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HEAT TRACES AND EXISTENCE OF SCATTERING
RESONANCES FOR BOUNDED POTENTIALS

by Hart F. SMITH & Maciej ZWORSKI (*)

Abstract. — We show that, in odd dimensions, any real valued, bounded
potential of compact support has at least one scattering resonance. In dimensions
3 and greater this was previously known only for sufficiently smooth potentials.
The proof is based on an inverse result, which shows that the regularized trace of
the associated heat kernel admits a full asymptotic expansion if and only if the
potential is smooth.
Résumé. — Nous montrons qu’en dimensions impaires, un potentiel borné, à

support compact et à valeurs réelles, présente au moins une résonance de diffusion.
En dimension 3 ou plus, ce résultat était connu seulement pour des potentiels suffi-
samment réguliers. La démonstration est fondée sur un résultat inverse, montrant
que la trace régularisée du noyau de la chaleur associé admet un développement
asymptotique complet si et seulement si le potentiel est lisse.

1. Introduction and statements of results

Let V ∈ L∞c (Rn;R) be a bounded, compactly supported, real valued
potential and let n > 3 be odd. We consider the Schrödinger operator,

(1.1) PV = −∆ + V (x),

and ask the question whether PV always (for V 6= 0) has infinitely many
scattering resonances. Scattering resonances are defined as poles of the
meromorphic continuation of the resolvent

(1.2) RV (λ) := (−∆ + V − λ2)−1, n odd,

Keywords: Scattering, resonances, heat trace.
Math. classification: 35P25, 35K08.
(*) This material is based upon work supported by the National Science Foundation
under Grants DMS-1161283(HS) and DMS-1201417(MZ).
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from Imλ� 1 to λ ∈ C. In particular, we count eigenvalues as resonances.
The multiplicity of a resonance at λ 6= 0 is defined as

(1.3) mV (λ) = rank
∮
λ

RV (ζ)dζ,

where the integral is over a circle around λ enclosing no other singularities
of RV than (possibly) λ – see [14, §3.2]. We set mV (λ) = 0 if λ is not a
resonance. At λ = 0 we put

(1.4) mV (0) = 1
2 rank

∮
0
RV (ζ)dζ + rank

∮
0
RV (ζ)2ζdζ.

If mV (0) = m ∈ N, then PV has an eigenvalue of multiplicity m at 0. If
mV (0) = m+ 1

2 , m ∈ N, then in addition PV has a zero resonance – see [14,
§3.3], [18] and [19].
These poles have many interesting interpretations and in particular ap-

pear in expansions of solutions to the wave equation – see §2 and references
given there. For n even the situation is more complicated as the meromor-
phic continuation has a logarithmic branch singularity at λ = 0 – see [10]
and references given there. Here we prove that

Theorem 1.1. — Suppose that V ∈ L∞c (Rn;R) and that n is odd. Then
the meromorphic continuation of the resolvent (1.2),

RV (λ) : L2
c(Rn)→ L2

loc(Rn), λ ∈ C,

has at least one pole. If V ∈ L∞c (Rn;R)∩H n−3
2 (Rn) then RV has infinitely

many poles.

For V ∈ C∞c (Rn;R) existence of infinitely many resonances was proved
by Melrose [22] for n = 3 and by Sá Barreto–Zworski [24] for all odd
n. Soon afterwards quantitative statements about the counting function,
N(r), of resonances in {|λ| 6 r} were obtained by Christiansen [5] and Sá
Barreto [23]:

lim sup
r→∞

N(r)
r

> 0.

For potentials generic in C∞c (Rn;F) or L∞c (Rn;F), F = R or C, Chris-
tiansen and Hislop [6, 9] proved a stronger statement

(1.5) lim sup
r→∞

logN(r)
log r = n.

This means that the upper bound N(r) 6 Crn from [29] is optimal for
generic complex or real valued potentials. The only case in which asymp-
totics ∼ rn for non-radial potentials are known was provided by Dinh and
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HEAT TRACES AND EXISTENCE OF RESONANCES 457

Vu [12] who proved that a large class of L∞ potentials supported in B(0, 1)
has resonances satisfying a Weyl law.
A corollary of our argument is the following result, which was pointed

out to us by Christiansen:

Theorem 1.2. — Suppose that Vj ∈ L∞c (Rn;R), j = 1, 2 and n is odd.
If, in the notation of (1.3) and (1.4),

(1.6) mV1(λ) = mV2(λ) ∀λ ∈ C,

then for any m ∈ N,

V1 ∈ Hm(Rn) ⇐⇒ V2 ∈ Hm(Rn).

This is interesting because of the dearth of results on resonance inverse
problems. It is known that resonances alone may not determine the poten-
tial uniquely – see Korotyav [20], [31] and also Autin [1], [8] where references
to more general “isopolar” problems can be found. In the positive direction
Datchev–Hezari [11] showed that in the semiclassical setting certain radial
potentials are determined by the asymptotic behaviour of resonances. That
paper contains further references to inverse problems for resonances.

To prove Theorem 1.1 we proceed by contradiction, as in [2], [22] and [24],
and assume that there are no resonances. By a direct argument (Proposi-
tion 2.1) this implies that the scattering phase is a polynomial. This in turn
implies (Proposition 2.2) that the heat trace has an asymptotic expansion.
The main result of this note, Theorem 1.3 below, shows that this implies
that V ∈ C∞c (Rn), and since it is real valued we obtain a contradiction
by [22] and [24]. (We provide a direct argument of the contradiction in §2.)
See §2.4 for why our arguments do not yield a contradiction for a finite
number of resonances if n > 5 and V ∈ L∞c (Rn;R).

Although we expect (1.5), or possible even N(r) > rn/C when r � 1, to
be true for all non-zero real valued potentials, Christiansen [7] gave classes
of examples of non-zero V ∈ C∞c (Rn;C) which have no resonances.

Our argument outlined above depends on the following, which is the
principal new result of this paper.

Theorem 1.3. — Suppose that PV is given by (1.1), and V∈L∞c (Rn;R),
where n > 1 may be even or odd. If

(1.7) t
n
2 tr

(
e−tPV − e−tP0

)
∈ C∞([0,∞))

then V ∈ C∞c (Rn;R).

Theorem 1.3 is a direct consequence of a more precise result presented in
Theorem 3.1 in §3. The study of heat expansions has a very long tradition
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458 Hart F. SMITH & Maciej ZWORSKI

going back to Kac, Berger and McKean–Singer – see [28], [15] and [17] for
more recent accounts and references. Theorem 1.3, although not surprising,
seems to be new. However, closely related inverse results are well known.
They concern recovering Sobolev norms from the coefficients of expansion
of smooth potentials, and using those a priori bounds to prove compactness
of sets of isospectral potentials – see Brüning [4] and Donnelly [13], and for
the origins of that approach, McKean–van Moerbeke [21].
The paper is organized as follows. In §2 we review the scattering theory

needed for the proofs of Theorems 1.1 and 1.2. For detailed arguments we
refer to the original papers and to the on-line notes [14]. The section on
the heat trace §3 is by contrast completely self-contained. Some aspects of
the approach in §3 appear to be new, in particular the use of Gagliardo–
Nirenberg inequalities in a bootstrap regularity scheme.

Acknowledgements. — We would like to thank Gunther Uhlmann for
a helpful discussion, in particular for reminding us of the references [4]
and [21], and Tanya Christiansen for helpful comments on the first version
of this note, and especially for suggesting Theorem 1.2.

2. Review of scattering theory

Here we recall various facts in scattering theory and show how Theo-
rem 1.1 follows from Theorem 1.3.

2.1. The scattering matrix

The continued resolvent, RV (λ), given in (1.2) does not have any poles
on R \ {0} – that is a well known consequence of the Rellich uniqueness
theorem – see [14, §3.6]. This implies that, for λ ∈ R \ {0} and ω ∈ Sn−1,
there exist (unique) solutions to

(PV − λ2)w(x, λ, ω) = 0, w(x, λ, ω) = e−iλ〈x,ω〉 + u(x, λ, ω),

u(x, λ, ω) = |x|−
n−1

2 eiλ|x|
(
b(λ, x/|x|, ω) +O(|x|−1)

)
, |x| → ∞.

(2.1)

The radiation pattern b(λ, θ, ω), is the observed field in a scattering exper-
iment. The scattering matrix, SV (λ), can be defined using b(λ, θ, ω). This
definition is not the most intuitive, and we refer to [14, §3.7] for motivation.

ANNALES DE L’INSTITUT FOURIER
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Here we define SV (λ) : L2(Sn−1)→ L2(Sn−1) as

(2.2)
SV (λ)f(θ) = f(θ) +

∫
Sn−1

a(λ, θ, ω)f(ω)dω,

a(λ, θ, ω) := (2π)−
n−1

2 e
π
4 (n−1)iλ

n−1
2 b(λ, θ,−ω).

We also have the following useful representations of a(λ, θ, ω):

a(λ, θ, ω)

= anλ
n−2
∫
Rn
e−iλ〈x,θ〉V (x)w(x, λ,−ω)dx

= anλ
n−2
∫
Rn
e−iλ〈x,ω−θ〉V (x)(1−e−iλ〈x,ω〉)RV (λ)(eλ〈•,ω〉V )(x)dx,

(2.3)

where an = (2π)−n+1/2i.
The scattering matrix is unitary for λ real, and from (2.3) we see that it

continues meromorphically to all of C. Hence we have

(2.4) SV (λ)−1 = SV (λ̄)∗, λ ∈ C.

Another symmetry comes from changing λ to −λ:

(2.5) SV (λ)−1 = JSV (−λ)J, Jf(θ) := f(−θ).

The operator SV (λ)−I is of trace class, and hence detSV (λ) is well defined.
The following result, see [14, §3.9] or [30], is important for the investigation
of scattering resonances:

Proposition 2.1. — Suppose that V ∈ L∞c (Rn;R), where n is odd.
Then detSV (λ) is a meromorphic function of order n. More precisely,

(2.6) detSV (λ) = (−1)m
(

K∏
k=1

iµk + λ

iµk − λ

)
P (−λ)
P (λ) ,

where µk > 0, −µ2
1 < −µ2

2 6 · · · 6 −µ2
K 6 0 are the eigenvalues of PV ,

included according to multiplicity, P (λ) is entire and non-zero for Imλ > 0,
and

(2.7) |P (λ)| 6 CεeCεr
n+ε

, for any ε > 0.

The power m in (2.6) is the multiplicity of the zero resonance, m = 0 or
1 for n = 1, 3 and m = 0 for for n > 5; see [14, §3.3] and [19].
We make the following observation based on the second representation

in (2.3):

λ is a pole of detSV =⇒ λ is a pole of SV =⇒ λ is a pole of RV .

TOME 66 (2016), FASCICULE 2



460 Hart F. SMITH & Maciej ZWORSKI

A more precise statement is possible (see [14, Theorem 3.42]) but we do
not need it for Theorem 1.1. To show existence of poles of RV we only need
to show existence of poles of detSV .

2.2. A trace formula

The tool connecting the scattering matrix to the heat trace is the
Birman–Krein trace formula. In §3 we will recall the argument showing
that the operator e−tPV − e−tP0 is of trace class.

Proposition 2.2. — Suppose that V ∈ L∞c (Rn;R). Then, in the nota-
tion of Proposition 2.1,
(2.8)

tr(e−tPV −e−tP0) = 1
2πi

∫ ∞
0

tr
(
SV (λ)−1∂λSV (λ)

)
e−tλ

2
dλ+

K∑
k=1

etµ
2
k + 1

2m.

If V ∈ C∞c (Rn;R), this is proved for n = 3 in [27], and for n > 5 in [16]
and references given there. The proofs for V ∈ L∞c (Rn;R) can be found
in [14, §3.8, §4.6].
Since |detSV (λ)| = 1 for λ ∈ R (which follows from (2.4), the unitarity of

the scattering matrix) we can define the winding number of the scattering
phase:

σ(λ) := 1
2πi log detSV (λ), σ′(λ) = 1

2πi tr
(
SV (λ)−1∂λSV (λ)

)
, λ ∈ R.

In the case of V ∈ C∞c (Rn;R), n odd, σ(λ) admits a full asymptotic expan-
sion for λ → ∞, with only odd powers of λ except for the constant term.
For proofs see [27], [16], [14, §3.7], and for less regular potentials but fewer
expansion terms [18].

2.3. Proof of Theorem 1.1

If V has no resonances then Proposition 2.1 shows that

detSV (λ) = P (−λ)
P (λ) ,

where P (λ) is an entire function with no zeros and of order n. This implies
that P (λ) = eG(λ) where G(λ) is a polynomial of degree at most n; see for
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instance [26, 8.24]. We then obtain the following, where we define the odd
polynomial g(λ) = (G(−λ)−G(λ))/(2πi),

detSV (λ) = e2πig(λ), σ′(λ) = g′(λ).

The unitarity of SV (λ) for λ real shows that g(λ) has real coefficients,
g(λ) = a0λ

n + a1λ
n−2 + · · ·+ an−1

2
λ. Hence,

(2.9)
∫ ∞

0
σ′(λ) e−tλ

2
dλ = t−

n
2

n−1
2∑
j=0

a′jt
j ,

where a′j := ajΓ(n/2− j + 1).
We combine (2.9) with (2.8) to see that tn/2 tr(e−tPV − e−tP0) has a full

asymptotic expansion
∑∞
j=0 cjt

j as t→ 0+. That means that the assump-
tion of Theorem 1.3 is satisfied, and hence V ∈ C∞c (Rn;R). But the result
of [24] (see also [14, §3.7]) then contradicts our assumption that V has no
resonances: every nonzero potential in C∞c (Rn;R) has to have infinitely
many resonances.
Christiansen’s argument [5] that there must be at least one resonance for

nonzero V ∈ C∞c (Rn;R) is simple and elegant, and we reproduce it here. As
above, absence of resonances would give σ′(λ) = a′0λ

n−1 + a′1λ
n−3 + · · · a′n.

Comparison with the heat expansion shows that a′2 = cn
∫
V 2 6= 0. That

immediately provides a contradiction in the case of n = 3. If n > 5 we use
the representation (2.3):

σ′(λ) = trSV (λ)∗∂λSV (λ)

=
∫
Sn−1

∂λa(λ, θ, θ)dθ +
∫
Sn−1

∫
Sn−1

a(λ, ω, θ) ∂λa(λ, ω, θ)dωdθ.

Under the assumption that RV is holomorphic, i.e. that it has no poles,
(2.3) then shows that σ′(λ) = O(λn−3) as λ → 0. But this contradicts
a′2 6= 0, since that would imply a lower order of vanishing at λ = 0.
We now use Theorem 3.1 to show that if V ∈ L∞c (Rn;R) ∩H n−3

2 (Rn),
V 6= 0, then RV has infinitely many poles. This is again seen by contradic-
tion, by assuming that detSV (λ) has only finitely many resonances. In that
case, let −µ2

1 < −µ2
2 6 · · · 6 −µ2

K′ < 0, µk > 0, denote the negative eigen-
values of PV , and let iρj , ρj < 0, j = 1, . . . , J1, λj 6= −λ̄j , j = 1, . . . , J2
the remaining finite set of resonances. Proposition 2.1 gives

detSV (λ) = (−1)me2πig(λ)
K′∏
k=1

iµk + λ

iµk − λ

J1∏
j=1

iρj + λ

iρj − λ

J2∏
j=1

λj + λ

λj − λ
λ̄j − λ
λ̄j + λ

.

TOME 66 (2016), FASCICULE 2



462 Hart F. SMITH & Maciej ZWORSKI

Hence for λ ∈ R,

σ′(λ)− g′(λ) =− 1
π

K′∑
k=1

µk
λ2 + µ2

k

− 1
π

J1∑
j=1

ρj
λ2 + ρ2

j

− 1
π

J2∑
j=1

(
Imλj
|λ− λj |2

+ Imλj
|λ+ λj |2

)
,

(2.10)

This yields the equality

(2.11)
∫ ∞

0
(σ′(λ)− g′(λ)) dλ = − 1

2K
′ + 1

2J1 + J2.

where K ′ 6 K is the number of strictly negative eigenvalues. We compare
this with Proposition 2.2 and the expansion given in Theorem 3.1: if V ∈
L∞c (Rn;R) ∩H n−3

2 (Rn), then (3.1) shows that

tr(e−tPV − e−tP0) =
n−1

2∑
k=1

c′k t
−n2 +k +O(t 1

2 ).

In particular,

(2.12) tr(e−tPV − e−tP0) −
n−1

2∑
k=1

c′k t
−n2 +k → 0, t→ 0+ .

Since the terms on the right hand side of (2.10) make bounded contribu-
tions, comparison with (2.8) shows that

n−1
2∑

k=1
c′k t
−n2 +k =

∫ ∞
0

g′(λ)e−tλ
2
dt.

Using (2.8) and (2.11) we obtain

tr(e−tPV − e−tP0)−
n−1

2∑
k=1

c′k t
−n2 +k

= tr(e−tPV − e−tP0)−
∫ ∞

0
g′(λ)e−tλ

2
dλ

=
∫ ∞

0
(σ′(λ)− g′(λ))e−tλ

2
dλ+

K∑
k=1

etµ
2
k + 1

2m.

Taking the limit as t→ 0+ we obtain∫ ∞
0

(σ′(λ)− g′(λ)) dλ+K + 1
2m = K − 1

2K
′ + 1

2m+ 1
2J1 + J2 > 0 ,

since there must be at least one pole. But this contradicts (2.12).

ANNALES DE L’INSTITUT FOURIER
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2.4. Why not infinitely many?

A frustrating aspect of the argument in §2.3 is that for V ∈ L∞c (Rn;R),
n > 5, it only shows existence of one resonance. The reason for that is the
strong assumption in Theorem 1.3. If we allowed, for example, a unique
(non-zero) resonance λ0 = iρ0 (it has to be purely imaginary, as the sym-
metry λ 7→ −λ̄ would otherwise imply that there are two) then the factor-
ization argument above would imply

detSV (λ) = e2πig(λ) iρ0 + λ

iρ0 − λ
, σ′(λ) = g′(λ)− 1

π

ρ0

λ2 + ρ2
0
.

We now note that

(2.13) 1
π

∫ ∞
0

e−sr
2

1 + r2 dr ∼
1
2e
s + s

1
2

∞∑
j=0

bjs
j , s→ 0+ .

To see (2.13), let I(s) := (1/π)
∫∞

0 e−s(1+r2)/(1+r2)dr. Then the right hand
side of (2.13) is esI(s), while ∂sI(s) = −(1/π)

∫∞
0 e−s(1+r2)dr = αe−s/s

1
2 ,

α = 1/2
√
π. Hence I(s) = I(0) + α

∫ s
0 e
−s1s

− 1
2

1 ∼ 1
2 + s

1
2
∑∞
j=0 b

′
js
j . Multi-

plying by es gives (2.13).
Inserting (2.13) into the trace formula (2.8), and noting that if ρ0 > 0

we have an eigenvalue, gives

tr(e−tPV − e−tP0) = t−n/2
∞∑
j=1

ajt+ 1
2e
tρ2

0 ,

and we cannot use Theorem 1.3 to conclude that V is smooth. The same
problem arises if we assume there are two (or more) resonances, λ0, −λ̄0.
The following simple example does not fit into our hypotheses, but it

suggests a possible complication. Consider n = 1 and V = δ0. Then there
is only one resonance, at λ = −2i, and the heat trace has an expansion
with both integers and half-integers.

2.5. Proof of Theorem 1.2

We again use the Birman–Krein formula (2.8) to see that, under the
assumption that the eigenvalue and zero resonance contributions cancel,

tr
(
e−tPV1 − e−tPV2

)
= 1

2πi

∫ ∞
0

∂λ det
(
SV2(λ)−1SV1(λ)

)
e−tλ

2
dλ.

TOME 66 (2016), FASCICULE 2
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The assumption (1.6) and [14, Theorem 3.42] show that detSVj (λ), j = 1, 2,
have the same poles and zeros (with the same multiplicities). Arguing as
in §2.3 we then see that

det
(
SV2(λ)−1SV1(λ)

)
= e2πih(λ), h(λ) = b0λ

n + b1λ
n−2 + · · · bn−1

2
λ.

Then as in (2.9) we see that

tr
(
e−tPV1 − e−tPV2

)
= t−n/2

n−1
2∑
j=0

b′jt
j , b′j = bj

Γ(n/2− j + 1) .

That means that (3.1) holds for V1 if and only if it holds for V2, and
Theorem 1.2 follows from Theorem 3.1.

3. Heat trace expansions

For PV as in (1.1) with V ∈ L∞c (Rn;C), the operator e−tPV − e−tP0 is
trace class for t > 0, and if V ∈ C∞c (Rn) then tr

(
e−tPV − e−tP0

)
admits

a full asymptotic expansion as t → 0+; see for instance [3] and references
given there.
Theorem 1.3 is a consequence of a converse result which gives a sharp

relation between existence of a finite expansion for the trace, and a given
finite order of Sobolev regularity for V , assuming that V is real-valued.

Theorem 3.1. — Suppose that V ∈ L∞c (Rn;R), and that for some
m ∈ N one can write

(3.1)
tr
(
e−tPV − e−tP0

)
= (4πt)−n2

(
c1t+ c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)tm+2

)
,

where |rm+2(t)| 6 C for 0 < t 6 1. Then V ∈ Hm(Rn). Conversely, if
V ∈ Hm(Rn) then (3.1) holds with such an rm+2(t), and limt→0+ rm+2(t) =
cm+2 exists.

The proof of Theorem 3.1 begins by using iteration to expand the heat
kernel for PV = −∆ + V . The formula is

e−tPV − e−tP0 =
∞∑
k=1

Wk(t) ,

where

Wk(t) = (−1)k
∫

0<s1<···<sk<t
e−(t−sk)P0 V e−(sk−sk−1)P0 V · · ·

× V e−(s2−s1)P0 V e−s1P0ds1 · · · dsk .

ANNALES DE L’INSTITUT FOURIER
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Convergence of the expansion in the L2 operator norm follows from the
bound ‖Wk(t)‖L2→L2 6 ‖V ‖kL∞tk/k!, which holds since for all sj and t the
integrand is L2 bounded by ‖V ‖kL∞ , and the volume of integration is tk/k!.
We also have a bound on the trace class norm:

(3.2) ‖Wk(t)‖L1 6 Ck k
n
2 tk−

n
2 /k!,

where n is the dimension. For this we use that the trace class is an ideal,
so it suffices to show that one pair of successive terms in the product has
L1 bound less than C k n2 t−n2 . We then observe that at least one of t− sk,
sj+1−sj or s1 is greater than t/k, and for that term we use the trace bound

(3.3) ‖e−sP0χ‖L1 6 C s−n/2,

where χ ∈ C∞c (Rn) is chosen to be 1 on the support of V . To prove (3.3) we
choose χ1 ∈ C∞c (Rn) equal to 1 on suppχ. Then the explicit Schwartz ker-
nel, K1(x, y) of (1−χ1)e−sP0χ satisfies |∂αK1| 6 Cα,NsN (1 + |x|+ |y|)−N ,
for any α and N . Hence ‖(1 − χ1)esP0χ‖L1 = O(s∞). On the other hand,
if K2(x, y) is the Schwartz kernel of e−sP0/2χ1 then

∫∫
|K2(x, y)|2dxdy 6

Cs−n/2 which provides an estimateO(s−n/4) on the Hilbert–Schmidt norm.
These two bounds give (3.3):

‖e−sP0χ‖L1 6 C‖χ1e
−sP0χ1‖L1 + ‖(1− χ1)e−sP0χ‖L1

6 C‖χ1e
−sP0/2‖2L2 + CNs

N

6 C s−n/2.

Using (3.2), we see that e−tPV − e−tP0 is of trace class for t > 0. The
trace can be brought into the sum, and we write

tr
(
e−tPV − e−tP0

)
=
∞∑
k=1

tr
(
Wk(t)

)
.

It is well known, and we include the proof, that

tr
(
W1(t)

)
= −(4πt)−n2 t

∫
V (y) dy ,

which shows that c1 = −
∫
V , and the expansion (3.1) is equivalent to

∞∑
k=2

tr
(
Wk(t)

)
= (4πt)−n2

(
c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)

)
.

Theorem 3.1 will then follow as a result of the following two propositions
that concern the asymptotics of the individual terms tr

(
Wk(t)

)
.
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Proposition 3.2. — If V ∈ L∞c (Rn;R) ∩Hm(Rn), then one can write

(3.4) tr
(
W2(t)

)
= (4πt)−n2

(
c2,2t

2 + · · ·+ c2,2+mt
2+m + ε(t)t2+m

)
,

with limt→0+ ε(t) = 0 and c2,2+j = aj‖|D|jV ‖L2 for 0 6 j 6 m, for
constants aj 6= 0.
Conversely, assuming V ∈ L∞c (Rn;R) ∩Hm−1(Rn), if one can write

(3.5) tr
(
W2(t)

)
= (4πt)−n2

(
c2,2t

2 + · · ·+ c2,1+mt
1+m + r2,2+m(t)t2+m

)
,

where |r2,2+m(t)| 6 C for 0 < t 6 1, then V ∈ Hm(Rn), and hence (3.4)
holds.

Proposition 3.3. — If V ∈ L∞c (Rn;R) ∩Hm(Rn), then for k > 3 one
can write
(3.6)
tr
(
Wk(t)

)
= (4πt)−n2

(
ck,kt

k + · · ·+ ck,k+m−1t
k+m−1 + rk,k+m(t)tk+m

)
,

where, for a constant C depending on k and m, for 0 6 j 6 m,

|ck,k+j | 6 C ‖V ‖k−2
L∞ ‖V ‖

2
Hj , sup

0<t<1
|rk,k+m(t)| 6 C ‖V ‖k−2

L∞ ‖V ‖
2
Hm .

The fact that V ∈ L∞c (Rn;R)∩Hm(Rn) implies existence of the asymp-
totic expansion (3.1) of order m + 2 is an easy consequence of the above
propositions. By the bound ‖Wk(t)‖L1 6 Ck k

n
2 tk−

n
2 /k! we have that

(3.7) tr
∞∑

k=m+3
Wk(t) 6 C tm+3−n2 , 0 < t 6 1 .

On the other hand, Propositions 3.2 and 3.3 show that

tr
m+2∑
k=1

Wk(t) = (4πt)−n2
(
c1t+c2t2+· · ·+cm+1t

m+1+cm+2t
m+2+ε(t)tm+2

)
,

where for j > 2 we have cj =
∑j
k=2 ck,j .

The other direction of Theorem 3.1, that existence of an asymptotic
expansion implies regularity, is carried out by induction. Assume m > 1
and V ∈ L∞c (Rn;R) ∩Hm−1(Rn), which trivially holds when m = 1 since
L∞c (Rn) ⊂ L2(Rn). Assume (3.1) holds. By (3.7) this implies

tr
m+2∑
k=2

Wk(t) = (4πt)−n2
(
c1t+ c2t

2 + · · ·+ cm+1t
m+1 + rm+2(t)tm+2

)
,

where |rm+2(t)| 6 C.
By Proposition 3.3, since V ∈ L∞c (Rn;R)∩Hm−1(Rn) the same relation

holds for tr
∑m+2
k=3 Wk(t), with different coefficients which can be bounded
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in terms of L∞ and Hj norm bounds for V with j 6 m − 1. Hence the
relation (3.5) holds, and we conclude V ∈ Hm(Rn).

3.1. The trace of W1(t).

We calculate the trace of W1(t) by integrating over the diagonal

tr
(
W1(t)

)
= −(4π)−n

∫ ∫ ∫ t

0
(t− s)−n2 s−n2 e−

|x−y|2
4(t−s) V (y) e−

|y−x|2
4s ds dx dy .

The integral dx is carried out∫
Rn
e−
|x−y|2

4
t

(t−s)s dx = (4π)n2 t−n2 (t− s)n2 sn2

leading to
tr
(
W1(t)

)
= −(4πt)−n2 t

∫
V (y) dy .

(From now on the integrals without integration limits will denote integrals
over Rn.)

3.2. The trace of W2(t).

Again we integrate over the diagonal to write tr
(
W2(t)

)
as

(4π)− 3n
2

∫
0<r<s<t

(t− s)−n2 (s− r)−n2 r−n2 e−
|x−y|2
4(t−s)−

|y−z|2
4(s−r)−

|z−x|2
4r

× V (y)V (z) dr ds dx dy dz .

We let u = t − s and x0 =
(

r
r+u

)
y +

(
u
r+u

)
z and carry out the integral

over x by writing

(3.8) |x− y|2

u
+ |z − x|

2

r
= r + u

ru
|x− x0|2 + 1

r + u
|y − z|2

which expresses tr
(
W2(t)

)
as

(4π)−n
∫
r+u<t
0<r,u

(t− u− r)−n2 (u+ r)−n2 e−
|y−z|2

4

(
1

t−u−r+ 1
u+r

)
× V (y)V (z) dr du dy dz .

Let r = tv − u, so dr du = t dv du, the integrand is then independent of u,
the new limits are 0 < u < tv, 0 < v < 1, and we get

t2 (4πt)−n
∫ ∫ ∫ 1

0
(1− v)−n2 v−n2 +1 e−

|y−z|2
4t

1
v(1−v) V (y)V (z) dv dy dz .
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Since V is real, we can use the Plancherel theorem to write this as

t2 (4πt)−n2
∫ 1

0
v

(
(2π)−n

∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv .
By symmetry under v → 1− v we can also write this as

1
2 t

2 (4πt)−n2
∫ 1

0

(
(2π)−n

∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv .
The term in parentheses is continuous in t, and at t = 0 equals ‖V ‖2L2 , so

(3.9) tr
(
W2(t)

)
= 1

2 t
2 (4πt)−n2

(
‖V ‖2L2 + ε(t)

)
, lim

t→0+
ε(t) = 0 .

This settles the casem = 0 of Theorem 3.1 which, since L∞c (Rn) ⊂ L2(Rn),
is nontrivial only for the existence of the expansion (3.1) for m = 0. It also
shows that we can recover ‖V ‖L2 from limt→0+ r2(t).

3.3. Proof of Proposition 3.2

First consider the case m = 1, and suppose that we have an expansion

tr
(
W2(t)

)
= (4πt)−n2

(
c2 t

2 +O(t3)
)
, t 6 1 .

From (3.9) we must have c2 = 1
2‖V ‖

2
L2 . This leads to the estimate∫ 1

0

∫ (1− e−t(1−v)v|ξ|2

t

) ∣∣V̂ (ξ)
∣∣2 dξ dv 6 C , 0 < t 6 1 .

The integrand is positive, so by Fatou’s lemma we get(∫ 1

0
(1− v)v dv

)∫
|ξ|2

∣∣V̂ (ξ)
∣∣2 dξ 6 C ,

implying that V ∈ H1(Rn). Conversely, if V ∈ H1(Rn) ∩ L∞c (Rn;R) we
would get such an expansion by dominated convergence.
To consider higher values of m, write

(3.10) e−s =
m−1∑
j=0

(−1)j

j! sj + rm(s) (−1)m

m! sm ,

where rm(s) is a smooth function, and by the Lagrange form for the re-
mainder,

(3.11) 0 6 rm(s) 6 1 if s > 0 , rm(0) = 1 , ∂srm(0) = −1
m+ 1 .
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Now suppose that V ∈ Hm(Rn) for some m > 1. Then we can expand∫ 1

0

(∫
e−t(1−v)v|ξ|2 ∣∣V̂ (ξ)

∣∣2 dξ) dv
=
m−1∑
j=0

(
1
j!

∫ 1

0
(1− v)jvj dv

)(∫
|ξ|2j

∣∣V̂ (ξ)
∣∣2 dξ) tj

+ (−1)m

m!

(∫ 1

0

∫
rm
(
t(1−v)v|ξ|2

)
(1−v)mvm |ξ|2m

∣∣V̂ (ξ)
∣∣2dξ dv)tm.

The coefficient of tm is continuous in t, and converges to am ‖|D|mV ‖2L2 as
t→ 0, where am 6= 0. Thus, if we can write

tr
(
W2(t)

)
= (4πt)−n2

( m∑
j=0

cj t
j +O

(
tm+1)) , t 6 1 ,

then cj = aj‖|D|jV ‖2L2 for 0 6 j 6 m, and in addition we have uniform
bounds for 0 < t 6 1∫ 1

0

∫ (1− rm
(
t(1− v)v|ξ|2

)
t

)
(1− v)mvm|ξ|2m

∣∣V̂ (ξ)
∣∣2 dξ dv 6 C .

Then by Fatou’s lemma and (3.11) we get
1

m+ 1

(∫ 1

0
(1− v)m+1vm+1 dv

)(∫
|ξ|2(m+1)∣∣V̂ (ξ)

∣∣2 dξ) 6 C ,
so necessarily V ∈ Hm+1(Rn), completing the proof of Proposition 3.2.

3.4. The trace of Wk(t) for k > 3.

To estimate products of derivatives, we will use the following particular
case of the Gagliardo–Nirenberg inequalities.

Lemma 3.4. — Suppose {αj}kj=1 are multi-indices, with |αj | 6 m, and∑
j |αj | = 2m. If u ∈ L∞(Rn)∩Hm(Rn), then for a constant C depending

only on n and m,∥∥ k∏
j=1

(
∂αjuj

)∥∥
L1 6 C

( k∑
j=1
‖uj‖L∞

)k−2( k∑
j=1
‖Dmuj‖L2

)2
.

Proof. — We use the following bound [25, (3.17) in §13.3]. Assuming
u ∈ L∞(Rn) ∩Hm(Rn),

‖∂αjuj‖
L

2m
|αj |
6 C ‖uj‖

1−
|αj |
m

L∞ ‖Dmuj‖
|αj |
m

L2 .

The desired estimate then follows from Hölder’s inequality. �
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We now write (−1)k tr
(
Wk(t)

)
for t > 0 as an integral

∫
0<s1<···<sk<t

e
− |x−yk|

2

4(t−sk)−
|yk−yk−1|

2

4(sk−sk−1) ···−
|y1−x|2

4s1 V (yk) · · ·V (y1)
(4π)n2 (k+1)(t− sk)n2 · · · (s2 − s1)n2 (s1)n2

× dy1 · · · dyk ds1 · · · dsk dx .

After integrating over x, and letting sj = trj , then letting Σ ⊂ Rk denote
the set {r ∈ Rk : 0 < r1 < · · · < rk < 1}, we obtain

tk
∫

Σ

∫
(Rn)k

e
−
|yk−yk−1|

2

4t(rk−rk−1) ···−
|y2−y1|2
4t(r2−r1)−

|y1−yk|
2

4t(1+r1−rk) V (yk) · · ·V (y1)
(4πt)n2 k(rk − rk−1)n2 · · · (r2 − r1)n2 (1 + r1 − rk)n2

dy dr .

To analyse this, we introduce variables u1 = y1, and uj = yj − y1 for
2 6 j 6 k. Then du1 ∧ · · · ∧ duk = dy1 ∧ · · · ∧ dyk, so the formula for
(−1)k tr

(
Wk(t)

)
becomes

(3.12) tk

(4πt)n2

∫
Σ

∫
(Rn)k

Gr,t(u′) V (u1 + uk) · · ·V (u1 + u2)V (u1) du dr ,

where Gr,t(u′) is the Gaussian function of u′ = (u2, . . . , uk) ∈ (Rn)k−1

Gr,t(u2, . . . , uk) = e
− 1

4t

(
|uk|

2
1+r1−rk

+
|uk−uk−1|

2

rk−rk−1
···+ |u3−u2|2

r3−r2
+ |u2|2
r2−r1

)
(4πt)n2 (k−1)(1 + r1 − rk)n2 (rk − rk−1)n2 · · · (r2 − r1)n2

.

Applying successively the following equality, which is a special case of (3.8),

|uj+1 − uj |2

rj+1 − rj
+ |uj |2

rj − r1

= rj+1 − r1

(rj+1 − rj)(rj − r1)

∣∣∣uj − rj − r1

rj+1 − r1
uj+1

∣∣∣2 + 1
rj+1 − r1

|uj+1|2

we can write the quadratic term in the exponent of Gr,t as
(3.13)

|uk|2

(1 + r1 − rk)(rk − r1) +
k−1∑
j=2

(rj+1 − r1)
(rj+1 − rj)(rj − r1)

∣∣∣uj − rj − r1

rj+1 − r1
uj+1

∣∣∣2
In particular we see that, for all t > 0 and r ∈ Σ,∫

(Rn)k−1
Gr,t(u′) du′ = 1 .

For t > 0 consider the k-linear form

Bt(V1, . . . , Vk) =
∫

Σ

∫
(Rn)k

Gr,t(u′) Vk(u1 +uk) · · ·V2(u1 +u2)V1(u1) du dr .
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By Hölder’s inequality applied to the integral over u1, we have

|Bt(V1, . . . , Vk)| 6
k∏
j=1
‖Vj‖Lk(Rn) ,

and thus Bt is uniformly continuous on bounded sets in Lk(Rn)k. The
quadratic form (3.13) is bounded below by c |u′|2, for c > 0 independent of
r ∈ Σ. An approximation to the identity argument then shows that Bt is
continuous over t ∈ [0,∞), for fixed elements of Lk(Rn)k, where we set

B0(V1, . . . , Vk) = 1
k!

∫
Rn
Vk(u1) · · ·V1(u1) du1 .

Consequently, we can write tr
(
Wk(t)

)
= (−1)k(4πt)−n2 tk Bt(V ) , where

Bt(V ) ∈ C
(
[0,∞)

)
, B0(V ) = 1

k!

∫
V (y)k dy .

Here we set Bt(V ) = Bt(V, . . . , V ), which, by the above, is for each t a
continuous function of V ∈ Lk(Rn).
We start by demonstrating an m-th order expansion of Bt(V ) when V ∈

C∞c (Rn;R), after which we show it applies to V ∈ L∞c (Rn;R) ∩ Hm(Rn)
by taking limits.
For 2 6 j 6 k we write

V (uj + u1) = (2π)−n
∫
eiηj ·(u1+uj)V̂ (ηj)

and plug this into (3.12) to express

Bt(V ) = (2π)−n(k−1)
∫

Σ

∫
(Rn)k−1

e−tQr(η′)V̂ (ηk) · · · V̂ (η2)

× V̂ (η2 + · · ·+ ηk) dη2 · · · dηk dr .

where Qr(η′) is the quadratic form inverse to (3.13), and where V̂ (−ζ) =
V̂ (ζ) since V is real valued.

We expand exp
(
−tQr(η′)

)
as in (3.10). The first m− 1 terms give con-

tributions to Bt(V ) of the form

(2π)−n(k−1)
m−1∑
j=0

(−1)j

j! tj
∫

Q(η′)j V̂ (ηk) · · · V̂ (η2)

× V̂ (η2 + · · ·+ ηk) dη2 · · · dηk ,
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where Q(η′) is the quadratic form obtained by integrating Qr(η′) over r.
The key observation we need is that we can write

Q(η′)j =
∑

Cαk,...,α1 η
αk
k · · · η

α2
2 (η2 + · · ·+ ηk)α1

where
∑k
i=1 |αi| = 2j, and |αi| 6 j for every i.

Thus, the coefficient of tj is such a linear combination of terms of the
form

(2π)−n(k−1)
∫

̂(∂αkV )(ηk) · · · ̂(∂α2V )(η2) ̂(∂α1V )(η2 + · · ·+ ηk) dη2 · · · dηk ,

This integral is equal to∫
(∂αkV )(y) · · · (∂α2V )(y) (∂α1V )(y) dy ,

which by Lemma 3.4 is bounded by C ‖V ‖k−2
L∞ ‖DjV ‖2L2 . This establishes

the bounds of Proposition 3.3 on the coefficients ck,j+k when V∈C∞c (Rn;R).
The m-th order remainder is a constant times

tm
∫ 1

0
(1− s)m−1

∫
Σ

∫
(Rn)k−1

e−stQr(η′)Qr(η′)
m

× V̂ (ηk) · · · V̂ (η2) V̂ (η2 + · · ·+ ηk) dη′ dr ds ,

which by a similar argument can be written as an integral over r and s of
various polynomials in r, s times

tm
∫
e−stQr(η′) ̂(∂αkV )(ηk) · · · ̂(∂α2V )(η2) ̂(∂α1V )(η2 + · · ·+ ηk) dη2 · · · dηk ,

with |αi| 6 m, and
∑
i |αi| = 2m. We now show that, uniformly over r ∈ Σ,

and t > 0,

(3.14) 1
(2π)n(k−1)

∣∣∣∣ ∫ e−tQr(η′)v̂k(ηk) · · · v̂2(η2) v̂1(η2 + · · ·+ ηk) dη′
∣∣∣∣

6
k∏
j=1
‖vj‖Lpj ,

whenever 2 6 pj 6 ∞ and
∑
j p
−1
j = 1 . Here we note that the proof of

Lemma 3.4 bounds the right hand side, with pj = 2m/|αj | and vj = ∂αjV ,
by ‖V ‖k−2

L∞ ‖V ‖2Hm . The bounds on rk,k+m(t) in Proposition 3.3 will follow
for V ∈ C∞c (Rn).

The left hand side of (3.14) equals∣∣∣∣ ∫ Gr,t(y2 − x, . . . , yk − x) vk(yk) · · · v2(y2) v1(x) dx dy2 · · · dyk
∣∣∣∣ .
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The kernel Gr,t is positive and has total integral 1, so for proving the bound
we may assume each vj is nonnegative. By interpolation, we may restrict
to the case that two of the pj ’s are equal to 2, and the rest equal∞. There
are then two distinct cases to consider: p1 = p2 = 2, or p2 = p3 = 2. In the
first case, we dominate the integral by

(3.15) ‖vk‖L∞ · · · ‖v3‖L∞
∫
K(y2 − x) v2(y2) v1(x) dy2 dx

where
K(z) =

∫
Gr,t(z, y3, . . . , yk) dy3 · · · dyk .

Since
∫
K = 1, by Young’s inequality the integral in (3.15) is bounded by

‖v2‖L2‖v1‖L2 .
In case p2 = p3 = 2, we bound the integral by

(3.16)
‖vk‖L∞ · · · ‖v4‖L∞‖v1‖L∞

∫
K(y2, y3) v3(y3 − x) v2(y2 − x) dy2 dy3 dx ,

where now

K(y2, y3) =
∫
Gr,t(y2, y3, y4, . . . , yk) dy4 · · · dyk .

Thus K̂(η2, η3) = e−tQr(η2,η3,0,...,0). Writing v2 and v3 in terms of their
Fourier transforms, and integrating out y2 and y3, expresses the integral in
(3.16) as

(2π)−2n
∫
e−ix(η2+η3)e−tQr(−η2,−η3,0,...,0) v̂3(η3) v̂2(η2) dη2 dη3 dx

= (2π)−n
∫
e−tQr(−η2,η2,0,...,0)v̂3(−η2)v̂2(η2) dη2 ,

which is bounded by ‖v3‖L2‖v2‖L2 by the Schwarz inequality, as Qr > 0.
It remains to show the expansion holds for general V ∈ L∞(Rn;R) ∩

Hm(Rn). We set φε ∗ V = Vε ∈ C∞c (Rn), where φε = ε−nφ(ε−1·) is a
family of smooth compactly supported mollifiers.
Recall that tr

(
Wk(t)

)
= (−1)k(4πt)−n/2tkBt(V ). Since for each t, Bt(V )

is continuous in V in the Lk(Rn) topology, then Bt(V ) = limε→0Bt(Vε).
Furthermore, since ‖Vε‖L∞ 6 ‖V ‖L∞ , ‖Vε‖Hm 6 ‖V ‖Hm , we have the
following bounds, uniform for t > 0 and ε > 0,

‖rk,k+m(t, Vε)‖ 6 C ‖V ‖k−2
L∞ ‖V ‖

2
Hm .

It thus remains to show that limε→0 ck,k+j(Vε) = ck,k+j(V ) if j 6 m−1, for
appropriately defined ck,k+j(V ) satisfying the bounds of Proposition 3.3.
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Recall that ck,k+j(Vε) can be written as a linear combination of terms of
the form

(3.17)
∫

(∂αkVε)(y) · · · (∂α1Vε)(y) dy ,

where |αi| 6 j for all i, and
∑k
i=1 |αi| = 2j . We define ck,k+j(V ) by

the same formula, which by Lemma 3.4 is well defined, and absolutely
dominated by ‖V ‖k−2

L∞ ‖DjV ‖2L2 . To see that (3.17) converges, as ε→ 0, to
the same expression with Vε replaced by V , we note that, by the proof of
Lemma 3.4, ∂αiV ∈ L

2m
|αi| (Rn), so for |αi| > 0,

lim
ε→0
‖∂αiVε − ∂αiV ‖

L
2m
|αi|

= 0 .

Thus, the product over the terms in (3.17) with |αi| 6= 0 converges in
L
m
j (Rn) to the same product with Vε replace by V . Since m

j > 1, the
integral in (3.17) converges as ε → 0 by the fact that Vε → V in Lp(Rn)
for all p <∞.
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