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INVARIANT ENVELOPES OF HOLOMORPHY IN THE
COMPLEXIFICATION OF A HERMITIAN

SYMMETRIC SPACE

by Laura GEATTI & Andrea IANNUZZI (*)

Abstract. — In this paper we investigate invariant domains in Ξ+, a distin-
guished G-invariant, Stein domain in the complexification of an irreducible Her-
mitian symmetric space G/K. The domain Ξ+, recently introduced by Krötz and
Opdam, contains the crown domain Ξ and it is maximal with respect to properness
of the G-action. In the tube case, it also contains S+, an invariant Stein domain
arising from the compactly causal structure of a symmetric orbit in the boundary
of Ξ. We prove that the envelope of holomorphy of an invariant domain in Ξ+,
which is contained neither in Ξ nor in S+, is univalent and coincides with Ξ+.
This fact, together with known results concerning Ξ and S+, proves the univa-
lence of the envelope of holomorphy of an arbitrary invariant domain in Ξ+ and
completes the classification of invariant Stein domains therein.
Résumé. — Cet article est consacré à l’étude des domaines invariants dans Ξ+,

un domaine de Stein particulier dans la complexification d’un espace symétrique
Hermitien irréductible G/K. Le domaine Ξ+, introduit récemment par Krötz et
Opdam, contient la couronne Ξ et il est maximal en ce qui concerne la propreté de
l’action de G. Dans le cas tubulaire, Ξ+ contient aussi S+, un domaine de Stein
invariant lié à la structure causale d’une orbite symétrique dans le bord de Ξ.

On demontre que l’enveloppe d’holomorphie d’un domaine invariant dans Ξ+,
non contenu ni dans Ξ ni dans S+, est univalent et coincide avec Ξ+. Ce fait,
en combination avec des résultats connus pour Ξ et S+, démontre l’univalence
de l’enveloppe d’holomorphie d’un domaine arbitraire dans Ξ+ et complète la
classification des domains de Stein invariants dans Ξ+.

1. Introduction

Let G/K be a non-compact, irreducible, Riemannian symmetric space.
Its Lie group complexification GC/KC is a Stein manifold and left trans-
lations by elements of G are holomorphic transformations of GC/KC. In

Keywords: Hermitian symmetric space, Lie group complexification, envelope of holomor-
phy, invariant Stein domain.
Math. classification: 32D10, 32M15, 32Q28.
(*) Research partially supported by G.N.S.A.G.A.



144 Laura GEATTI & Andrea IANNUZZI

this situation, G-invariant domains in GC/KC and their envelopes of holo-
morphy are natural objects to study.
A first example is given by the crown Ξ, introduced by D. N. Akhiezer

and S. G. Gindikin in [1]. This Stein invariant domain carries an invariant
Kähler structure intrinsically associated with the Riemannian structure of
the symmetric space G/K and, in many respects, can be regarded as its
canonical complexification. In recent years, it has been extensively studied
in connection with harmonic analysis on G/K (see, e.g [13], [14]).

If G/K is a Hermitian symmetric space of tube type, two additional
distinguished invariant Stein domains S± arise from the compactly ca-
sual structure of a pseudo-Riemannian symmetric space G/H lying on the
boundary of Ξ. The complex geometry of S± was studied by K. H. Neeb
in [16]. Inside the crown Ξ, as well as inside S± , an invariant domain can
be described via a semisimple abelian slice, its envelope of holomorphy is
univalent and Steiness is characterized by logarithmic convexity of such a
slice.
One may ask how far the above results are from a complete description

of envelopes of holomorphy of invariant domains in GC/KC and a classi-
fication of invariant Stein domains therein. In [6], a univalence result for
G-equivariant Riemann domains over GC/KC , and in particular for en-
velopes of holomorphy, was proven in the rank-one case. In addition, the
complete classification of invariant Stein domains was obtained. From the
latter result one sees that, up to finitely many exceptions, all invariant Stein
domains are contained either in a copy of Ξ or, in the Hermitian case of
tube type, in S±. The study of the CR-structure of principal G-orbits in
GC/KC (i.e. closed orbits of maximal dimension) carried out in [5], sug-
gests that this fact holds true also in the higher rank case, the exceptions
being finitely many invariant domains whose boundary entirely consists of
non-principal G-orbits.
In this paper we focus on G/K irreducible non-compact of Hermitian

type. In this case, B. Krötz and E. Opdam recently singled out two Stein
invariant domains Ξ+ and Ξ− in GC/KC, which satisfy Ξ+∩Ξ− = Ξ and
are maximal with respect to properness of the G-action. The relevance of
the crown Ξ and of the domains Ξ+ and Ξ− for the representation theory
of G was underlined in Theorem 1.1 in [11]. Since Ξ+ and Ξ− are G-
equivariantly anti-biholomorphic, in the sequel we simply refer to Ξ+. If
G/K is Hermitian of tube type, then Ξ+ contains both the crown Ξ and
the domain S+ ([4], Prop. 7.5). Moreover, for r := rank(G/K) > 1, the
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INVARIANT ENVELOPES OF HOLOMORPHY 145

complement of Ξ ∪ S+ in Ξ+ has non-empty interior. Our main result is
as follows.

Theorem. — Let G/K be an irreducible non-compact Hermitian sym-
metric space. Given a G-invariant domain D in Ξ+, denote by D̂ its
envelope of holomorphy.

(i) Assume G/K is of tube type. If D is not contained in Ξ nor in
S+, then D̂ is univalent and coincides with Ξ+ .

(ii) Assume G/K is not of tube type. If D is not contained in Ξ , then
D̂ is univalent and coincides with Ξ+.

The envelopes of holomorphy of invariant domains in Ξ or in S+ are
known to be univalent and their Steiness is characterized in terms of the
aformentioned semisimple abelian slices. Hence, the above theorem implies
the univalence of the envelope of holomorphy of an arbitrary invariant
domain in Ξ+ and implies the following classification.

Corollary. — Let G/K be an irreducible non-compact Hermitian
symmetric space and let D be a Stein G-invariant proper subdomain of
Ξ+.

(i) If G/K is of tube type, then either D ⊆ Ξ or D ⊆ S+.
(ii) If G/K is not of tube type, then D ⊆ Ξ.

The theorem is proved by showing that the natural G-equivariant holo-
morphic embedding f : D → D̂ admits aG-equivariant holomorphic exten-
sion f̂ : Ξ+ → D̂ to the whole Ξ+. For this purpose, we use the unipotent,
abelian slice of Ξ+ introduced by B. Krötz and E. Opdam in [12]. Namely,
one has

Ξ+ = G · Σ ,

where Σ := exp iΛx
r ·x0 and Λx

r is a closed hyperoctant in an r-dimensional,
nilpotent, abelian subalgebra of g, the Lie algebra of G. This sets a one-to-
one correspondence

D → ΣD := D ∩ Σ

between G-invariant domains in Ξ+ and domains in Σ which are invariant
under the action of an appropriate Weyl group (see Sect. 3).
Then a key ingredient is Lemma 4.7, which implies that a continuous

extension of f |ΣD to a domain Σ̃ in Σ induces a G-equivariant, holomor-
phic extension of f to G·Σ̃, provided that certain compatibility conditions
are satisfied. In order to obtain f̂ , we therefore construct a continuous ex-
tension of f |ΣD to Σ satisfying such compatibility conditions.

TOME 66 (2016), FASCICULE 1



146 Laura GEATTI & Andrea IANNUZZI

This is done in stages, where f |ΣD is extended to larger domains Σ̃ ⊂ Σ
properly containing ΣD. Such extensions are obtained by equivariantly
embedding into GC/KC various lower dimensional complex homogenous
manifolds LC/HC, all of whose L-invariant domains have univalent and
well understood envelope of holomorphy. The embedding of each space
LC/HC is carefully chosen, so that it intersects D in some L-invariant
domain T ⊂ LC/HC. By the universality property of the envelope of holo-
morphy, the map f |T : T → D̂ extends L-equivariantly to a holomorphic
map T̂ → D̂ producing, in particular, a real-analytic extension of f |ΣD
along the submanifold T̂ ∩Σ. Generally, the intersection T̂ ∩Σ is not open
in Σ. In that case, an extension of f |ΣD to an open set Σ̃ ⊂ Σ is obtained
by embedding a continuous family of copies of T into D.

The real homogenous manifolds L/H which play a role in our situation
are: real r-dimensional vector spaces acted on by (Rr,+), the Euclidean
plane acted on by its isometry group, and irreducible rank-one Hermitian
symmetric spaces, both of tube-type and non-tube type. In the latter case,
the univalence results on equivariant Riemann domains obtained in [6] are
crucial. The above strategy was inspired by the work of K. H. Neeb on
bi-invariant domains in the complexification of a Hermitian semisimple Lie
group ([15]).
The paper is organized as follows. In section 2, we set up the notation

and recall some preliminary facts which are needed in the paper. In section
3, we recall the unipotent paramentrization of Ξ+ and of its G-invariant
subdomains. In section 4, we recall some basic facts about envelopes of
holomorphy and develope the tools used in the proof of the main theorem.
In section 5 we prove the main theorem.

2. Preliminaries

Let G/K be an irreducible Hermitian symmetric space of the non-com-
pact type. We may assume G to be a connected, non-compact, real simple
Lie group contained in its simple, simply connected universal complexifica-
tion GC, and K to be a maximal compact subgroup of G. Denote by g and
k the Lie algebras of G and K, respectively. Denote by θ both the Cartan
involution of G with respect to K and the associated involution of g. Let
g = k⊕ p be the corresponding Cartan decomposition. Let a be a maximal
abelian subspace in p. The rank of G/K is by definition r = dim a. The
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INVARIANT ENVELOPES OF HOLOMORPHY 147

adjoint action of a decomposes g as

g = a⊕ Zk(a)⊕
⊕

α∈∆(g,a)

gα,

where Zk(a) is the centralizer of a in k, the joint eigenspace gα = {X ∈
g | [H,X] = α(H)X, for every H ∈ a} is the α-restricted root space and
∆(g, a) consists of those α ∈ a∗ for which gα 6= {0}. A set of simple roots
Πa in ∆(g, a) uniquely determines a set of positive restricted roots ∆+(g, a)
and an Iwasawa decomposition of g

g = k⊕ a⊕ n, where n =
⊕

α∈∆+(g,a)

gα .

The restricted root system of a Lie algebra g of Hermitian type is either
of type Cr (if G/K is of tube type) or of type BCr (if G/K is not of tube
type), i.e. there exists a basis {e1, . . . , er} of a∗ for which

∆(g, a) = {±2ej , 1 6 j 6 r, ±ej ± ek, 1 6 j 6= k 6 r}, for type Cr,

∆(g, a) = {±ej , ±2ej , 1 6 j 6 r, ±ej±ek, 1 6 j 6= k 6 r}, for type BCr.
Since g admits a compact Cartan subalgebra t ⊂ k ⊂ g, there exists a set of
r positive long strongly orthogonal restricted roots {λ1, . . . , λr} (i.e. such
that λj ± λk 6∈ ∆(g, a), for j 6= k), which are restrictions of real roots with
respect to a maximally split θ-stable Cartan subalgebra ł of g extending a.
Taking as simple roots Πa = {e1 − e2, . . . , er−1 − er, 2er}, for type Cr,

and Πa = {e1 − e2, . . . , er−1 − er, er}, for type BCr, one has

λ1 = 2e1, . . . , λr = 2er ,

and dim gλj = 1, for j = 1, . . . , r. Let Z0 be the element in Z(k) defining the
complex structure J0 = adZ0 on G/K. For j = 1, . . . , r, choose Ej ∈ gλj

such that the sł(2)-triple

(2.1) {Ej , θEj , Aj := [θEj , Ej ]}

is normalized as follows

(2.2) [Aj , Ej ] = 2Ej , [Z0, Ej − θEj ] = Aj , [Z0, Aj ] = −(Ej − θEj) .

Then the vectors {A1, . . . , Ar} form an orthogonal basis of a (with respect
to the restriction of the Killing form) and

(2.3) [Ej , Ek] = [Ej , θEk] = 0, [Aj , Ek] = λk(Aj)Ek = 0, for j 6= k .

That is, the above sł(2)-triples commute with each other. Moreover, under
the above choices, the element Z0 is given by

(2.4) Z0 = S + 1
2
∑

Tj ,

TOME 66 (2016), FASCICULE 1



148 Laura GEATTI & Andrea IANNUZZI

where Tj = Ej + θEj and S ∈ Zk(a) (see Lemma 2.4 in [4]). If G/K is of
tube type one has S = 0.
In the sequel, we denote by gj the sł(2)-triple satisfying (2.1) and (2.2),

and by Gj the corresponding connected θ-stable subgroup of G. In the non-
tube case, to each λj one can also associate a connected, simple, Hermitian
subgroup G•j of G of real rank one. The group G•j is by definition the
connected, θ-stable subgroup of G with Lie algebra

(2.5) g•j = RAj ⊕ g±λj/2 ⊕ g±λj

isomorphic to su(m, 1), for some m > 1.

Lemma 2.1. — Let G/K be an irreducible Hermitian symmetric space,
which is not of tube type. Let G•j be the simple Hermitian subgroup of real
rank one, associated to the root λj , for some j ∈ {1, . . . , r}. Then G•j
commmutes with the subgroups Gk, for every k 6= j.

Proof. — By relations (2.3), one has [gj , gk] ≡ 0, for k 6= j. Futhermore,
since ±ej ± 2ek, for k 6= j, are not roots in ∆(g, a) and ej(Ak) = δjk, one
also has [g±λj/2, gk] ≡ 0. Summarizing, there is commutativity on the Lie
algebra level and likewise on the group level, by connectedness. �

3. Invariant subdomains of Ξ+

A description of the domain Ξ+ was given in [11], p.286, and [12], Sect.8,
via its unipotent parametrization. Fix vectors Ej ∈ gλj normalized as in
(2.2). Then

Ξ+ = G exp i
r⊕
j=1

(−1,∞)Ej · x0.

Define the nilpotent abelian subalgebras

Λr := spanR{E1, . . . , Er} and ΛC
r := spanC{E1, . . . , Er}

of n and nC, respectively. The exponential map of GC defines a biholo-
morphism between ΛC

r and the unipotent abelian complex subgroup LC :=
exp ΛC

r . In particular, it restricts to a diffeomorphism between Λr and the
real unipotent subgroup L := exp Λr. Since the map

(3.1) ι : nC → NC · x0, Z → expZ · x0,

is a biholomorphism onto its image (cf. Prop. 1.3 in [13]), so is its restriction
ι : ΛC

r → LC · x0.

ANNALES DE L’INSTITUT FOURIER



INVARIANT ENVELOPES OF HOLOMORPHY 149

Lemma 3.1. — The intersection Ξ+ ∩LC ·x0 is a closed, r-dimensional,
complex submanifold of Ξ+, which is biholomorphic, via the map ι, to the
Stein tube domain Λr × i

⊕r
j=1(−1,∞)Ej of ΛC

r .

Proof. — By a result of Rosenlicht ([17], Thm. 2), the orbits of the unipo-
tent subgroup LC in the affine space GC/KC are closed. In particular
LC · x0 ∩ Ξ+ is closed in Ξ+. Now the statement follows from the injec-
tivity of map ι and the fact that the set {X ∈ Λr : exp iX · x0 ∈ Ξ+ }
coincides with

⊕r
j=1(−1,∞)Ej (see [11], p. 286). �

By Lemma 3.1 in [4], the group WK(Λr) := NK(Λr)/ZK(Λr) is a proper
subgroup of the Weyl group NK(a)/ZK(a) and acts on Λr by permutations
of the basis elements {E1, . . . , Er}.
As it was observed in [4], Remark 6.6, the intersection of a G-orbit in Ξ+

with the closed slice exp(i
⊕r

j=1(−1,+∞)Ej) · x0 is not just a WK(Λr)-
orbit. So, we consider the smaller slice given by the nilpotent cone in g

N+ := AdK(Λx
r),

where Λx
r is the WK(Λr)-invariant, closed hyperoctant in Λr defined by

Λx
r := spanR>0{E1, . . . , Er}. The following fact holds true.

Proposition 3.2. — ([4], Prop. 4.7) The G-equivariant map

ψ : G×K N+ → Ξ+, [g,X]→ g exp iX · x0

is a homeomorphism.

Given a G-invariant domain D ⊂ Ξ+, define the corresponding open
subset of

⊕r
j=1(−1,∞)Ej by D := {X ∈ Λr : exp iX · x0 ∈ D }. By the

definition of D and Proposition 3.2, the domain D can be written as

D = G exp iD · x0 = G exp iDx · x0,

where Dx := D ∩ Λx
r is a WK(Λr)-invariant open subset of Λx

r .

Lemma 3.3. — ([4], Prop. 6.4) Let X be an element in Λx
r . Then the

AdK-orbit of X intersects Λr in the WK(Λr)-orbit of X in Λx
r .

Note that the above result together with Proposition 3.2 implies that
given X in Λx

r , one has

G exp iX · x0
⋂

exp iΛx
r · x0 = exp i(WK(Λr) ·X) · x0,

i.e. every G-orbit (not just a K-orbit) in Ξ+ intersects the closed slice
exp iΛx

r · x0 exactly in a WK(Λr)-orbit.

TOME 66 (2016), FASCICULE 1



150 Laura GEATTI & Andrea IANNUZZI

Consider the open Weyl chamber (Λx
r)+ :=

{∑r
j=1 xjEj : x1 > · · · >

xr > 0
}
. Since WK(Λr) acts on Λr by permutations of the basis elements

{E1, . . . , Er}, its topological closure

(Λx
r)+ =

{ r∑
j=1

xjEj , : x1 > · · · > xr > 0
}

is a perfect slice for theWK(Λr)-action on Λx
r , implying that exp i(Λx

r)+ ·x0
is a perfect slice for the G-action on Ξ+. It follows that for a G-invariant
domain D of Ξ+ one also has

(3.2) D = G exp i(Dx)+ · x0, where (Dx)+ := Dx ∩ (Λx
r)+

is an open subset of (Λx
r)+. In particular, (Dx)+ is connected if and only if

D is connected. In the sequel we also need the following fact.

Lemma 3.4. — Let X be an element in Λx
r . Then every connected com-

ponent of ZK(X) meets ZK(Λr).

Proof. — Let X be an arbitrary element in Λx
r . By Lemma 3.1 (i) and

Lemma 4.6 in [4], one has

ZK(Λr) ∼= ZK(a) and ZK(X) ∼= ZK(Ψ(X)),

where Ψ(X) = [Z0, X − θX] ∈ a. Thus in order to prove the lemma, it
is sufficient to show that for an arbitrary element H ∈ a, every connected
component of ZK(H) meets ZK(a).

The centralizer ZG(H) is a θ-stable reductive subgroup of G (see [10],
Prop. 7.25, p. 452) of the same rank and real rank as G, with maximal
compact subgroup ZK(H). A maximal abelian subspace of Zp(H) is a and,
as ZK(a) is contained in ZK(H), one has that ZZK(H)(a) = ZK(a). Now
Proposition 7.33 in [10], p. 457, applied to the reductive group ZG(H),
states that ZK(a) meets every connected component of ZK(H), as desired.

�

In [4] it was shown that if G/K is of tube type, then Ξ+ contains another
distinguished Stein invariant domain, besides the crown Ξ. Such domain
S+ arises from the compactly causal structure of a pseudo-Riemannian
symmetric G-orbit in the boundary of Ξ. The domain S+ and its invariant
subdomains were investigated in [16]. In the unipotent parametrization of
Ξ+, the domain Ξ is given as follows (see [12], Sect. 8, [4], Prop. 7.5):

(3.3) Ξ = G exp i
r⊕
j=1

[0, 1)Ej · x0 .
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If G/K is of tube type, then one has

(3.4) S+ = G exp i
r⊕
j=1

(1,∞)Ej · x0.

4. Envelopes of holomorphy of invariant domains in Ξ+

In this section we prove some preliminary results supporting the three
basic ingredients of the proof of the main theorem. A key result is Lemma
4.7, used to produce G-equivariant, holomorphic extensions of the embed-
ding f : D → D̂ to invariant domains properly containing D.
We begin by recalling some general facts about envelopes of holomorphy.

Let X be a Stein manifold and let D be a domain in X. By Rossi’s results
[18],D admits an envelope of holomorphy D̂. This means that there exist an
open holomorphic embedding f : D → D̂ into a Stein manifold D̂ to which
all holomorphic functions on D simultaneously extend. As a consequence,
there is a local biholomorphism q : D̂ → X such that q ◦ f = IdD and the
following holds true.

Proposition 4.1. — Let D1 and D2 be complex manifolds, with en-
velopes of holomorphy f1 : D1 → D̂1 and f2 : D2 → D̂2, respectively. Let
F : D1 → D2 be a holomorphic map. Then there exists a unique holomor-
phic map F̂ : D̂1 → D̂2 such that q ◦ f = IdD.

Proposition 4.2. — Let X be a Stein manifold and let D ⊂ X be a
domain with envelope of holomorphy f : D → D̂ and projection q : D̂ → X.

(i) Let Ω be the smallest Stein domain in X containing D. Then q(D̂)
is contained in Ω and coincides with Ω provided that q is univalent.

(ii) Let Ω be a domain in X containing D. Assume there exists a holo-
morphic map f̂ : Ω→ D̂ extending f . Then Ω̂ = D̂.

Proof. — Let’s start with Statement (i). By Proposition 4.1, an arbitrary
Stein domain containing D necessarily contains q(D̂). Define

Ω := int (∩C∈FC ) ,

where F denotes the family of all Stein domains in X containing D and
int( · ) denotes the interior of a set. By definition, Ω contains D and it is
open. It remains to show that it is Stein and connected. When X = Cn, the
Steinness of Ω follows from Corollary 2.5.7 in [9]. When X is an arbitrary
Stein manifold, let B an open domain in X biholomorphic to the unit ball
of Cn. From the identity B ∩ Ω = Int (∩C∈F (B ∩ C)) and Corollary 2.5.7

TOME 66 (2016), FASCICULE 1



152 Laura GEATTI & Andrea IANNUZZI

in [9], it follows that B ∩ Ω is Stein, implying that Ω is locally Stein in
X. Now a classical result of Docquier-Grauert ([3], Satz 11, p.113) applies,
showing that Ω is Stein. Finally, Ω is connected, since so is D.

Statement (ii) is a straightforward consequence of Proposition 4.1. �

Coming back to our situation, let D = G exp iD · x0 = G exp iDx · x0
be a G-invariant domain in Ξ+. Since Ξ+ is Stein, there is a commutative
diagram

D̂

q

��
D

f

=={{{{{{{{{ Id // Ξ+

(4.1)

Moreover the G-action on D lifts to an action on D̂ and all the maps
in diagram (4.1) are G-equivariant. We prove that under the assumption
that D is not entirely contained in Ξ nor in S+ (in the tube case), the
map f : D → D̂ can be G-equivariantly extended to the whole Ξ+. Then
by Proposition 4.2(ii), one concludes D̂ = Ξ+.
The strategy is to gradually enlarge the domain of definition of f by

iterating the following arguments. By reduction 1, we show that f can be
G-equivariantly extended to a domain G exp iD̃x ·x0 with all the connected
components of D̃x convex (Prop. 4.10). By reduction 2, we show that f can
be G-equivariantly extended to a domain with D̃x connected (Prop. 4.13).
The third key ingredient is the rank-one reduction. It is based on the uni-
valence and the precise description of the envelope of holomorphy of an
arbitrary G-invariant domain in the complexification of a rank-one Hermit-
ian symmetric space (cf. [6], Thm.6.1, Thm.7.6). The approach is similar
to the one used by Neeb in [15].

4.1. The rank-one case

For the reader’s convenience we outline a proof of the relevant facts
in the rank-one case, in the formulation which is needed in this paper.
For n > 1, let G = SU(n, 1) be the subgroup of SL(n + 1,C) leaving
invariant the hermitian form In,1 in Cn+1 and let σ be the conjugation
of GC = SL(n + 1,C) relative to G, namely σ(g) = In,1

tḡ−1In,1. Denote
by pn the complex projective space endowed with the opposite complex
structure. The group GC acts holomorphically on pn× pn by g · ([p], [q]) :=
([g ·p], [σ(g) ·q]), and GC/KC can be identified with the open orbit GC ·x0,
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where x0 = ([0 : . . . : 0 : 1], [0 : . . . : 0 : 1]). Fix the element

E = 1
2

(
O O

O e

)
, with e =

(
i −i
i −i

)
,

in g so that the triple {E, θE, A = [θE,E]} is normalized as in (2.2). The
nilpotent slice ` : [0,+∞)→ Ξ+ is given by

`(t) = exp itE · x0 =
(

[0 : . . . : 0 : t2 : t+ 2
2 ], [0 : . . . : 0 : t2 : t− 2

2 ]
)
.

As we are in the rank-one case, an invariant domain in Ξ+ can be written
as D = G exp iIE · x0, where I is an open interval in [0,∞).

Lemma 4.3. — Let G = SU(n, 1), for n > 1, and let D be a proper
Stein G-invariant subdomain of Ξ+.

(i) If n > 1, then D = G exp i[0, b)E · x0, for some b 6 1.
(ii) If n = 1, then either D = G exp i[0, b)E · x0, for some b 6 1, or

D = G exp i(a,∞)E · x0, for some 1 6 a <∞.

Proof. — We obtain the above classification by computing the Levi form
of hypersurface G-orbits in Ξ+. We do this by exploiting a smooth G-
invariant function f : Ξ+ → R, all of whose level sets, but {f = −1} = G·x0,
consist of a single hypersurface orbit in Ξ+ (cf. [6], Ex.6.3). For every t > 0,
the element `(t) belongs to the chart Ψ: Cn×Cn \Z → GC/KC defined by

((z1, . . . , zn), (w1, . . . , wn))
→ ([z1 : . . . : zn−1 : 1 : zn], [w̄1 : . . . : w̄n−1 : 1 : w̄n]) ,

where Z := {(z, w) ∈ Cn × Cn : < z, w̄ >n−1,1 +1 = 0 }, and corre-
sponds to the point ((0, . . . , 0, t+2

t ), (0, . . . , 0, t−2
t )) therein. On the above

holomorphic chart the function f reads as

f(z, w) = − (〈z, z〉n−1,1 + 1)(〈w,w〉n−1,1 + 1)
|〈z, w̄〉n−1,1 + 1|2 .

The complex tangent space TCR`(t) (G·`(t)) := T`(t)(G·`(t))∩J`(t)T`(t)(G·`(t))
to the orbit G · `(t) at `(t), which is the kernel of the complex gradient of
f at `(t), is given by

TCR`(t) (G · `(t)) =
{ (

(ζ, (1 + t)η), (ω, (1− t)η)
)
∈ Cn × Cn

}
,
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where ζ = (ζ1, . . . , ζn−1), ω = (ω1, . . . , ωn−1) ∈ Cn−1 and η ∈ C. The
quadratic Levi form of f at `(t) is given by

L`(t)f
(
(ζ, (1 + t)η), (ω, (1− t)η)

)
= t2

4

(
(1 + t)‖ζ‖2 + (1− t)‖ω‖2 + t2(1− t2)

2 |η|2
)
.

Assume first n > 1. The above formula shows that, for all t > 1, the
hypersurfaces G · `(t) have indefinite Levi form. By [8], Thm.4, p.194, only
hypersurface orbits with semidefinite Levi form can lie on the boundary of
a Stein domain. It follows that D Stein is necessarily of the form G exp iIE ·
x0, for some open interval I in [0, 1). We claim that I = [0, b), for some
b 6 1.
Assume by contraddiction that I = (a, b), for some a > 0. Since f is

strictly increasing on the slice ` and the Levi form L`(a)f is positive defi-
nite for 0 < a < 1, the domain {x ∈ Ξ+ : f(`(a)) < f(x)} is not Stein ([8],
Thm.4, p.194). Therefore a = 0. Further, since the orbit G · x0 is totally
real in GC/KC, every holomorphic function defined on G exp i(0, b)E · x0
extends to G exp i[0, b)E · x0. Consequently, I = [0, b), for b 6 1. It re-
mains to prove that G exp i[0, b)E · x0 is indeed Stein. Since L`(b)f is pos-
itive semidefinite, and the signature of the Levi form is a biholomorphic
invariant, the intersection G exp i[0, b)E · x0 ∩ Ψ(Cn × Cn \ Z) is Levi-
pseudoconvex. Hence it is Stein, by [8], Thm.4, p.194. By G-invariance,
G exp i[0, b)E · x0 ∩ g · Ψ(Cn × Cn \ Z) is Stein as well, for every g ∈ G,
implying that the domain G exp i[0, b)E · x0 is locally Stein in Ξ+. Then it
is Stein by [3], Satz 11, p.113.
If n = 1, the Levi form of the orbits G · `(t) is positive definite for

0 < t < 1, negative definite for t > 1, and zero for t = 1. Consequently
a proper Stein subdomain is either contained in G exp i[0, 1)E · x0 or in
G exp i(1,∞)E · x0. To exclude Stein domains other than those indicated
in statement (ii), one argues as in the previous case. �

Proposition 4.4. — Let G = SU(n, 1) and let D be a G-invariant
domain in Ξ+. Then the envelope of holomorphy D̂ of D is univalent and
given as follows.

(i) If D = G exp i(a, b)E ·x0 or D = G exp i[0, b)E ·x0, with b 6 1, then

D̂ = G exp i[0, b)E · x0;
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(ii) If D = G exp i(a, b)E · x0 or D = G exp i(a,∞)E · x0 , with a > 1,
then

D̂ = G exp i(a,∞)E · x0 if n = 1

D̂ = Ξ+ if n > 1 .

(iii) If D contains the orbit G · `(1), then D̂ = Ξ+.

Proof. — The projection q : D̂ → Ξ+ is G-equivariant. Note that for all
n > 1 the center Z of SU(n, 1) acts trivially on D ⊂ GC/KC and, by the
analytic continuation principle, on D̂. In particular, for n = 1 the projection
q : D̂ → Ξ+ is, in fact, SU(1, 1)/Z ∼= PSL(2,R)-equivariant and Theorem
7.6 in [6] applies for every n > 1. Hence q is injective and consequently the
envelope of holomorphy D̂ coincides with the smallest Stein G-invariant
domain in Ξ+ containing D (cf. Prop. 4.2). The classification of all Stein
G-invariant domains in Ξ+ contained in Lemma 4.3 completes the proof of
the proposition. �

4.2. The extension lemma

Let C be an open subset of the hyperoctant Λx
r . The goal of this subsection

is to prove the “extension lemma", which provides sufficient conditions for a
continuous lift f : exp iC·x0 → D̂ to extend to a G-equivariant holomorphic
map

f̂ : G exp iC · x0 → D̂ .

One of the conditions involves the isotropy subgroups of points z ∈ D and
f(z) ∈ D̂ in G.
Since the projection q : D̂ → Ξ+ is a G-equivariant local biholomorphism,

the isotropy subgroup Gz of z ∈ D̂ consists of connected components of the
isotropy subgroup Gq(z) of q(z) ∈ Ξ+. On the other hand, since f : D → D̂

is a G-equivariant biholomorphism onto its image and q|f(D)◦f = IdD, one
has Gz = Gq(z), for all z ∈ f(D). In the sequel it will be crucial to have such
an identity of isotropy subgroups for points lying in suitable submanifolds,
to which the map f extends holomorphically.

Lemma 4.5. — Let C be an open subset of Λx
r and let f : exp iC ·x0 → D̂

be a continuous map such that q ◦ f = Id. Assume that there exists an
open subset F of C such that

(i) Gf(exp iX′·x0) = Gexp iX′·x0 for all X ′ in F ,
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(ii) for every X ∈ C, there exist an element X ′ ∈ F , such that the
segment {X ′ + t(X − X ′) : t ∈ [0, 1]} is contained in C, and a
holomorphic extension of f to the submanifold S = { exp(i(X ′ +
λ(X −X ′))) · x0 : Reλ ∈ [0, 1] }.

Then Gf(exp iX·x0) = Gexp iX·x0 , for every X in C.

Proof. — Since q is G-equivariant and q ◦f = Id on exp iC ·x0, it is clear
that Gf(exp iX·x0) ⊂ Gexp iX·x0 for all X ∈ C. In order to prove the opposite
inclusion, we consider first generic elements in C.
By definition, generic elements X ∈ Λx

r are those for which ZK(X) =
ZK(Λr), and by Lemma 6.3 in [4], they are dense in Λx

r . Let X be a generic
element in C and let g be an element in Gexp iX·x0 = ZK(Λr) (see Section 3).
The fixed point set of g in D̂

F ix(g, D̂) := {z ∈ D̂ | g · z = z}

is a complex analytic subset of D̂. Let X ′ ∈ F be an element satisfying
condition (ii) of the lemma. Since both C and F are open, X ′ can be chosen
generic as well. Consider the strip S := {λ ∈ C : Reλ ∈ [0, 1]} and define
the function

φ : S → D̂, φ(λ) := f(exp i(X ′ + λ(X −X ′) · x0)) .

We are going to show that the set

A := {λ ∈ S : g · φ(λ) = φ(λ)}

contains the element 1: this implies that f(exp iX · x0) ∈ Fix(g, D̂) and
proves the statement for X generic.

Since both X and X ′ are generic in Λx
r , one has that Gexp iX′·x0 =

Gexp iX·x0 = ZK(Λr). Therefore g ∈ Gexp iX′·x0 and, by condition (i), it
follows that f(exp iX ′ · x0) ∈ Fix(g, D̂). Consequently 0 ∈ A. Since F
is open, there exists ε > 0 such that [0, ε) ⊂ A. Let [0, b) be the maximal
open interval in A∩R containing 0 and assume by contradiction that b < 1.
Since A is closed, it follows that b ∈ A and, by the definition of A, that
φ(b) ∈ Fix(g, D̂). Locally, in a neighbourhood U of φ(b) in D̂, the analytic
set Fix(g, D̂) is given as

Fix(g, D̂) ∩ U = {z ∈ U | ψ1(z) = . . . = ψk(z) = 0},

for some ψ1, . . . , ψk ∈ O(U). Thus, for each j = 1, . . . r, the holomorphic
function

ψj ◦ φ : φ−1(U)→ C, λ 7→ ψj(f(exp i(X ′ + λ(X −X ′)) · x0))
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vanishes identically on [0, b]. Since φ−1(U) is open in S, there exists ε′ > 0
such that the restriction ψj ◦φ(b−ε′,b+ε′) is real analytic and identically zero
on (b−ε′, b]. Hence it is identically zero on the whole interval (b−ε′, b+ε′),
contradicting the maximality of b. Thus b = 1 and 1 ∈ A, as claimed. This
concludes the case of generic elements in C.
Consider now a non-generic element X ∈ C. Since generic elements form

an open dense subset of C, and all have isotropy subgroup ZK(Λr), one
obtains that g · f(exp iX · x0) = f(exp iX · x0), for all g ∈ ZK(Λr). This
fact together with Lemma 3.4 implies that Gexp iX·x0 ⊂ Gf(exp iX·x0) for all
X ∈ C, and concludes the proof of the lemma. �

Lemma 4.6. — Let D = G exp iDx · x0 be a G-invariant domain in Ξ+

and let X be a G-space. A G-equivariant map f : D → X is continuous if
and only if its restriction to exp iDx · x0 is continuous.

Proof. — One implication is clear. For the converse, we first prove that
f is continuous on K exp iDx · x0 = exp iAdKDx · x0. Consider the home-
omorphism AdKDx → exp iAdKDx · x0 defined by X → exp iX · x0 (see
Prop. 3.2) and let Xn → X0 be a converging sequence in AdKDx. Choose
elements kn in K such that AdknXn ∈ Dx. Since K is compact, we can
assume that the sequence {kn}n converges to an element k0 ∈ K and that
AdknXn → Adk0X0.
Now observe that Dx = Λx

r ∩ AdKDx (see Lemma 3.3). It follows that
Dx is closed in AdKDx, implying that Adk0X0 is contained in Dx (and not
just in AdKDx). Then one has

f(exp iXn · x0) = k−1
n · f(exp i(AdknXn) · x0)

→ k−1
0 · f(exp i(Adk0X0) · x0) = f(exp iX0 · x0) ,

which says that f is continuous on exp iAdKDx · x0, as claimed.
Next, consider the following commutative diagram

G×AdKDx

π

��

f̃

%%KK
KKK

KKK
KK

D
f // X ,

where π is the map given by (g,X)→ g exp iX · x0 and f̃ is the lift of f to
G×AdKDx. As a consequence of Proposition 3.2, the map f is continuous
if and only if so is f̃ . So let (gn, Xn) → (g0, X0) be a converging sequence
in G×AdKDx. Since f is continuous on exp iAdKDx · x0, one has

f̃(gn, Xn) = f(gn exp iXn · x0) =
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gn · f(exp iXn · x0)→ g0 · f(exp iX0 · x0) = f(g0 exp iX0 · x0) = f̃(g0, X0) .

Thus f̃ is continuous, implying that f is continuous. �

Lemma 4.7 (Extension lemma). — Let C be an open subset of Λx
r and

let f : exp iC · x0 → D̂ be a continuous map such that q ◦ f = Id and
Gexp iX·x0 = Gf(exp iX·x0), for every X ∈ C. Assume that for every pair
X,X ′ ∈ C on the same WK(Λr)-orbit there exists n ∈ NK(Λr) such that

X ′ = AdnX and f(exp iX ′ · x0) = n · f(exp iX · x0).

Then there exists a unique holomorphic map f̂ : G exp iC · x0 → D̂ which
is G-equivariant and extends f .

We point out that the G-invariant domain G exp iC · x0 coincides with
G exp i(WK(Λr) · C) · x0.
Proof. — If one such f̂ exists, it is uniquely determined by the relation

f̂(g exp iX · x0) := g · f(exp iX · x0), for X ∈ C and g ∈ G.

By Proposition 3.2 and Lemma 3.3, the above map f̂ is well defined.
Since G exp iC · x0 = G exp i(WK(Λr) · C) · x0, in order to show that f̂ is

continuous, by Lemma 4.6, it is sufficient to show that f̂ is continuous on
exp(iWK(Λr) · C) · x0, i.e. on each set exp(iγ · C) · x0, for γ in WK(Λr). By
assumption, f̂ is continuous on exp iC · x0. This settles the case when γ is
the neutral element in WK(Λr). Otherwise, write γ = nZK(Λr), for some
n ∈ NK(Λr). Then by the G-equivariance of f̂ one has

f̂(exp(iγ ·X) · x0) = f̂(exp iAdnX · x0) = n · f̂(exp iX · x0) ,

for every X ∈ C, proving that f̂ is continuous on exp(iγ · C) ·x0, as wished.
Finally we show that f̂ is holomorphic. Note that q ◦ f̂ = Id, since by

assumption such equality holds true on exp iC · x0 and f̂ is G-equivariant.
Let x be an element of G exp iC ·x0 and choose a connected open neighbor-
hood U of f̂(x) such that the restriction q|U : U → f̂(U) is a biholomor-
phism. Then, given a neighborhood V of x such that f̂(V ) ⊂ U , one has
f̂ |V = (q|U )−1 ◦ Id, implying that f̂ is holomorphic. �

4.3. Reduction 1

Let
D = G exp iD · x0 = G exp iDx · x0
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be a G-invariant domain in Ξ+ (see Section 3). The first reduction consists
of showing that the map f in diagram (4.1) has a G-equivariant holo-
morphic extension to a domain G exp iD̃x · x0, with D̃x a set containing
Dx, all of whose connected components are convex. Recall that the set
(Dx)+ = Dx ∩ (Λr)+ is a perfect slice for D and that it is connected (cf.
(3.2)).

Definition 4.8. — Denote by D◦ (resp. by Dx
◦) the connected compo-

nent of D (resp. of Dx) containing (Dx)+.

Note that the set D◦ is open in Λr; the set Dx
◦ is open in Λx

r , while need
not be open in Λr. Both D◦ and Dx

◦ need not be WK(Λr)-invariant.
For k ∈ {1, . . . , r−1}, denote by γkk+1 the reflection flipping the kth and

the (k + 1)th coordinates in Λx
r . By Lemma 3.1(iii) in [4], such reflections

generate the Weyl group WK(Λr). Denote by Γ0 the set of those γkk+1 for
which there exists a non-zero element in Fix(γkk+1)∩(Dx)+, i.e. whose fixed
point hyperplane intersects (Dx)+ non-trivially. Consider the subgroup of
WK(Λr)

W 0 := 〈{ γkk+1 ∈ Γ0}〉 ,
generated by the elements of Γ0.

Lemma 4.9. — W 0 · (Dx)+ = Dx
◦.

Proof. — Set C := W 0 · (Dx)+. We first show that C is contained in Dx
◦.

For this note that (Dx)+ ∩ γkk+1 · (Dx)+ 6= ∅, for all γkk+1 ∈ Γ0. Thus
γkk+1 · (Dx)+ ⊂ Dx

◦ and γkk+1 stabilizes Dx
◦. Then the whole group W 0

stabilizes Dx
◦, implying that C ⊂ Dx

◦.
Next, we claim that for γ ∈ WK(Λr), one has that γ · (Dx)+ ∩ C 6= ∅ if

and only if γ ∈W 0. One implication is clear, since γ ·(Dx)+ ⊂ C if γ ∈W 0.
Conversely, if γ · (Dx)+ ∩ C 6= ∅, then there exists γ1 in W 0 such that

γ1γ · (Dx)+ ∩ (Dx)+ 6= ∅ .

Since (Dx)+ is a fundamental region for the action of WK(Λr) on Dx,
it follows that there exists X in the boundary of (Dx)+ such that γ1γ ·
X = X. In other words, γ1γ lies in the stabilizer subgroup WK(Λr)X
of X in WK(Λr). Since WK(Λr)X is generated by the elements γkk+1 in
Γ0 ∩WK(Λr)X (see [2], Thm.4.1, p. 202), one has that γ1γ ∈ W 0. Then
γ ∈W 0, as claimed.
It follows that Dx is the union of the two disjoint subsets

C and
⋃

γ∈WK(Λr)\W 0

γ · (Dx)+ .
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As (Dx)+ is closed in Dx, both subsets are closed in Dx. Thus C must be
the union of connected components of Dx. Since we already showed that
C ⊂ Dx

◦, it follows that C = Dx
◦, as stated. �

Proposition 4.10 (Reduction 1). — The inclusion f : D ↪→ D̂ extends
holomorphically and G-equivariantly to the G-invariant domain

G exp iConv(Dx
◦) · x0 = G exp iD̃x · x0 ,

where D̃x = WK(Λx
r) · Conv(Dx

◦).

Proof. — Let D◦ be as in Definition 4.8. By Lemma 3.1, the intersection
D ∩ LC · x0 is a closed r-dimensional L-invariant complex submanifold of
D, biholomorphic, via the map ι, to the tube domain Λr × iD.

Consider the connected component L exp iD0 ·x0 ∼= L×D0 of D∩LC ·x0.
By Bochner’s tube theorem, its envelope of holomorphy is univalent and
given by L exp iConv(D◦) · x0 ⊂ Ξ+. Then, by Proposition 4.1, the map f
admits a holomorphic extension to an L-equivariant map

L exp iConv(D◦) · x0 → D̂.

Note that the convexification Conv(D◦) contains Conv(Dx
◦), which is an

open subset of Λx
r and coincides with Conv(D◦) ∩ Λx

r . Moreover, given
X ∈ Conv(Dx

◦) and X ′ ∈ Dx
◦, the one-dimensional complex manifold

S = { exp(i(X ′ + λ(X −X ′))) · x0 : Reλ ∈ [0, 1] }
= { exp s(X −X ′) exp(i(X ′ + t(X −X ′))) · x0 : s ∈ R, t ∈ [0, 1] }

is contained in L exp iConv(D◦) · x0. Then by applying Lemma 4.5, with
F = Dx

◦ and C = Conv(Dx
◦), we obtain that Gf(exp iX·x0) = Gexp iX·x0 , for

every X in Conv(Dx
◦).

Next, we check that the extension of f to exp iConv(Dx
◦) ·x0 satisfies the

compatibility condition of Lemma 4.7. As a consequence of Lemma 4.9,
the convexification Conv(Dx

◦) is W 0-invariant. Denote by N0 the preimage
of W 0 in NK(Λr) under the canonical projection π : NK(Λr) → WK(Λr).
Since Λr and Conv(Dx

◦) are AdN0 -invariant, the domain Lexp iConv(Dx
◦)·x0

is N0-invariant. Moreover, the map f : L exp iDx
◦ ·x0 → D̂ is N0-equivariant

and so is its extension to L exp iConv(Dx
◦) · x0. Hence the extension of f

to exp iConv(Dx
◦) · x0 satisfies all the assumptions of Lemma 4.7 and f ex-

tends to a holomorphic, G-equivariant map G exp iConv(Dx
◦) · x0 → D̂, as

claimed. �
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4.4. Reduction 2

Given a domain D = G exp iDx · x0, the second reduction consists of
showing that the map f : D → D̂ has a G-equivariant holomorphic exten-
sion to the domain D̃ = G exp iD̃x · x0, where the set D̃x is the convex
envelope of Dx.
We first recall some properties of the universal covering of the isometry

group of the Euclidean plane, namely the semidirect product Lie group
S̃ := Rn R2 with the multiplication defined by(

t,

(
a

b

))
·
(
t′,

(
a′

b′

))
:=
(
t+ t′,

(
cos t − sin t
sin t cos t

)(
a′

b′

)
+
(
a

b

))
.

Its Lie algebra s is isomorphic to R3 endowed with the Lie algebra structure
defined by

[L̃, M̃ ] = Ñ , [L̃, Ñ ] = −M̃ , [M̃, Ñ ] = 0 ,
where {L̃, M̃ , Ñ} denotes the canonical basis of R3. In particular, S̃ is a
solvable Lie group. The universal complexification of S̃ is given by S̃C :=
C n C2, endowed with the extended multiplication law. Consider the quo-
tient of S̃C by the connected subgroup H̃C with Lie algebra CL̃. The fol-
lowing facts can be easily verified.

Lemma 4.11.
(i) The map C2 → S̃C/H̃C, defined by (z, w)→

(
0,
(
z

w

))
H̃C, is a

biholomorphism.
(ii) The orbit of the base point eH̃C under the one-parameter subgroup

exp iRM̃ is a slice for the left S̃-action on S̃C/H̃C. There is a home-
omorphism

S̃ \ H̃C/S̃C ∼= RM̃/Z2,

where the Z2-action on RM̃ is generated by the restriction of
AdexpπL̃ to RM̃ , namely the reflection M̃ → −M̃ .

(iii) The S̃-invariant domains in S̃C/H̃C correspond to tube domains
R2 + iΩ in C2, whose bases are annuli.

(iv) The envelope of holomorphy of any such tube domain is univalent
and coincides with the tube domain over the smallest disc contain-
ing Ω, namely Conv(Ω).

The crucial step of reduction 2 deals with the case of two convex con-
nected components of Dx symmetrically placed with respect to the fixed
point set of a reflection γ ∈WK(Λr) \W 0. The action of γ decomposes Λr
into the direct sum

Λr = Fix(γ)⊕ Fix(γ)⊥.
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Denote by ZG(Fix(γ)) the centralizer of Fix(γ) in G, and by Zg(Fix(γ))
its Lie algebra.

Lemma 4.12.
(i) The Lie algebra Zg(Fix(γ)) contains a 3-dimensional solvable sub-

algebra isomorphic to the Lie algebra s of S̃.
(ii) There exists a Lie group morphism ψ : S̃C → GC mapping H̃C to

KC, which induces a closed embedding S̃C/H̃C → GC/KC .

Proof.
(i) Recall that the restricted root system of g is either of type Cr or of type

BCr (see Sect. 2). For simplicity of exposition we assume γ := γ12, the
reflection flipping the first and the second coordinates (the remaining
cases can be dealt in the same way). Then Fix(γ)⊥ = R(E1 − E2)
and Fix(γ) = span{E1 + E2, E3, . . . Er}. Take an arbitrary element
Q ∈ ge1−e2 and set

L := Q+ θQ, M := E1 − E2, N := [L,M ].

We first show that L,M,N lie in the centralizer Zg(Fix(γ)). By con-
struction, one has that

L ∈ k, M ∈ g2e1 ⊕ g2e2 , N ∈ ge1+e2 .

In order to see that [L,E1 + E2] = 0, let Z0 = 1
2
∑
j Tj + S, with

Tj = Ej + θEj and S ∈ Zk(a), be the central element in k given in
(2.4). Since [L, Tj ] = 0 for j = 3, . . . , r, and the terms [L, T1 + T2]
and [L, S] are linearly independent, the relation [L,Z0] = 0 implies
[L, T1 +T2] = [L, S] = 0. From [L, T1 +T2] = 0 and the identity θL = L,
it follows that [L,E1 + E2] + θ[L,E1 + E2] = 0. This is equivalent to
[L,E1 + E2] ∈ ge1+e2 ∩ p and implies [L,E1 + E2] = 0, as desired. The
remaining bracket relations

[L,Ej ] = [M,Ej ] = [N,Ej ] = 0, for j > 3,
[M,E1 + E2] = [N,E1 + E2] = 0,

are straightforward.
Next we prove that the vectors {L,M,N} generate a 3-dimensional

solvable subalgebra of g isomorphic to the algebra s of S̃, discussed
above. Since [M,N ] = 0, it remains to show that, by normalizing
Q if necessary, one has [L,N ] = −M . Endow the 3-dimensional sub-
space of g

V := g2e1 ⊕ g2e2 ⊕ RN,
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with the restriction of the AdK-invariant inner product of g, defined by
Bθ(X,Y ) := −B(X, θY ), for X,Y ∈ g. One can easily verify that the
vectors {E1 +E2,M = E1 −E2, N = [L,M ]} form an orthogonal basis
of V with respect to Bθ. Since adL is a skew-symmetric operator and
[L,E1 +E2] = 0, the 2-dimensional subspace Span{M,N} is adL-stable
in V . Thus one can normalize Q so that adL(N) = −M , as desired.

(ii) Under the identification of C2 with S̃C/H̃C given in Lemma 4.11, the
induced map is given by (z, w) → exp(zM + wN) · x0. Its image can
be viewed as the orbit through the base point x0 of the abelian sub-
group with Lie algebra spanC{M, N}. Now the result follows from the
injectivity of the map ι defined in (3.1) and Theorem 2 in [17], stating
that the orbits of a unipotent subgroup in the affine space GC/KC are
closed. �

Example. — As an example consider G = Sp(r,R). Fix

Q =


Q̌ O O O

O O O O

O O −Q̌t O

O O O O

 ∈ ge1−e2 , with Q̌ =
(

0 −1/2
0 0

)
.

The corresponding 3-dimensional solvable Lie subalgebra of g is generated
by the matrices

L =


Ľ O O O

O O O O

O O Ľ O

O O O O

 M =


O O M̌ O

O O O O

O O O O

O O O O

 N =


O O Ň O

O O O O

O O O O

O O O O


where

Ľ =
(

0 −1/2
1/2 0

)
, M̌ =

(
1 0
0 −1

)
, Ň =

(
0 1
1 0

)
,

and is isomorphic to s. The corresponding group is closed in Sp(r,R) and
given by

U O B O

O Ir−2 O O

O O U O

O O O Ir−2

 , U ∈ SO(2), B = tB, tr(B) = 0.

Proposition 4.13 (Reduction 2). — Let Dx
◦ be a convex set in Dx and

let γ be a reflection in WK(Λr) \W 0. The map

f : G exp i(Dx
◦ ∪ γ · Dx

◦) · x0 → D̂
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has a G-equivariant, holomorphic extension to the domain

D̃ = G exp i Conv(Dx
◦ ∪ γ · Dx

◦) · x0.

Proof. — For simplicity of exposition we assume γ = γ12, which implies
Fix(γ) = span{E1 + E2, E3, . . . , Er} and Fix(γ)⊥ = R(E1 − E2). Set
M := E1 −E2 and let N and L be as in the proof of Lemma 4.12. Denote
by s the Lie subalgebra of Zg(Fix(γ)) generated by {L, M, N} and by
S the corresponding subgroup in ZG(Fix(γ)). Denote by m the abelian
subalgebra of s generated by {M, N}, and by H the (possibly non-closed)
subgroup of ZG(Fix(γ)) ∩K with Lie algebra RL.
An arbitrary element X ∈ Dx

◦ decomposes in a unique way as X = Y +Z,
where Y ∈ Fix(γ) and Z ∈ Fix(γ)⊥ = RM depend continuously on X.
For a fixed X ∈ Dx

◦, define

ΣY := RM
⋂

((Dx
◦ ∪ γ · Dx

◦)− Y ) , and AY := AdHΣY .

Since the Adjoint action of H on m is by rotations, the set AY is an annulus
in m. Denote by

(4.2) TY := exp(iAY + m) · x0 = S exp iΣY · x0

the image of the tube domain iAY + m in mC ∼= C2 under the embedding

(4.3) ι : mC → GC/KC, W → expW · x0

(see Lemma 4.11(i) and Lemma 4.12(ii)). Note that Y + ΣY is contained
in Dx

◦ ∪ γ · Dx
◦. Since Y ∈ Fix(γ) and S centralizes Fix(γ), the map

TY → D, expW · x0 7→ exp iY expW · x0, W ∈ iAY + m

is S-equivariant, and so is the holomorphic map

fY : TY → D̂, expW · x0 → f(exp iY expW · x0) .

By Bochner’s tube theorem, the envelope of holomorphy of TY is univalent
and given by

T̂Y = exp(iConv(AY ) + m) · x0 = S exp iConv(ΣY ) · x0

(note that Conv(ΣY ) = Conv(AY ) ∩ RM). In particular, it is contained
in Ξ+. By Proposition 4.1, the map fY extends holomorphically and S-
equivariantly to f̂Y : T̂Y → D̂ and, as X varies in Dx

◦, one obtains a family
of S-equivariant holomorphic maps f̂Y , parametrized by Y . Set

D̃ :=
⋃

X∈Dx
◦

Y + Conv(ΣY ) = Conv(Dx
◦ ∪ γ · Dx

◦) ,
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where the second equality follows from an argument similar to the one of
Lemma 7.7 (iv) in [15]. We define a candidate for the desired extension
f̂ : exp iD̃ · x0 → D̂ as follows

(4.4) f̂(exp iX · x0) := f̂Y (exp iZ · x0) .

The map f̂ coincides with f on exp i(Dx
◦ ∪ γ · Dx

◦) · x0, since for X ∈ Dx
◦ ∪

γ · Dx
◦ one has that Z ∈ ΣY and

f̂(exp iX · x0) = f̂Y (exp iZ · x0) = fY (exp iZ · x0) =

= f(exp iY exp iZ · x0) = f(exp i(Y + Z) · x0) = f(exp iX · x0) .

To complete the proof of the proposition, it remains to check that f̂ satisfies
all the assumptions of Lemma 4.7 and therefore extends to a G-equivariant
holomorphic map f̂ : G exp iD̃ · x0 → D̂.
• The map f̂ is a lift of the natural inclusion exp iD̃ · x0 ↪→ Ξ+.
Since f̂ extends f , one has q ◦ f̂(exp iX ·x0) = exp iX ·x0 , for all X ∈
Dx
◦∪γ·Dx

◦ . In particular, from (4.2), the S-equivariance of q◦fY and the
fact that S centralizes Y , one has q◦fY (exp iZ ·x0) = exp iY exp iZ ·x0,
for all Z ∈ ΣY . By applying the analytic continuation principle to each
q ◦ f̂Y : T̂Y → GC/KC, one obtains

q ◦ f̂(exp iX · x0) = q ◦ f̂Y (exp iZ · x0) = exp iY exp iZ · x0 = exp iX · x0

for all X ∈ D̃.
• The map f̂ is continuous.
The Stein Riemann domain D̂ admits a holomorphic embedding into
some CN . Then, in order to prove the continuity of f̂ , it is sufficient
to show that the composition F ◦ f̂ : exp iD̃ ·x0 → C is continuous, for
every holomorphic function F : D̂ → C. Since the map ι in (4.3) is an
embedding, this is equivalent to checking that the map

F ◦ f̂ ◦ ι|
iD̃ : iD̃ → C, iX → F ◦ f̂(exp iX · x0)

is continuous.
Choose an open set U in Fix(γ) and an open γ-invariant subset Σ

in RM = Fix(γ)⊥, such that U + Σ ⊂ Dx
◦ ∪ γ · Dx

◦. By the definition
of Σ, when Y varies in U , the functions fY are all defined on the tube
domain TΣ = S exp iΣ · x0. Moreover, the map

U → O(TΣ,C) , Y → F ◦ fY |TΣ

is continuous with respect to the compact-open topology on the Fréchet
algebra O(TΣ,C) of holomorphic functions on TΣ. Indeed, for W ∈
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iAY + m and Y ∈ U , one has

F ◦ fY (expW · x0) = F ◦ f(exp iY expW · x0) = F ◦ f(exp(iY +W ) · x0) .

Thus, if Yn → Y0, then F ◦fYn → F ◦fY0 uniformly on compact subsets
of TΣ. Since the extension map O(TΣ,C) → O(T̂Σ,C) is continuous
(see cap. I in [8]), it follows that also the map

U → O(T̂Σ,C) , Y → F ◦ f̂Y |T̂Σ

is continuous with respect to the compact-open topology on O(T̂Σ,C).
As we already remarked, T̂Σ = S exp iConv(Σ) · x0. As a consequence,
the map

F ◦ f̂ ◦ ι|i(U+Conv(Σ)) : i(U + Conv(Σ))→ C ,

defined by

iX → F ◦ f̂(exp iX · x0) = F ◦ f̂Y (exp iZ · x0)

is continuous. Since the domains of the form i(U +Conv(Σ)) cover iD̃,
the map f̂ is continuous.

• For all X ∈ D̃, one has Gf̂(exp iX·x0) = Gexp iX·x0 .
We apply Lemma 4.5, with C = D̃ and F = Dx

◦ ∪ γ · Dx
◦. In order to

check condition (ii) of the lemma, let X = Y + Z ∈ Y + Conv(ΣY )
be an arbitrary element of C \ F . Then there exists Z ′ ∈ ΣY such
that X ′ = Y + Z ′ ∈ Y + ΣY ⊂ F and the one dimensional complex
submanifold in (ii) of Lemma 4.5 is given by

S := { exp i(X ′ + λ(X −X ′)) · x0 : Reλ ∈ [0, 1] }
= { exp i(Y + Z ′ + λ(Z − Z ′)) · x0 : Reλ ∈ [0, 1] } .

Note that Z − Z ′ belongs to RM and that the strip

{i(Z ′ + λ(Z − Z ′))) · x0 : Reλ ∈ [0, 1] }

is contained in iConv(ΣY )+m. Thus exp i(Z ′+λ(Z−Z ′))·x0 ∈ TY and
one has a natural holomorphic extension of f to the one dimensional
complex submanifold S, namely

f̂(exp i(Y + Z ′ + λ(Z − Z ′)) · x0) = f̂Y (exp i(Z ′ + λ(Z − Z ′)) · x0) .

This shows that we can apply Lemma 4.5, as claimed.
• The map f̂ satisfies the compatibility condition.
Let kγ ∈ H be the element inducing the reflection with respect to the
origin in RM . Since H centralizes Fix(γ), the element kγ belongs to
NK(Λx

r) and induces the reflection γ given in the statement. Hence, for
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every X ∈ D̃ one has γ ·X = AdkγX. Moreover, by the H-equivariance
of the maps f̂Y , one obtains the identity

f̂(exp(i γ ·X) · x0) = f̂(exp i(Y + γ · Z) · x0) = f̂Y (exp iAdkγZ · x0)

= f̂Y (kγ exp iZ · x0) = kγ · f̂Y (exp iZ · x0) = kγ · f̂(exp iX · x0) ,

which is the desired compatibility condition. �

Corollary 4.14. — By iterating reductions 1 and 2 finitely many
times, one obtains an extension of f : D = G exp iDx · x0 → D̂ to a
G-equivariant holomorphic map

f̂ : G exp iConv(Dx) · x0 → D̂.

5. The main theorem

In this section we show that the envelope of holomorphy of a G-invariant
domain in Ξ+ is univalent (Cor. 5.4). Such a result is a consequence of The-
orem 5.1. As a by-product we also obtain that every Stein G-invariant sub-
domain of Ξ+ is either contained in Ξ or, in the tube case, in S+ (Cor. 5.2).
Togheter with the results in [7] and [16] and Remark 5.3 below, this com-
pletes the classification of all Stein G-invariant domains in Ξ+.

Theorem 5.1. — Let G/K be an irreducible non-compact Hermitian
symmetric space. Given a G-invariant domain D in Ξ+, denote by D̂ its
envelope of holomorphy.

(i) Assume G/K is of tube type. If D is not contained in Ξ nor in
S+, then D̂ is univalent and coincides with Ξ+ .

(ii) Assume G/K is not of tube type. If D is not contained in Ξ , then
D̂ is univalent and coincides with Ξ+.

Proof. — The proof of the theorem consists of a sequence of rank-one
reductions and convexifications (reductions 1 and 2), until an extension f̂
of the lift f| exp iDx·x0 : exp iDx · x0 → D̂ in diagram (4.1) to the whole
exp iΛx

r · x0 is obtained. The map f̂ is constructed so that it satisfies the
assumptions of Lemma 4.7 and yields a G-equivariant holomorphic exten-
sion of the map f : D → D̂ to the whole Ξ+. Then the theorem follows
from (ii) of Proposition 4.2. We need to distinguish several cases.
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Case 1. — Let D = G exp iDx · x0 in Ξ+ be a domain satisfying the
condition

Dx
⋂

Λx
r \

 r⊕
j=1

[0, 1)Ej
⋃ r⊕

j=1
(1,∞)Ej

 6= ∅.
In the tube case, the above condition is equivalent to the assumptions in
(i) (see (3.3) and (3.4)). By reductions 1 and 2, the set Dx may be assumed
to be a WK(Λr)-invariant, open convex subset of Λx

r . A simple argument
shows that it contains a point X with exactly one coordinate equal to 1,
and the other ones either all < 1 (Case 1.a) or all > 1 (Case 1.b).

For j = 1, . . . , r, denote by Gj the rank-one subgroup of G with Lie
algebra defined in (2.1). ThenKj := Gj∩K is a maximal compact subgroup
of Gj and the quotient Gj/Kj is a rank-one Hermitian symmetric space of
tube-type. The envelope of holomorphy of an invariant domain in GC

j /K
C
j

is univalent and described by Theorem 4.4 (for n = 1).

Case 1.a. — In this case, in view of (3.2), the set (Dx)+ contains a point

(5.1) X = (1, x2, . . . , xr), with 1 > x2 > . . . xr > 0.

Our first goal is to obtain an extension of f to exp iD̃ · x0, where D̃ is
an open WK(Λr)-invariant convex set in Λx

r containing Dx and the point
(1, 0, . . . , 0). This is done in stages, by gradually extending f to WK(Λr)-
invariant larger sets of the form exp iC · x0, where C contains Dx and, in
order, the points

(1, x2, . . . , xr−2, xr−1, 0), (1, x2, . . . , xr−2, 0, 0), . . . , (1, 0, . . . , 0).

Denote by

int((Λx
r)+) and int((Dx)+) = (Dx)+ ∩ int((Λx

r)+)

the interior of (Λx
r)+ and of (Dx)+ in Λx

r , respectively. Note that the former
coincides with (Λx

r)+ \H, where H := ∪γ∈WK(Λr){Fix(γ)} denotes the set
of reflection hyperplanes in Λx

r . Under assumption (5.1), the interior of
(Dx)+ contains an open set of the form

U+V, with (1, x2, . . . xr−1, 0) ∈ U ⊂ E⊥r and V = (ar, br)Er (br < 1).

Decompose an element W ∈ U + V as W = Y + Z, where Y ∈ U and
Z ∈ V depend continuously on W , and define Dr := Gr exp iV · x0. By
(2.3), the group Gr commutes with Gj for j 6= r. Hence, for every Y ∈ U ,
the holomorphic map

fY : Dr → D̂, g exp iZ · x0 → f(exp iY g exp iZ · x0)

ANNALES DE L’INSTITUT FOURIER



INVARIANT ENVELOPES OF HOLOMORPHY 169

is Gr-equivariant and, by Prop. 4.4(i), extends to a Gr-equivariant holo-
morphic map

f̂Y : D̂r −→ D̂,

where D̂r = Gr exp iV̂ · x0 and V̂ = [0, br). Define now a map

(5.2) f̂ : exp i(U + V̂ ) · x0 → D̂, by exp iW · x0 → f̂Y (exp iZ · x0).

The arguments used for the map (4.4) in the proof of Proposition 4.13,
show that f̂ defined above coincides with f on exp i(U + V ) · x0 and that
it is a continuous lift of the natural inclusion of exp i(U + V̂ ) · x0 into Ξ+.
In order to be able to apply Lemma 4.7, define

(5.3) C = (U + V̂ )
⋂

int((Λx
r)+)

and restrict the map (5.2) to the set exp iC · x0. We stress this point even
if in this particular case U + V̂ is already entirely contained in the inte-
rior of (Λx

r)+. However, this will not be the case in the next steps. Now
f̂ |exp iC·x0 satisfies all the assumptions of the extension Lemma 4.7 : the
set C is open in Λx

r and entirely contained in the perfect slice (Λx
r)+.

Hence f̂ |exp iC·x0 satisfies the compatibility conditions. Finally, the iden-
tity Gexp iX·x0 = Gf̂(exp iX·x0), for all X ∈ C, follows from Lemma 4.5. For
this set F = U +V and let Y +Z be an arbitrary element in C \F . Choose
an element in F of the form Y + Z ′ . Then condition (ii) of Lemma 4.5
is satisfied, since f̂ is holomorphic on the one dimensional complex sub-
manifold

{ exp i(Y + Z ′ + λ(Z − Z ′)) · x0 : Reλ ∈ [0, 1] } .

As a consequence of Lemma 4.7, the map (5.2) extends to a G-equivariant
holomorphic map

(5.4) f̂ : G exp iC · x0 → D̂.

Note that the open G-invariant subset G exp iC · x0 of Ξ+ coincides with
G exp i (WK(Λr) · C) ·x0 and has open intersection with D. By the analytic
continuation principle, the map (5.4) coincides with f on the points of D,
and determines a G-equivariant holomorphic extension f̂ : G exp iD̃ · x0 →
D̂ where

D̃ = Dx
⋃

WK(Λr) · C.

The set D̃ contains the point (1, x2, . . . xr−1, 0), projection of the initial
point X onto the hyperplane xr = 0. By reductions 1 and 2, it may be
assumed to be convex.
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Iterating the above procedure for the coordinates xr−1, xr−2, . . . , x2
produces G-equivariant holomorphic extensions of f to open WK(Λr)-
invariant convex sets containing Dx and, in order, the points

(1, x2, . . . , xr−2, 0, 0), . . . , (1, 0, . . . , 0).

For the final step, set Dx = D̃ and take an open subset of int((Dx)+)
of the form U + V , with U ⊂ E⊥1 and V = (a1, b1)E1, for a1 < 1 < b1.

This time D1 = G1 exp iV · x0 is a G1-invariant complex submanifold of
GC/KC whose envelope of holomorphy is given by D̂1 = G1 exp iV̂ · x0,
with V̂ := [0,∞)E1 (see Prop. 4.4(iii)). The usual procedure produces
then a holomorphic G-equivariant extension f̂ : Ξ+ \ G/K → D̂. The fact
that the orbit G/K is a priori excluded from the domain of f̂ is due to
an intersection like in (5.3). On the other hand, since the orbit G/K is
a totally real submanifold of Ξ+, the map f̂ extends to the whole Ξ+, as
desired.

Case 1.b. — In this case in view of (3.2), the set (Dx)+ contains a point

(5.5) X = (x1, x2, . . . , 1), with x1 > x2 > . . . xr−1 > 1.

Our goal is to reduce to the previous case (1.a) by contructing an extension
of f to a set exp iD̃ · x0, where D̃ is an open WK(Λr)-invariant convex set
in Λx

r containing Dx and the point (1, 0, . . . , 0). By proceeding as in the
first step of case (1.a), we obtain a G-equivariant holomorphic extension
f̂ : G exp iD̃ · x0 → D̂, where D̃ is an open WK(Λr)-invariant convex set
in Λx

r , containing Dx and (x1, x2, . . . xr−1, 0), the projection of X onto the
hyperplane xr = 0. Then D̃ also contains the point (x1, x2, . . . , 0, xr−1) and
the segment

(x1, x2, . . . , txr−1, (1− t)xr−1), for t ∈ [0, 1].

In particular, it contains the point (x1, x2, . . . , 2/3xr−1, 1/3xr−1), which
lies in (Dx)+ and has a smaller (r−1)th coordinate than (x1, x2, . . . xr−1, 0).
By iterating this argument, we infer that D̃ contains (x1, x2, . . . , x

′
r−1, 0),

for some x′r−1 < 1. Then by the convexity of D̃ and the inequality xr−1 > 1,
it also contains the point (x1, . . . , xr−2, 1, 0).
By applying the above procedure to the coordinates xr−1, xr−2, . . . , x2,

we obtain G-equivariant holomorphic extensions f̂ : G exp iD̃ · x0 → D̂,
where D̃ is an open WK(Λr)-invariant convex set in Λx

r , containing Dx

and, in order, the points

(x1, . . . , xr−3, 1, 0, 0), . . . , (1, 0, . . . , 0).
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Case 2. — We finally consider the case where G/K is not of tube-type,
the set Dx is contained in

⊕r
j=1(1,∞)Ej and, in view of (3.2), contains a

point

X = (x1, x2, . . . xr), with x1 > x2 > . . . > xr > 1.

Our goal is to reduce to the case (1.a) by showing that the map f extends
to a set exp iD̃ · x0, where D̃ is an open WK(Λr)-invariant convex set in
Λx
r containing Dx and the point (1, 0, . . . , 0). As in case (1.a), this is done

in stages, by gradually extending f to WK(Λr)-invariant larger sets of the
form exp iC · x0, where C contains Dx and, in order, the points

(1, x2, . . . , xr−2, xr−1, 0), (1, x2, . . . , xr−2, 0, 0), . . . , (1, 0, . . . , 0).

The procedure almost literally follows the one used in case (1.a). The differ-
ence is that when dealing with the jth-coordinate, the rank-one reduction
is done by using the subgroup G•j with Lie algebra (2.5). An important
fact is that, by Lemma 2.1, the group G•j commutes with the rank-one
subgroups Gk, for all k 6= j. One has that K•j := K ∩ G•j is a maximal
compact subgroup of G•j and G•j/K

•
j is a rank-one Hermitian symmetric

space, not of tube type. In particular, the envelopes of holomorphy of the
G•j -invariant domains in the complexification (G•j )C/(K•j )C are described
by Proposition 4.4, for n > 1. �

Inside the crown Ξ and inside S+, an invariant domain can be described
via a semisimple abelian slice. Its Steiness is characterized by logarithmic
convexity of such slice (cf. [7] and [16]). These results together with the
above theorem conclude the classification of Stein G-invariant domains in
Ξ+.

Corollary 5.2. — Let G/K be an irreducible non-compact Hermitian
symmetric space and let D be a Stein G-invariant proper subdomain of Ξ+.

(i) If G/K is of tube type, then either D ⊆ Ξ or D ⊆ S+.
(ii) If G/K is not of tube type, then D ⊆ Ξ.

Remark 5.3. — Let G/K be an arbitrary irreducible, non-compact, Rie-
mannian symmetric space and let Ξ = G exp iΩAG · x0 be the crown do-
main in GC/KC, where ΩAG := {H ∈ a : |α(H)| < π

2 , for all α ∈
∆(g, a)}. An invariant domain in Ξ is given by D = G exp iΩ · x0, for
some WK(a)-invariant open set Ω ⊂ ΩAG, and it is Stein if and only if
Ω is convex (cf. [7]). However we are not aware of a proof of the fact that
D̂ = G exp iConv(Ω) ·x0. For the sake of completeness, we outline one here.
Let a+ be the closure of a fixed Weyl chamber in a. Define Ω+ := Ω ∩ a+

and let Ω◦ be the connected component of Ω containing Ω+. Denote by Γ0
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the set of simple reflections in a whose fixed point hyperplanes contain a
non-zero element of Ω+ and byW 0 the subgroup ofWK(a) generated by Γ0.
Arguing as in Lemma 4.9, one obtains W 0 · Ω+ = Ω◦. Set A := exp a. The
r-dimensional complex submanifold A exp iΩ◦ · x0 of D is biholomorphic
to a tube domain in Cr with base Ω◦. Then, by the argument of Propo-
sition 4.10, the inclusion f : D → D̂ admits a G-equivariant holomorphic
extension to the domain G exp iConv(Ω◦) ·x0. In other words, all connected
components of Ω may be assumed to be convex.

The second part of the proof consists of showing that the map f in di-
agram (4.1) admits a G-equivariant holomorphic extension to the domain
G exp iConv(Ω) · x0. The relevant case is that of Ω consisting of two con-
nected components Ω◦ and sα · Ω◦, simmetrically placed with respect to
the fixed point hyperplane Fix(sα) of a reflection sα ∈WK(a) \W 0. Fix a
generator Hα of Fix(sα)⊥ and Xα ∈ gα so that the vectors {Xα, θXα, Hα}
generate an sł(2)-subalgebra. Denote by Gα the corresponding rank-one
subgroup of G. From now on the proof follows the one of Proposition 4.13,
whereas the solvable group S is replaced by the rank-one subgroup Gα,
and Lemma 4.11 is replaced by Proposition 4.4(i). Decompose an element
X ∈ Ω◦ as X = Y +Z, where Y ∈ Fix(sα) and Z ∈ RHα depend continu-
osly on X, and define

ΣY := RHα ∩ ((Ω◦ ∪ sα · Ω◦)− Y ) and DY := Gα exp iΣY · x0.

Then DY is biholomorphic to a Gα-invariant domain inside the crown Ξα ⊂
GC
α/K

C
α . The group Gα centralizes Fix(sα) and, as X varies in Ω◦, the

family of Gα-equivariant holomorphic maps

fY : DY → D̂, g exp iZ · x0 7→ f(exp iY g exp iZ · x0),

determines a G-equivariant holomorphic extension of f : D → D̂ to

f̂ : G exp iConv(Ω) · x0 → D̂.

Since the domain G exp iConv(Ω) · x0 is Stein (see [7]), this shows that the
envelope of holomorphy of D = G exp iΩ ·x0 is univalent and coincides with
G exp iConv(Ω) · x0. �

By [16], the envelope of holomorphy of a G-invariant domain in S+ is
univalent. Thus one has the following corollary.

Corollary 5.4. — Let G/K be an irreducible non-compact Hermitian
symmetric space. The envelope of holomorphy of a G-invariant domain in
Ξ+ is univalent.
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Remark 5.5. — In general a similar univalence result does not hold
true for equivariant Stein Riemann domains over Ξ+ other than envelopes
of holomorphy. If G/K is a Hermitian symmetric space of tube type, one
can construct a non-trivial G-equivariant covering of the Stein G-invariant
subdomain S+ of Ξ+.
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