property follows from the assumptions made on
p, and corresponds to the case when the space-time resonant set is empty.
One may repeat this normal form procedure, in order to eliminate all terms
in the nonlinearity that do not obey a Leibniz rule not only for L but also
for L2. In that way, one reduces to an equation morally of the form

(0.7) (Dtw −Oph(λ))w = h|w|2w + h2|w|4w +O(h3)

from which one deduces applying L2 an energy inequality of the form

(0.8) ‖L2w(t, ·)‖L2 6 ‖(x+ p′(D))2w(1, ·)‖L2

+
∫ t

1
‖w(τ, ·)‖2L∞‖L2w(τ, ·)‖L2

dτ

τ
+ remainders.

If one has an a priori estimate ‖w(τ, ·)‖L∞ = O(ε), Gronwall lemma pro-
vides for the left hand side of (0.8) a O(tCε2) bound. On the other hand,
one can establish from an a priori L2 bound of that type an L∞ estimate
for w, using the same method as in [1], i.e. deducing from (0.7) an ODE
satisfied by w. Actually, if one develops the symbol λ(x, ξ) on Λ, i.e. on
ξ = dϕ(x), one gets, using that ∂λ

∂ξ (x, dϕ(x)) = 0,

Oph(λ)w = ω(x)w + h2Oph(e)(L2w)

where ω is given by (0.4) and e is some symbol. An a priori assumption of
the form ‖L2w(t, ·)‖L2 = O(h−σ) for some small σ > 0, together with the
semiclassical Sobolev embedding, allows one to deduce from the preceding
equation that ‖Oph(λ)w − ωw‖L∞ = O(h 3

2−σ), so that (0.7) implies that
w solves an ODE of the form

Dtw = ω(x)w + 1
t
|w|2w + time integrable remainder.

The solutions of this ODE corresponding to small initial data being
bounded, one obtains a uniform L∞ control of w. Putting together these L2

and L∞ estimates and performing a bootstrap argument, one finally shows
that (0.5) has global solutions and determines their asymptotic behavior.
To conclude this introduction, let us mention that in the above outline of

proof of our main theorem, we ignored what happens for large frequencies,
which corresponds to points on Λ in Figure 2 close to the vertical asymp-
totic lines. This is because one can combine the preceding arguments with
elementary Hs estimates for a very large s. The contribution of the fre-
quencies of the solution larger that h−β , for some small β > 0, have O(hN )
L2 norms if sβ � N , so that bring just remainders. In that way, most of
the analysis may be reduced to w cut-off for frequencies smaller than h−β .

ANNALES DE L’INSTITUT FOURIER
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1. Global solutions of modified Klein-Gordon equations

1.1. Statement of the main results

As explained in the introduction, the main goal of this paper is to develop
an analogous of the “Klainerman vector fields method” to prove global
existence of small solutions for equations for which there does not exist a
Klainerman vector field. We consider a model problem given by a modified
Klein-Gordon equation of the following type. Consider a strictly positive
first order constant coefficients classical elliptic symbol p(ξ) i.e. a smooth
strictly positive function defined on R, ξ → p(ξ), which has when ξ goes to
±∞ an expansion

(1.1) p(ξ) = c1±ξ + c0± + c−1
± ξ−1 + · · ·

where cj± are real numbers with c1+ 6= 0, c1− 6= 0. We shall assume

(1.2)
c1± = ±1 and there is κ ∈ N, κ > 2 such that

for any − κ+ 2 6 j 6 0, cj± = 0 and c−κ+1
± 6= 0.

This assumption means that, when |ξ| → +∞, p(ξ) is not equal, modulo
O(|ξ|−∞), to the symbol |ξ| of the half-wave equation. In the case of the
symbol

√
1 + ξ2 of the half Klein-Gordon operator, assumption (1.2) holds

with κ = 2. We assume also that p satisfies

ξ → p′(ξ) is strictly increasing and
for any λ ∈ Z− {1} and any ξ ∈ R, λp(ξ)− p(λξ) 6= 0.

(1.3)

Notice that the last condition follows from (1.1), (1.2) when |ξ| → +∞, so
that it is actually an assumption for ξ in a compact set. It is clear that (1.1)
to (1.3) hold for any small enough perturbation of

√
1 + ξ2. We denote

(1.4) Λ = {(−p′(ξ), ξ); ξ ∈ R} ⊂ T ∗R.

Since p′ is strictly increasing and p′(ξ) → ±1 when ξ → ±∞, there
is a smooth strictly concave function ϕ :] − 1, 1[→ R such that Λ =
{(x, dϕ(x));x ∈]− 1, 1[}.

Let F be a polynomial in three indeterminates, with complex coefficients,
of valuation larger or equal to three. We write the cubic part F3 of F as

(1.5) F3(X0, X1, X2) =
∑
|α|=3

aα0α1α2X
α0
0 Xα1

1 Xα2
2 .

TOME 66 (2016), FASCICULE 4



1460 Jean-Marc DELORT

We assume that F is real valued on R × (iR) × (iR) which implies that
aα0α1α2 is real (resp. purely imaginary) when α0 is odd (resp. even). We
consider a solution of the equation

(D2
t − p(Dx)2)ψ = F (ψ,Dxψ,Dtψ)

ψ|t=1 = εψ0

∂tψ|t=1 = εψ1

(1.6)

where ε ∈]0, 1[, ψ0, ψ1 are smooth enough functions, Dt = 1
i
∂
∂t , Dx =

D = 1
i
∂
∂x . Our goal is to obtain a global smooth solution when ε is small

enough, ψ0, ψ1 are smooth enough and decay rapidly enough at infinity,
and when the cubic part (1.5) of the non-linearity satisfies the following
“null condition”

(1.7) aα0α1α2 = 0 when α0 is even.

In other words, we assume that the cubic part of the non-linearity is a com-
bination with real coefficients of ψ3, ψ(Dtψ)2, ψ(Dtψ)(Dxψ)), ψ(Dxψ)2.
Define a function Φ :]− 1, 1[→ R by Σ

(1.8) Φ(x) = 3
8 p̃(dϕ)−1a300 −

1
8 p̃(dϕ)−1(dϕ)2a120

− 1
8 p̃(dϕ)(1− q(dϕ))2a102 −

1
8(1− q(dϕ))dϕa111,

where p̃(ξ) = 1
2 (p(ξ) + p(−ξ)), q(ξ) = p̃(ξ)−1(p(ξ)− p(−ξ)).

Theorem 1.1. — There are a large enough integer s, a positive number
θ, an element ε0 of ]0, 1] such that, for any real valued couple (ψ0, ψ1) in
Hs+1(R)×Hs(R), satisfying

(1.9) ‖ψ0‖2Hs+1 + ‖ψ1‖2Hs + ‖x2ψ0‖2H1 + ‖x2ψ1‖2L2 6 1,

for any ε ∈]0, ε0], equation (1.6) has a unique solution ψ in the space
C0([1,+∞[, Hs+1)∩C1([1,+∞[, Hs). Moreover, there is a continuous func-
tion aε : R→ C, depending on ε, uniformly bounded, supported in [−1, 1],
a function (t, x)→ r(t, x) bounded in t > 1 with values in L2(R) ∩ L∞(R)
such that, for any ε in ]0, ε0], the global solution ψ of (1.6) has asymptotics

(1.10) ψ(t, x)

= Re
[ ε√

t
aε(x/t) exp

[
itω(x/t)+iε2|aε(x/t)|2Φ(x/t) log t

]]
+ ε

t
1
2+θ r(t,x)

where ω is the smooth function on ]− 1, 1[ given by

(1.11) ω(x) = xdϕ(x) + p(dϕ(x)).

ANNALES DE L’INSTITUT FOURIER
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(Notice that since x + p′(dϕ(x)) ≡ 0, we have dω = dϕ so that we could
take ω ≡ ϕ modifying ϕ by a constant).

The preceding results hold in particular when p(ξ) =
√

1 + ξ2 i.e. for the
usual Klein-Gordon equation. In this case, because of the extra symmetries
of the problem, one may replace the null condition (1.7) by a weaker one

3a030 + a210 = 0, 3a021 + a201 = 0
3a012 − a210 = 0, 3a003 − a201 = 0.

(1.12)

One gets:

Theorem 1.2. — Under the same assumptions as in Theorem 1.1 for
ψ0, ψ1 and under the null condition (1.12), the equation

(D2
t −D2

x − 1)ψ = F (ψ,Dxψ,Dtψ)
ψ|t=1 = εψ0

∂tψ|t=1 = εψ1

(1.13)

has for ε ∈]0, ε0] a unique solution ψ in C0([1,+∞[, Hs+1)∩C1([1,+∞[, Hs).
Moreover, it satisfies (1.10) with

ω(x) =
√

1− x2

Φ(x) = −1
8

[
(3a300 + a120)x2 − a111x+ a102 − 3a300

]
(1− x2)−1/2.

(1.14)

The above theorem has been proved in the more general setting of quasi-
linear Klein-Gordon equations in [3, 4], and in the case of non-linearities
depending only on ψ, F ≡ F (ψ) by Lindblad and Soffer [20], but in both
cases only for compactly supported initial data. This restriction was re-
lated to the method used in those papers, which was relying on the use of
hyperbolic coordinates. A more recent result of Hayashi and Naumkin [13]
treats the case of a quadratic non-linearity ψ2, without compact support
assumptions on the Cauchy data.

1.2. Semiclassical pseudo-differential operators

The proof of the main theorem will rely on the use of a semiclassical
formulation of the equation. We give in this subsection the definitions and
properties of the classes of symbols and operators we shall use. A general
reference is Chapter 7 of the book of Dimassi-Sjöstrand [5] or the book of
Zworski [37].
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Definition 1.3. — An order function on R×Rn is a smooth map from
R×Rn to R+: (x, ξ1, . . . , ξn)→M(x, ξ1, . . . , ξn) such that there are N0 in
N, C > 0 and for any (x, ξ1, . . . , ξn), (y, η1, . . . , ηn) in R× Rn

(1.15) M(y, η1, . . . , ηn) 6 C〈x− y〉N0
n∏
1
〈ξj − ηj〉N0M(x, ξ1, . . . , ξn)

where 〈x〉 =
√

1 + x2.

For instance, if n = 1, 〈ξ〉, 〈x〉, 〈x〉〈ξ〉 are order functions on R × R. In
the same way

(1.16) M0(ξ1, . . . , ξn) =
( ∑

16i<j6n
〈ξi〉〈ξj〉

)( n∑
1
〈ξi〉
)−1

is an order function that is equivalent to the second largest among
〈ξ1〉, . . . , 〈ξn〉.

Definition 1.4. — Let n be in N∗, M an order function on R × Rn,
δ > 0, β > 0. Set ξ for the n-uple (ξ1, . . . , ξn). One denotes by Sδ,β(M,n)
the space of smooth functions

(x, ξ1, . . . , ξn, h)→ a(x, ξ1, . . . , ξn, h)
R× Rn×]0, 1]→ C

(1.17)

satisfying for any α0 ∈ N, α ∈ Nn, k,N ∈ N bounds

(1.18) |∂α0
x ∂αξ (h∂h)ka(x, ξ, h)| 6 CM(x, ξ)h−δ(α0+|α|)(1 + βhβ |ξ|)−N .

Notice that when β > 0, our symbols decay rapidly in hβ |ξ|. This implies
in particular the following inclusion, valid for any β > 0, r > 0, ` = 1, . . . , n

(1.19) Sδ,β(〈ξ`〉r, n) ⊂ h−βrSδ,β(1, n)

that will be used systematically from now on. In the rest of this paper we
shall not indicate explicitly the dependence of symbols in h.
If a belongs to Sδ,β(M,n) for some order functionM , some δ > 0, β > 0,

we define the n-linear operator Oph(a) acting on test functions v1, . . . , vn by

(1.20) Oph(a)(v1, . . . , vn)

= 1
(2π)n

∫
eix(ξ1+···+ξn)a(x, hξ1, . . . , hξn)

n∏
1
v̂j(ξj) dξ1 . . . dξn.

When n = 1, this is just the usual semiclassical pseudo-differential operator
with symbol a. The above classes of operators satisfy the following symbolic
calculus properties, whose proof may be found in [5] if n = 1, and is given
in the appendix for general n.
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Proposition 1.5.
(i) Let n ∈ N∗, M(x, ξ1, . . . , ξn), M1(x, ξ1) be two order functions. Let

0 6 δ′, δ′′ < 1/2, β > 0. Let a be in Sδ′,β(M,n), b in Sδ′′,0(M1, 1). There is
a symbol c in Sδ,β(M(x, ξ1, . . . , ξn)M1(x, ξ1), n) with δ = max(δ′, δ′′) such
that for any test functions v1, . . . , vn

Oph(a)[Oph(b)v1, . . . , vn] = Oph(c)[v1, . . . , vn].

Moreover, one has the asymptotic expansion

(1.21) c(x, ξ1, . . . , ξn) = a(x, ξ1, . . . , ξn)b(x, ξ1)

+ h

i

∂a

∂ξ1
(x, ξ1, . . . , ξn) ∂b

∂x
(x, ξ1) + h2(1−(δ′+δ′′))e(x, ξ1, . . . , ξn)

for some symbol e in Sδ,β(M(x, ξ1, . . . , ξn)M1(x, ξ1), n).
(ii) More generally, if n, n′ are in N∗, β > 0, 0 6 δ < 1/2, and if

M(x, ξ1, . . . , ξn) and M ′(x, ξ′1, . . . , ξ′n′) are two order functions, if a is in
Sδ,β(M,n) and b is in Sδ,β(M ′, n′), there is a symbol c in Sδ,β(M ′′, n+n′−1)
with

M ′′(x, ξ′1, . . . , ξ′n′ , ξ2, . . . , ξn)
= M(x, ξ′1 + · · ·+ ξ′n′ , ξ2, . . . , ξn)M ′(x, ξ′1, . . . , ξ′n′)

such that for any test functions v′1, . . . , v′n′ , v2, . . . , vn

(1.22) Oph(a)[Oph(b)(v′1, . . . , v′n′), v2, . . . , vn]
= Oph(c)[v′1, . . . , v′n′ , v2, . . . , vn].

(iii) Under the same assumptions as in (i), there is a symbol c in

Sδ,β(M(x, ξ1, . . . , ξn)M1(x, ξ1 + · · ·+ ξn), n)

such that for any test functions v1, . . . , vn

Oph(b)[Oph(a)(v1, . . . , vn)] = Oph(c)(v1, . . . , vn).

Moreover

(1.23) c(x, ξ1, . . . , ξn)

= b(x, ξ1 + · · ·+ ξn)a(x, ξ1, . . . , ξn) + h1−(δ′+δ′′)e(x, ξ1, · · · , ξn)

for some symbol e in Sδ,β(M1(x, ξ1 + · · ·+ ξn)M(x, ξ1, . . . , ξn), n)

Let us study the action of the above operators on L2 or L∞ spaces.
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Definition 1.6. — Let s ∈ R. We define the semiclassical Sobolev space
Hs
h(R) as the space of families (vh)h∈]0,1] of tempered distributions such

that 〈hD〉svh
def= Oph(〈ξ〉s)vh is a bounded family of L2(R). For ρ ∈ N, we

denote by W ρ,∞
h the space of families (vh)h of elements of S ′(R) such that∑ρ

ρ′=0‖(hD)ρ′vh‖L∞ is uniformly bounded.

For future reference, we write down the semiclassical Sobolev injection

(1.24) ‖vh‖Wρ,∞
h
6 Cθh

−1/2‖vh‖
H
ρ+ 1

2 +θ
h

for any θ > 0.

Proposition 1.7.
(i) Let δ ∈ [0, 1/2[, a be an element of Sδ,0(1, 1). Then for any s in R,

Oph(a) is bounded from Hs
h to Hs

h, uniformly in h.
(ii) Let δ ∈ [0, 1/2[, β > 0, n in N∗. Set M(ξ) =

∑n
1 〈ξ`〉 and let ρ be in

N, q in [1,∞]. Then, for any a in Sδ,β(Mρ, n), there is a constant C > 0
such that for any test functions v1, . . . , vn, any j = 1, . . . , n

(1.25) ‖Oph(a)(v1, . . . , vn)‖Lq 6 Ch−n(δ+β(ρ+3))
∏

16`6n
6̀=j

‖v`‖L∞‖vj‖Lq .

In particular, if a is in Sδ,β(1, n), one has

(1.26) ‖Oph(a)(v1, . . . , vn)‖Wρ,∞
h
6 Ch−n(δ+β(ρ+3))

n∏
`=1
‖v`‖L∞

and if s ∈ N,

(1.27) ‖Oph(a)(v1, . . . , vn)‖Hs
h
6 Ch−n(δ+3β)

n∑
`=1

(
‖v`‖Hs

∏
j 6=`
‖vj‖L∞

)
.

Assertion (i) of the above proposition follows from the definition of
Sobolev spaces, (i) of Proposition 1.4 and the L2-boundedness of elements
of Sδ,0(1, 1) proved in theorem 7.11 of [5]. We give the proof of assertion
(ii) in the appendix.
Point (ii) in the preceding proposition gives only estimates involving a

loss of some negative power of h in the right hand side. This is unavoidable
since we get Lq estimates including for q = 1,∞. Such bounds will be
sufficient for us in most instances, as the loss will be compensated by some
extra positive power of h. Nevertheless, for some L2 estimates, we shall
need uniform bounds, up to some new terms in the right hand side. Before
stating them, we prove a lemma that will be used several times in the rest
of this paper.
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Lemma 1.8. — Let γ be in C∞0 (R). If the support of γ is small enough,
the two functions on R× R

a±(x, ξ) = x+ p′(±ξ)
ξ ∓ dϕ(x) γ

(
〈ξ〉κ(x+ p′(±ξ))

)
b±(x, ξ) = ξ ∓ dϕ(x)

x+ p′(±ξ)γ
(
〈ξ〉κ(x+ p′(±ξ))

)(1.28)

verify estimates

|∂αx ∂
β
ξ a±(x, ξ)| 6 Cαβ〈ξ〉−κ−1+|α|κ−|β|

|∂αx ∂
β
ξ b±(x, ξ)| 6 Cαβ〈ξ〉κ+1+|α|κ−|β|

(1.29)

Moreover, if Supp γ is small enough, on the support of γ
(
〈ξ〉κ(x+p′(±ξ))

)
,

one has 〈dϕ〉 ∼ 〈ξ〉 and there is a constant A > 0 such that, on that support

A−1〈ξ〉−κ 6 ±x+ 1 6 A〈ξ〉−κ, ξ → +∞

A−1〈ξ〉−κ 6 ∓x+ 1 6 A〈ξ〉−κ, ξ → −∞.
(1.30)

Finally, for any k in N

(1.31) ∂k(dϕ(x)) = O(〈dϕ〉1+kκ).

Proof. — We treat the case of the positive sign. By (1.3) p′ is an in-
creasing function. According to (1.1) and (1.2), it has when ξ → ±∞, an
expansion

(1.32) p′(ξ) = ±1− c−κ+1
± (κ− 1)ξ−κ +O(|ξ|−κ−1).

This shows that, when Supp γ is small enough, on the support of the cut-
off, A−1〈ξ〉−κ 6 ±x+1 6 A〈ξ〉−κ for some A > 1 when ξ → ±∞. Since x+
p′(dϕ(x)) = 0, we deduce from that the equivalence 〈dϕ(x)〉 ∼ |1− x2|−1/κ

for x ∈]− 1, 1[ and that, on the support of the cut-off, 〈dϕ〉 ∼ 〈ξ〉. Taking
derivatives of x+ p′(dϕ(x)) = 0, we obtain (1.31).
For (x, ξ) staying in the support of γ

(
〈ξ〉κ(x+ p′(±ξ))

)
and for instance

ξ → +∞, let us write

ξ = λ−1ζ, x = −1 + λκz

for a parameter λ → 0 and (z, ζ) in a convenient compact subset K of
]0,+∞[2. The expansion (1.32) implies

(1.33) x+ p′(ξ) = λκ[z − (κ− 1)c−κ+1
+ ζ−κ + λr1(ζ, λ)]

for some smooth function r1. Since x+p′(dϕ(x)) = 0, this gives in particular

λdϕ(−1 + λκz) =
[

(κ− 1)c−κ+1
+

z

]1/κ
+ λr2(z, λ)

TOME 66 (2016), FASCICULE 4



1466 Jean-Marc DELORT

for some smooth function r2. We thus get

(1.34) ξ − dϕ(x) = λ−1
[
ζ −

[
(κ− 1)c−κ+1

+
z

]1/κ
− λr2(z, λ)

]
.

By definition of ϕ, the coefficients of λκ in (1.33) and of λ−1 in (1.34) are
smooth functions of (z, ζ) ∈ K, λ ∈ [0, 1] vanishing at order one on the
same submanifold. Consequently

x+ p′(ξ)
ξ − dϕ(x) = λκ+1r(z, ζ, λ)

for some smooth function r that does not vanish onK×[0, 1]. As λ ∼ 〈ξ〉−1,
we obtain the first estimate (1.29) when α = β = 0. As ∂x = λ−κ∂z,
∂ξ = λ∂ζ , the estimates for the derivatives follow as well. The second
inequality (1.29) is proved in the same way. This concludes the proof of the
lemma. �

The precise L2-estimates we shall need will give bounds in terms of the
action of some special operators, that replace Klainerman vector fields in
our framework, and that are defined from the symbols vanishing on Λ (given
by (1.4)) or on its antipodal, by

(1.35) L = L+ = 1
h

Oph(x+ p′(ξ)), L− = 1
h

Oph(x+ p′(−ξ)).

In the rest of this paper, we shall denote by (δ, β, ρ)→ σ(δ, β, ρ) a function
defined on [0, 1]2 × [0,+∞[, with values in [0,+∞[ such that

(1.36) σ is continuous, σ(0, 0, ρ) ≡ 0, σ(δ, β, ρ) > 0 if δ + β > 0.

The value of σ may differ from line to line, and it will be always implicit that
the arguments (δ, β) are taken small enough to make σ(δ, β, ρ) conveniently
small when ρ stays in a given bounded subset. Eventually, we shall write σ
instead of σ(δ, β, ρ).

Proposition 1.9. — LetM0 be the order function introduced in (1.16).
Let 0 6 n′ 6 n be two integers with n > 2, ρ ∈ N∗. Let β > 0, δ > κβ

be small enough positive numbers. Let m be an element of Sδ,β(Mρ−1
0 , n).
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There is a constant C > 0 such that for any test functions v1, . . . , vn,

(1.37) ‖Oph(m)(v1, . . . , vn)‖L2

6 C
n−1∏
`=1
‖v`‖Wρ,∞

h
‖vn‖L2

+ Ch
1
2−σ

[ n′∑
j=1

( 1∑
k=0
‖Lk+vj‖L2

) ∏
16`6n−1

` 6=j

‖v`‖L∞

+
n∑

j=n′+1

( 1∑
k=0
‖Lk−vj‖L2

) ∏
16`6n−1

` 6=j

‖v`‖L∞
]
‖vn‖L2

where σ = σ(δ, β, ρ) is as in (1.36). A similar statement holds making
play the special role devoted to n above to any other index in {1, . . . , n}.
Moreover, in the special case ρ = 1, i.e. whenm is in Sδ,β(1, n), (1.37) holds
with ‖v`‖Wρ,∞

h
in the right hand side of (1.37) replaced by ‖v`‖L∞ .

Remark. — The important point in (1.37) compared to (1.25) is that
the first expression in the right hand side is not multiplied by a negative
power of h.

Proof.
Step 1: We prove the last claim in the statement when m is in Sδ,β(1, n).
Let us assume for instance that n′ > 1. Let γ be in C∞0 (R), equal to one

close to zero, with small enough support. Decompose

(1.38) m(x, ξ1, . . . , ξn) = m1(x, ξ1, . . . , ξn) +m2(x, ξ1, . . . , ξn)(x+ p′(ξ1))

with

m1(x, ξ1, . . . , ξn) = m(x, ξ1, . . . , ξn)γ
(
〈ξ1〉κ(x+ p′(ξ1))

)
m2(x, ξ1, . . . , ξn) = m(x, ξ1, . . . , ξn)

1− γ
(
〈ξ1〉κ(x+ p′(ξ1))

)
x+ p′(ξ1) .

(1.39)

Using that δ > κβ, one sees that m2 is in Sδ,β(〈x〉−1〈ξ1〉κ, n). Since x +
p′(ξ1) is in S0,0(〈x〉, 1), (i) of Proposition 1.5 shows that the contribution
of the last term in (1.38) to Oph(m)(v1, . . . , vn) may be written as

(1.40) Oph(m2)[Oph(x+ p′(ξ1))v1, v2, . . . , vn] + h1−δOph(r)[v1, . . . , vn]

for some r in Sδ,β(〈ξ1〉κ, n) ⊂ h−βκSδ,β(1, n) (by (1.19)). Notice also that we
may write m2(x, ξ1, . . . , ξn) = m′2(x, ξ1, . . . , ξn)〈ξ1〉−1 for some new symbol
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m′2 belonging to Sδ,β(〈x〉−1〈ξ1〉κ+1
, n) ⊂ h−β(κ+1)Sδ,β(1, n). By (1.35) and

(ii) of Proposition 1.7, the L2 norm of (1.40) is bounded from above by

(1.41) Ch1−σ[‖〈hD〉−1Lv1‖L∞ + ‖v1‖L∞
] n−1∏

2
‖v`‖L∞‖vn‖L2 .

Combining this with the Sobolev injection (1.24), we get an estimate by
the right hand side of (1.37) with ‖v`‖Wρ,∞

h
replaced by ‖v`‖L∞ , for some

σ satisfying (1.36).
Let us study now ‖Oph(m1)(v1, . . . , vn)‖L2 . By construction, m1 is in

Sδ,β(1, n) as δ > κβ and we expand this function along ξ1 = dϕ(x), writing

(1.42) m1(x, ξ1, . . . , ξn)

= m′1(x, ξ2, . . . , ξn) + h−δm′′1(x, ξ1, . . . , ξn)(ξ1 − dϕ(x))

with
m′1(x, ξ2, . . . , ξn) = m1(x, dϕ(x), ξ2, . . . , ξn)

m′′1(x, ξ1, . . . , ξn) =
∫ 1

0
hδ(∂ξ1m1)(x, tξ1+(1−t)dϕ(x), ξ2, . . . , ξn)dt.

(1.43)

(Notice that by (1.30), on the support of m1, x stays in ] − 1, 1[ so that
we may compute dϕ(x)). If the support of γ in (1.39) is small enough, we
have on the support of m1 that |x+ p′(ξ1)| � 〈ξ1〉−κ ∼ 〈dϕ(x)〉−κ. By the
second inequality (1.29), it follows that |ξ1 − dϕ(x)| � 〈ξ1〉. Combining
this, (1.31) and the above expression (1.43), we conclude that m′′1 is in
Sδ1,β(1, n) if δ1 = δ + β(κ+ 1). Moreover, since

|p′(ξ1)− p′(tξ1 + (1− t)dϕ(x))| = O(|ξ1 − dϕ(x)|〈ξ1〉−κ−1) = o(〈ξ1〉−κ),

we see that m′′1 is also supported for |x+ p′(ξ1)|〈ξ1〉κ small. Because of
that, we may write

m′′1(x, ξ1, . . . , ξn)(ξ1 − dϕ(x)) = m′′1(x, ξ1, . . . , ξn)b+(x, ξ1)(x+ p′(ξ1))

with a symbol b+ given by (1.28) (for a new cut-off γ). By (1.29), the
preceding expression may be written as m′′2(x, ξ1, . . . , ξn)(x + p′(ξ1)) with
m′′2 in Sδ1,β(〈ξ1〉κ+1〈x〉−∞, n). Consequently, the contribution of the last
term in (1.42) to Oph(m1)(v1, . . . , vn) will be of the form (1.40) (up to
multiplication by an extra h−δ), so will be estimated by (1.41) for some
new σ.

We are left with studying

Oph(m′1(x, ξ2, . . . , ξn))(v1, . . . , vn) = v1Oph(m′1(x, ξ2, . . . , ξn))(v2, . . . , vn),
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where in the right hand side we considerm′1 as an element of Sδ1,β(1, n− 1).
We repeat the preceding argument in one less variable (replacing x+p′(ξj)
by x + p′(−ξj) when j > n′) and δ replaced by a larger δ1. Iterating the
process, we find that ‖Oph(m)(v1, . . . , vn)‖L2 is bounded from above by
the right hand side of (1.37) (with ‖v`‖Wρ,∞

h
replaced by ‖v`‖L∞) modulo

the term ‖v1 · · · vn−1Oph(e)(vn)‖L2 , where e is an element of Sδ′,β(1, 1)
for some δ′ which is a linear combination of δ, β. If δ, β are small enough,
we may apply (i) of Proposition 1.7 and bound this L2 norm by∏n−1

1 ‖v`‖L∞‖vn‖L2 . This concludes the proof in the case ρ = 1.
Step 2: We treat now the general case m ∈ Sδ,β(Mρ−1

0 , n). Since the
order functionM0 given by (1.16) is equivalent to the second largest among
〈ξ1〉, . . . , 〈ξn〉, it is certainly smaller than

∏n−1
`=1 〈ξ`〉. We may write

m(x, ξ1, . . . , ξn) = m̃(x, ξ1, . . . , ξn)
n−1∏
`=1

(
〈ξ`〉ρ−1〈hβξ`〉

−N0)
where N0 is a fixed large enough integer and m̃ belongs to Sδ,β(1, n), so
that

Oph(m)(v1, . . . , vn) = Oph(m̃)(ṽ1, . . . , ṽn)

with ṽ` = 〈hD〉ρ−1〈h1+βD〉−N0
v` for ` = 1, . . . , n− 1, ṽn = vn. By step 1,

we may apply (1.37) to m̃, with in the right hand side ‖·‖Wρ,∞
h

replaced by
‖·‖L∞ . We get a bound in terms of

(1.44)

n−1∏
`=1
‖ṽ`‖L∞‖vn‖L2

h
1
2−σ

( 1∑
k=0
‖Lk±ṽj‖L2

) ∏
16`6n−1

` 6=j

‖ṽ`‖L∞‖vn‖L2 .

Since pseudo-differential operators of order ρ− 1 are bounded from W ρ,∞
h

to L∞, the first line in (1.44) is bounded by the right hand side of (1.37).
On the other hand

‖ṽ`‖L∞ = ‖Oph(〈ξ`〉ρ−1〈hβξ`〉
−N0)v`‖L∞ 6 Ch−β(ρ+1)‖v`‖L∞

by (the proof of) (1.25) if N0 has been taken large enough (see (A.2)).
Moreover

‖L±ṽj‖L2 6 h−1‖[x,Oph(〈ξj〉ρ−1〈hβξj〉
−N0)]vj‖L2

+ ‖Oph(〈ξj〉ρ−1〈hβξj〉
−N0)L±vj‖L2
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which is bounded by Ch−β(ρ+1)[‖L±vj‖L2 +‖vj‖L2 ]. Plugging these bounds
inside the second line of (1.44), we get an estimate in terms of the right
hand side of (1.37) (up to a modification of σ). �

1.3. Semiclassical reduction of the problem

In this subsection, we shall write equation (1.6) under a semiclassical
form involving multilinear operators belonging to the classes introduced
above.

Let us write first the equation (1.6) in complex coordinates. Set

p̃(D) = 1
2 [p(D) + p(−D)], p̌ = 1

2[p(D)− p(−D)], q(D) = p̌(D)p̃(D)−1.

For ψ a real valued function in Hs+1(R) with ∂tψ in Hs(R), write

(1.45)
µ = (Dt + p(D))ψ, ψ = p̃(D)−1

(µ+ µ̄

2

)
µ̄ = −(Dt − p(−D))ψ, Dtψ = µ− µ̄

2 − q(D)
(µ+ µ̄

2

)
.

Define

(1.46) G(µ, µ̄)

= F
(
p̃(D)−1

(µ+µ̄
2

)
, Dp̃(D)−1

(µ+µ̄
2

)
,
µ−µ̄

2 − q(D)
(µ+µ̄

2

))
.

Then (1.6) is equivalent to
(Dt − p(D))µ = G(µ, µ̄)

µ|t=1 = ε(ψ1 + p(D)ψ0) ∈ Hs(R,C).
(1.47)

Let us express the nonlinearity G(µ, µ̄) in terms of multilinear operators
associated to some (non semiclassical) symbols.

Definition 1.10. — Let n ∈ N∗. Denote by S̃(1, n) the space of smooth
functions defined on Rn: (ξ1, . . . , ξn)→ m(ξ1, . . . , ξn) satisfying for all α =
(α1, . . . , αn) ∈ Nn bounds

(1.48) |∂α1
ξ1
· · · ∂αnξn m(ξ1, . . . , ξn)| 6 Cα〈ξ1〉−α1 · · · 〈ξn〉−αn .

Ifm is in S̃(1, n) and u1, . . . , un are test functions, we define the multilinear
operator

(1.49) Mm(u1, . . . , un)

= 1
(2π)n

∫
eix(ξ1+···+ξn)m(ξ1, . . . , ξn)

n∏
1
û`(ξ`) dξ1 · · · dξn.
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We refer to Proposition A.1 of the appendix for the boundedness prop-
erties of these operators we shall use below.

Let us define for any n in N∗

(1.50) Γn =

(i1, . . . , in)∈{−1, 1}n
∣∣∣∣∣∣
∃ n′, 0 6 n′ 6 n,
such that i` = 1 for ` = 1, . . . , n′,
and i` = −1 for ` = n′ + 1, . . . , n

.
If I = (i1, . . . , in) = (1, . . . , 1︸ ︷︷ ︸

n′

,−1, . . . ,−1︸ ︷︷ ︸
n−n′

) is in Γn, we set |I| = n and we

define

µ1 = µ, µ−1 = µ̄, µI = (µi1 , . . . , µin) = (µ, . . . , µ︸ ︷︷ ︸
n′

, µ̄, . . . , µ̄︸ ︷︷ ︸
n−n′

).

It follows from the definition (1.46) of G and the fact that F is a polynomial
that the nonlinearity in (1.47) may be written

(1.51) G(µ, µ̄) =
∑
n>3
n finite

∑
I∈Γn

MmI
(µI)

for elements mI of S̃(1, |I|). For further reference, we need to compute
when I = (1, 1,−1) the explicit value of mI(dϕ, dϕ,−dϕ). This function is
obtained replacing in the cubic part of G(µ, µ̄) given by (1.46), p̃(D)−1µ

(resp. p̃(D)−1Dµ, p̃(D)−1µ̄, p̃(D)−1Dµ̄) by p̃(dϕ)−1µ (resp. p̃(dϕ)−1dϕµ,
p̃(−dϕ)−1µ̄, p̃(−dϕ)−1(−dϕ)µ̄) and retaining only those terms which are
quadratic in µ and linear in µ̄. In view of (1.5), (1.46), we get since p̃ is
even and q is odd

(1.52) m(1,1,−1)(dϕ, dϕ,−dϕ)

= 3
8a300p̃(dϕ)−3 + 1

8a210p̃(dϕ)−3dϕ

+ 1
8a201p̃(dϕ)−2(1− q(dϕ))− 1

8a120p̃(dϕ)−3(dϕ)2

− 1
8a102p̃(dϕ)−1(1− q(dϕ))2 − 1

8a111p̃(dϕ)−2dϕ(1− q(dϕ))

− 3
8a030p̃(dϕ)−3(dϕ)3 − 3

8a021p̃(dϕ)−2(dϕ)2(1− q(dϕ))

− 3
8a012p̃(dϕ)−1dϕ(1− q(dϕ))2 − 3

8a003(1− q(dϕ))3.

Under assumption (1.7), we get in view of (1.8)

(1.53) m(1,1,−1)(dϕ, dϕ,−dϕ) = p̃(dϕ)−2Φ(x).
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In the special case of the Klein-Gordon operator i.e. when p(ξ) = p̃(ξ) =√
1 + ξ2, p̌(ξ) = q(ξ) = 0, dϕ = − x√

1−x2 , ω = ϕ =
√

1− x2, we have
ωdϕ = −x, p̃(dϕ)−1 = ω so that (1.52) simplifies to

(1.54) − ω

8

[
(3a300 + a120)x2 − a111x+ (a102 − 3a300)

]
+ 1

8

[
x3(3a030 + a210)− x2(3a021 + a201)

+ x(3a012 − a210)− (3a003 − a201)
]
.

Since aα0α1α2 is purely imaginary when α0 is even, we see that (1.54) is real
valued under condition (1.12) and that (1.54) is then equal to p̃(dϕ)−2Φ(x)
where Φ is given by (1.14).
A trivial estimate for the Sobolev norms of the solutions of (1.47) is

provided by:

Lemma 1.11. — Let ρ ∈ N∗, s ∈ R, s > ρ. Denote by W ρ,∞ the space
of those µ in L∞ such that ∂kµ ∈ L∞ for k 6 ρ. There is a constant C0 > 0
such that for any B > 0, any ε ∈]0, 1], any (ψ0, ψ1) ∈ Hs+1×Hs such that
‖ψ1‖2Hs + ‖ψ0‖2Hs+1 6 1, any T > 1, any solution µ in C0([1, T ], Hs(R,C))
of (1.47) satisfying the a priori estimate

(1.55) sup
t∈[1,T ]

[
t1/2‖µ(t, ·)‖Wρ,∞

]
6 Bε 6 1,

one has the Sobolev bound

(1.56) ‖µ(t, ·)‖Hs 6 ‖µ(1, ·)‖HstC0B
2ε2

for any t in [1, T ].

Proof. — By (1.51), (ii) of Proposition A.1 and assumption (1.55), we
know that for some C0 > 0

‖G(µ, µ̄)(t, ·)‖Hs 6 C0
B2ε2

t
‖µ(t, ·)‖Hs .

Since p is real valued, we deduce from (1.47) that the energy inequality

‖µ(t, ·)‖Hs 6 ‖µ(1, ·)‖Hs +
∫ t

1
C0
B2ε2

τ
‖µ(τ, ·)‖Hs dτ

holds. Gronwall lemma implies the wanted conclusion. �

As is usual in problems of long time existence with small Cauchy data,
most of the difficulty is to show that the a priori L∞-estimate (1.55) holds.
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To do so, we shall get in a first step L2-estimates for the action of the oper-
ator L defined in (1.35) on (modifications of) the solution. As a preliminary
step, we rewrite the problem in the semiclassical framework. We set

(1.57) x′ = x

t
, t′ = t, h = 1

t
, µ(t, x) = 1√

t′
v(t′, x′).

Notice that, using the notations of Definition 1.6,

(1.58) ‖µ(t, ·)‖Hs ∼ ‖v(t′, ·)‖Hs
h
, ‖µ(t, ·)‖Wρ,∞ ∼

√
h‖v(t′, ·)‖Wρ,∞

h
,

the equivalence being uniform in h.
We shall fix below some small number β > 0 and shall decompose sys-

tematically a function v as

(1.59) v = Oph
(
χ(hβξ)

)
v + Oph

(
(1− χ)(hβξ)

)
v

where χ ∈ C∞0 (R) is equal to one close to zero. The last term will have nice
W ρ,∞
h upper bounds if we are given a priori Hs

h bounds with large enough
s. More precisely, by the Sobolev injection (1.24)

‖Oph
(
(1− χ)(hβξ)

)
v‖Wρ,∞

h
6 Ch−1/2‖Oph

(
(1− χ)(hβξ)

)
v‖Hρ+1

h

6 Ch−
1
2 +β(s−ρ−1)‖v‖Hs

h
,

(1.60)

so that if we have an a priori bound ‖v‖Hs
h

= O(h−N0) and if β(s−ρ)� 1,
we can make (1.60) O(hN ) for any given N . This will essentially reduce us
to the study of the frequency localized contribution Oph(χ(hβξ))v, whose
derivative (hD)k will have O(h−βk) bounds, so will grow slowly if β is
small. This process will in particular allow us to deduce from (1.47) a
semiclassical version of the equation, where the nonlinearity will be written
using symbols in the classes Sδ,β(1, n) of Definition 1.4 for some small
β > 0, up to remainders that will be multiplied by a large enough power
of h, assuming some a priori Hs

h control.

Proposition 1.12. — Let ρ ∈ N, β > 0 a small enough number. There
is s ∈ N, for any I ∈ Γn, 3 6 n 6 6, there is a symbol mI in S0,β(1, |I|),
independent of x′, there is a polynomial map v → R(v) satisfying for some
increasing function C :]0,+∞[→]0,+∞[ the estimates

(1.61) ‖x′kR(v)‖L2 6 C
(
‖v‖L∞ +

√
h‖v‖Hs

h

)(
‖v‖L∞ +

√
h‖v‖Hs

h

)2
×
( k∑
k′=0
‖(hL)k

′
v‖L2

)
, k = 0, 1, 2
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and

(1.62) ‖R(v)‖Wρ+2,∞
h

6 h−1/2C
(
‖v‖L∞ +

√
h‖v‖Hs

h

)(
‖v‖L∞ +

√
h‖v‖Hs

h

)2‖v‖Hs
h

such that, if µ is a solution of (1.47) on [1, T ] × R, then v solves on the
same interval

(1.63) (Dt′ −Oph(λ(x′, ξ′)))v

=
6∑

n=3
h
n−1

2
∑
I∈Γn

Oph(mI)(vI) + h3−σ(δ,β,ρ)R(v)

where

(1.64) λ(x′, ξ′) = x′ξ′ + p(ξ′)− i

2h,

the notation σ is defined in (1.36), and Oph(mI)(vI)=Oph(mI)(vi1 , . . . , vin)
if I = (i1, . . . , in), v1 = v, v−1 = v̄.

Proof. — The equation satisfied by µ may be written according to (1.47)
and (1.51)

(1.65) (Dt − p(D))µ =
∑
n>3
n finite

∑
I∈Γn

Mm
I
(µI).

The left hand side expressed from v(t′, x′) using (1.57) gives the left hand
side of (1.63) multiplied by

√
h. We have to write the right hand side

of (1.65) as the product of
√
h with the different contributions in the right

hand side of (1.63).
• Terms in (1.65) corresponding to n > 7.
For I ∈ Γn, we have by (i) of Proposition A.1

‖Mm
I
(µI)(t, x)‖L2(dx) 6 C(‖µ‖W 1,∞)‖µ‖6W 1,∞‖µ‖L2(dx)

from which we deduce

‖MmI
(µI)(t′, t′x′)‖L2(dx′) 6 h

7/2C
(√
h‖v‖W 1,∞

h

)
‖v‖6

W 1,∞
h

‖v‖L2(dx′).

Thus Mm
I
(µI) may be written as h1/2 times h3−σR(v) for an R(v) satis-

fying (1.61) with k = 0 since, by (1.59) and (1.60), we may always bound

(1.66) ‖v‖W 1,∞
h
6 Ch−β

(
‖v‖L∞ +

√
h‖v‖Hs

h

)
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if s is large enough. Moreover, if we take some s′ > ρ+ 5
2 and use Sobolev

injection and (A.4) with ρ = 1, we have

‖MmI
(µI)(t, ·)‖Wρ+2,∞ 6 C‖MmI

(µI)(t, ·)‖Hs′

6 C(‖µ‖W 1,∞)‖µ‖6W 1,∞‖µ‖Hs′ .

Expressing µ in terms of v, and using (1.58) and (1.66), we obtain that
R(v) satisfies (1.62) if s > s′. We still have to prove that (1.61) holds for
k = 1, 2. By (1.49)

x′MmI
(µI) = x

t
MmI

(µI) = i

t
M∂m

I
/∂ξ1(µI) +MmI

(x
t
µi1 , µi2 , . . . , µin

)
.

By (i) of Proposition A.1, the L2(dx)-norm of this quantity is smaller than

C

[
1
t
‖µ‖L2 +

∥∥∥x
t
µ
∥∥∥
L2

]
‖µ‖n−1

W 1,∞

and since
x

t
µi1 =

(x
t

+ p′(i1D)
)
µi1 − p′(i1D)µi1 ,

the L2(dx)-norm of this quantity is bounded from above by h‖Lµ‖L2 +
‖µ‖L2 . If we express again µ from v, we conclude that

‖x′Mm
I
(µI)‖L2(dx′) 6 h

7/2C
(√
h‖v‖W 1,∞

h

)
‖v‖6

W 1,∞
h

( 1∑
0
‖(hL)k

′
v‖L2

)
from which an estimate of the form (1.61) with k = 1 follows for R. The
case k = 2 is similar.
• Terms in (1.65) indexed by 3 6 n 6 6.
Let χ be in C∞0 (R), χ ≡ 1 close to zero and denote χ` = χ or χ` = 1−χ,

` = 1, . . . , n. Consider first

(1.67) I = MmI
(χ1(hβD)µi1 , . . . , χn(hβD)µin)

where at least one of the χ′`s, say χ1, is equal to 1 − χ. Let us show that
I generates again a contribution to the remainder term in (1.63). We have
to prove that for k = 0, 1, 2 h−1/2‖x′kI‖L2(dx′) = ‖(x/t)kI‖L2(dx) (resp.
h−1/2‖I‖Wρ,∞

h
) is bounded from above by the right hand side of (1.61)

(resp. (1.62)) multiplied by h3−σ. To obtain the L2-estimate, we apply (A.3)
with s = 0, putting the L2 norm on another factor than the first one. We
get

‖I‖L2(dx) 6 C(‖µ‖W 1,∞)‖µ‖W 1,∞‖(1− χ)(hβD)µ‖W 1,∞‖µ‖L2 .

The middle factor in the last product is controlled using Sobolev embedding
by

C‖(1− χ)(hβD)µ‖H2 6 Chβ(s−2)‖µ‖Hs .
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If s is large enough and if we express µ from v, we see that (1.67) may
be written as h3R(v) with R(v) satisfying (1.61) with k = 0. One studies
(x/t)kI, k = 1, 2, as we did above when n > 7, writing these expressions in
terms of multilinear quantities in (µi1 , . . . , µin−1 , (x/t)kµin) and repeating
the preceding estimates to get for x′kR(v) bounds of the form (1.61).
To get (1.62) for I we apply (A.5) with θ ∈]0, 1[. We get

(1.68) h−1/2‖I‖Wρ+2,∞

6 Ch−1/2
n∑
j=1

[
‖χj(hβD)µ‖Wρ+3,∞

∏
6̀=j
‖χ`(hβD)µ‖W 1,∞

]
.

Consider for instance the first term in the sum. If χ1 = 1 − χ, we use
Sobolev injection to bound the corresponding contribution by

h−1/2‖(1− χ)(hβD)µ‖Hρ+4‖µ‖n−1
W 1,∞ 6 Ch−

1
2 +β(s−ρ−4)‖µ‖Hs‖µ‖n−1

W 1,∞ .

Taking s large enough and expressing µ from v, we obtain using again (1.66)
that I may be written as h3R with R satisfying (1.62). If χ1 = χ, there is
some j > 1 with χj = 1 − χ. We bound then the term corresponding to
j = 1 in (1.68) by

h−1/2‖χ(hβD)µ‖Wρ+3,∞‖µ‖n−2
W 1,∞‖(1− χ)(hβD)µ‖W 1,∞

and we conclude as above, using that ‖χ(hβD)µ‖Wρ+3,∞6Ch−β(ρ+3)‖µ‖L∞
and Sobolev injection to treat the last factor.
Finally, up to contributions to the remainder in (1.63), we reduce our-

selves to the consideration of the terms

MmI
(χ(hβD)µi1 , . . . , χ(hβD)µin), 3 6 n 6 6.

This shows that the equation satisfied by v may be written as (1.63) with

(1.69) mI(ξ′1, . . . , ξ′n) = mI(ξ′1, . . . , ξ′n)
n∏
1
χ(hβξ′j)

which is a symbol in S0,β(1, n). This concludes the proof. �

2. L2 estimates

The goal of this section is to obtain L2 estimates for the action of the
operators L (defined in (1.35)) and L2 on the solution of equation (1.63).
Since L is not a vector field, it does not commute to the nonlinearity,
so that we cannot expect that ‖Ljv(t, ·)‖L2 will have a moderate growth
(i.e. a growth in O(tδ) for some small δ > 0) when t goes to infinity.
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Because of that, before performing energy inequalities, we shall apply to
the equation a semiclassical microlocal normal forms method to obtain, for
a new unknown obtained from v, an equation whose nonlinearity has better
commutation properties with L than the one in (1.63). This will allow us
to get L2 estimates with moderate growth for the action of L on that new
unknown. Repeating the process, we shall get in the same way L2 bounds
for the action of L2 on another convenient unknown.
As a preparation for these energy estimates, we establish in the first

subsection some technical results that will be used throughout the rest of
this section.

From now on, we shall work only with the semiclassical reduced equa-
tion (1.63). To simplify notations, we shall denote the variables by x, ξ

instead of x′, ξ′.

2.1. Division lemmas

We introduce first a decomposition of the set Γn defined in (1.50).

Definition 2.1. — One denotes by Γch
n the subset of characteristic

elements of Γn i.e. those I = (i1, . . . , in) in Γn such that
∑
` i` = 1. The

subset of noncharacteristic elements Γnch
n is Γn − Γch

n .

Since an element of Γn is of the form I = (1, . . . , 1︸ ︷︷ ︸
n′

,−1, . . . ,−1︸ ︷︷ ︸
n−n′

) with

0 6 n′ 6 n, we see that I is characteristic if and only if n is odd and
n′ = n+1

2 . If I = (i1, . . . , in) is an element of Γn, we define a function of n
variables

(2.1) gI(ξ1, . . . , ξn) =
n∑
`=1

i`p(i`ξ`)− p(ξ1 + · · ·+ ξn).

Then, if ϕ is the phase introduced after (1.4), we have for any x ∈]− 1, 1[

(2.2) gI(i1dϕ(x), . . . , indϕ(x)) = (2n′ − n)p
(
dϕ(x)

)
− p
(
(2n′ − n)dϕ(x)

)
.

If I is non characteristic (i.e. 2n′ − n 6= 1), it follows from (1.3) that (2.2)
does not vanish on ]− 1, 1[. On the other hand, if I is characteristic, (2.2)
vanishes identically.

Remark. — Let us indicate the relation between the above notion and
space-time resonances in the sense of Germain-Masmoudi-Shatah (we refer
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to [6] for an introduction to that topic). If I = (i1, . . . , in) is in Γn, define
the set of time resonances TI as

TI = {(ξ1, . . . , ξn); gI(ξ1, . . . , ξn) = 0} ⊂ Rn.

Generically, this is an hypersurface of Rn. Introduce the set of space reso-
nances SI as

SI = {(ξ1, . . . , ξn);
( ∂

∂ξ`
− ∂

∂ξ`+1

)
gI(ξ1, . . . , ξn) = 0, 1 6 ` 6 n− 1}.

This is generically a curve in Rn. The set of space-time resonances is by
definition SI ∩ TI .

Consider the parametrized curve CI of Rn: x → (i1dϕ(x), . . . , indϕ(x)).
The expression (2.1) of gI shows immediately that CI ⊂ SI . The points
at which (2.2) vanishes are thus the points of CI ∩ TI = CI ∩ (TI ∩ SI).
The assumption (1.3) says that if I is non characteristic, this intersection
should be empty. On the other hand, if I is characteristic, (2.2) vanishes
identically, so that CI = CI ∩ TI = CI ∩ (TI ∩ SI) i.e. the set of space-time
resonances is one dimensional.
We shall prove a result of division of symbols by gI(ξ1, . . . , ξn) when I is

noncharacteristic. Before stating it, let us remark that in such a case, there
is a constant c > 0 such that for any x in ]− 1, 1[

(2.3) |gI(i1dϕ(x), . . . , indϕ(x))| > c〈dϕ(x)〉−κ+1
.

As remarked above, because of (2.2), this inequality holds when x stays in
a compact subset of ]− 1, 1[ by assumption (1.3). We just need to consider
the case of x → ±1∓ i.e. dϕ(x) → ∓∞. But if for instance x → −1+ and
λ = 2n′−n > 2, (1.1), (1.2) and (2.2) show that the left hand side of (2.3)
is equivalent to |c−κ+1

+ (dϕ)−κ+1(λ− λ−κ+1)|, whence the claim. If λ < 0,
(2.3) tends to +∞ if x goes to −1, so the estimate is trivial. Finally, if
λ = 0, (1.3) implies that (2.2) is a nonzero constant.

Our division result is the following.

Proposition 2.2.
(i) Let I = (i1, . . . , in) be in Γnch

n . Denote byM0 the order function (1.16).
Let 0 < 2κβ < δ < 1/2 and let mI be an element of Sδ′,β(1, n) for some
0 6 δ′ 6 δ. We may find for q = 1, 2 symbols

(2.4) mq
I,j ∈ Sδ,β(M2κq

0 〈x〉−q, n), j = 1, . . . , n, aI ∈ Sδ,β(Mκ−1
0 〈x〉−∞, n)
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such that

(2.5) mI(x, ξ1, . . . , ξn) = gI(ξ1, . . . , ξn)aI(x, ξ1, . . . , ξn)

+
n∑
`=1

(x+ p′(i`ξ`))qmq
I,`(x, ξ1, . . . , ξn).

Moreover, we may assume that aI is supported in

(2.6)
n⋂
`=1
{(x, ξ1, . . . , ξn); |x+ p′(i`ξ`)| < α〈ξ`〉−2κ}

where α > 0 is any given number.
(ii) Assume that I is characteristic and that 0 < (2κ + 1)β < δ < 1/2.

We may write for q = 1, 2

(2.7) mI(x, ξ1, . . . , ξn) = mI(x, ξ1, . . . , ξn)
n∏
1
γ
(
M2κ+1

0 (x+ p′(i`ξ`))
)

+
n∑
`=1

(x+ p′(i`ξ`))qmq
I,`(x, ξ1, . . . , ξn),

where γ ∈ C∞0 (R) is equal to one close to zero and has as small a support
as wanted, and where mq

I,j are elements of Sδ,β(M (2κ+1)q
0 〈x〉−q, n).

Proof.
(i) Let γ be in C∞0 (R), equal to one close to zero, with small enough

support. Decompose

(2.8) mI(x, ξ1, . . . , ξn)

= m
(1)
I (x, ξ1, . . . , ξn) +mq

I,1(x, ξ1, . . . , ξn)(x+ p′(i1ξ1))q

where

mq
I,1(x, ξ1, . . . , ξn) = mI(x, ξ1, . . . , ξn)

(1− γ)
(
MR

0 (x+ p′(i1ξ1))
)

(x+ p′(i1ξ1))q

m
(1)
I (x, ξ1, . . . , ξn) = mI(x, ξ1, . . . , ξn)γ

(
MR

0 (x+ p′(i1ξ1))
)

where R in an integer to be chosen, R > 2κ. The function mq
I,1 is in

Sδ,β(MqR
0 〈x〉

−q
, n) if δ > Rβ, as the factor MR

0 lost every time one takes
a derivative may be traded off for a O(h−βR) loss. Repeating the above
process with m(1)

I instead of mI , successively with respect to each variable
ξ2, . . . , ξn, we eventually write mI as the sum in the right hand side of (2.5)
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plus the symbol

(2.9) mI(x, ξ1, . . . , ξn)
n∏
1
γ
(
MR

0 (x+ p′(i`ξ`))
)
.

We are left with writing this as gIaI . Remember thatM0(ξ) is equivalent to
the second largest among 〈ξ1〉, . . . , 〈ξn〉. Assume for instance |ξ1| 6 |ξ2| 6
· · · 6 |ξn| so that M0(ξ) ∼ 〈ξn−1〉. The last cut-off in (2.9) implies that

(2.10) |x+ p′(inξn)| 6 α〈ξn−1〉−R

where α > 0 goes to zero when Supp γ shrinks. If |ξn−1| stays in a bounded
set, (1.2), (1.3) imply that p′(in−1ξn−1) stays in a compact subset of ]−1, 1[.
Under the condition γ

(
MR

0 (x + p′(in−1ξn−1))
)
6= 0 and if Supp γ is small

enough, this implies that x stays as well in a compact subset of ] − 1, 1[,
so that (2.10) with a small enough α obliges |ξn| to stay bounded. On the
other hand, in the regine |ξn| > |ξn−1| → +∞, the expansion (1.32) shows
that

(2.11) |p′(inξn)∓ in| = O(〈ξn〉−κ), ξn → ±∞

and (1.30) implies that on the support of the last but one cut-off in (2.9)

(2.12) |x± in−1| ∼ 〈ξn−1〉−κ ∼M0(ξ)−κ

when ξn−1 → ±∞. We get from (2.10) and (2.11)

(2.13) |x± in| = O(α〈ξn−1〉−R) +O(〈ξn〉−κ), ξn → ±∞.

Together with (2.12) this implies that in = in−1 when we are in the regime
|ξn| > |ξn−1| → +∞ and ξnξn−1 → +∞, and that in = −in−1 if we
consider the regime |ξn| > |ξn−1| → +∞ and ξnξn−1 → −∞. Plugging this
information in (2.12), (2.13) we conclude in all cases

〈ξn−1〉−κ ∼M0(ξ)−κ = O(α〈ξn−1〉−R) +O(〈ξn〉−κ), |ξn| > |ξn−1| → +∞.

If α has been taken small enough and R > κ, we conclude that |ξn| 6
C〈ξn−1〉 so that, for any ` = 1, . . . , n, |ξ`| = O(M0(ξ)) and the cut-offs
in (2.9) imply that for any ` = 1, . . . , n

|x+ p′(i`ξ`)| = O(α〈ξ`〉−R), |ξ`| → +∞

for some α > 0 going to zero when Supp γ shrinks. We deduce then
from (1.28), (1.29) that for ` = 1, . . . , n

|ξ` − i`dϕ`(x)| = O
(
〈ξ`〉κ+1|x+ p′(i`ξ`)|

)
= O(α〈ξ`〉κ+1−R).
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Since p is Lipschitz, we deduce also from the definition (2.1) of gI that

|gI(ξ1, . . . , ξn)−gI(i1dϕ(x), . . . , indϕ(x))| = O
( n∑

1
|ξ`− i`dϕ`(x)|

)
= O

(
αM0(ξ)κ+1−R).(2.14)

On the other hand since, on the support of the cut-off, we have by
Lemma 1.8 that 〈dϕ(x)〉 ∼ 〈ξ`〉 ∼M0(ξ), (2.3) implies that on that support

|gI(i1dϕ(x), . . . , indϕ(x))| > cM0(ξ)−κ+1.

Taking R = 2κ and assuming Supp γ i.e. α small enough, we deduce
from (2.14) that on the support of (2.9), |gI(ξ1, . . . , ξn)| > c

2M0(ξ)−κ+1.
We may thus define aI as (2.9) divided by gI , and aI will be a symbol in
Sδ,β(Mκ−1

0 , n) if δ > 2κβ. Since moreover the cut-offs in (2.9) imply that x
stays in [−1, 1] (see (1.30)) for α small enough, we may replace the weight
Mκ−1

0 by Mκ−1
0 〈x〉−N for any N . This concludes the proof of (i) of the

proposition.
(ii) In the above proof, the fact that I is non characteristic has been

used only to divide (2.9) by gI . Without this assumption, we may still
decompose mI as the sum in the right hand side of (2.7) plus (2.9). Taking
R = 2κ+ 1, we get the wanted conclusion. �

When I is noncharacteristic, (2.4) shows that a symbol mI may be di-
vided by gI , up to contributions where (x+ p′(i`ξ`))q is factored out. This
is the key point that will allow us to essentially eliminate nonlinear terms
indexed by a noncharacteristic element I of Γn through a semiclassical
normal form method. On the other hand, when I is characteristic, such an
operation is not possible. Nevertheless, in that case, we shall show that the
operator L = 1

hOph(x + p′(ξ)) commutes to the corresponding nonlinear
terms. This is the object of the following proposition.

Proposition 2.3. — Let

I = (i1, . . . , in) = (1, . . . , 1︸ ︷︷ ︸
n′

,−1, . . . ,−1︸ ︷︷ ︸
n−n′

)

be a characteristic element of Γn. Let 0 < βκ < δ < 1
2 and let m be an

element of Sδ,β(1, n) supported in

(2.15)
n⋂
`=1

{
(x, ξ); |x+ p′(i`ξ`)| < αM0(ξ)−2κ−1}
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for some small α > 0. There is a constant C > 0 such that for any w in
L2 ∩ L∞ such that Lw ∈ L2, one has the estimate

(2.16) ‖LOph(m)(w, . . . , w︸ ︷︷ ︸
n′

, w̄, . . . , w̄︸ ︷︷ ︸
n−n′

)‖L2

6 C
[
‖w‖n−1

L∞

(
‖Lw‖L2 + h−σ‖w‖L2

)
+ h

1
2−σ‖Lw‖L2‖w‖n−2

L∞

(
‖Lw‖L2 + ‖w‖L2

)]
where σ = σ(δ, β, 0) satisfies (1.36).

We first prove a lemma.

Lemma 2.4. — Under the assumptions of the proposition, there are
symbols m`, 1 6 ` 6 n, supported in (2.15), and r, belonging to
Sδ,β(〈x〉−∞, n), such that if we set wi` = w for ` = 1, . . . , n′ and wi` = w̄

for ` = n′ + 1, . . . , n, then

(2.17) Oph(x+ p′(ξ)) ◦Oph(m)(wi1 , . . . , win)

=
n∑
`=1

Oph(m`)[wi1 , . . . ,Oph(x+ p′(i`ξ`))wi` , . . . , win ]

+ h1−δOph(r)(wi1 , . . . , win).

Proof. — On the support of m, we assume that inequalities (2.15) hold.
We have seen in the proof of Proposition 2.2 that this implies M0(ξ) ∼
1 +

∑
|ξ`|. In particular, (2.15) implies that for any `, |x+ p′(i`ξ`)| =

O
(
α(
∑
〈ξ`′〉)−2κ−1). By (1.30) it follows that if α is taken small enough,

|i`x± 1| ∼ 〈ξ`〉−κ when ξ` → ±∞ and (x, ξ`) stays in the `-th term in the
intersection (2.15). We deduce from this that either

ξ1 → +∞, . . . , ξn′ → +∞, ξn′+1 → −∞ . . . , ξn → −∞,

or
ξ1 → −∞, . . . , ξn′ → −∞, ξn′+1 → +∞ . . . , ξn → +∞,

or
all ξ` are bounded,

and that 〈ξ`〉 ∼ 〈ξ`′〉 for all `, `′ so that 〈ξ`〉 ∼ M0(ξ) for all `. Moreover,
by (1.29) and (2.15)

(2.18) |ξ` − i`dϕ(x)| 6 C|x+ p′(i`ξ`)|〈ξ`〉κ+1 6 CαM0(ξ)−κ.

Since I is characteristic,
∑
i` = 1, so that we conclude

(2.19) |ξ1 + · · ·+ ξn − dϕ(x)| 6 CαM0(ξ)−κ.
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In particular, if α is small enough, 〈ξ1 + · · ·+ ξn〉 ∼ 〈dϕ(x)〉 ∼M0(ξ), the
last equivalence coming from Lemma 1.8, as M0(ξ) ∼ 〈ξ`〉 for any `. Let us
write

(2.20)
(
x+ p′(ξ1 + · · ·+ ξn)

)
m(x, ξ1, . . . , ξn)

= m(x, ξ1, . . . , ξn) x+ p′(ξ1 + · · ·+ ξn)
ξ1 + · · ·+ ξn − dϕ(x)

( n∑
`=1

(ξ` − i`dϕ(x))
)

=
n∑
`=1

m`(x, ξ1, . . . , ξn)
(
x+ p′(i`ξ`)

)
where

(2.21) m`(x, ξ1, . . . , ξn)

= m(x, ξ1, . . . , ξn) x+ p′(ξ1 + · · ·+ ξn)
ξ1 + · · ·+ ξn − dϕ(x)

ξ` − i`dϕ(x)
x+ p′(i`ξ`)

.

The support assumption (2.15) implies that for any `, (x, ξ`) satisfies the
support assumptions of Lemma 1.8. Moreover, we have, using (2.19)

|x+ p′(ξ1 + · · ·+ ξn)| = |p′(ξ1 + · · ·+ ξn)− p′(dϕ)|

6 CM0(ξ)−κ−1|ξ1 + · · ·+ ξn − dϕ(x)|

6 CαM0(ξ)−2κ−1

so that (x, ξ1 + · · ·+ ξn) satisfies also the support conditions in Lemma 1.8.
We may thus apply (1.29) to the last two factors in (2.21) and conclude
that m` is in Sδ,β(〈x〉−∞, n) as δ > κβ (the weight 〈x〉−∞ comes from
the fact that m is supported for x ∈ [−1, 1]). We use next (i) and (iii) of
Proposition 1.5 to deduce by symbolic calculus from (2.20) equality (2.17).
This concludes the proof. �

Proof of Proposition 2.3. — Since L± = 1
hOph(x + p′(±ξ)), we may

rewrite (2.17) as

(2.22) L+Oph(m)(w, . . . , w̄)

=
n′∑
`=1

Oph(m`)[w, . . . ,L+w, . . . , w, w̄, . . . , w̄]

+
n∑

`=n′+1
Oph(m`)[w, . . . , w, w̄, . . . ,L−w̄, . . . , w̄]

+ h−δOph(r)[w, . . . , w̄].
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We bound the L2 norms of the different contributions to the right hand
side. To treat the two sums, we apply Proposition 1.9 with ρ = 1, making
play the distinguished role devoted to index n in (1.37) to the index cor-
responding to the L+w or L−w̄ factor. According to the last statement of
that proposition, we get a bound by the right hand side of (2.16). The L2

norm of the last term in (2.22) is controlled by the right hand side of (2.16)
using (ii) of Proposition 1.7. This concludes the proof. �

We need also an estimate of the form (2.16) when we make act two
operators instead of just one.

Proposition 2.5. — With the same assumptions as in Proposition 2.3,
there is a constant C > 0 such that for any w in L2 ∩ L∞ with Lw,
L2w ∈ L2, one has the estimate

(2.23) ‖L2Oph(m)(w, . . . , w, w̄, . . . , w̄)‖L2

6 C
[
‖w‖n−1

L∞ ‖L
2w‖L2

+ h
1
2−σ‖w‖n−2

L∞ (‖Lw‖L2 + ‖w‖L2)‖L2w‖L2

+ h−σ‖w‖n−3
L∞ ‖Lw‖

3
L2 + h−σ‖w‖n−2

L∞ ‖Lw‖
2
L2

+ h−σ‖w‖n−1
L∞ ‖Lw‖L2 + h−σ‖w‖n−1

L∞ ‖w‖Hsh
]

if sβ is large enough.

Proof. — We apply twice equality (2.17). We obtain that one may write
the expression

(
Oph(x+ p′(ξ))

)2[Oph(m)(w, . . . , w̄)] as the sum of quanti-
ties of four following forms:
(2.24)
Oph(m``′)[wi1 , . . . ,Oph(x+p′(i`ξ`))wi` , . . . ,Oph(x+p′(i`′ξ`′))wi`′ , . . . , win ]

where m``′ is in Sδ,β(〈x〉−∞, n), 1 6 ` < `′ 6 n, supported in (2.15);

(2.25) Oph(m`)[wi1 , . . . ,Oph(x+ p′(i`ξ`))2wi` , . . . , win ],

with m` in Sδ,β(〈x〉−∞, n), 1 6 ` 6 n, supported in (2.15);

(2.26) h1−δOph(r`)[wi1 , . . . ,Oph(x+ p′(i`ξ`))wi` , . . . , win ],

with r` in Sδ,β(〈x〉−∞, n), 1 6 ` 6 n;

(2.27) h2(1−δ)Oph(r)[wi1 , . . . , win ]

with r in Sδ,β(〈x〉−∞, n).
Let us estimate the L2 norm of the product of each expression (2.24)

to (2.27) by h−2, writing h−1Oph(x+ p′(±ξ)) = L±.
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• To bound the quantity coming from (2.25), we use Proposition 1.9 with
ρ = 1, making play the role of the special index n to the argument bearing
the action of L2

±. We get a bound by

C‖w‖n−1
L∞ ‖L

2w‖L2 + Ch
1
2−σ‖w‖n−2

L∞

(
‖Lw‖L2 + ‖w‖L2

)
‖L2w‖L2

which is estimated by (2.23).
• To study (2.26) multiplied by h−2, we apply (ii) of Proposition 1.7 and

get a bound in Ch−σ‖w‖n−1
L∞ ‖Lw‖L2 , which is again controlled by the right

hand side of (2.23).
• By (ii) of Proposition 1.7, the L2 norm of the product of (2.27) by h−2

is smaller than Ch−σ‖w‖n−1
L∞ ‖w‖L2 , so than (2.23).

•We are left with studying the product of h−2 by the L2 norm of (2.24).
In that expression, we decompose

wi` = Oph(χ(hβξ`))wi` + Oph((1− χ)(hβξ`))wi`
for some χ in C∞0 (R), χ ≡ 1 close to zero, and do the same for wi`′ . The
contribution to (2.24) where wi` or wi`′ has been cut-off for large frequencies
may be written using (i) of Proposition 1.5 as

Oph(m̃``′)[wi1 , . . . , w̃i` , . . . , w̃i`′ , . . . , wip ]

where m̃``′ is in Sδ,β(〈x〉−∞, n) and w̃i` or w̃i`′ is equal either to
Oph((1− χ)(hβξ))wi` or to Oph((1− χ)(hβξ))wi`′ . It follows from Propo-
sition 1.7 (ii) that the product of h−2 by the L2 norm of this quantity is
bounded from above by

Ch−2−σ‖w‖n−1
L∞ ‖Oph((1− χ)(hβξ))w‖L2 6 Chβs−2−σ‖w‖n−1

L∞ ‖w‖Hsh ,

so by the right hand side of (2.23) if βs > 2.
We are thus reduced to the study of

(2.28) h−2‖Oph(m``′)[wi1 , . . . ,Oph((x+ p′(i`ξ`))χ(hβξ`))wi` , . . .

. . . ,Oph((x+ p′(i`′ξ`′))χ(hβξ`′))wi`′ , . . . , win ]‖L2

Remember thatm``′ is an element of Sδ,β(〈x〉−∞, n) supported inside (2.15).
Since we have seen in the proof of Lemma 2.4 that on this setM0(ξ) ∼ 〈ξk〉
for any k, we conclude that m``′ is supported inside

{
|x+ p′(i`ξ`)| <

Cα〈ξ`〉−κ
}

and the same property with ` replaced by `′. We define
Φ`(x, ξ`) = γ

(
(x + p′(i`ξ`))〈ξ`〉κ

)
where γ ∈ C∞0 (R) is such that Φ` ≡ 1

on a neighborhood of that set. In (2.28), we insert the decomposition
1 = Φ`(x, ξ`)+(1−Φ`)(x, ξ`) against (x+p′(i`ξ`)). The contribution corre-
sponding to 1−Φ` will give, by symbolic calculus and (ii) of Proposition 1.7
a quantity bounded in L2 by CNhN‖w‖n−1

L∞ ‖w‖L2 for any N . Using again
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symbolic calculus and the definition of L, we finally reduce ourselves to the
study of

(2.29) ‖Oph(m``′)[wi1 , . . . ,Oph(Φ`χ(hβξ`))Li`wi` , . . .

. . . ,Oph(Φ`′χ(hβξ`′))Li`′wi`′ , . . . , win ]‖L2

modulo remainders of the form h−2 times (2.26) or (2.27). Using (1.25), we
see that (2.29) is smaller than

Ch−σ‖w‖n−2
L∞ ‖Oph[Φ+(x, ξ)χ(hβξ)]Lw‖L∞‖Oph[Φ+(x, ξ)χ(hβξ)]Lw‖L2 ,

where Φ+(x, ξ) = γ((x+p′(ξ))〈ξ〉κ). The last factor is bounded from above
by C‖Lw‖L2 by (i) of Proposition 1.7. Assume for a while that we have
proved

Lemma 2.6. — With the preceding notations

(2.30) ‖Oph[Φ+(x, ξ)χ(hβξ)]Lw‖L∞

6 Ch−σ
[
‖L2w‖1/2L2 ‖Lw‖1/2L2 + ‖Lw‖L2

]
.

Then (2.29) may be controlled by

Ch−2σ‖w‖n−2
L∞

[
‖L2w‖1/2L2 ‖Lw‖3/2L2 + ‖Lw‖2L2

]
6 C‖w‖n−1

L∞ ‖L
2w‖L2 +Ch−4σ‖w‖n−3

L∞ ‖Lw‖
3
L2 +Ch−2σ‖w‖n−2

L∞ ‖Lw‖
2
L2

which is smaller than the right hand side of (2.23) up to a modification of
the definition of σ. �

Proof of Lemma 2.6. — The symbol Φ+(x, ξ)χ(hβξ) is in Sδ,β(1, 1) if
δ > κβ and, by (1.30) is supported in an interval [−1+chδ, 1−chδ] for some
small c > 0. We may thus choose a family of smooth functions (θh(x))h,
equal to one on this interval, supported in [−1 + c

2h
δ, 1− c

2h
δ], and which

are in the class Sδ,0(1, 1). We write

(2.31) ‖Oph[Φ+(x, ξ)χ(hβξ)]Lw‖L∞

= ‖e−iϕ/hθhOph[Φ+(x, ξ)χ(hβξ)]Lw‖L∞

6 ‖D[e−iϕ/hθhOph[Φ+(x, ξ)χ(hβξ)]Lw]‖1/2L2

× ‖e−iϕ/hθhOph[Φ+(x, ξ)χ(hβξ)]Lw‖1/2L2

6 C
∥∥∥(D − dϕ

h

)
θhOph[Φ+(x, ξ)χ(hβξ)]Lw]

∥∥∥1/2

L2
‖Lw‖1/2L2 .

By (1.31), (1.30) with ξ replaced by dϕ and the definition of θh,
∂α[θh(x)dϕ(x)] = O(h− δκ−αδ), so that θh(ξ−dϕ(x)) is in h−δ/κSδ,0(〈ξ〉, 1).
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By symbolic calculus, we bound (2.31) by

C
[
h−1/2

∥∥∥Oph[Φ+(x, ξ)χ(hβξ)(ξ − dϕ)]Lw
∥∥∥1/2

L2
+ h−σ‖Lw‖1/2L2

]
‖Lw‖1/2L2 .

We are thus left with studying the first term, where the symbol may be
written

Φ+(x, ξ)χ(hβξ) ξ − dϕ
x+ p′(ξ) (x+ p′(ξ)) = b(x, ξ)(x+ p′(ξ))

for a symbol b belonging to Sδ,β(〈ξ〉κ+1〈x〉−∞, 1) ⊂ h−β(κ+1)Sδ,β(〈x〉−∞, 1)
according to (1.28), (1.29). Writing Oph(x + p′(ξ)) = hL and using again
symbolic calculus, we bound (2.31) by

Ch−σ
[
‖L2w‖1/2L2 ‖Lw‖1/2L2 + ‖Lw‖L2

]
as wanted. �

2.2. First energy estimate

The goal of this subsection is to obtain L2-estimates for Lw, where w
will be defined from the solution v of (1.63). Let us remark that the L2

norm at every fixed time of these quantities will be finite if they are so at
the initial time. Since the coefficients of L are O(〈x〉), we have to see that
under conditions (1.9) on the Cauchy data, the solution µ of (1.47) satisfies
‖xµ(t, ·)‖L2 < +∞ at fixed t. Actually, when t stays in some compact inter-
val [1, T ] over which the solution µ of (1.47) exists, it has on that interval
uniform Hs bounds. Because of these bounds, if we commute to (1.47) the
function xθ(x/R), where θ ∈ C∞0 (R) is equal to one close to zero, we get
that xθ(x/R)µ solves an equation of the form (1.47) where the force term
has L2 norm bounded by C(1 + ‖xθ(x/R)µ‖L2), where C is uniform in R.
Applying Gronwall lemma to the corresponding energy inequality over the
interval [1, T ] and making R go to infinity, we conclude that xµ(t, x) be-
longs to L2(dx) for any given t. Expressing v from µ by (1.57), we see that
Lv will be in L2 for every fixed t. The same property will hold for func-
tions deduced from v, like the w that will be introduced below. A similar
statement holds for L2v.
Another remark that will be used frequently in the rest of this paper is

the following one:

Remark 2.7. — Let n > 3, a be an element of Sδ,β(1, n) for some δ, β >
0 and I be in Γn. There is σ = σ(δ, β, 0) of the form (1.36) such that
R(v) def= hσOph(a)[vI ] satisfies (1.61) and (1.62) if s− ρ is large enough.
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Proof. — Inequality (1.61) with k = 0 follows from (ii) of Proposition 1.7
(with q = 2). To prove (1.62), we write using (1.24) that

‖Oph(a)(vI)‖Wρ+2,∞
h

6 Ch−1/2‖Oph(a)(vI)‖Hρ+3
h

and using (1.25) we bound the last norm by the sum for k1+· · ·+kn 6 ρ+3
of h−σ

(∏n−1
1 ‖(hD)k`v‖L∞

)
‖(hD)knv‖L2 . The last factor is controlled by

‖v‖Hs
h
if s > ρ+ 3 and the L∞ norms are bounded, using again (1.24), by

‖(hD)k`v‖L∞ 6 Ch−k`β‖Oph(χ(hβξ))v‖L∞

+ Ch−1/2‖Oph((1− χ)(hβξ))v‖Hρ+3
h

6 Ch−σ
(
‖v‖L∞ +

√
h‖v‖Hs

h

)(2.32)

if (s−ρ)β is large enough. This implies that estimate (1.62) holds for R(v).
We still have to prove (1.61) for k = 1, 2. One may write xOph(a)[vI ] from

the quantities hOph(∂a/∂ξ1)[vI ] and Oph(a)[xvi1 , vi2 , . . . , vin ]. Expressing

xvi1 = Oph(x+ p′(i1ξ1))vi1 −Oph(p′(i1ξ1))vi1
= hLi1vi1 −Oph(p′(i1ξ1))vi1

and arguing as in the case k = 0, one gets estimate (1.61) for R with k = 1.
The proof in the case k = 2 is similar. �

Recall from Proposition 1.12 that the semiclassical version of (1.47) is

(2.33) (Dt −Oph(λ(x, ξ)))v =
6∑

n=3
h
n−1

2
∑
I∈Γn

Oph(mI)(vI) + h3−σR(v)

wheremI is in S0,β(1, |I|) for some small β > 0 andR satisfies (1.61), (1.62).
Recall also that for n = 3, 4, I ∈ Γnch

n , we may write decomposition (2.5)
of mI . We use the symbol aI in the right hand side of (2.5) to define a new
unknown

(2.34) w = v −
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(aI)(vI).

The goal of this subsection is to obtain a L2 bound for Lw under an a
priori assumption on ‖v‖Wρ,∞

h
+
√
h‖v‖Hs

h
, for s, ρ large enough.
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Proposition 2.8. — Let δ, β > 0 be small enough. Set ρ > 2κ+ 2 and
assume that (s − ρ)β is large enough. Let B1 > 0 be a constant. Assume
that the solution v of (2.33) exists on some interval [1, T ] and that on this
interval the a priori assumption

(2.35) sup
t∈[1,T ]

[
‖v(t, ·)‖Wρ,∞

h
+
√
h‖v(t, ·)‖Hs

h

]
6 B1ε 6 1

holds.
Then for t in the same interval and some constant C independent of T

and B1

‖Lw(t, ·)‖L2 6 ‖Lw(1, ·)‖L2 + CB2
1ε

2
∫ t

1
‖Lw(τ, ·)‖L2

dτ

τ

+ CB2
1ε

2
∫ t

1
‖w(τ, ·)‖L2

dτ

τ1−σ

+ CB1ε

∫ t

1
‖Lw(τ, ·)‖2L2

dτ

τ5/4

(2.36)

where σ is of the form (1.36).

The proposition will be proved applying an energy inequality to the
equation satisfied by Lw. We study first the equation solved by w itself.

Proposition 2.9. — The function w given by (2.34) satisfies an equa-
tion

(2.37) (Dt −Oph(λ(x, ξ)))w

= h
∑
I∈Γch

3

Oph(mI)(vI)+
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph
(
(x+p′(i`ξ`))qmq

I,`

)
[vI ]

+ h1−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

Oph(m̃I)(vI)+
6∑

n=5
h
n−1

2 −σ
∑
I∈Γn

Oph(m̃I)(vI)

+ h3−σR(v)

where q = 1, 2, mq
I,` is an element of Sδ,β(M (2κ+1)q

0 〈x〉−q, n), where for
I ∈ Γch

3 , mI is an element of Sδ,β(1, 3) supported in (2.15), where m̃I

belongs to Sδ,β(1, |I|), where R satisfies estimates (1.61), (1.62), and where
σ is of the form (1.36).

We shall use the following two lemmas in the proof of the proposition.
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Lemma 2.10. — Let i = (i1, . . . , in) be in Γnch
n and aI be an element of

Sδ,β(Mκ−1
0 〈x〉−∞, n). Then, there is an element bI in Sδ,β(〈x〉−∞, n) such

that, with the notation (2.1)

(2.38) Oph(gIaI(ξ1, . . . , ξn))[vI ]
= −Oph(xξ + p(ξ)) ◦Oph(aI)[vI ]

+
n∑
`=1

Oph(aI)[vi1 , . . . ,Oph(xξ + i`p(i`ξ`))vi` , . . . , vin ]

+ h1−σOph(bI)[vI ].

Proof. — Since xξ+p(ξ) is in S0,0(〈x〉〈ξ〉, 1), it follows from (i) of Propo-
sition 1.5 that

Oph
(
(xξ` + i`p(i`ξ`))aI

)
[vI ]

−Oph(aI)[vi1 , . . . ,Oph(x`ξ` + p(i`ξ`))vi` , . . . , vin ]

= h1−δOph(cI)[vI ]

where cI is in

Sδ,β(〈ξ`〉Mκ−1
0 〈x〉−∞, n) ⊂ h−βκSδ,β(〈x〉−∞, n).

One makes the same reasoning for the symbol x(ξ1+· · ·+ξn)+p(ξ1+· · ·+ξn)
instead of xξ` + i`p(i`ξ`). This provides the conclusion since, by (2.1)

gI(ξ1, . . . , ξn) =
n∑
`=1

(
xξ` + i`p(i`ξ`)

)
−
(
x(ξ1 + · · ·+ ξn) + p(ξ1 + · · ·+ ξn)

)
.

�

Let us compute now the action of Dt −Oph(λ) on Oph(aI)(vI).

Lemma 2.11. — Let I = (i1, . . . , in) be in Γnch
n and let aI be in

Sδ,β(Mκ−1
0 〈x〉−∞, n). We may write

(2.39) (Dt −Oph(λ))[Oph(aI)[vI ]]

= Oph(aIgI)[vI ] + h1−σOph(bI)[vI ]

+
6∑

n′=3
h
n′−1

2 −σ
∑

I′∈Γn+n′−1

Oph(bI′)[vI′ ] + h3−σR̃(v)

where bI is in Sδ,β(〈x〉−∞, n), bI′ in Sδ,β(〈x〉−∞, n+ n′ − 1), R̃ satisfies
estimates (1.61), (1.62) and σ = σ(δ, β, ρ) satisfies (1.36).
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Proof. — We make act Dt in the left hand side of (2.39) on each of the
arguments (vi1 , . . . , vin) in Oph(aI)[vI ]. We replace Dtvi` by the linear part
of equation (2.33) i.e.

Oph
(
xξ` + i`p(i`ξ`)−

i

2h
)
vi`

according to the expression (1.64) of λ. The sum of −Oph(λ)[Oph(aI)[vI ]]
and of these contributions has the form of the right hand side of (2.38),
which gives, up to changing the definition of bI , the first two terms in
the right hand side of (2.39). We consider next the contributions obtained
replacing in Oph(aI)[vI ] one of the factors vi` by the nonlinear terms in
the right hand side of (2.33). We obtain, when for instance ` = 1, the two
expressions

6∑
n′=3

h
n′−1

2
∑
J∈Γn′

Oph(aI)
[
Oph(mJ)[vJ ], vi2 , . . . , vin

]
h3−σOph(aI)[R(v), vi2 , . . . , vin ].

(2.40)

Since aI is in Sδ,β(Mκ−1
0 〈x〉−∞, n) ⊂ h−(κ−1)βSδ,β(〈x〉−∞, n), we see ac-

cording to (1.22) that the first line in (2.40) gives the sum in (2.39). Finally,
we have to check that the second line of (2.40) provides the h3−σR̃(v) term
in (2.39) (up to a modification of σ). As aI is in h−(κ−1)βSδ,β(〈x〉−∞, n), we
obtain estimate (1.61) for R̃ combining (1.25) (with q = 2, j = 1) and (1.61)
with k = 0 for R. Estimate (1.62) for R̃ follows from (1.26) and (1.62) for R.
Finally, the action of Dt on the semi-classical parameter in Oph(aI)[vI ]

in the left hand side of (2.39) makes gain one power of h and thus provides
a contribution to the Oph(bI)[vI ] term in (2.39). �

Proof of Proposition 2.9. — We compute the action of (Dt − Oph(λ))
on w given by (2.34). According to (2.34), (2.39), we obtain the sum of the
following contributions

h
∑
I∈Γch

3

Oph(mI)[vI ],(2.41)

4∑
n=3

h
n−1

2
∑

I∈Γnch
n

Oph(mI − aIgI)[vI ],(2.42)
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−h1−σ
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(bI)[vI ](2.43)

−h
4∑

n=3

i(n− 1)
2 h

n−1
2

∑
I∈Γnch

n

Oph(aI)[vI ]

−
4∑

n=3

6∑
n′=3

h
n+n′−2

2 −σ
∑

I′∈Γn+n′−1

Oph(bI′)[vI′ ],

6∑
n=5

h
n−1

2
∑
I∈Γn

Oph(mI)[vI ](2.44)

and of a term in h3−σR(v). Let us examine the above expressions. By
formula (2.7),mI in (2.41) may be written as the sum of a symbol supported
in (2.15) and of contributions that will form part of the second sum in the
right hand side of (2.37). Up to a change of the definition of mI , this gives
the first term in the right hand side of (2.37).
Consider (2.42). By (2.5), this may be written as a contribution to the

second sum in the right hand side of (2.37).
In (2.43), the first two sums contribute to the third term in the right

hand side of (2.37). The last one may be decomposed into those terms for
which 5 6 n+n′−1 6 6, which give the fourth term in the right hand side
of (2.37), and those terms for which n + n′ − 1 > 7, that may be written
as h3−σR(v) using Remark 2.7.
Finally, (2.44) contributes to the last but one term in (2.37). This con-

cludes the proof. �

We may deduce from (2.37) an equivalent form of the equation where
the right hand side is essentially expressed in terms of w.

Corollary 2.12. — The solution w of (2.37) satisfies

(2.45) (Dt −Oph(λ))w

= h
∑
I∈Γch

3

Oph(mI)[wI ]+
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph
(
(x+p′(i`ξ`))qmq

I,`

)
[wI ]

+ h1−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

Oph(m̃I)[wI ]

+
6∑

n=5
h
n−1

2 −σ
∑
I∈Γn

Oph(m̃I)[wI ] + h3−σR(v)
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where mI ,m
q
I,`, m̃I , R(v) are as in the statement of Proposition 2.9. More-

over, (2.45) with q = 1 may be rewritten as

(2.46) (Dt −Oph(λ))w
= h

∑
I∈Γch

3

Oph(mI)[wI ]

+ h
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph
(
m1
I,`

)
[wi1 , . . . ,Li`wi` , . . . , win ]

+ h1−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

Oph(m̃I)[wI ]

+
6∑

n=5
h
n−1

2 −σ
∑
I∈Γn

Oph(m̃I)[wI ] + h3−σR(v)

for some new m̃I in Sδ,β(1, n), and (2.45) with q = 2 implies

(2.47) (Dt −Oph(λ))w

= h
∑
I∈Γch

3

Oph(mI)[wI ]

+ h2
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph
(
m2
I,`

)
[wi1 , . . . ,L2

i`
wi` , . . . , win ]

+ h2−σ
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph(m̃1
I,`)[wi1 , . . . ,Li`wi` , . . . , win ]

+ h1−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

Oph(m̃I)[wI ]

+ h−σ
6∑

n=5
h
n−1

2
∑
I∈Γn

Oph(m̃I)[wI ] + h3−σR(v)

for some new m̃1
I,` in Sδ,β(〈x〉−1

, n), m̃I in Sδ,β(1, n).

Proof. — Remember that w is defined from v by (2.34), where aI in
Sδ,β(Mκ−1

0 〈x〉−∞, n) ⊂ h−(κ−1)βSδ,β(〈x〉−∞, n). We may use this equality
to express v from w, and iterate the formula to write, using the composition
result of (i) of Proposition 1.5,

(2.48) v = w +
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(aI)[wI ] + h2−σR(v),

where R(v) is given by expressions of the form Oph(cI)[vI ] for some cI
in Sδ,β(〈x〉−∞, n) with n = |I| > 5. By Remark 2.7, R satisfies (1.61),
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(1.62). We plug (2.48) in the right hand side of (2.37), and use again the
composition results of Proposition 1.5 and Remark 2.7, to conclude that
one gets the right hand side of (2.45), with new values for the symbols m̃I

and a new remainder. To deduce (2.46) from (2.45) with q = 1, we use (i)
of Proposition 1.5 to write

(2.49) Oph
(
(x+ p′(i`ξ`))m1

I,`

)
[wI ]

= Oph(m1
I,`)[wi1 , . . . , hLi`wi` , . . . , win ] + h1−δOph(e)[wI ]

for some symbol e in Sδ,β(M0(ξ)2κ+1, n) ⊂ h−(2κ+1)βSδ,β(1, n). The last
term above contributes to the Oph(m̃I)[wI ] terms in (2.46) and the first
one provides the second term in the right and side of (2.46).
In the same way, using (1.21), we write

Oph
(
(x+ p′(i`ξ`))2m2

I,`

)
[wI ]

= Oph(m2
I,`)[wi1 , . . . ,Oph((x+ p′(i`ξ`))2)wi` , . . . , win ]

+ h1−σOph
(
e1(x+ p′(i`ξ`))

)
[wI ] + h2−σOph(e0)[wI ]

with e1 in Sδ,β(〈x〉−1
, n), e0 in Sδ,β(1, n). The last two terms induce as

above a contribution to the third and fourth terms in the right hand side
of (2.47). The first one may be written as contributions to the second,
third and fourth terms in the right hand side of (2.47) (see Lemma 3.1
below). �

Proof of Proposition 2.8. — We apply the operator L to equation (2.46).
We notice the fundamental commutation property

(2.50) [Dt −Oph(λ),L] = 0

that follows by direct computation from the expression (1.35) of L (one
can also see that in an easier way going back to the non semiclassical
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coordinates). We obtain the equation

(2.51) (Dt −Oph(λ))(Lw)
= h

∑
I∈Γch

3

LOph(mI)[wI ]

+
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

(hL)Oph
(
m1
I,`

)
[wi1 , . . . ,Li`wi` , . . . , win ]

+ h−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

(hL)Oph(m̃I)[wI ]

+ h−σ
6∑

n=5
h
n−3

2
∑
I∈Γn

(hL)Oph(m̃I)[wI ]

+ h2−σ(hL)R(v)
= (1) + · · ·+ (5).

Since Oph(λ) is self-adjoint on L2, the left hand side of (2.36) will be
bounded by the sum of ‖Lw(1, ·)‖L2 and of the integral from 1 to t of the
L2 norm of (1) + · · ·+ (5). We have to control these quantities by the right
hand side of (2.36). We shall see in Lemma 2.13 below that (2.35) implies
that if ε is small enough,

(2.52) sup
t∈[1,T ]

[
‖w(t, ·)‖Wρ,∞

h
+
√
h‖w(t, ·)‖Hs

h

]
6 2B1ε.

Let us assume that this inequality holds.
• In term (1), I is characteristic and mI satisfies the assumption of

Proposition 2.3. By (2.16), we get
‖(1)‖L2 6 Ch

[
‖w‖2L∞‖Lw‖L2 + h−σ‖w‖2L∞‖w‖L2

+ h
1
2−σ‖w‖L∞‖Lw‖2L2 + h

1
2−σ‖w‖L∞‖w‖L2‖Lw‖L2

]
.

Using the a priori assumption (2.52), we bound the integral of this quantity
from 1 to t by the right hand side of (2.36).
• In term (2), we write hL = Oph(x + p′(ξ)), with x + p′(ξ) an ele-

ment of S0,0(〈x〉, 1). By (i) of Proposition 1.5 and the assumptions satisfied
by m1

I,`, (hL)Oph(m1
I,`) may be written as Oph(m̃1

I,`) for some m̃1
I,` in

Sδ,β(M0(ξ)2κ+1, n). We apply next Proposition 1.9 with ρ = 2κ+ 2, mak-
ing play a special role to the argument Li`wi` . We get

‖(2)‖L2 6 C
4∑

n=3
h
n−1

2

[
‖w‖n−1

Wρ,∞
h

‖Lw‖L2

+ h
1
2−σ‖w‖n−2

L∞ ‖Lw‖L2(‖w‖L2 + ‖Lw‖L2)
]
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Arguing as above using assumption (2.52), we bound the integral from 1
to t of this quantity by the right hand side of (2.36).
• Terms (3) and (4) involve also expressions (hL)Oph(m̃I), except that

m̃I is here in Sδ,β(1, n). We write again hL = Oph(x+ p′(ξ)). The contri-
butions to (3), (4) coming from Oph(p′(ξ))Oph(m̃I)(wI) have a L2 norm
bounded from above by Ch1−σ‖w‖n−1

L∞ ‖w‖L2 by (ii) of Proposition 1.7. Af-
ter integration, they will be controlled by the right hand side of (2.36). On
the other hand, we write by (1.21), xOph(m̃I)[wI ] from an expression as
above and Oph(m̃I)[hLi1wi1 , wi2 , . . . , win ]. By (ii) of Proposition 1.7, the
corresponding contribution to (3), (4) has L2 norm bounded from above
by Ch2−σ‖w‖n−1

L∞ ‖Lw‖L2 which, integrated from 1 to t, is bounded by the
right hand side of (2.36).
• To treat term (5), we notice that ‖(5)‖L2 is smaller than

h2−σ∑1
0‖xkR(v)‖L2 , that is, according to (1.61), by

(2.53) h2−σC
(
‖v‖L∞+

√
h‖v‖Hs

h

)(
‖v‖L∞+

√
h‖v‖Hs

h

)2( 1∑
0
‖(hL)kv‖L2

)
.

To conclude the proof, we are left with showing that we may replace in
the last factor in (2.53) v by w. This is the statement of the following
lemma. �

Lemma 2.13. — Assume that on some interval [1, T ] the a priori esti-
mate (2.35) holds. There is ε0 ∈]0, 1[, depending only on B1, such that for
any ε ∈]0, ε0[, any t ∈ [1, T ]

1
2‖v(t, ·)‖Wρ,∞

h
6 ‖w(t, ·)‖Wρ,∞

h
6 2‖v(t, ·)‖Wρ,∞

h
(2.54)

1
2‖v(t, ·)‖Hs

h
6 ‖w(t, ·)‖Hs

h
6 2‖v(t, ·)‖Hs

h
(2.55)

1
2

k∑
0
‖(hL)k

′
v(t, ·)‖L2 6

k∑
0
‖(hL)k

′
w(t, ·)‖L2

6 2
k∑
0
‖(hL)k

′
v(t, ·)‖L2 , 0 6 k 6 2.

(2.56)

In particular, (2.35) implies if ε0 is small enough

(2.57) sup
t∈[1,T ]

[
‖w(t, ·)‖Wρ,∞

h
+
√
h‖w(t, ·)‖Hs

h

]
6 2B1ε.

Proof. — By assumption aI ∈Sδ,β(Mκ−1
0 〈x〉−∞, n)⊂h−β(κ−1)Sδ,β(1, n).

We may write (hD)sOph(aI) from a linear combination of operators
Oph(as1,...,sn

I ξs1
1 · · · ξsnn ) with s1 + · · · + sn 6 s and as1,...,sn

I in
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h−β(κ−1)Sδ,β(1, n). Cutting off the frequencies, sorting out the cases when
the largest one is respectively |ξ1|, |ξ2|, . . . , we may write this symbol as a
sum of elements of the form ãs1,...,sn

I,1 〈ξ1〉s, ãs1,...,sn
I,2 〈ξ2〉s,. . . with ãs1,...,sn

I,` in
h−β(κ−1)Sδ,β(1, n). Applying the estimate (1.25) with q = 2 putting the L2

norm on the first, second,. . . factor, we get

‖Oph(aI)[vI ]‖Hs
h
6 Ch−σ‖v‖n−1

L∞ ‖v‖Hsh
for some σ independent of s. Inequality (2.55) follows from that, the def-
inition (2.34) of w and assumption (2.35). In the same way, using (1.25)
with q =∞, we get (2.54). Estimates (2.56) are obtained similarly, making
act hL on (2.34) and noticing that since aI is in h−β(κ−1)Sδ,β(〈x〉−∞, n),
its composition at the left with hL = Oph(x + p′(ξ)) stays in a similar
space. �

2.3. Second energy estimate

In this subsection, which is parallel to the preceding one, we get L2

estimates for L2u, where u is again another unknown defined from v. We
shall construct u in order to eliminate in the last two sums in the right hand
side of (2.47) all noncharacteristic contributions. For each 3 6 n 6 6 and
I ∈ Γn which is noncharacteristic, we apply to the corresponding symbol
m̃I in (2.47) the decomposition (2.5) with q = 1 i.e. we find symbols bI in
Sδ,β(Mκ−1

0 〈x〉−∞, n) and m1
I,` in Sδ,β(M2κ

0 〈x〉
−1
, n) so that

(2.58) m̃I(x, ξ1, . . . , ξn) = gI(ξ1, . . . , ξn)bI(x, ξ1, . . . , ξn)

+
n∑
`=1

(x+ p′(i`ξ`))m1
I,`(x, ξ1, . . . , ξn).

We define next

(2.59) u = w − h1−σ
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(bI)[wI ]

− h−σ
6∑

n=5
h
n−1

2
∑

I∈Γnch
n

Oph(bI)[wI ]

where σ is the one in (2.47), so that u is essentially an O(h2) perturbation
of w.
The counterpart of Proposition 2.8 will be:
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Proposition 2.14. — Let δ, β > 0 be small enough. Set ρ = 4κ+3 and
assume that (s − ρ)β is large enough. Let B > 0 be a constant. Assume
that the solution v of (2.33) exists on some interval [1, T ] and that on this
interval, the a priori assumption

(2.60) sup
t∈[1,T ]

[
‖v(t, ·)‖Wρ,∞

h
+
√
h‖v(t, ·)‖Hs

h

]
6 Bε 6 1

holds. Then for t in the same interval and some constant C independent of
T,B

(2.61) ‖L2u(t, ·)‖L2

6 ‖L2u(1, ·)‖L2 + CB2ε2
∫ t

1
‖L2u(τ, ·)‖L2

dτ

τ

+ C

∫ t

1

[
‖Lu(τ, ·)‖3L2 +Bε‖Lu(τ, ·)‖2L2 +(Bε)2‖Lu(τ, ·)‖L2

] dτ

τ1−σ

+ CB2ε2
∫ t

1
‖u(τ, ·)‖Hs

h

dτ

τ1−σ

+ CBε

∫ t

1

(
‖u(τ, ·)‖L2 +‖Lu(τ, ·)‖L2

)
‖L2u(τ, ·)‖L2

dτ

τ5/4

where σ > 0 is of the form (1.36).

As in the proof of Proposition 2.8, the key point is to write the equation
satisfied by u.

Proposition 2.15. — The function u defined by (2.59) satisfies an
equation

(2.62) (Dt −Oph(λ))u

= h
∑
I∈Γch

3

Oph(mI)[wI ] + h2−σ
∑
I∈Γch

5

Oph(m̃I)[wI ]

+ h2−σ
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph
(
m̃1
I,`

)
[wi1 , . . . ,Li`wi` , . . . , win ]

+ h2
4∑

n=3
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph(m2
I,`)[wi1 , . . . ,L2

i`
wi` , . . . , win ]

+ h1−σ
6∑

n=5
h
n−1

2

n∑
`=1

∑
I∈Γn

Oph(m̃1
I,`)[wi1 , . . . ,Li`wi` , . . . , win ]

+ h3−σR(v, w)
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where for I characteristic, |I| = 3 (resp. |I| = 5), mI (resp. m̃I) is in
Sδ,β(1, n) and is supported in a domain of the form (2.15), where m̃1

I,` (resp.
m2
I,`) is in Sδ,β(〈x〉−1

, n) (resp. Sδ,β(M4κ+2
0 〈x〉−2

, n)) and where R(v, w)
satisfies for k = 0, 1, 2 estimates of the form

(2.63) ‖xkR(v, w)‖L2

6 C
(
‖v‖L∞+

√
h‖v‖Hs

h
+‖w‖L∞

)(
‖v‖L∞+

√
h‖v‖Hs

h
+‖w‖L∞

)2
×
( k∑
k′=0

(
‖(hL)k

′
v‖L2 + ‖(hL)k

′
w‖L2

))
.

Proof. — For easier reference in the proof, we denote by (1) + · · · + (6)
the terms in the right hand side of (2.62). We compute (Dt − Oph(λ))u
from (2.59) and (2.47).
Consider first the contribution of (Dt − Oph(λ))w to (Dt − Oph(λ))u ,

that is the right hand side of (2.47). The first sum in the right hand side
of (2.47) contributes to (1). The second and third sums in (2.47) contribute
to (3) + (4). In the fourth sum, when I is characteristic, we decompose m̃I

according to (2.7) with q = 1 and use (2.49). We get contributions to
(1) + (3) + (6) according to Remark 2.7. When I is noncharacteristic, we
decompose m̃I according to (2.58). We obtain the sum of

(2.64) h1−σ
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(gIbI)[wI ]

and of quantities of the form h1−σ∑4
n=3 h

n−1
2 Oph

(
(x+ p′(i`ξ`))m1

I,`

)
[wI ].

Using (2.49) and Remark 2.7, we see that this latter term can be written
as a contribution to (3) + (6).

In the same way, the fifth term in the right hand side of (2.47) gives,
when I is characteristic, a contribution to (2) + (5) + (6) using again (2.7)
with q = 1, (2.49) and Remark 2.7. When I is noncharacteristic, we get
by (2.58) a term in

(2.65) h−σ
6∑

n=5
h
n−1

2
∑

I∈Γnch
n

Oph(gIbI)[wI ]

and quantities in h1−σ∑6
n=5 h

n−1
2 Oph

(
(x+p′(i`ξ`))m1

I,`

)
[wI ] which, again

using (2.49), contribute to (5) + (6).
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Let us study next the action of (Dt − Oph(λ)) on the nonlinear terms
of (2.59) and show that they compensate (2.64), (2.65) up to other admis-
sible terms. We get contributions of the form

(2.66) h1−σ
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

[
Oph(λ)Oph(bI)[wI ]

−
n∑
`=1

Oph(bI)[wi1 , . . . , Dtwi` , . . . , win ]
]

and

(2.67) h−σ
6∑

n=5
h
n−1

2
∑

I∈Γnch
n

[
Oph(λ)Oph(bI)[wI ]

−
n∑
`=1

Oph(bI)[wi1 , . . . , Dtwi` , . . . , win ]
]

modulo expressions obtained making act Dt on the semiclassical parame-
ter, i.e. quantities of the form of the last two terms in (2.59) multiplied
by a factor h. Such terms contain h3−σ in factor and by Remark 2.7
will contribute to (6). In (2.66), (2.67), we express Dtwi` from (2.45).
By (1.22), the right hand side of (2.45) induces contributions of the form
h3−σOph(e)[wI ] or h3−σOph(e)[wi1 , . . . , R(v), . . . , wi` ] for some new sym-
bol e in Sδ,β(〈x〉−∞, `). Using Remark 2.7 and (ii) of Proposition 1.7, we see
that these terms contribute to (6). We are thus reduced to (2.66), (2.67),
in which Dtwi` has been replaced by Oph(xξ` + i`p(i`ξ`)− i

2h). By (1.21),
(2.1) and the use of Remark 2.7, we thus write (2.66) (resp. (2.67)) as the
opposite of (2.64) (resp. (2.65)) modulo contributions to (6). This concludes
the proof. �

Proof of Proposition 2.14. — We have seen in Lemma 2.13 that assump-
tion (2.60) for v implies inequality (2.57) for w. Applying again this lemma
for the expression of u in terms of v, we see as well that

(2.68) sup
t∈[1,T ]

[
‖u(t, ·)‖Wρ,∞

h
+
√
h‖u(t, ·)‖Hs

h

]
6 4Bε.

In the right hand side of (2.62), we remark that since hL = Oph(x+p′(ξ)),
we may write all multilinear terms as h1−σOph(m)[wI ] for some symbol
m in Sδ,β(1, n) (using (i) of Proposition 1.5). If we express then w from u

by (2.59) and use again Proposition 1.5 and Remark 2.7, we see that we
may replace in all multilinear terms in the right hand side of (2.62) wI by
uI , up to a modification of the remainder h3−σR(v, w). If we make act L2
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on the resulting equation, we get

(2.69) (Dt −Oph(λ))(L2u)

= h
∑
I∈Γch

3

L2Oph(mI)[uI ] + h2−σ
∑
I∈Γch

5

L2Oph(m̃I)[uI ]

+ h−σ
4∑

n=3
h
n−1

2
∑
I∈Γn

n∑
`=1

(hL)2Oph(m̃1
I,`)[ui1 , . . . ,Li`ui` , . . . , uin ]

+
4∑

n=3
h
n−1

2
∑
I∈Γn

n∑
`=1

(hL)2Oph(m2
I,`)[ui1 , . . . ,L2

i`
ui` , . . . , uin ]

+ h−σ
6∑

n=5
h
n−3

2
∑
I∈Γn

n∑
`=1

(hL)2Oph(m̃1
I,`)[ui1 , . . . ,Li`ui` , . . . , uin ]

+ h1−σ(hL)2R(v, w)
= (1) + · · ·+ (6).

We have to bound the L2 norm of (1) + · · ·+ (6) integrated from 1 to t by
the right hand side of (2.61) under assumption (2.60).
For (1) + (2), this follows from (2.23) (with w replaced by u).
In term (3), m̃1

I,` is in Sδ,β(〈x〉−1
, n) and hL = Oph(x + p′(ξ)) so that,

by Proposition 1.5 (i), this term is a sum of expressions

h−σ+n−1
2 (hL)Oph(m̂1

I,`)[ui1 , . . . ,Li`ui` , . . . , uin ], n > 3,

with m̂1
I,` in Sδ,β(1, n). We write hL = Oph(x+ p′(ξ)), and commute x to

Oph(m̂1
I,`), putting the weight x on another argument than Li`ui` , say on

ui1 . We get contributions bounded, according to Proposition 1.7 (ii), by
Ch1−σ‖u‖n−1

L∞ ‖Lu‖L2 , whose integral from 1 to t is smaller than the right
hand side of (2.61) under assumption (2.68), and

(2.70) h−σ+n−1
2 Oph(m̂1

I,`)[hLi1ui1 , ui2 , . . . ,Li`ui` , . . . , uin ].

Write m̂1
I,`(x, ξ1, . . . , ξn) = 〈ξ1〉−1

c(x, ξ1, . . . , ξn) for some symbol c in
Sδ,β(〈ξ1〉, n) ⊂ h−βSδ,β(1, n). Using again (ii) of Proposition 1.7 and the
Sobolev injection (1.24), we bound the L2 norm of (2.70) by

Ch2−σ‖〈hD〉−1Lu‖L∞‖Lu‖L2‖u‖n−2
L∞ 6 Ch

3
2−σ‖Lu‖2L2‖u‖n−2

L∞ .

This quantity, integrated from 1 to t is smaller than the right hand side
of (2.61).
To bound (4), we notice that sincem2

I,` is in Sδ,β(Mρ−1
0 〈x〉−2

, n) with ρ =
4κ+ 3, and (hL)2 = (Oph(x+ p′(ξ))2 is given by a symbol in S0,0(〈x〉2, 1),
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we may bound the L2 norm of (4) by

h‖Oph(m)[ui1 , . . . ,L2
i`
ui` , . . . , uin ]‖L2

for some new symbol m in Sδ,β(Mρ−1
0 , n), again by Proposition 1.5. Esti-

mate (1.37) of Proposition 1.9 gives a bound in

h‖u‖n−1
Wρ,∞
h

‖L2u‖L2 + h
3
2−σ(‖u‖L2 + ‖Lu‖L2)‖L2u‖L2‖u‖n−2

L∞ ,

whose integral from 1 to t is smaller than the right hand side of (2.61).
Term (5) is similar to (3).
Finally, the L2 norm of (6) is bounded from above by the product of

h1−σ and of the right hand side of (2.63) with k = 2. If we use (2.60), the
estimate (2.57) it implies for w, and the fact that Lemma 2.13 applied to
(w, u) instead of (v, w) allows one to replace the ‖(hL)k′v‖L2 , ‖(hL)k′w‖L2

terms in (2.63) by ‖(hL)k′u‖L2 , we finally get an estimates by

Ch1−σ(Bε)2
( 2∑

0
‖(hL)k

′
u‖L2

)
whose integral from 1 to t is smaller than the right hand side of (2.61).
This concludes the proof. �

3. L∞ estimates and proof of global existence

The goal of this section is to deduce from the PDE (2.33) satisfied by v
an ODE, that can be thought of as the classical counterpart of the PDE.
The remainders generated by the reduction of the PDE to an ODE will be
estimated from the norms ‖Lw‖L2 , ‖L2u‖L2 which obey inequalities (2.36)
and (2.61). Studying next that ODE, we shall be able to obtain L∞ bounds
for v, that will be used to complete the proof of global existence, and to
uncover the asymptotic behavior of the solution.

3.1. From the PDE to an ODE

From now on, we fix ρ = 4κ + 3, so that ρ will satisfy the requirements
made in Propositions 2.8 and 2.14. We take β > 0 a small number and
δ = Aβ, where A is a large enough number, depending only on κ. The
parameter β will be taken small enough so that δ and the (finitely many)
quantities σ = σ(β, δ, ρ) of the form (1.36) introduced up to now will be
small enough. Finally, we fix an integer s so that (s− ρ)β is large enough.
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Let T > 1 be some number and assume we are given a function v in
L∞([1, T ], Hs

h)∩L∞([1, T ],W ρ,∞
h ), solving equation (2.33). We rewrite this

equation as

(3.1) (Dt −Oph(λ))v = h
∑
I∈Γ3

Oph(mI)[vI ] + h
3
2−σr(t, x)

where we singled out the cubic contributions, and r is made of the terms
of order at least four and of the remainder. This remainder term satisfies

‖r(t, ·)‖L2 6 C
(
‖v‖L∞+

√
h‖v‖Hs

h

)(
‖v‖L∞+

√
h‖v‖Hs

h

)2‖v‖L2

‖r(t, ·)‖Wρ+2,∞
h

6 C
(
‖v‖L∞+

√
h‖v‖Hs

h

)(
‖v‖L∞+

√
h‖v‖Hs

h

)2
×
[
‖v‖Hs

h
+‖v‖L∞

]
.

(3.2)

Actually, by Remark 2.7, terms of order at least 5 satisfy the above esti-
mates. Quartic contributions to r satisfy the first inequality (3.2) by (1.61).
On the other hand, (1.62) involves a h−1/2 loss which does not allow to
deduce directly the second estimate (3.2) from Remark 2.7 for terms ho-
mogeneous of degree 4. But by (1.26), we may bound for I in Γ4

‖Oph(mI)[vI ]‖Wρ+2,∞
h

6 Ch−σ‖v‖4L∞

which implies the wanted inequality.
Recall that we defined in (2.34) the new unknown

(3.3) w = v −
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(aI)[vI ]

where aI is in Sδ,β(Mκ−1
0 〈x〉−∞, n) ⊂ h−β(κ−1)Sδ,β(〈x〉−∞, n), n = |I|, and

is supported inside

(3.4)
n⋂
`=1

{
(x, ξ1, . . . , ξn); |x+ p′(i`ξ`)| < α〈ξ`〉−2κ}

for some small α > 0.
Let ξ → Σ(ξ) be some smooth function satisfying for some q in Z

(3.5) |∂kξΣ(ξ)| 6 Ck〈ξ〉q−k, |Σ(ξ)| > c〈ξ〉q.

(In practice, we shall take below either Σ(ξ) = 〈ξ〉ρ+1 or Σ(ξ) = 〈ξ〉−1 in
which case, q = −1). We define

(3.6) vΣ = Oph(Σ)v, wΣ = Oph(Σ)w.
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Since Σ(ξ) ∈ S0,0(〈ξ〉q, 1), Σ(ξ)−1 ∈ S0,0(〈ξ〉−q, 1), the symbols

mΣ
I (ξ1, . . . , ξn) = mI(ξ1, . . . , ξn)Σ(ξ1 + · · ·+ ξn)

n∏
1

Σ(ξ`)−1

aΣ
I (x, ξ1, . . . , ξn) = aI(x, ξ1, . . . , ξn)Σ(ξ1 + · · ·+ ξn)

n∏
1

Σ(ξ`)−1
(3.7)

belong to h−σS0,β(1, n) and h−σSδ,β(〈x〉−∞, n) respectively, for some σ de-
pending only on δ, β, q and so on δ, β, ρ as −1 6 q 6 ρ+1, satisfying (1.36).
By (i), (iii) of Proposition 1.5, we may write

Oph(Σ)Oph(mI)[vI ] = Oph(mΣ
I )[vΣ

I ]

Oph(Σ)Oph(aI)[vI ] = Oph(aΣ
I )[vΣ

I ] + h1−δOph(bI)[vI ]
(3.8)

for some bI in h−σSδ,β(〈x〉−∞, n). As Σ(hD) commutes to the operator
Dt − Oph(λ) (since Σ(D) commutes to Dt − p(D)), we deduce from (3.1)
and (3.8) that

(3.9) (Dt −Oph(λ))vΣ = h
∑
I∈Γ3

Oph(mΣ
I )[vΣ

I ] + h
3
2−σrΣ

for some new σ = σ(δ, β, ρ), where

‖Σ(hD)−1rΣ(t, ·)‖L2 6 C
(
‖v‖L∞+

√
h‖v‖Hs

h

)(
‖v‖L∞+

√
h‖v‖Hs

h

)2‖v‖L2

‖rΣ(t, ·)‖L∞ 6 C
(
‖v‖L∞+

√
h‖v‖Hs

h

)(
‖v‖L∞+

√
h‖v‖Hs

h

)2
×
[
‖v‖Hs

h
+‖v‖L∞

]
,

(3.10)

the last estimate following from the boundedness of Σ(hD) from W ρ+2,∞
h

to L∞ since q 6 ρ+1. If we apply Oph(Σ) to (3.3) and use (3.8), we obtain

(3.11) wΣ = vΣ −
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(aΣ
I )[vΣ

I ] + h2−σrΣ
1 ,

where rΣ
1 may be written as h−σOph(b̃I)[vI ] for some b̃I in Sδ,β(〈x〉−∞, n).

Using Proposition 1.7 (ii) and modifying the value of σ in (3.11), we may
thus estimate

‖〈x〉rΣ
1 (t, ·)‖L2 6 C(‖v‖L∞)‖v‖2L∞‖v‖L2

‖〈x〉rΣ
1 (t, ·)‖L∞ 6 C(‖v‖L∞)‖v‖3L∞ .

(3.12)

Our goal is to deduce from (3.9) an ODE satisfied by vΣ. In a first step, we
shall express vΣ from wΣ given by (3.11) through a local formula. Before
stating this result, we prove two preliminary lemmas.
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Lemma 3.1.
(i) Let c be a symbol in Sδ,β(M, 1) for some order function M . One may

find symbols e` in Sδ,β(〈x〉2−`M, 1), ` = 0, 1, 2 such that

(3.13) Oph
(
(x+ p′(ξ))2c(x, ξ)

)
= ihOph(c(x, ξ)p′′(ξ))+

2∑
`=0

h(2−`)(1−δ)Oph(e`)◦ [Oph(x+p′(ξ))]`.

(ii) Assume that in the preceding statement, c(x, ξ) = (x + p′(ξ))c̃(x, ξ)
with c̃ a symbol in Sδ,β(〈x〉−1

M, 1). Then one may drop the first term in
the right hand side of (3.13).

(iii) Let ã be an element of Sδ,0(
∑
〈ξ`〉Q, 1), for some Q ∈ N (depending

only on ρ), χ ∈ C∞0 (R), equal to one close to zero, γ ∈ C∞0 (R), equal to
one close to zero, with small enough support. Define for β > 0 such that
δ > (κ+ 1)β

c(x, ξ) = χ(hβξ)γ
(
(x+ p′(ξ))〈ξ〉κ

)
ã(x, ξ).

There is a family (θh(x))h of C∞0 (]− 1, 1[) functions, real valued, equal to
one on an interval [−1 + chβκ, 1− chβκ], satisfying ‖∂αθh‖L∞ = O(h−βκα)
and symbols e` in S2δ,β(〈x〉2−`, 1), ` = 0, 1, 2 such that

(3.14) Oph
(
(x+ p′(ξ))2c(x, ξ)

)
= ihOph

(
ã(x, dϕ(x))p′′(dϕ(x))θh(x)χ(hβξ)

)
+ h−σ

2∑
`=0

h(2−`)(1−2δ)Oph(e`) ◦ [Oph(x+ p′(ξ))]`.

(iv) Let n ∈ N∗, a an element of Sδ,β(
∑
〈ξ`〉Q〈x〉−1

, n), I ∈ Γn. There is a
symbol e0 in Sδ,β(1, n) such that if I = (i1, . . . , in) and wI = (wi1 , . . . , win)
with w1 = w,w−1 = w̄

(3.15) Oph
(
a(x, ξ1, . . . , ξn)(x+ p′(±ξ1))

)
[wi1 , . . . , win ]

= Oph(a)[Oph(x+p′(±ξ1))wi1 , wi2 , . . . , win ]+h1−σOph(e0)[wI ].

(v) If I = (i1, . . . , in) is in Γn, denote dϕI(x) = (i1dϕ(x), . . . , indϕ(x)).
Let a be in Sδ,0(

∑
〈ξ`〉Q, n) and χ, γ, θh as in (iii) above. Then if

c(x, ξ1, . . . , ξn) =
n∏
1

(
χ(hβξ`)γ((x+ p′(i`ξ`))〈ξ`〉κ)

)
a(x, ξ1, . . . , ξn)

TOME 66 (2016), FASCICULE 4



1506 Jean-Marc DELORT

we have

(3.16) Oph(c)[wI ]

= Oph
[
θh(x)a(x, dϕI(x))

∏
χ(hβξ`)

]
[wI ]

+ h−σ
n∑
`=1

Oph(e`)[wi1 , . . . ,Oph(x+p′(i`ξ`))wi` , . . . , win ]

+ h1−σOph(e0)[wI ]

where e` is in S2δ,β(1, n).

Proof.
(i) Since x + p′(ξ) is in S0,0(〈x〉, 1), formula (1.21) shows that we may

write

Oph
(
(x+ p′(ξ))2c

)
= ihOph

(
∂ξ[(x+ p′(ξ))c]

)
+ Oph

(
(x+ p′(ξ))c

)
◦Oph(x+ p′(ξ))

+ h2(1−δ)Oph(e0)

for some e0 in Sδ,β(〈x〉2M, 1). If we use once again the same formula, we
get (3.13).
(ii) In this case, the first term in the right hand side of (3.13) is equal to

the operator ihOph
(
c̃(x, ξ)p′′(ξ)(x + p′(ξ))

)
. Repeating the above reason-

ing, we see that this operator may be written as contributions to the sum
in (3.13).
(iii) We replace in the symbol c(x, ξ)p′′(ξ) of the first term in the right

hand side of (3.13) c(x, ξ) by its value, and expand ã(x, ξ)p′′(ξ) at ξ =
dϕ(x). We get

c(x, ξ)p′′(ξ) = χ(hβξ)γ
(
(x+p′(ξ))〈ξ〉κ

)
[p′′(dϕ)ã(x, dϕ)+(x+p′(ξ))b(x, ξ)]

where

(3.17) b(x, ξ) =
∫ 1

0
∂ξ(ã(x, ·)p′′)(τξ + (1− τ)dϕ(x))dτ

(ξ − dϕ(x)
x+ p′(ξ)

)
.

By (1.29), (1.31) and the fact that 〈dϕ〉 ∼ 〈ξ〉 on the support, we see that
the product χ(hβξ)γ

(
(x+ p′(ξ))〈ξ〉κ

)
b(x, ξ) is an element of

h−δS2δ,β(〈ξ〉κ+1+Q
, 1) ⊂ h−δ−β(κ+1+Q)S2δ,β(1, 1)

if δ > (κ + 1)β. Consequently, up to en extra h−σ loss coming from the
above inclusion, the first term in the right hand side of (3.13) may be
written as a contribution to the sum in (3.14) and as

(3.18) ihOph
(
p′′(dϕ)ã(x, dϕ)χ(hβξ)γ((x+ p′(ξ))〈ξ〉κ)

)
.
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By (1.30), the symbol in (3.18) is supported for x inside some interval
[−1 + chκβ , 1− chκβ ], so that we may find θh as in the statement which is
equal to one on that support. We may thus write (3.18) as the first term
in the right hand side of (3.14), modulo

ihOph
(
p′′(dϕ)ã(x, dϕ)θh(x)χ(hβξ)(1− γ)((x+ p′(ξ))〈ξ〉κ)

)
.

According to (ii), this last operator may be written as a contribution to
the sum in (3.14) (as 〈dϕ(x)〉Qθh(x) = O(h−σ) for a convenient σ).
(iv) Equality (3.15) is just a restatement of (i) of Proposition 1.5 (under

a weaker form), using that Sδ,β(
∑
〈ξ`〉Q, n) ⊂ h−βQSδ,β(1, n).

(v) The proof is similar to the one in (iii). Expanding a(x, ξ) in the
expression of c at ξ = dϕI(x), we write Oph(c)[wI ] as the sum of

Oph
(
a(x, dϕI)

∏
(χ(hβξ`)γ((x+ p′(i`ξ`))〈ξ`〉κ))

)
[wI ]

and of expressions of the form

Oph
(
b`(x+ p′(i`ξ`))

∏
(χ(hβξj)γ((x+ p′(ijxij))〈ξj〉κ))

)
with

b`(x, ξ) =
∫ 1

0
(∂ξ`a)(x, τξ + (1− τ)dϕI(x)) dτ ξ − i`dϕ(x)

x+ p′(i`ξ`)
.

The product b`
∏

(χ(hβξj)γ((x+ p′(ijξj))〈ξj〉κ)) belongs to h−σS2δ,β(1, n)
if δ > (κ+ 1)β and the conclusion follows as in the proof of (iii). �

Lemma 3.2.
(i) Let Q be in N (depending only on ρ), β > 0, δ > β(κ + Q), δ small

enough. Let a be a symbol in Sδ,0(
∑
〈ξ`〉Q, n). With the notation (3.6), we

may write

(3.19) Oph
(
a

n∏
1
χ(hβξ`)

)
[wΣ
I ] = θh(x)a(x, dϕI(x))wΣ

I + h
1
2−σrΣ

I

where rΣ
I satisfies estimates

‖rΣ
I (t, ·)‖L∞ 6 C

(
‖w‖L∞ +

√
h‖w‖Hs

h

)n−1(‖Lw‖L2 + ‖w‖Hs
h
)

‖rΣ
I (t, ·)‖L2 6 Ch1/2(‖w‖L∞ +

√
h‖w‖Hs

h

)n−1(‖Lw‖L2 + ‖w‖Hs
h
)

(3.20)

and where, in the right hand side of (3.19), wΣ
I stands for wΣ

i1
· · ·wΣ

in
.

(ii) Let a be a symbol in Sδ,0(〈x〉〈ξ〉, 1). Then if ∂a∂ξ (x, dϕ) ≡ 0,

(3.21) Oph(χ(hβξ)a)wΣ

= θh(x)a(x, dϕ)wΣ + hθh(x)
[ i

2
(∂2
ξa)(x, dϕ)
p′′(dϕ)

]
wΣ + h

3
2−σrΣ
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where rΣ satisfies the bounds

‖rΣ(t, ·)‖L∞ 6 C
( 2∑
`=1
‖L`w‖L2 + ‖w‖Hs

h

)
‖rΣ(t, ·)‖L2 6 Ch1/2( 2∑

`=1
‖L`w‖L2 + ‖w‖Hs

h

)
.

(3.22)

Without the assumption that ∂ξa vanishes on ξ = dϕ, we have instead the
equality

(3.23) Oph(χ(hβξ)a)wΣ = θh(x)a(x, dϕ)wΣ + h
1
2−σrΣ

where rΣ satisfies (3.22).

Proof.
(i) Taking γ in C∞0 (R), with small enough support, γ ≡ 1 close to zero,

we decompose a(x, ξ1, . . . , ξn)
∏n

1 χ(hβξ`) = a1 + a2 with

a1(x, ξ1, . . . , ξn) = a(x, ξ1, . . . , ξn)
n∏
1

(
χ(hβξ`)γ

(
(x+ p′(i`ξ`)〈ξ`〉κ)

))
.

We may decompose a2 as a sum of symbols a`2(x + p′(i`ξ`)) with a`2 in
the class of symbols Sδ,β((

∑
〈ξ`〉)Q+κ〈x〉−1

, n). Using (iv) of the preceding
lemma, we may write Oph(a2)[wΣ

I ] as a sum of expressions

(3.24) Oph(a`2)[wΣ
i1 , . . . , hLi`w

Σ
i`
, . . . , wΣ

in ] + h1−σOph(e)[wΣ
I ].

Commuting Oph(Σ) to Li` , we may rewrite this from w as

(3.25) hOph(ã`2)[wi1 , . . . ,Oph(〈ξ〉−1)Li`wi` , . . . , win ]

+ hOph(ẽ)[wi1 , . . . ,Oph(〈ξ〉−1)wi` , . . . , win ]

for some new symbols ã`2 in Sδ,β((
∑
〈ξ`′〉)Q

′
, n) ⊂ h−βQ

′
Sδ,β(1, n) (for

some Q′ depending only on ρ) and ẽ in h−σSδ,β(1, n). By (1.25), the L2

norm of this quantity is bounded from above by the right hand side of the
second inequality (3.20) multiplied by h 1

2−σ. To obtain the L∞ estimate,
we use (1.25) with q =∞, to bound the L∞ norm of (3.25) by

Ch1−σ‖w‖n−1
L∞

(
‖Oph(〈ξ〉−1)Lw‖L∞ + ‖Oph(〈ξ〉−1)w‖L∞

)
.

Using the Sobolev injection (1.24), we control this by the product of the
right hand side of the first inequality (3.20) multiplied by h 1

2−σ.
Consider now the contribution of Oph(a1)[wΣ

I ]. By (3.16), we may write
this as a term of the form (3.24) multiplied by h−σ, that has already be
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treated, and of

(3.26) Oph[θh(x)a(x, dϕI)
∏

χ(hβξ`)][wΣ
I ]

= θh(x)a(x, dϕI)wΣ
I + Oph[θh(x)a(x, dϕI)(1−

∏
χ(hβξ`))][wΣ

I ].

In the last term, one of the frequencies is localized for |ξ`| > ch−β , so that,
if β(s − ρ) is large enough, its L2 norm may be controlled by
hN‖wΣ‖n−1

L∞ ‖w‖Hsh . We may always bound

‖wΣ‖L∞ 6 ‖Oph(χ(hβξ)Σ(ξ))w‖L∞ + ‖Oph((1− χ)(hβξ)Σ(ξ))w‖L∞

6 Ch−σ‖w‖L∞ + Ch1/2‖w‖Hs
h

for large enough βs, in order to estimate the L2 norm of the last term
in (3.26) by the right hand side of the second estimate (3.20). One argues
in the same way for the L∞ norm using Sobolev embedding (1.24). This
concludes the proof of (i).
(ii) We study Oph(aχ(hβξ))wΣ. We decompose

a(x, ξ)χ(hβξ) = a(x, ξ)χ(hβξ)γ
(
(x+ p′(ξ))〈ξ〉κ

)
+ a1(x, ξ)

and we may write a1(x, ξ)Σ(ξ) = c(x, ξ)(x + p′(ξ))2, where c is in
Sδ,β(〈x〉−1〈ξ〉ρ+2+2κ) and satisfies the assumptions of (ii) of Lemma 3.1
with M = 〈ξ〉ρ+2+3κ. It follows that

(3.27) ‖Oph(a1)wΣ‖L2 6
2∑
`=0

h2−δ(2−`)‖Oph(e`)L`w‖L2

with e` in Sδ,β(〈x〉2−`〈ξ〉ρ+2+3κ
, 1) ⊂ h−σSδ,β(〈x〉2−`, 1). We deduce from

that a bound of ‖Oph(a1)wΣ‖L2 by h2−σ(∑2
0‖L`w‖L2

)
using Proposi-

tion 1.7. We thus got an estimate by the product of h 3
2−σ and the right

hand side of the second inequality (3.22). To get the L∞ bound, we use
again Sobolev embedding

‖Oph(a1)wΣ‖L∞ 6 Ch−1/2‖Oph(a1)wΣ‖H1
h

and deduce an estimate by h
3
2−σ times the right hand side of the first

inequality (3.22) arguing as above, with ρ replaced by ρ + 1. We thus
reduced ourselves to the study of

(3.28) Oph
(
a(x, ξ)χ(hβξ)γ

(
(x+ p′(ξ))〈ξ〉κ

))
wΣ.
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The symbol of this operator may be expanded at order 2 on ξ = dϕ(x)
i.e. using that ∂a

∂ξ (x, dϕ) ≡ 0, written as

χ(hβξ)γ
(
(x+ p′(ξ))〈ξ〉κ

)
a(x, dϕ) + c(x, ξ)(x+ p′(ξ))2

with c(x, ξ) = χ(hβξ)γ
(
(x+ p′(ξ))〈ξ〉κ

)
ã(x, ξ) and

ã(x, ξ) = γ̃
(
(x+p′(ξ))〈ξ〉κ

)( ξ−dϕ
x+p′(ξ)

)2∫ 1

0

∂2a

∂ξ2 (x, τξ+(1−τ)dϕ(x))(1−τ)dτ

where γ̃ ∈ C∞0 (R), γ̃γ ≡ γ. Then c satisfies the assumptions of (iii) of
Lemma 3.1, with ã(x, dϕ) = p′′(dϕ)−2

2
∂2a
∂ξ2 (x, dϕ). According to this lemma,

we may write (3.28) as the sum of

(3.29) Oph
(
χ(hβξ)γ

(
(x+ p′(ξ))〈ξ〉κ

)
a(x, dϕ)

)
wΣ

+ hOph
( i

2
∂2
ξa(x, dϕ)
p′′(dϕ) θh(x)χ(hβξ)

)
wΣ

and of terms whose L2 norm will be bounded by h−σ times the right hand
side of (3.27) (up to a change of δ), so that will contribute to the remainder
in (3.21). We are left with writing (3.29) as the first two terms in the right
hand side of (3.21), up to new remainders. We may eliminate the factor
γ
(
(x + p′(ξ))〈ξ〉κ

)
up to a θh cut-off as after (3.18). Finally, the cut-off

χ(hβξ) may be removed as in (3.26). This concludes the proof of (3.21).
Formula (3.23) is shown similarly. �

Proposition 3.3.
(i) There is a family (θh)h of C∞0 (R) functions, supported in some interval

[−1+chβκ, 1−chβκ], with (h∂h)kθh bounded uniformly in h, such that, if a
is an element of Sδ,0(〈x〉〈ξ〉, 1) with ∂ξa(x, dϕ) ≡ 0, there are a continuous
R+-valued function C(·) and a constant C1 > 0, so that one may write

(3.30) Oph(a)vΣ = θh(x)a(x, dϕ)wΣ + i
h

2 θh(x)
(∂2
ξa)(x, dϕ)
p′′(dϕ) wΣ

+ h
∑

I∈Γnch
3

θh(x)ν̃Σ
I (x)wΣ

I + h
3
2−σrΣ

ANNALES DE L’INSTITUT FOURIER
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where ν̃Σ
I (x) = a(x,

∑
i`dϕ)aΣ

I (x, dϕI), with aΣ
I given by (3.7), and where

the remainder rΣ satisfies estimates
(3.31)
‖rΣ(t, ·)‖L2 6 C(‖v‖L∞ ,‖w‖L∞ ,

√
h‖w‖Hs

h
)(‖v‖L∞+‖w‖L∞+

√
h‖w‖Hs

h
)2

× (‖w‖Hs
h

+
2∑
1
‖Lkw‖L2 +‖v‖Hs

h
)

+ C1(‖w‖Hs
h

+
2∑
1
‖Lkw‖L2 +‖v‖Hs

h
)

‖rΣ(t, ·)‖L∞ 6 C(‖v‖L∞ ,‖w‖L∞ ,
√
h‖w‖Hs

h
)(‖v‖L∞+‖w‖L∞+

√
h‖w‖Hs

h
)2

× (‖w‖Hs
h

+
2∑
1
‖Lkw‖L2 +‖v‖Hs

h
+‖v‖L∞+‖w‖L∞)

+ C1(‖w‖Hs
h

+
2∑
1
‖Lkw‖L2 +‖v‖Hs

h
).

(ii) Let I be in Γn and denote by mI the function defined by (1.69). Set

(3.32) mΣ
I (ξ1, . . . , ξn) = Σ(ξ1 + · · ·+ ξn)mI(ξ1, . . . , ξn)

∏
Σ(ξ`)−1.

This is an element of Sδ,β(
∑
〈ξ〉Q, n) for some Q ∈ N. Set

(3.33) ν̌Σ
I (x) = Σ

(∑
`

i`dϕ
)∏

Σ(i`dϕ)−1mI(dϕI).

Then

(3.34) Oph(mΣ
I )[vI ] = θh(x)ν̌Σ

I (x)vΣ
I (x) + h

1
2−σrΣ

I

where the remainder satisfies

‖rΣ
I (t, ·)‖L∞ 6 C(‖v‖L∞ ,‖w‖L∞ ,

√
h‖w‖Hs

h
)(‖v‖L∞+‖w‖L∞+

√
h‖w‖Hs

h
)2

×(‖w‖Hs
h

+‖Lw‖L2 +‖v‖L∞+‖w‖L∞)

‖rΣ
I (t, ·)‖L2 6 C(‖v‖L∞ ,‖w‖L∞ ,

√
h‖w‖Hs

h
)(‖v‖L∞+‖w‖L∞+

√
h‖w‖Hs

h
)2

×(‖w‖Hs
h

+‖Lw‖L2 +‖v‖L2).

(3.35)

Proof.
(i) We start proving the following estimates, when a is a symbol in

Sδ,0(〈x〉〈ξ〉, 1) and Σ(ξ) satisfies |∂kξΣ(ξ)| = O(〈ξ〉ρ+1−k):

‖Oph(a)[Oph(Σ)v]‖L2 6 C
( 2∑

0
‖(hL)kv‖L2

) 1
2 ‖v‖

1
2
H2ρ+4
h

,(3.36)
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‖Oph(a)[Oph(Σ)v]‖L∞ 6 Ch−
1
2
( 2∑

0
‖(hL)kv‖L2

) 1
2 ‖v‖

1
2
H2ρ+6
h

.(3.37)

To prove (3.36), we notice that a(x, ξ)Σ(ξ) may be written as (xa′(x, ξ) +
a′′(x, ξ))〈ξ〉ρ+2 with a′, a′′ in Sδ,0(1, 1). By (i) of Proposition 1.7, and the
fact that [x,Oph(a′)] = Oph(ih∂ξa′), we see that (3.36) is bounded by
‖xv1‖L2 + ‖v1‖L2 with v1 = Oph(〈ξ〉ρ+2)v. We estimate

‖xv1‖L2 6 ‖x2v1‖
1
2
H−ρ−2
h

‖v1‖
1
2
Hρ+2
h

6 C
( 2∑

0
‖(hL)kv‖L2

) 1
2 ‖v‖

1
2
H2ρ+4
h

‖v1‖L2 6 C‖v‖
1
2
L2‖v‖

1
2
H2ρ+4
h

which gives (3.36). To prove (3.37), we write by Sobolev injection

‖Oph(a)[Oph(Σ)v]‖L∞ 6 Ch−
1
2 ‖Oph(a)[Oph(Σ)v]‖H1

h

and deduce (3.37) from (3.36) applied with ρ replaced by ρ+ 1.
To proceed, let us use (3.11) to express vΣ from wΣ, Oph(aΣ

I )[vΣ
I ] and

the remainders. In the multilinear terms, let us express again vΣ from wΣ.
We obtain

(3.38) vΣ = wΣ +
4∑

n=3
h
n−1

2
∑

I∈Γnch
n

Oph(aΣ
I )[wΣ

I ]

+
7∑

n=5
h
n−1

2 −σ
∑
I∈Γn

Oph(bΣI )[vΣ
I ] + h2−σrΣ

2

where bΣI are some new symbols in Sδ,β(〈x〉−∞, n) and where rΣ
2 is com-

puted from the remainder in (3.11), and from expressions of the form
Oph(aΣ

I )[wΣ
i1
, . . . , rΣ

1 , . . . , w
Σ
i1

]. As aΣ
I may be written from (3.7) as

ãΣ
I

∏
Σ(ξ`)−1 for some ãΣ

I in h−σSδ,β(〈x〉−∞, n), we see that the L2

(resp. L∞) norm of the product of 〈x〉 by each element of the sums in (3.38)
corresponding to some n > 4 is controlled, according to (1.25), by

C(‖v‖L∞ , ‖w‖L∞)[‖v‖L∞ + ‖w‖L∞ ]2(‖v‖L2 + ‖w‖L2)h 3
2−σ

(resp. C(‖v‖L∞ , ‖w‖L∞)[‖v‖L∞ + ‖w‖L∞ ]3h 3
2−σ). In the same way, us-

ing (3.12), we bound ‖〈x〉rΣ
2 ‖L2 and ‖〈x〉rΣ

2 ‖L∞ by the same quantities,
up to the factor h 3

2 . Consequently, we have obtained that

(3.39) vΣ = wΣ + h
∑

I∈Γnch
3

Oph(aΣ
I )[wΣ

I ] + h
3
2−σrΣ
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where rΣ satisfies

‖〈x〉rΣ‖L2 6 C(‖v‖L∞ , ‖w‖L∞)(‖v‖L∞+‖w‖L∞)2(‖v‖L2 +‖w‖L2)

‖〈x〉rΣ‖L∞ 6 C(‖v‖L∞ , ‖w‖L∞)(‖v‖L∞+‖w‖L∞)3.
(3.40)

Consider now a symbol a in Sδ,0(〈x〉〈ξ〉, 1) and write

(3.41) Oph(a)vΣ = Oph(aχ(hβξ))vΣ + Oph
(
aΣ(ξ)(1− χ)(hβξ)

)
v.

If we apply (3.36), (3.37) with v replaced by Oph((1− χ)(hβξ))v, and use
the estimate

‖Oph((1− χ)(hβξ))v‖Hs′
h
6 Chβ(s−s′)‖v‖Hs

h
,

we see that for (s − ρ)β large enough, the high frequency contribution
in (3.41) is bounded by the last term in the right hand side of (3.31)
multiplied by h3/2. We are thus reduced to the first term which, in view
of (3.39), may be written

(3.42) Oph(aχ(hβξ))wΣ + h
∑

I∈Γnch
3

Oph(aχ(hβξ))Oph(aΣ
I )[wΣ

I ]

+ h
3
2−σOph(aχ(hβξ))rΣ.

As aχ(hβξ)) is in h−βSδ,β(〈x〉, 1), it follows from Proposition 1.7 and esti-
mate (3.40) that the last term will contribute to the remainders in (3.30).
The first term is expressed by (3.21) in terms of the first two terms in the
right hand side of (3.30) and of a remainder bounded by the last term in
each formula (3.31). We are reduced to the study of the middle expression.
Using Proposition 1.5 we may write

(3.43) Oph
(
aχ(hβξ)

)
Oph(aΣ

I )[wΣ
I ]

= Oph
(
a(x, ξ1+· · ·+ξn)χ(hβ(ξ1+· · ·+ξn))aΣ

I (x, ξ1, . . . , ξn)
)
[wΣ
I ]

+h1−σOph(bI)[wI ]

for some bI in Sδ,β(1, n). The last term will bring a contribution to the
remainder in (3.30). The first one may be written, introducing a new cut-
off χ1 ∈ C∞0 (R), equal to one close to zero, with small enough support,
as

(3.44) Oph
(
a(x, ξ1 + · · ·+ ξn)aΣ

I (x, ξ1, . . . , ξn)
∏

χ1(hβξ`)
)
[wΣ
I ]

+ Oph
(
c(ξ1, . . . , ξn)χ(hβ(ξ1 + · · ·+ ξn))(1−

∏
χ1(hβξ`))

)
[wΣ
I ]
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for some c in h−σSδ,β(〈x〉−∞, n). By (3.19), the contribution of the first
term to (3.42) will be of the form

hθh(x)ν̃Σ
I (x)wΣ

I + h
3
2−σrΣ

with rΣ satisfying (3.31) and ν̃Σ
I (x) = a(x,

∑
i`dϕ)aΣ

I (x, dϕI(x)). On
the other hand the L2 (resp. L∞) norm of the last term in (3.44) is
bounded using (1.25) by Ch−σ‖w‖n−1

L∞ ‖Oph((1− χ2)(hβξ))w‖L2 (resp. by
Ch−σ‖w‖n−1

L∞ ‖Oph((1−χ2)(hβξ))w‖L∞) for some new χ2 ∈ C∞0 (R), χ2 ≡ 1
close to zero. This term will be thus controlled by hN‖w‖n−1

L∞ ‖w‖Hsh if sβ
is large enough relatively to N , so brings again a contribution to the re-
mainder.
(ii) We compute Oph(mΣ

I )(vΣ
I ) expressing vΣ from wΣ and higher or-

der terms in vΣ, according to (3.11). We obtain contributions of the form
Oph(mΣ

I )(wΣ
I ) which, according to (3.19), have the wanted form, and con-

tributions which, due to the composition result (1.22), may be written

(3.45) hOph(b)[ṽΣ
1 , . . . , ṽ

Σ
n ]

where b is in h−σSδ,β(〈x〉−∞, n), n > 3, and ṽΣ
` stands for either vΣ or wΣ.

As vΣ (resp. wΣ) may be replaced by v (resp. w) up to multiplication of b
by a factor Σ(ξ`), which just changes the exponent σ by a multiple of β,
we see using Proposition 1.7 that the Lp norm of (3.45) is bounded from
above by

h1−σC(‖v‖L∞ + ‖w‖L∞)(‖v‖L∞ + ‖w‖L∞)2(‖v‖Lp + ‖w‖Lp), p = 2,∞

so gives a contribution to the remainder. �

We use the preceding results to derive an ODE from equation (3.1).

Proposition 3.4. — Assume that we are given constants A,B > 0,
some T > 1 and a solution v ∈ L∞([1, T ], Hs

h) ∩ L∞([1, T ],W s,∞
h ) of equa-

tion (3.1), satisfying the following a priori bounds, for any ε ∈]0, 1], t ∈ [1, T ]

‖v(t, ·)‖Hs
h

+ ‖w(t, ·)‖Hs
h

+
2∑
1
‖Lkw(t, ·)‖L2 6 Ah−σε(3.46)

‖w(t, ·)‖L∞ + ‖v(t, ·)‖L∞ 6 Bε(3.47)

for some σ of the form (1.36), small enough. Denote by I0 = (1, 1,−1) the
unique element of Γch

3 . Then, with the notation of the preceding proposition,
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vΣ solves the ordinary differential equation

(3.48) Dtv
Σ(t, x)

= θh(x)ω(x)vΣ(t, x) + hθh(x)mI0
(dϕI0(x))Σ(dϕ)−2|vΣ|2vΣ

+ hθh(x)
∑

I∈Γnch
3

νΣ
I (x)vΣ

I + h
3
2−σrΣ(t, x),

for a new σ satisfying (1.36), wheremI0
(dϕI0(x)) is given by (1.53), νΣ

I (x) is
a smooth function that satisfies estimates of the form |(h∂h)k[θh(x)νΣ

I (x)]|6
Ch−σ, and where the remainder rΣ is such that

(3.49) ‖rΣ(t, ·)‖L∞ 6 C(A,B)ε3 + C1Aε

for some continuous function C(·, ·) and some constant C1. If Σ = O(1),
we have also

(3.50) ‖rΣ(t, ·)‖L2 6 C(A,B)ε3 + C1Aε.

Proof. — We make act Oph(Σ) on (3.1) and write in the right hand
side v = Oph(Σ−1)vΣ. Since Σ(ξ) = O(〈ξ〉ρ+1), Oph(Σ) is bounded from
W ρ+2,∞
h to L∞, so that the second estimate (3.2) implies that hσOph(Σ)r

satisfies (3.49). When Σ = O(1), the first inequality (3.2) implies that (3.50)
holds. Since Oph(Σ) commutes to the linear part in (3.1), we get

(Dt −Oph(λ))vΣ = h
∑
I∈Γ3

Oph(mΣ
I )[vΣ

I ] + h
3
2−σrΣ

1

with a new σ, rΣ
1 satisfying (3.49) and (3.50), and mΣ

I given by (3.32).
Applying (3.34) to the first term in the right hand side, we obtain the
second term and contributions to the third one in the right hand side
of (3.48), noticing that when I = I0, ν̌Σ

I (x) = Σ(dϕ)−2mI0
(dϕI0), with

the last factor computed in (1.53). On the other hand, Oph(λ)vΣ may be
computed from (3.30). One gets

(3.51) Oph(λ)vΣ

= θh(x)(x · dϕ+ p(dϕ))wΣ + h
∑

I∈Γnch
3

θh(x)ν̃Σ
I (x)wΣ

I + h
3
2−σrΣ

2

where rΣ
2 satisfies (3.31), ν̃Σ

I (x) is of the same form as νΣ
I (x) in the state-

ment. We still need to express the right hand side of (3.51) from v. We
may do that using (3.30) with a ≡ 1, θh replaced by a function θ̃h of the
same form with θhθ̃h = θh, up to a modification of the contributions in-
dexed by I ∈ Γnch

3 and of the remainder. Since x · dϕ + p(dϕ) = ω, we
obtain (3.48). �
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3.2. Uniform estimates and global existence

Let us deduce from the ODE obtained in Proposition 3.4 uniform bounds
for our solution. Let us rewrite equation (3.48) in a more explicit way. The
elements I of Γnch

3 are (1, 1, 1), (1,−1,−1), (−1,−1,−1). The correspond-
ing trilinear expressions vΣ

I are respectively (vΣ)3, |vΣ|2v̄Σ, (v̄Σ)3 and the
weights νΣ

I (x) will be denoted as ΦΣ
3 ,ΦΣ

−1,ΦΣ
−3. Moreover, the weight of

|vΣ
I |

2
vΣ
I is

(3.52) ΦΣ
1 (x) = p̃(dϕ)−2Φ(x)Σ(dϕ)−2

according to (1.53). In particular, since Φ given by (1.8) is real valued, ΦΣ
1

is real valued and when Σ(ξ) = p̃(ξ)−1, ΦΣ
1 ≡ Φ. In the special case of the

Klein-Gordon equation, Φ is given by (1.14). Equation (3.48) may thus be
written

(3.53) Dtv
Σ = θh(x)ω(x)vΣ

+hθh(x)
[
ΦΣ

3 (vΣ)3+ΦΣ
1 |vΣ|2vΣ+ΦΣ

−1|vΣ|2v̄Σ+ΦΣ
−3(v̄Σ)3]

+h 3
2−σrΣ(t, x)

with still h = 1/t and rΣ satisfying (3.49), (3.50).

Proposition 3.5.
(i) There are a continuous function (A,B)→ C(A,B), a constant C1 > 0,

a polynomial P2 of valuation at least 2, and a function σ satisfying condi-
tion (1.36) such that, if v ∈ L∞([1, T ], Hs

h)∩L∞([1, T ],W ρ,∞
h ) solves (3.1)

on [1, T ] × R for some T > 1, and satisfies for any ε in an interval ]0, ε0[
with ε0 6 1, any t ∈ [1, T ], the inequalities

‖v(t, ·)‖Hs
h

+ ‖w(t, ·)‖Hs
h

+
2∑
1
‖Lkw(t, ·)‖L2 6 Ah−σε

‖w(t, ·)‖L∞ + ‖v(t, ·)‖L∞ 6 Bε,
(3.54)

where w is defined from v by (3.3), then for any ε ∈]0, ε0], any t ∈ [1, T ],
h = 1/t,

(3.55) ‖Oph(〈ξ〉ρ+1)v(t, ·)‖L∞

6 ‖〈D〉ρ+1
v(1, ·)‖L∞ + P2(‖Oph(〈ξ〉ρ+1)v(t, ·)‖L∞)

+ P2(‖〈D〉ρ+1
v(1, ·)‖L∞) + C(A,B)ε2 + C1Aε.

(ii) Moreover, if T = +∞, there is a family of functions (θh(x))h, C∞,
real valued, supported in some interval [−1 + chκβ , 1 − chκβ ], such that
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for any k (h∂h)kθh(x) is bounded, and a family (aε)ε∈]0,ε0] of C-valued
continuous functions on R, supported in [−1, 1], uniformly bounded, such
that, with h = 1/t

(3.56) p̃(hD)−1v(t, x)

= εaε(x) exp
[
iω(x)

∫ t

1
θ1/τ (x) dτ+iε2|aε(x)|2Φ(x)

∫ t

1
θ1/τ (x) dτ

τ

]
+t− 1

2 +σr1(t, x)

where supt‖r1(t, ·)‖L2∩L∞ 6 C(A,B)ε.

Proof.
(i) Let us prove first (3.55). Since v is a solution of (3.1), vΣ with Σ(ξ) =

〈ξ〉ρ+1 solves (3.53). We take θ̃h of the same form as θh, with θ̃hθh ≡ θh.
We define

(3.57) fΣ(t, x) = vΣ− h2
θ̃h(x)
ω(x) ΦΣ

3 (x)(vΣ)3+ h

2
θ̃h(x)
ω(x) ΦΣ

−1(x)|vΣ(x)|2v̄Σ(x)

+ h

4
θ̃h(x)
ω(x) ΦΣ

−3(x)(v̄Σ(x)))3.

Notice that ω does not vanish on the support of θ̃h. Actually ω is given
by (1.11) ω(x) = xdϕ(x) + p(dϕ(x)), so that, since x = −p′(dϕ), dω = dϕ

and ω is a strictly concave function going to zero when |x| → 1−. Moreover,
when |x| → 1−, it follows from (1.1), (1.2), (1.32), that

ω(x) = xdϕ(x) + p(dϕ(x)) = −p′(dϕ(x))dϕ(x) + p(dϕ(x)) > c|dϕ(x)|−κ+1

so that, when x stays in Supp θh, ω(x) > chβ(κ−1) by (1.30). We notice also
that we may bound

‖vΣ(t, ·)‖L∞

= ‖Oph(〈ξ〉ρ+1)v(t, ·)‖L∞

6 ‖Oph(〈ξ〉ρ+1
χ(hβξ))v(t, ·)‖L∞+‖Oph(〈ξ〉ρ+1(1−χ)(hβξ))v(t, ·)‖L∞

6 Ch−β(ρ+3)‖v(t, ·)‖L∞+Ch−1/2‖Oph((1−χ)(hβξ))v(t, ·)‖Hρ+2
h

where we used (ii) of Proposition 1.7 to estimate the first term in the
middle inequality and the Sobolev embedding (1.24) for the second one.
Consequently, if we take γ > β(ρ+3) and sβ large enough, we may control

(3.58) hγ‖vΣ(t, ·)‖L∞ = O(‖v‖L∞ + ‖v‖Hs
h
hσ) 6 C(A,B)ε

according to assumption (3.54).

TOME 66 (2016), FASCICULE 4



1518 Jean-Marc DELORT

We compute the equation satisfied by fΣ from (3.57) and (3.53). We
obtain that fΣ solves

(3.59) Dtf
Σ = θh(x)

[
ω(x) + hΦΣ

1 (x)|fΣ(t, x)|2
]
fΣ(t, x)

+ h
3
2P2(hγvΣ, hγ v̄Σ) + h

3
2−σrΣ(t, x)

for some small γ > 0, independent of all parameters, where P2 is a polyno-
mial, vanishing at least at order 2 at zero, whose coefficients are bounded
by C(A,B)ε, according to (3.49), (3.58) and the fact that the functions ΦΣ

`

are O(h−σ) on the support of θ̃h by Proposition 3.4. Since ΦΣ
1 is real valued

we conclude, using equation (3.49), that

(3.60) |fΣ(t,x)| 6 |fΣ(1,x)|+
∫ t

1
C
(
τ−γ‖vΣ(τ, ·)‖L∞

)
τ−2γ‖vΣ(τ, ·)‖2L∞

dτ

τ3/2

+ C(A,B)ε3 + C1Aε

for some new continuous increasing function C(·). Expressing fΣ from vΣ

in (3.60) and using (3.58), we conclude that we have the bound

|vΣ(t, x)| 6 |vΣ(1, x)|+P2(|vΣ(t, x)|)+P2(|vΣ(1, x)|)+C(A,B)ε2+C1Aε

for some new polynomial P2 of valuation at least two, with coefficients inde-
pendent of the solution. This gives (3.55) taking into account the definition
of Σ.
(ii) We take now Σ(ξ) = p̃(ξ)−1, so that vΣ = p̃(hD)−1v. The second a

priori assumption (3.54), which holds now on [1,+∞[, implies that vΣ is
uniformly O(ε). Since rΣ satisfies (3.49), we may rewrite (3.59) as

(3.61) Dtf
Σ = θh(x)

[
ω(x) + hΦ(x)|fΣ(t, x)|2

]
fΣ(t, x) + h

3
2−σg(t, x)

with supt>1‖g(t, ·)‖L∞ = O(ε), and ΦΣ
1 replaced by Φ according to (3.52).

Moreover, because of (3.50) and of the a priori L2 estimate for vΣ coming
from the first inequality (3.54), we have as well supt>1‖g(t, ·)‖L2 = O(ε)
(modifying eventually σ). As (3.61) shows that ∂t|fΣ|2 decays at an inte-
grable rate, there is a continuous function x→ |ã(x)| such that when t goes
to infinity, ||fΣ(t, x)|2 − |ã(x)|2| = O(εt− 1

2 +σ). Plugging this expansion in-
side (3.61), we get

(3.62) Dtf
Σ = θh(x)

[
ω(x) + hΦ(x)|ã(x)|2

]
fΣ(t, x) + h

3
2−σ g̃(t, x)
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for some g̃ with supt>1‖g̃‖L2∩L∞ = O(ε). This implies that there is a O(ε)
continuous function ã such that

(3.63) fΣ(t, x) = ã(x) exp
[
iω(x)

∫ t

1
θ1/τ (x)dτ+i|ã(x)|2Φ(x)

∫ t

1
θ1/τ (x)dτ

τ

]
+ t−

1
2 +σ g̃(t, x)

for a new g̃. Since (3.30) with a ≡ 1 shows that vΣ(t, x) vanishes when t
goes to +∞ and x 6∈ [−1, 1], we get that ã is supported in [−1, 1]. Finally,
as (3.57) and assumption (3.54) imply that ‖fΣ − vΣ‖L2∩L∞ = O(εh1−σ),
we deduce from (3.63) the wanted asymptotic expansion for p̃(hD)−1v =
vΣ. This concludes the proof as the O(ε) bound of ‖vΣ(t, ·)‖L∞ allows us
to write ã = εaε(x) for a bounded aε as in the statement. �

We are now in position of proving the main theorem.

Proof of Theorem 1.1. — Let us prove that for small enough initial
data, the solution is global. At the beginning of Subsection 1.3, we reduced
equation (1.6) to (1.47) and then, in Proposition 1.12, we showed that v
solves equation (1.63). To prove global existence, we just need to propagate
convenient estimates for v i.e. to show that if s � ρ � 1 are integers, we
may find constants A,B > 0, ε0 ∈]0, 1] and some σ > 0 small enough such
that, if (1.63) has a solution v defined for t in some interval [1, T ], belonging
to L∞([1, T ], Hs

h) ∩ L∞([1, T ],W ρ,∞
h ), that satisfies for h−1 = t ∈ [1, T ],

ε ∈]0, ε0]

(3.64)
‖v(t, ·)‖Hs

h
6 Aεh−σ, ‖〈hD〉ρ+1

v(t, ·)‖L∞ 6 Bε

‖Lw(t, ·)‖L2 6 Aεh−2σ, ‖L2w(t, ·)‖L2 6 Aεh−8σ,

where w is defined from v by (2.34), then for t in the same interval [1, T ],
one has actually

(3.65)
‖v(t, ·)‖Hs

h
6
A

2 εh
−σ, ‖〈hD〉ρ+1

v(t, ·)‖L∞ 6
B

2 ε

‖Lw(t, ·)‖L2 6
A

2 εh
−2σ, ‖L2w(t, ·)‖L2 6

A

2 εh
−8σ.

Notice that (1.9) and the expressions (1.45) of µ in function of ψ show
that at t = 1, the quantities (3.64) are finite. We may thus choose A and
B large enough relatively to the left hand side of (3.64) taken at t = 1. We
assume also that A/B and ε0 are small enough so that

(3.66) Bε0 < 1, C0B
2ε20 < σ, C1A <

B

8 ,
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where C0 is the constant in the statement of Lemma 1.11 and C1 is defined
in Proposition 3.5. It follows from (1.56) that the first inequality (3.65) will
hold.
We use next Proposition 2.8. By (3.64), assumption (2.35) holds for some

constant B1 depending on A,B. Moreover, the expression (2.34) of w in
terms of v, Proposition 1.7 (ii) and assumptions (3.64) imply, for ε0 small
enough, the inequality ‖w(t, ·)‖L2 6 2Aεh−σ. Plugging these informations
in (2.36), we get

‖Lw(t, ·)‖L2 6
A

4 ε+ 3ACB
2
1

2σ ε3h−2σ + 8CB1A
2ε3

for some universal constant C, if A has been taken large enough relatively
to ‖Lw(1, ·)‖L2 and 4σ small enough relatively to 1/4. If ε0 is small enough,
this is smaller than A

2 εh
−2σ, as wanted in (3.65).

To obtain the wanted bound for ‖L2w(t, ·)‖L2 in (3.65), we use Propo-
sition 2.14. We notice first that ‖L2u(t, ·)‖L2 satisfies an estimate sim-
ilar to the one for ‖L2w(t, ·)‖L2 in (3.64). Actually, the expression for
u − w coming from (2.59) contains at least h2−σ in factor. Since L =
h−1Oph(x+ p′(ξ)) and bI in (2.59) is in h−σSδ,β(1, n), L2(u− w) may be
written from h−2σOph(cI)[wI ] for some cI in Sδ,β(1, n), so that Proposi-
tion 1.7 implies that

(3.67) ‖L2(u− w)‖L2 6 h−3σC(‖w‖L∞)‖w‖L2‖w‖2L∞ .

The uniform estimate for w coming from the one assumed on v in (3.64)
implies then ‖L2u(t, ·)‖L2 6 2Aεh−8σ if ε0 is small enough. Similar proper-
ties hold for ‖Lu(t, ·)‖L2 , ‖u(t, ·)‖L2 , and for ‖u(t, ·)‖Hs

h
(see Lemma 2.13).

Plugging these bounds in (2.61), we obtain,

‖L2u(t, ·)‖L2 6
A

4 ε+ C1(A,B, σ)ε3h−8σ

if A has been taken large enough relatively to ‖L2u(1, ·)‖L2 , σ much smaller
than 1/4, and where C1(A,B) depends only on A,B, σ. Taking ε0 small
enough we get ‖L2u(t, ·)‖L2 6 A

3 εh
−8σ, which implies the wanted conclu-

sion ‖L2w(t, ·)‖L2 6 A
2 εh

−8σ according to (3.67), reducing eventually ε0.
Finally, if we plug the second estimate (3.64) inside (3.55), and take ε0
small enough, we obtain ‖〈hD〉ρ+1

v(t, ·)‖L∞ 6 Bε/2, if B has been taken
large enough so that ‖〈D〉ρ+1

v(1, ·)‖L∞ 6 Bε/4, and if we make use of the
last inequality (3.66). This shows that (3.65) holds, and thus concludes the
proof of global existence.
Let us prove the asymptotics. Take again Σ(ξ) = 〈ξ〉ρ+1 and write

p̃(hD)−1v(t, ·) = Oph(p̃(ξ)−1〈ξ〉−ρ−1)vΣ(t, ·). We may apply the analogous
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of (3.30) to symbols such that ∂a/∂ξ does not vanish necessarily. Using the
uniform estimate of ‖vΣ(t, ·)‖L∞ obtained in (3.65), we conclude that

Oph
(
p̃(ξ)−1〈ξ〉−ρ−1

)
vΣ = θh(x)

(
p̃(dϕ)−1〈dϕ〉−ρ−1)

wΣ +OL∞(εh1−σ).

Since wΣ is bounded as vΣ is, we conclude that the limit ã = εaε of
p̃(hD)−1v(t, ·) when t goes to +∞ satisfies |ã(x)| 6 Cε〈dϕ〉−ρ−2. If x ∈
] − 1, 1[ satisfies 〈dϕ〉 > αh−β , we obtain that |ã(x)| = O(εhβ(ρ+2)), so
that the corresponding contribution to the right hand side of (3.56) is
O(εt−min((ρ+2)β,− 1

2 +σ)) in L∞ ∩ L2.
Consider now x for which 〈dϕ〉 6 αh−β and assume that the cut-off θh

in (3.56) has been chosen to be equal to one on some interval of the form
[−1 + 2chκβ , 1− 2chκβ ]. Write∫ t

1
θ1/τ (x) dτ = t− 1 +

∫ +∞

1
(θ1/τ (x)− 1) dτ −

∫ +∞

t

(θ1/τ (x)− 1) dτ.

On the support of θ1/τ (x) − 1, we have either x < −1 + 2cτ−κβ or x >

1−2cτ−κβ , so that τ < C[min(1−x, x+ 1)]−1/κβ . The last integral in thus
taken on a finite interval for any x in ]− 1, 1[ and since |x± 1| ∼ |dϕ(x)|−κ

when x → ±1 by (1.30), we have τ 6 C〈dϕ〉1/β which contradicts t 6 τ

as we assume 〈dϕ〉 6 αh−β with a small enough α. Consequently, the last
integral vanishes identically and in (3.56), we may write

aε(x) exp
[
iω(x)

∫ t

1
θ1/τ (x) dτ

]
= aε(x)eig(x)eitω(x)

for some real valued continuous function on ]− 1, 1[

g(x) = ω(x)
[∫ +∞

1
(θ1/τ (x)− 1) dτ − 1

]
.

In the same way, for x satisfying 〈dϕ〉 6 αh−β , we write(∫ t

1
θ1/τ (x) dτ

τ

)
|aε(x)|2Φ(x) = |aε(x)|2Φ(x) log t+ g̃(x)

for some other real valued continuous function g̃. Modifying the value of aε
by a factor of modulus one, we deduce from (3.56) that

(3.68) p̃(hD)−1v(t, x)

= εaε(x) exp
[
itω(x) + i(log t)ε2|aε(x)|2Φ(x)

]
+ t−θr(t, x)

for some θ > 0 and ‖r(t, ·)‖L∞ uniformly bounded by O(ε). We have also a
similar bound for ‖r(t, ·)‖L2 since this was true for the remainder in (3.56)
and aε is in any case supported in [−1, 1]. Expansion (1.10) follows from
the expressions (1.45) of ψ in terms of µ and (1.57) of µ in terms of v. �
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Appendix A.

This appendix is devoted to the proof of several technical results. We
show first the statements concerning symbolic calculus of Subsection 1.2.

Proof of Proposition 1.5.
(i) An immediate computation shows that

Oph(a)[Oph(b)v1, v2, . . . , vn]

= 1
(2π)n

∫
eix(ξ1+···+ξn)c(x, hξ1, . . . , hξn)

n∏
1
v̂j(ξj) dξ1 · · · dξn

with

c(x, ξ1, . . . , ξn) = 1
2π

∫
e−izζa(x, ξ1 −

√
hζ, ξ′)b(x− z

√
h, ξ1) dzdζ

where ξ′ = (ξ2, . . . , ξn) and where the integral should be interpreted as an
oscillatory integral. Actually, making integrations by parts using 1−zDζ

1+z2 ,
1−ζDz
1+ζ2 and using (1.15), (1.18) and the fact that δ′, δ′′ 6 1/2, we obtain for
some integer N0 and all N,N ′ in N

|c(x, ξ1, . . . , ξn)| 6 CM(x, ξ1, . . . , ξn)M1(x, ξ1)

×
∫
〈ζ〉−N

′
〈z〉−N

′
〈
√
hζ〉

N0〈
√
hz〉

N0

×
(
1+βhβ(|ξ1−

√
hζ|+|ξ′|)

)−N
dzdζ.

If N ′ has been taken large enough, this is bounded by

CM(x, ξ1, . . . , ξn)M1(x, ξ1)(1 + βhβ |ξ|)−N .

Derivatives are studied in the same way. To get (1.21), we expand under
the integral giving c, the symbols a(x, ξ1 −

√
hζ, ξ′) (resp. b(x− z

√
h, ξ1))

at ζ = 0 (resp. z = 0) at order 2. We obtain the right hand side of (1.21)
with e given by the integral remainder of Taylor formula. One checks that
e lies in the wanted symbol class, as it has been done for c above.
(ii) is proved in the same way.
(iii) The proof is similar, except that c is given here by

c(x, ξ1, . . . , ξn)

= 1
2π

∫
e−izζb(x, ξ1 + · · ·+ ξn −

√
hζ)a(x− z

√
h, ξ1, . . . , ξn) dzdζ

and that we make the expansion only at order one. �

We give now the proof of the action properties of the preceding classes
of operators on Lq spaces.
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Proof of (ii) of Proposition 1.7. — With the notation of the statement,
write

a(x, ξ1, . . . , ξn) = ã(x, ξ1, . . . , ξn)
n∏
j=1

(
〈ξj〉ρ〈hβξj〉

−ρ−2)
.

Then by definition of the classes of symbols, ã belongs to Sδ,β(1, n). Let us
prove first (1.25) with a replaced by ã and the exponent β(ρ+ 3) replaced
by β i.e.

(A.1) ‖Oph(ã)(v1, . . . , vn)‖Lq 6 Ch−n(δ+β)
n−1∏
j=1
‖vj‖L∞‖vn‖Lq .

We may write

Oph(ã)(v1, . . . , vn) = 1
hn

∫
Kh

(
x,
x−y1

h
, . . . ,

x−yn
h

) n∏
1
vj(yj) dy1 . . . dyn

with

Kh(x, z1, . . . , zn) = 1
(2π)n

∫
ei[z1ξ1+···+znξn]ã(x, ξ1, . . . , ξn) dξ1 . . . dξn.

It follows from the definition of Sδ,β(1, n) that

|Kh(x, z1, . . . , zn)| 6 Ch−βn
n∏
1

(
1 + hδ|zj |

)−2

from which one deduces immediately (A.1).
To prove (1.25) in general, we notice that (A.1) implies

‖Oph(a)(v1, . . . , vn)‖Lq 6 Ch−n(δ+β)
n−1∏

1
‖〈hD〉ρ〈h1+βD〉−ρ−2

v`‖L∞

× ‖〈hD〉ρ〈h1+βD〉−ρ−2
vn‖L2 .

Notice also that, since bh(ξ) = 〈h−βξ〉ρ〈ξ〉−ρ−2 satisfies for any k ∈ N,
|∂kξ bh(ξ)| 6 Ckh−β(ρ+k)〈ξ〉−2, the kernel kh(z) =

∫
eizξbh(ξ) dξ is such that

‖kh‖L1 = O(h−β(ρ+2)). It follows that

(A.2) ‖〈hD〉ρ〈h1+βD〉−ρ−2
v`‖Lq 6 Ch−β(ρ+2)‖v`‖Lq ,

which implies the wanted estimate.
The bound (1.26) follows from (1.25) with q =∞ applied to the deriva-

tives of Oph(a)(v1, . . . , vn) up to order ρ.
To prove (1.27), we have to bound ‖Oph(〈ξ〉s)Oph(a)(v1, . . . , vn)‖L2 .

Using Proposition 1.5, we reduce ourselves to the study of
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‖Oph(b)(v1, . . . , vn)‖L2 for some b in Sδ,β(〈ξ1 + · · ·+ ξn〉s, n). We may de-
compose b =

∑n
`=1 b`, where on the support of b`, |ξ`| is larger than

c
(∑

j 6=` |ξj |
)
for some c > 0, so that b` is in Sδ,β(〈ξ`〉s, n) and thus may

be written as b′`〈ξ`〉
s for some b′` in Sδ,β(1, n). Applying (1.25) to a = b′`,

q = 2, ρ = 0, we obtain the wanted estimate (1.27). �

We study now the action of the multilinear operators introduced in (1.49)
on several spaces.

Proposition A.1. — Let ρ be a nonnegative integer, s a nonnegative
real number, θ ∈]0, 1[.
(i) Assume s < ρ. Let m be an element of the space S̃(1, n) of Defini-

tion 1.10. Then the associated operator Mm defined by (1.49) is bounded
from W ρ,∞ × · · · ×W ρ,∞ ×Hs to Hs. Moreover, one has the estimate

(A.3) ‖Mm(u1, . . . , un)‖Hs 6 C
n−1∏

1
‖uj‖Wρ,∞‖un‖Hs .

The same result holds making play the role of n to any other index in
{1, . . . , n}.
(ii) Assume s > ρ > 0. Then Mm is bounded from

∏n
1 (Hs ∩W ρ,∞) to

Hs and satisfies a bound

(A.4) ‖Mm(u1, . . . , un)‖Hs 6 C
n∑
j=1

(
‖uj‖Hs

∏
16`6n
` 6=j

‖u`‖Wρ,∞

)
.

(iii) For θ ∈]0, 1[, denote

‖u‖Cρ+θ =
ρ∑
k=0
‖∂ku‖L∞ + sup

x 6=y

|∂ρu(x)− ∂ρu(y)|
|x− y|θ

.

Then Mm is bounded from (Cρ+θ)n to W ρ,∞ with the estimate

(A.5) ‖Mm(u1, . . . , un)‖Wρ,∞ 6 C
n∑
j=1

(
‖uj‖Cρ+θ

∏
16`6n
` 6=j

‖u`‖Cθ
)
.
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Proof.
(i) We denote by 1 = χ(ξ) +

∑
k>1 φ(2−kξ) a Littlewood-Paley partition

of unity on R and decompose each uj as
∑
kj>0 φkj (D)uj where φ0(D) =

χ(D) and φkj (D) = φ(2−kjD) for kj > 0. In that way

(A.6) Mm(u1, . . . , un)

=
∑
k1>0

· · ·
∑
kn>0

∫
Kk1...kn(x− y1, . . . , x− yn)

∏
j

(
φkj (Dyj )uj(yj)

)
dy1 . . . dyn

where, with some cut-offs φ̃kj satisfying φ̃kjφkj ≡ φkj ,

(A.7) Kk1...kn(z1, . . . , zn)

= 1
(2π)n

∫
ei(z1ξ1+···+znξn)

∏
j

φ̃kj (ξ`j )m(ξ1, . . . , ξn) dξ1 . . . dξn.

By integrations by parts, one checks immediately using (1.48) that for any
N in N

(A.8) |Kk1...kn(z1, . . . , zn)| 6 CN2k1+···+kn
n∏
1

(1 + 2kj |zj |)−N .

Writing

φk(D)Mm(u1, . . . , un) =
∑
k1>0

· · ·
∑
kn>0

φk(D)Mm(φk1(D)u1, . . . , φkn(D)un)

one gets from (A.6), (A.8) that

(A.9) ‖φk(D)Mm(u1, . . . , un)‖L2

6 C
∑
k1>0

· · ·
∑
kn>0

n−1∏
`=1
‖φk`(D)u`‖L∞‖φkn(D)un‖L2 .

Moreover, the sum may be restricted to those k1, . . . , kn satisfying
max(k1, . . . , kn) > k−N0 for some large enough N0 by the spectral localiza-
tion of the cut-offs. If we sum on the indices for which k1, . . . , kn−1 is smaller
than kn−N0, we get that only those terms for which k−N1 6 kn 6 k+N1
contribute to the sum for some fixed N1. Plugging the standard estimates

‖φk`(D)u`‖L∞ 6 C2−ρk`‖u`‖Wρ,∞

‖φkn(D)un‖L2 6 Cckn2−skn‖u`‖Hs
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with some `2 sequence (ckn)kn in (A.9), and using that ρ > 0, we conclude
that we obtain a contribution to (A.9) which is O(ck2−ks) for a new `2

sequence (ck)k.
Consider now the sum in (A.9) for those indices satisfying

max(k1, . . . , kn−1) > kn − N0. Then there is `, 1 6 ` 6 n − 1 with
k` > kn − N0, k` > k − 2N0, for instance ` = 1. We bound the corre-
sponding contribution to (A.9) by

n−1∏
1
‖u`‖Wρ,∞‖un‖Hs

∑
k1>k−2N0
k1>kn−N0

2−ρk1−sknckn

for some `2-sequence (ckn)kn . As ρ > s > 0, this gives again a O(2−ksc̃k)
bound for an `2-sequence (c̃k)k. This implies an estimate of the form (A.3).
(ii) We write again (A.9) and consider the contribution to the sum corre-

sponding for instance to those k` for which kn > k1, . . . , kn−1. As we have
seen after (A.9), this implies kn > k − N0 for the contributions that are
not identically zero. As ρ > 0, we get a bound

C

n−1∏
1
‖u`‖Wρ,∞‖un‖Hs

( ∑
kn>k−N0

ckn2−skn
)

for some `2-sequence (ckn)kn . As s > 0, we obtain the needed c̃k2−ks bound
for another such sequence (c̃k)k.
(iii) We write

(A.10) ‖φk(D)Mm(u1, . . . , un)‖L∞ 6 C
∑
k1

· · ·
∑
kn

n∏
1
‖φk`(D)u`‖L∞

again from (A.6) to (A.8). Using that for ρ′ ∈]0,+∞[−N, the Cρ′ norm
is equivalent to supk(2kρ′‖φk(D)u‖L∞) and that, in the right hand side
of (A.10), we may reduce ourselves to indices satisfying k1, . . . , kn−1 6 kn
for instance, we bound (A.10) by

n−1∏
1
‖u`‖Cθ‖un‖Cρ+θ

∑
kn>k−N0

2−kn(ρ+θ).

This implies that the Cρ+θ norm ofMm(u1, . . . , un) is bounded by the right
hand side of (A.5). As Cρ+θ ⊂W ρ,∞, we get the conclusion. �
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