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PROBABILITY AND A DIRICHLET PROBLEM
FOR MULTIPLY

SUPERHARMONIC FUNCTIONS Q
by John B. WALSH

Introduction.

We shall use the notation C(A) for the set of continuous
real-valued functions on the set A. Let D be a bounded
domain in R" and ^)D its boundary. It is classical that under
mild smoothness restrictions on ^)D, if /*eC(^D) there
exists a function hf which solves the Dirichlet problem,
i.e., hj- is harmonic in D, continuous in D, and equal to f
on bD. The function hj- can be gotten by the Perron-Wiener-
Brelot method, that is hj' is equal to the lower envelope of
functions lower semicontinuous in D and superharmonic
in D which are greater than or equal to f on the boundary.
Kakutani [25] was the first to treat the Dirichlet problem
probabilistically. He showed that if /*€=C(^D) and 7f is
Brownian motion from xe D, then g^x) = E^Z-^r))} is a
harmonic function of x, where T is the first time 7f hits
^D; the function gf solves the Dirichlet problem whenever
a solution exists.

A deeper treatment of the problem was initiated by Doob
([15], also [17] and [18] where the approach is more general)
who observed that Brownian motion has the supermartingale
property with respect to the class of superharmonic functions,
i.e., if u is superharmonic and does not grow too fast at
infinity, u{7f{t)) is a supermartingale. Thus martingale

(1) This paper is part of the author's Doctoral dissertation and the author is
grateful to Professor J. L. Doob of the University of Illinois for his guidance in
its preparation.
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theory could be applied to the Dirichlet problem, and indeed
to most of classical potential theory. The probabilistic approach
to potential theory is not limited to the classical case. General
probabilistic treatments of the Dirichlet problem have been
given by Doob ([17] and [181) and Courrege and Priouret [12],
and of potential theory in general by Hunt [23] in his cele-
brated papers in the Illinois Journal.

In this paper, we wish, not to generalize, but rather to
specialize in that we treat the Dirichlet problem not for the
harmonic functions but for a proper subset of them, the mul-
tiply harmonic functions. A function is multiply harmonic in
two sets of variables in R" if n == p + q tor positive integers
p, q and f is harmonic in the first p variables and separately
is harmonic in the next q. One defines multiple harmonicity
for more than two sets of variables similarly. When we speak
of the class of multiply harmonic functions we shall always
mean the class of functions which are multiply harmonic
with respect to a given partition of the variables.

Although we treat a smaller class of functions, we get a
much larger class of processes than in the classical case; it
turns out that there are processes quite different from Brow-
nian motion which satisfy the supermartingale property with
respect to the multiply superharmonic functions. Thus,
while previous probabilistic treatments of potential theory
deal with a Markov process which is unique apart from its
initial distribution and behavior at the boundary, our set-up
involves a family of stochastic processes which are not neces-
sarily Markov. The strong Markov property, vital in the clas-
sical case, has as a counterpart the dual concepts of continuing
and conditioning stochastic processes, which we discuss in
section one.

Our approach is based on the following observation. Let T^
be the set of all continuous stochastic processes from x
which satisfy the supermartingale property relative to mul-
tiply superharmonic functions. If D is a domain in R"
and f is a bounded Baire function on <)D, and if LLp c T^
is a set of processes which are « nice » for small times, then the
function <&y defined by

W = sup E{/-(X(TD))}
xeUa;
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is multiply superharmonic in D, where TD is the first time X
hits ^)D. We call <])y a Dirichlet solution; one of the aims
of this paper is to justify this.

These Dirichlet solutions are closely connected with the
solutions of a Dirichlet problem of a type introduced by
H. J. Bremermann ([10]; see also [21], [26], [28]). Bremermann
studied the problem for pluriharmonic functions, i.e., functions
which are the real parts of functions holomorphic in several
complex variables, and for plurisubharmonic functions, but
the problem is readily transferred to our case. He used the
Perron-Wiener-Brelot method to get solutions for the Dirichlet
problem. Bremermann's problem, stated in our terms, is as
follows: Let S c ^)D and /*eC(S), and let hj- be the lower
envelope of functions multiply superharmonic in D, lower
semicontinuous in D and greater than or equal to f on
S. Then hj- is said to solve the Dirichlet problem if
lim inf h^y) = f{x)y x e= S. In the classical theory, such enve-

y->x
lopes are harmonic; a fundamental difference between this
and the classical case is that the functions hj- are multiply
superharmonic but are seldom multiply harmonic. Under mild
restrictions on the domain we find that $y solves the above
problem and that hj- == <t>^.

A different approach, using Leja's method of extremal
points [29] was used by Gorski [20] and Siciak [35]. This
method yields pluisubharmonic solutions which in certain
cases turn out to agree with Bremermann's.

The concept of the Silov boundary enters the problem in a
natural way. This boundary is one of the logical boundaries
on which to pose the Dirichlet problem; it plays a central
role, for example, in Bauer's general treatment of the Dirichlet
problem [3]. (The Silov boundary of a closed set A with
respect to a class G of functions on A is defined to be the
smallest closed set on which every function in G has its
minimum, or sometimes maximum, depending on the class.) In
[10], Bremermann showed that in certain domains, his Diri-
chlet problem is solvable only for functions defined on a certain
Silov boundary; his results have been extended to somewhat
more general regions by Gorski [21], Kimura [26], and Kusu-
noki [20].
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A Silov boundary turns out to be pivotal in our treatment
too. We give several characterizations of it, the most interes-
ting from the probabilistic viewpoint being that it is the
smallest closed set S with the property that for any fixed
x e D there is a process X e T^. which hits ^)D in the set S
w.p. 1.

1. Conditioned and continued processes.

1,1. Notation.
We will denote Euclidean n-space by R", and write

R = R1, R+ == [0, oo). If a, be R we will use the lattice
notations a/\b and a V & for inf (a, b) and sup (a, b)
respectively. We will also use this notation for (T- fields; if F
and G are a-fields of subsets of a set Q, then F V G is the
smallest cr-field containing both F and G. If F(t) is a

(r-field for each t in an index set Q, then V F^) ls ^e
smallest a-field containing all F((), (€=T. (€T

Let Q be a separable complete metric space. The set of all
stochastic processes {X((), ^eR_^} with values in Q and
right-continuous sample functions will be denoted by %Q.
In situations where the context makes it clear that the para-
meter set is R+, we shall write {X(()} rather than {X(^),
teR+}.

Let Q^c b6 ^e space of all right-continuous functions
(o : R- .̂ —> Q. Let £B(<) be the o"-field generated by sets of
the form :

{(o <= Q^ : (jo(,9) <= A} where 0 ̂  s ̂  t

and A c Q is Borel.

Define % =\/S>(t). We call (Q,,, ^) the canonical space
(

and {^(t), (eR_^} the natural fields. For any probability
measure P on (Q^, %) there is a stochastic process
X= {X((), <eR+} on (Q,,, %, P) defined by

X(^, co) = co((), (O€=Q^.

We say that X is canonically defined on (Q^? l^? P)- Conver-
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sely, if XG^SQ is defined on a probability space (0, 3^ P),
there is a unique measure P on (Qrcj ^) such that the process
X == {X((), ^ € = R ^ _ } defined canonically on {Q^ 33, P) has
the same finite-dimensional joint distributions as X. X is
called the canonical process of X. The probability P on
(Q,,, ^) is defined by: P(A) = P{(x): X(., co)<=A}, Ae%,
where on the right-hand side we are considering X(», co)
as an element of Qpc- If Xi, Xg e %^ we say they are equi-
valent, and write X^ ̂  X2, if they have the same canonical
process.

1.2. Stopping Times.

If X == {X(()} is a stochastic process defined on a proba-
bility space (Q, ^, P), a family {S(t), t €=R^_} of sub (T-fields
of S is said to be admissible for X if

a) 9{s) c 9(t} whenever s < f.
b) X(() is measurable ^(t), (eR^.
Let X e %^ be defined on the probability space (Q, 9?, P)

and let {^(t)} be a family of (T-fields admissible for X.
A measurable function T : Q' —> [0, oo], where Q' is some
measurable subset of Q, is a stopping time for {^(t)} it
t eR+ implies {co : T((D) < ^} e^((), and is a strict stopping
time if (eR_^ implies {(o : T(o)) ̂  t} e^(f).

We find it convenient not to insist that T be defined
everywhere. This is a minor point for if T is a stopping time
which is not defined everywhere it can be extended by setting
T = -|- oo on the set where it was not previously defined.
We will always make the convention that if T(co) is not
defined, X(T(co), o) and X(( + T(co)9 C)L)) are undefined also,
but X(T((o)A<, co) = X(^, co). (These conventions would
automatically hold were we to set T == + oo off its original
domain.)

Remark. — If Xe^ and {9(t)} is a family of (T-fields
admissible for X, then for any set A<=%(^

{o) :X( . , (o)eA}^).

To see this it is enough to notice that it is clearly true for
8
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sets of the form {a) : co(s) sA}, where 0 ̂  s <; ( and A
is a Borel set in Q, and that these sets generate %(().

Let Xe^Q be defined on (Q, 9?, P) and let {9(t}} be a
family of a-fields adapted to X. Let T be a stopping time
on Q^c relative to the natural fields. Then there is a unique
random variable T on Q defined by

T((0) = -(X(., CO))

where on the right-hand side we consider X(-, co) as an
element of Q^c- I1 follows directly from our previous remark
that T is a stopping time, and is strict if T is.

DEFINITION. — Let T and T be as above. We say that T
is the natural image of T. Any stopping time which is the
natural image of a stopping time on ilrc ts a natural stopping
time. A stopping time which is the natural image of a stopping
time on Qpc is a natural stopping time and any stopping time
which is the image of a strict stopping time on Q^c ls a natural
strict stopping time.

DEFINITION. — Let T be a natural stopping time on Q^c
and let Xi, Xg e %Q. Let Ti and ^ be the natural images of
T for Xi and Xg respectively. We say that Xi and Xg
are equivalent up to time T, and write Xi — (^Xg, if X^ — X^
where X,(() = X,(tAT,), i = 1, 2.

1.3. Conditioned Processes.

The idea of conditioning a stochastic process on a given
event has been applied in connection with Markov processes,
where the conditioned process often has a simple relation to
the original process. This idea is closely connected with the
strong Markov property. In probabilistic potential theory the
concept of a Markov process conditioned to hit a given point
has proved useful [19]. In general, the concept of a conditional
process falls under the heading of conditional distribution.
In this section we develop one special case.

Let Xe^Q be defined on the probability space (Q, ^, P)
and let T be a stopping time relative to an admissible set
of (T-fields {^, t>0}. The idea of the process {X(r + t),
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t ̂  0} conditioned on X(r) will be useful in the following.
The definition is analogous to that of a conditional expectation;
we define a family of processes rather than a single process.
The family so defined is unique only in a certain almost
everywhere sense.

DEFINITION. — The conditional X(r + •) process, denoted
§r(X), is any family {X2', z^A.} of right-continuous stochastic
processes satisfying.

El) A c Q is a Borel set.
E2) For any Aes%, the function z -> P{X'(.) e A} is

Borel measurable.
E3) For each A <= % and Borel set B c Q, if ^ is the

distribution of X(r) in Q:

(1.3.1) P ( { X ( T + - ) ^ A } n { X ( T ) e B } )
= ^{X^eA}^).

BOA

PROPOSITION 1.3.1. — ^(X) always exists. If {X^ zeA.}
and {Y^, z<=A'} are (wo versions of 8^(X), (Aen /or js no(
in some set of ^-measure zero, X2' ̂  Y^.

Proof. — The requirements for a conditioned process depend
only on the joint distribution of T and this process. Thus,
if we define T'(o)) to be equal to T((o) when the latter is
defined, and — 1 otherwise, it is enough to consider the pair
(r', X(«)) defined canonically on the space Q' = R X Qpc?
relative to fields 0i X %, where 0i is the class of Borel sets
of R. The sample functions of X are right-continuous,
so % is generated by X(() for ( rational. It follows easily
that (Q', CL X S>) is a Lusin space in BlackwelFs sense [5],
so if y is the a-field generated by X(r), P has a conditional
distribution P* relative to 9\ that is, a real valued function
on Q' X (OL X S>) satisfying:

(a) For Ae=(9L X %, P*(-, A) is ^'-measurable and equal
to P{A|^} w.p.l.

(b) For fixed co, P*(OD, •) is a probability distribution on S>.
For each z in the range of X(r) define a process X2

canonically on Q^ by:
if A<=^ , P{X ^(•)6A} == P*((O, {T' > 0} X A) where co
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is any element of {r' ̂  0, X(r') == z}. The family of processes
so defined then satisfies (E1)-(E3).

The second assertion follows easily from the observation
that the field S> is generated by a countable field of sets,
hence any two functions satisfying (a) and (fc) must agree off
some co-set of probability zero. Q.E.D.

It is important in the above that we be able to reduce to a
canonical space; for an arbitrary space Q and sub-a-field 9
the conditional distribution P* may not exist. (See for
instance [5], where Blackwell discusses this problem and gives
a class of probability spaces for which conditional distributions
do exist.)

1.4. Continuation of Stochastic Processes.

Let X es %Q and for each point z e R", let X2 e= %^ have
the property that P{X^(0) = z} == 1. Let T be a stopping
time for X. In this section we consider the problem of the
existence of a process X answering the description : « X
is equivalent to X up to time T. If JC(T) == z, then JC is
equivalent to X7 from then on ». This problem has been
considered by Courrege and Priouret [14]; similar results for
strong Markov processes have been proved by Ikeda, Naga-
sawa and Watanabe [24].

DEFINITION. — Let A c Q be a Borel set. The family
{X^, z 6 A} of continuous processes is coherent if A s ̂  implies :

(1.4.1) the function z -> P{X;:(•) e A} is Borel measurable.

One can show in the usual way that it is enough that (1.4.1)
holds for all sets in some finitely additive field generating %,
and it is even enough that (1.4.1) hold for all sets of the form
{co : co(^) 6 A;, i == 1, . . ., m} where (, e R^ and A, e Q
are Borel sets.

Note that to say that {X^, zeA} is coherent is merely to
say that the corresponding distributions in the sample space
are measurable functions of z.

We can now state the central theorem of this section,
which is a consequence of a theorem of Courrege and Priouret.
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THEOREM 1.4.1. — Let XG^Q and let T be a natural strict
stopping time for X, finite where defined^ which is the natural
image of T on Q^c* Let A c Q be a Borel set such that
P{X(r) ^ A} == 0. If {X2, z<=A} is a coherent family of right
continuous processes such that P{X^(0) == z} == 1 for each
zeA, then there exists a canonical process X such that

a) X — (r)X
b) {X2, z ^A} 15 a version of ^(X)

c) X(- A ^) and X(* + ^) ar6 conditionally independent
given X(T).

TVo^. — Another way of phrasing (b) is « X^ is equivalent
to the X(( + r) process conditioned on X(r) == z ».

Proof. — The conclusions of the theorem involve only
equivalences so there is no loss of generality in assuming X
and {X7, z^A} are defined canonically. In this case ^ == T.
In what follows write T instead of ^.

Let P be the distribution of X and P^ the distribution
of X2. By Theorem I.I.I of [14], there is a measure P on
(Qrc? ^) ^ch ^at

(a) If A€S^(T), f»(A) - P(A).
If (^ : Q^c -> Qrc ls ê shift operator, i.e.,

(9,CO)(.) = CO(T + -),

then
(fc) ^{er^A)!^)}^ PI(T){A} with P-probability one.
Let JC be canonically defined on (Q^o ^? ^)- Conditional

independence of ^(rA-) and ^(r + •) given X(r) follows
from (&) as does the fact that {X^, zeA} is a version of
g,(X).

T is clearly a natural stopping time for X. Note that it
A<=£8, { X ( T A - ) eA} e^B(T); this is obvious if Ae^(r), in
which case X(rA •) e A ^=^ X(.) e A. If A is in the field G
generated by X(r + •), then if co and o/ are such that
X(T((O) + •, co)eA and X(<, o)) == X((, co') for t < T(co),
then T((O') = r((o) and X(T(eo') + •? ^ /)e A. Thus by
Theorem 1.4 of [13], {X(r + •) <= A} e ̂ (r). The conclusion
follows since sets of the form Ai n Ag, where Ai<=%(T),
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Ag^G, generate S) [13]- Thus (a) implies

X(-AT) — X(.AT), or X — (r)X,

which completes the proof.
The necessity for a strict stopping time in Theorem 1.4.1 is

illustrated by the following trivial example. Let X be uni-
form motion to the right on the real line, starting from the
origin, and let X° be uniform motion to the left. Define a
natural stopping time T for X by T == inf { ( : X(() > 0}.
Then if X is the process which is equal to X until time T,
and is X° from then on, X = X°; then X -/- (r)X for,
as X is never greater than zero, T is not defined for X.

Theorem 1.4.1 leads us to introduce the operator I\ which
is in a sense the dual of the operator 8^.

Let X e ^SQ and let T be a natural stopping time for X.
Suppose A c Q is a Borel set with the property that
P{X(T)e=A C } == 0, and let U == {X2, ze=A} be a coherent
family of ^Q-processes. Then define Y^(X; U) to be the right-
continuous stochastic process satisfying.

1) Y-r(X; U) is canonically defined.
2) Y , ( X ; U ) ~ ( T ) X .
3) U is a version of (^(Y^X; U)).
The existence of -Y^X; U) is guaranteed by Theorem 1.4.1.
It is an interesting though trivial fact that it is not neces-

sarily true that Y^X, 8-c(X)) ~ X for Xe^Q^ i.e., we may
cut a process in two and then glue it back together in the same
place and come up with a different process. The reason for
this is that the behaviors of the process Y-c(X, ^r(X)) before
and after time T are conditionally independent given the
process at T ; this may not be true of the original process X.

Let XiegKQ and let U,, == {X^, z<=AJ, n = 1, 2, . . .
be coherent families of continuous processes with
P{X^(0) == z} = 1. We assume for simplicity that all these
processes are canonically defined; if not we can reduce to
equivalent canonical processes.

Let Ti, Tg, . . . be a sequence of finite natural strict times on
Q^c and suppose that n^m implies T^^T^ in the sense that
whenever T^(co) is defined, so is T^(co), and T^oo) ̂  T^(co).
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Define a sequence Xi, Xg, . . . of continuous processes,
with corresponding probability measures Pi, P^y . . . on
Qrc by induction.

a) Xi == Xi
b) If X^, / ̂  n have been defined such that

PJ(o:co(T,(co))eA4,}=0,

then define X^i = Y^(X,, U.+i).
By definition X^+i — (^)X^. This induction defines a

process for each n. Even more is true, however.

THEOREM 1.4.2. — Let Xi, U^, T^ and X», n == 2, 3, . . .
be defined as above. Then there exists a process X ,̂ e %^ with
the property that for each n, X^ ~ (^n)X^.

Proo/'. — Let P^ be the probability measure on (Q^, ^6)
associated with X^; let X be the coordinate variable
X((, (o) = a>(() on Q^ and let ^ be the o'-field generated by
{X((AT,) , t^R+}. X,+i~(TjX^, hence P^i agrees with
f\ on %„, or more generally, if m > n, 1̂  agrees with P^
on S>n. If A is a set of the form :

(1.4.2) A = {X(t,A^.)eA,, , == 1, .. ., m},
Aj Borel sets, then A e ̂  for some n.

For each fixed (i, . . . , ^, T^, . . . , T^, we can uniquely
define a probability measure on the a-field of all sets of the
form (1.4.2) by P*(A) = P,(A), n > max n,. For different
sets of ^i, . . ., („,, T^, . . ., T^, these measures are consistent,
so by Kolmogorov's extension theorem, there is a measure P^

on the (T-field ^ = V ^n generated by all sets of the form
71

(1.4.2); and P^ is consistent with all the measures P^ In
particular, P^ = P^ on S>^

Now let XQ e Q and define X^ on (Q^, ^3, PJ by:
X^((, co) == lim X((ArJ, if the limit exists

n-> oo

== XQ otherwise.

Note that X^ is not canonically defined but is right
continuous. X(^ArJ is ^-measurable for each n, so the



232 JOHN B. WALSH

set on which the limit of X((ATn) exists is in S>^ for each t,
hence X^ is 3 ,̂ measurable. For each M, X^((ArJ = X(^ArJ.
Since f^ agrees with P^ on 3 ,̂ we have X^ — (Tn)X^.

Q.E.D.

2. Multiply superharmonic functions.

Let Q = R" and for k .̂ i let 3) be a decomposition
of Q into the direct product of A* subspaces Qi, . . ., Q^.
A* will be called the degree of 2). Let m; be the dimension
of Q^ ^ == 1, . . ., /c. If z e Q ^ then there are z1, . . ., z\
where ^eQ^ such that z == (z1, . . ., 2^). We call z1 the
I th coordinate of z.

DEFINITION. — Let 3) be a decomposition of Q of degree k
and let D c Q be a domain. An extended real valued function f
on D is multiply superharmonic relative to 3) if

(a) — oo <; /*<; + °° and f=/= + 00 ;
(b) f is bounded below on each compact K c D;
(c) for each integer p, 1 ̂  p ̂  k, if ^e Q .̂ are fixed for

i -=^ p, then the function ^ -> f{'C1, . . ., 2;̂  . . ., (^) 15 eit/ier
superharmonic or identically -|- oo on eac/i component of
Dn^'.^^^p}.

Unless there is danger of ambiguity, we will ordinarily assume
the decomposition 2) of Q is fixed and will not indicate it.

If m^ = = = • • • = = m^ ==• 2, the class of multiply superharmonic
functions contains the class of plurisuperharmonic functions,
introduced by Leiong (see [30]). These functions have close
connections with functions of several complex variables : if g
is a holomorphic function of several complex variables its real
part is pluriharmonic and the negative of its absolute value
is plurisuperharmonic. On the other hand, the Bergman
extended class of pluriharmonic functions in certain domains
turns out to be exactly the class of multiply superharmonic
functions [4].

The following theorem is due to Avanissian [2].

THEOREM 2.1 (Avanissian). — If f is multiply superhar-
monic in D, it is superharmonic in D. Consequently, if f
is multiply harmonic, it is also harmonic.


