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CONE THETA FUNCTIONS AND SPHERICAL
POLYTOPES WITH RATIONAL VOLUMES

by Amanda FOLSOM, Winfried KOHNEN & Sinai ROBINS (*)

Abstract. — We study a class of polyhedral functions called cone theta func-
tions, which are closely related to classical theta functions. Each polyhedral cone
K ⊂ Rd has an associated cone theta function, and we show that they encode
information about the rationality of the spherical volume of K. We show that if
K is a Weyl chamber for any finite Weyl group, then its cone theta function lies
in a graded ring of classical theta functions and in this sense is “almost” modular.
Conversely, in the case that the spherical volume is irrational, it is natural to ask
whether the cone theta functions are themselves modular, and we prove that in
general they are not.
Résumé. — Nous étudions une classe de fonctions polyédriques appelées fonc-

tions theta de cône, qui sont étroitement liées à des fonctions theta classiques.
Chaque cône polyédrique K ⊂ Rd a une fonction theta de cône associée, et nous
montrons qu’elles codent des informations sur la rationalité du volume sphérique
de K.

Nous montrons que si K est une chambre de Weyl pour tout groupe de Weyl
fini, alors sa fonction theta de cône appartient à un anneau gradué de fonctions
theta classiques et en ce sens est presque modulaire. Inversement, dans le cas où
le volume sphérique est irrationnel, il est naturel de se demander si les fonctions
theta de cône sont elles-mêmes modulaires, et nous prouvons qu’en général elles ne
le sont pas.

1. Introduction.

We study the relationship between volumes of spherical polytopes, and
“almost” modular cone theta functions associated to them, by considering
some connections between the following two apriori different problems:

Keywords: Theta function, modular form, spherical volume, solid angle, rationality, cone,
polytope, Weil chamber, root lattice.
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Problem 1.1. — Which lattice polyhedral cones K give rise to spheri-
cal polytopes with a rational volume?

Problem 1.2. — Analyzing a certain cone theta function ΦK attached
to a polyhedral cone K, how “close” is ΦK to being modular?

The present investigations arose from studying the volume of a spherical
polytope, also known as a solid angle, and extending the so-called Gram re-
lations of a Euclidean polytope by use of cone theta functions [14]. A strong
motivation for this work comes from the rational simplex conjecture of Jeff
Cheeger and James Simons [5], who proposed the following conjecture at a
Stanford conference in 1973: “Given a geodesic simplex in the spherical 3-
space so that all of its interior dihedral angles are rational multiples of π, is
it true that its volume is a rational multiple of the volume of the 3-sphere?”
Although the answer is positive in all known examples, Cheeger and Simons
conjectured that the answer should be “almost always” negative, and their
conjecture remains widely open.
In this paper, we associate certain graded rings of modular forms to each

polyhedral cone, and consequently to each spherical polytope. The main
idea is to translate the problem of rationality of a spherical polytope to the
problem of an associated cone theta function being included in this ring.

We first recall some of the basic definitions from the combinatorial ge-
ometry of cones and the theory of modular forms, and then we combine
ideas from the geometry of polyhedral cones with some modern analysis of
theta functions. To begin, suppose we are given a d-dimensional (simple)
polyhedral cone, defined by

K :=


d∑
j=1

λjwj | all λj > 0

 ,

where the edges of the cone are some fixed set of d linearly independent
vectors wj ∈ Rd. Such a cone K is called a pointed cone, and in the present
work every cone has the origin as its vertex. One important special case of
a polyhedral cone is the positive orthant, defined by K0 := {(x1, . . . , xd) ∈
Rd | each xj > 0} := Rd>0.
For each pointed cone K, and each full rank lattice L ⊂ Rd, we define

its cone theta function by:

(1.1) ΦK,L(τ) :=
∑

m∈L∩K
eπiτ ||m||

2
,

where τ lies in the complex upper half plane H := {τ := x+ iy | x ∈ R, y ∈
R+} ⊂ C. If L is clear from the context, we will only write ΦK . The cone
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CONE THETA FUNCTIONS 1135

theta function ΦK,L(τ) given in (1.1) is reminiscent of the modular theta
function

θ(τ) :=
∑
n∈Z

eπiτn
2
,(1.2)

a statement that we will make more precise in what follows. The function
θ(τ) is a classical example of a modular form. Due to the fact that this
paper combines several different fields of expertise, in particular discrete
geometry and modular forms, we briefly outline the language of each field
for the reader. Loosely speaking, a holomorphic modular form of integer
weight k on a suitable subgroup Γ ⊆ SL2(Z) is any holomorphic function
f : H→ C satisfying f(γτ) = (cτ + d)kf(τ) for all γ :=

(
a b
c d

)
∈ Γ, as well

as a suitable growth condition in the cusps of Γ. (See [17], e.g., for a more
precise definition.) It is well known that the modular group SL2(Z) acts
on H by fractional linear transformation

(
a b
c d

)
τ := aτ+b

cτ+d , and so modular
forms can be thought of as complex analytic functions that obey a certain
symmetry with respect to this action. Modular forms are also defined for
half-integral weights k (indeed, the theta function θ(τ) is of weight 1/2), and
for various finite index subgroups of the modular group; in particular they
are defined for the important subgroup Γ0(N) := {

(
a b
c d

)
∈ SL2(Z) | c ≡ 0

mod N}, and indeed this subgroup which will appear in some of our results.
We point the interested reader to [18] for more detail.
To see where the cone theta function (1.1) naturally comes from, we let

Sd−1 be the unit sphere centered at the origin. We define the solid angle
ωK at the vertex of K (which is the origin) by:

(1.3) ωK :=
vol
(
K ∩ Sd−1)

vol (Sd−1) .

In other words, ωK is the normalized volume of a (d − 1)-dimensional
spherical polytope. With this normalization, we note that 0 6 ωK 6 1,
and that in two dimensions we have ωK = θ/2π, where θ is the usual 2-
dimensional angle, measured in radians, at the vertex of the 2-dimensional
cone K. It is an elementary fact that

(1.4) ωK =
∫
K

e−π||x||
2
dx,

and for the sake of completeness we run through the proof of this equiva-
lence here.
First, we change the integral (1.4) into spherical coordinates on Sd−1 by

writing x = rs, where r = ‖x‖ and s ∈ Sd−1. The Jacobian of this change
of variables is rd−1, allowing us to write the Euclidean volume element

TOME 65 (2015), FASCICULE 3



1136 Amanda FOLSOM, Winfried KOHNEN & Sinai ROBINS

as dx = rd−1drdS with dS being the d − 1-dimensional spherical volume
element on Sd−1. It is well known that

∫
Rd e

−π‖x‖2
dx = 1, so that the

integral (1.4) now becomes

ωK =
∫
K
e−π‖x‖

2
dx∫

Rd e−π‖x‖
2dx

=
∫∞

0 e−πr
2
rd−1dr

∫
Sd−1∩K dS∫∞

0 e−πr2rd−1dr
∫
Sd−1 dS

=
∫
Sd−1∩K dS∫
Sd−1 dS

=
vol
(
K ∩ Sd−1)

vol (Sd−1) .

We note that, as in the argument above, when K is replaced by all of
Euclidean space, this integral (1.4) becomes

∫
Rd e

−π||x||2dx = 1, confirm-
ing that we do indeed have the proper normalization 0 6 ωK 6 1. For
more information about rational pointed cones, and connections between
discrete volumes of polytopes and local spherical angle contributions, the
reader may consult [19] and [4]. The papers [9], [10], [13], provide further
background for solid angles and their relations.
Thus, the foregoing discussion shows that a strong motivation for defining

the cone theta function ΦK(τ) is that it is essentially a discrete, Riemann
sum approximation to the integral definition of the volume ωK of a spherical
polytope, as defined by (1.4). We will make precise sense of this intuition
in section 2, where Lemma (2.1) is proved, and which will be used later to
consider carefully the putative expansion of ΦK(τ) at the cusp τ = 0.

We define R to be the ring of all finite, rational linear combinations of
theta functions ΘL, for any d-dimensional even integral lattice L ⊂ Rd,
varying over all dimensions d. The ring R has a natural grading, namely it
is graded by the weight k = d

2 of the relevant theta functions ΘL, for each
rank d lattice L ⊂ Rd. Equivalently, we may also grade R by the dimension
d of the lattices L ⊂ Rd, as d varies over the positive integers. For the
result that follows, we require the lattice Lroot, known as the root lattice
associated to the root system defining a Weyl chamber, defined carefully
in section 3 below.

Theorem 1.3. — If the polyhedral cone K is the Weyl chamber of a
finite reflection group W , then the cone theta function ΦK,2Lroot

(τ) is in
the graded ring R.

ANNALES DE L’INSTITUT FOURIER



CONE THETA FUNCTIONS 1137

The spirit of this result is that enough symmetry of the integer cone K
will be reflected in some functional relations between the associated cone
theta functions ΦK,Lj , for various j-dimensional lattices Lj which lie on the
boundaries of K ∩L. It is in this sense that ΦK is “almost modular” - it is
a linear combination of modular forms of different weights. We note that
the definition we use here for the term “almost modular form" is different
from the definition of these words in [2].
However, our feeling is that no amount of symmetry of K can ever allow

the cone theta function to lie in a single grading of this ring R, namely to
be a modular form. Theorem 1.4 and Theorem 1.5 offer partial solutions
to this set of queries.
Theorem 1.4. — Suppose that the polyhedral cone K ⊂ Rd has the

solid angle ωK at its vertex, located at the origin, and that L := A(Zd) is
an even integral lattice of full rank. If ωK

| detA| is irrational, then ΦK,L(τ) is
not a modular form of weight k on Γ0(N), and for any k ∈ 1

2Z, k >
1
2 .

Theorem 1.5. — Suppose we are given an integer cone K ⊂ R2, with
integer edge vectors w1, w2 ∈ Z2. Then ΦK,Z2(τ) is not a modular form of
weight 1 on Γ0(N).
The point of Theorem 1.5 is that, in dimension 2, we can give a finite list

of integer cones that have a rational angle, using standard Galois theory,
and outside this finite list every integer cone must have an irrational angle,
allowing Theorem 1.4 to kick into effect. Whether such a list (finite or
infinite) can be easily described in higher dimensions remains a fascinating
open question.
Cone theta functions are also related to the representation numbers of

quadratic forms, a link which we explicate here. We use a lattice L :=
A(Zd), where A is a d by d integer matrix. From the above definitions, it
is immediate that

ΦK,L(τ) =
∑

m∈L∩K
eπiτ ||m||

2
=

∑
m∈Zd∩K

eπiτ(mt(AtA)m) =
∞∑
k=0

a(k)qk/2,

(1.5)

where q = e2πiτ , and a(k) := #{m ∈ Zd | mt(AtA)m = k, and m ∈ K}.
This combinatorial interpretation of the Fourier coefficients tells us that
the k’th Fourier coefficient is the number of ways to represent the integer
k by the quadratic form mt(AtA)m, while m is simultaneously constrained
to satisfy the finite system of linear inequalities defined by the cone K.

To put the q-series above in a more general context, any combinatorial
q-series may be thought of as a series of the form

∑
k α(k)qk, where the

TOME 65 (2015), FASCICULE 3



1138 Amanda FOLSOM, Winfried KOHNEN & Sinai ROBINS

coefficients α(k) enumerate certain combinatorial structures. For example,
let p(n) := #{integer partitions of n}, and b(n) := p(n | even rank) −
p(n | odd rank), where the rank of a partition is defined to be the largest
part of the partition minus the number of parts. Consider the two gener-
ating functions, both of which are well known:

P (q) :=
∑
n>0

p(n)qn =
∑
n>0

qn
2

(q; q)2
n

,

f(q) :=
∑
n>0

b(n)qn =
∑
n>0

qn
2

(−q; q)2
n

,

(1.6)

where the q-Pochhammer symbol is defined for n ∈ N by (a; q)n := (1 −
a)(1−aq) · · · (1−aqn−1), and (a; q)0 := 1. The functions P (q) and f(q) both
admit a combinatorial interpretation, and exhibit a very similar q-series ex-
pansion. However, their subtle differences are enough to disrupt modular
properties: the function q−1/24P (q) is modular (when q = e2πiτ , τ ∈ H),
while f(q) is an example of one of Ramanujan’s “mock" theta functions.
In general, the question of when a q-series, a priori combinatorial or not,
is modular, continues to be an actively researched area, and additionally
inspires our investigation of the modular properties of cone theta functions.
For example, some recent work of Zagier [21] and Vlasenko-Zwegers [20] ex-
amined the modular properties of a general family of q-series as conjectured
by Nahm [11].
Another very recent analysis of cones from a different perspective takes

place in [7]. The authors of [7] define certain zeta functions attached to
polyhedral cones and analyze conical zeta values as a geometric generaliza-
tion of the celebrated multiple zeta values.

In order to give the reader a more concrete feeling for some cone theta
functions, we end this section with the simplest family of examples of cone
theta functions, arising from the positive orthant in each dimension.

Example 1.6. — For the cone theta function of the positive orthant
K0 := Rd>0 (and L = Zd), we claim that

(1.7) ΦK0(τ) = 1
2d (θ(τ) + 1)d ,

where θ(τ) :=
∑
n∈Z e

πiτn2 , the classical weight 1/2 modular form. In par-
ticular,

(1.8) ΦK0(τ) = 1
2d

d∑
k=0

(
d

k

)
θk(τ),

ANNALES DE L’INSTITUT FOURIER



CONE THETA FUNCTIONS 1139

a linear combination of modular forms of distinct weights, with nonzero
coefficients, and hence ΦK0 is not a modular form.

To see (1.8), we begin with the case in which the dimension of K0 equals
1, so that here K0 := R>0. We note that 1 + θ(τ) = 1 +

∑
n∈Z e

πiτn2 =
2 + 2

∑
n>1 e

πiτn2 . Therefore, 1 + θ(τ) = 2ΦR>0(τ). Finally, the relation
ΦK0(τ) = ΦdR>0

(τ) gives us the desired expansion (1.7) above. �

We notice that the positive orthant possesses a lot of symmetry, so it is
natural to ask if other cones with less symmetry might not be modular,
and for which cones K might we get a phenomenon similar in spirit to the
example above, in the sense that ΦK may be written as a linear combina-
tion of classical theta functions attached to lower-dimensional lattices. An
answer to such a query is given precisely by Theorem 1.3.

Acknowledge. — The authors would like to thank the referee for making
helpful suggestions.

2. The solid angle ωK

The defining integral (1.4) for the volume of a spherical polytope, namely
ωK , has a nice discretization which is essentially the cone theta function
ΦK,L (it), for t > 0. We now make this intuition precise. Throughout, we
use a full rank lattice defined by L = A(Zd), for some A ∈ GLd(R). We
follow the standard convention of denoting the volume of a fundamental
parallelepiped of L by |det(A)|.

Lemma 2.1. — Let L ⊂ Rd be any full rank lattice. Then

t
d
2 ΦK,L(it) ∼ ωK

|detA| ,

as t→ 0+.

Proof. — We first note that

ΦK,L(τ) =
∑

n∈A(Zd)∩K

eπi||n||
2τ

=
∑

n∈Zd∩A−1(K)

eπi||An||
2τ .

We let f(x) := e−π||Ax||
2 and consider the Riemann sum definition of its

integral:

(2.1)
∫
A−1(K)

f(x)dx = lim
∆x→0

∑
n∈Zd∩A−1(K)

(∆x)df(n ∆x).

TOME 65 (2015), FASCICULE 3



1140 Amanda FOLSOM, Winfried KOHNEN & Sinai ROBINS

Thus (∆x)d is the d-dimensional volume of a small cube of side length
∆x. These cubes intersect in sets of measure zero only, and they cover
Zd ∩A−1(K). Letting ∆x = t

1
2 , we obtain∫

A−1(K)
f(x)dx = lim

t→0+

∑
n∈Zd∩A−1(K)

t
d
2 f(t 1

2n)

= lim
t→0+

∑
n∈Zd∩A−1(K)

t
d
2 e−πt||An||

2

= lim
t→0+

t
d
2 ΦK,L(it).

On the other hand, letting y = Ax in the integral defined by 2.1 and
observing that the Jacobian is detA, we find that∫

A−1(K)
f(x)dx = 1

|detA|

∫
K

e−π||y||
2
dy

= ωK
|detA| .

�

3. The cone theta function ΦK(τ) is “almost” modular
when K is a Weyl chamber

It is interesting to note that in the usual arithmetic theory of modular
forms, it does not in general appear natural to combine forms of different
weights in the same equation, because we usually grade forms by weight.
However, as we already see from the example above, it is quite natural from
a combinatorial perspective to combine theta functions of different weights
in the same equation, due to the structure of polyhedral cones.

Let Q(x) := xt(AtA)x be a positive definite quadratic form, arising from
any real matrix A ∈ GLd(R). We recall that the Gram matrix AtA is
defined to be even integral if all of its diagonal elements lie in 2Z and all of
its off-diagonal elements lie in Z. In this case, we call the associated lattice
L := A(Zd) an even integral lattice. If we are given any basis {ej} of L, we
note that according to these definitions we have 〈ei, ej〉 ∈ Z when i 6= j,
and 〈ei, ei〉 ∈ 2Z, for all basis vectors ei, ej . This justifies the motivation
of our definition for an even integral lattice, and there is an even stronger
motivation for such lattices, arising from their modular properties, which
we now recall.

ANNALES DE L’INSTITUT FOURIER



CONE THETA FUNCTIONS 1141

For each even integral lattice L, we define its usual theta function by:

ΘL(τ) :=
∑
n∈L

eπiτ ||n||
2
,

where τ lies in the upper half plane H.
We quote the standard fact that when L is an even integral lattice, the

theta function ΘL(τ) turns out to be a modular form, of weight d2 and level
N , where N is the smallest positive integerM such thatM (AtA)−1 is also
even integral. It is also a theorem that the level N divides |det(A)| (See
[16], Chapter 9, for this fact in a more general context).
We now recall briefly the definition of a root system and some of its prop-

erties, which we need in our context, and then define their corresponding
theta functions, using the definitions above. The interested reader may
consult the book by [6], for example, for more information on finite root
systems. Let S be a finite set of nonzero vectors in Rd, called roots, and
for each α ∈ S, define the linear transformation sα : Rd → Rd by

sα(x) := x− 2 〈x, α〉
〈α, α〉

α.

This is a reflection associated to each α in S, about the hyperplane or-
thogonal to α. Suppose that for each α ∈ S we have sα(S) = S, and also
suppose that for all α, β ∈ S we have 2 〈β,α〉〈α,α〉 ∈ Z. Then S is called a finite
root system.
The finite collection of reflections sα generate, by composition, a finite

group W which is called a finite Weyl group. The collection of hyperplanes
orthogonal to the roots decompose Rd into convex chambers, called Weyl
chambers. It is a theorem that the Weyl group acts transitively on these
chambers, so that any chamber is a fundamental domain for the action of
W on Rd. In particular, each Weyl chamber is a polyhedral cone, whose
edges are some roots of S.

When K ⊂ Rd is a Weyl chamber of any finite Weyl group W , we define
the root lattice Lroot as the integer span of all the roots of S, and it is a
theorem that they do indeed form a rank d lattice.
Throughout, we let Lroot be a root lattice for any of the standard finite

Weyl groups An, Bn, Cn, Dn, or BCn, for any n > 1. We notice that for each
of these finite Weyl groups, there is a representation of the root lattice in
Euclidean space, for which all of the basis vectors {ej} of Lroot are integer
vectors. Hence 〈ei, ei〉 ∈ Z for each basis vector ei of Lroot. Moreover, from
the definition of a finite Weyl group given above, we see that 2〈ei, ej〉 ∈
〈ei, ei〉Z ⊂ Z. Thus, for each pair of basis vectors ei, ej of Lroot, we conclude

TOME 65 (2015), FASCICULE 3
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that 〈ei, ej〉 ∈ 1
2Z, showing that 2Lroot is an even integral lattice. Thus, we

may finally conclude from the foregoing discussion that

(3.1) Θ2Lroot(τ) is always a modular form,

a fact we will require in the proof of Theorem 1.3.
We also note that, almost by definition, every cone K which is a Weyl

chamber necessarily has a rational solid angle ωK = 1
|W | , because the Weyl

group W tiles Rd with isometric copies of the cone K.

Example 3.1. — Consider the 2-dimensional root system defined by

S := {(1, 1), (−1, 1), (1,−1), (−1,−1), (2, 0), (−2, 0), (0, 2), (0,−2)},

so that we have the root lattice Lroot := {m(1, 1) + n(2, 0) | m,n ∈ Z}.
Here the root lattice Lroot is already an even integral lattice. The finite
Weyl groupW here consists of 8 elements, and this root system is known as
C2. One fundamental domain for this group action on R2 is the polyhedral
cone K whose edge vectors are the roots (1, 1) and (2, 0), and whose (solid)
angle is ω = 1

8 . Here, the cone theta function is

ΦK,Lroot(τ) =
∑

m>0,n>0
eπiτ ||m(2,0)+n(1,1)||2(3.2)

=
∑

m>0,n>0
eπiτ(4m2+4mn+2n2).(3.3)

We note that for this root system, the reflection s(1,1)(K) is the cone K2
defined by the non-negative real span of the vectors (1, 1) and (0, 2). As
noted earlier, we also have ΦK2,Lroot(τ) = ΦK,Lroot(τ) (because the reflec-
tion s(1, 1) is an isometry of the root lattice) so that, modulo the intersec-
tion of these two cones K and K2, their union is the positive orthant R2

>0.
Gluing together all 8 copies of K, and taking all of their one-dimensional
intersections into account, we see that

8ΦK,Lroot(τ)− 4
∑
k>0

eπiτ(2k2) − 4
∑
k>0

eπiτ(4k2) + 1

=
∑

(m,n)∈Lroot

eπiτ(m2+n2).

ANNALES DE L’INSTITUT FOURIER



CONE THETA FUNCTIONS 1143

Thus, we arrive at the following representation of ΦK,Lroot
(τ) as a nontrivial

rational linear combination of classical theta functions:

(3.4)

ΦK,Lroot(τ) = 3
8 + 1

4
∑
k∈Z

eπiτ(2k2) + 1
4
∑
k∈Z

eπiτ(4k2)

+ 1
8

∑
(m,n)∈Z2

eπiτ(4m2+4mn+n2).

Therefore we see that for this example, ΦK,Lroot
(τ) lies in the ring R, as

a nontrivial linear combination of theta functions of different weights. In
particular, ΦK,Lroot

(τ) is not modular, and we see here that it is “almost”
modular. �

We now give the proof of Theorem 1.3.

Proof of Theorem 1.3. — We proceed by induction on the dimension of
K. By definition of a finite Weyl group, there is a finite collection of roots,
each of which acts as a reflection about a hyperplane passing through a
facet of K, also called a wall of K. These reflections act on Rd by reflecting
K, and subsequently tiling all of Rd with copies of K. The only difficulty
is that due to intersections along the boundary of K, we have to consider
carefully how many times we have overcounted each j-dimensional face of
K in the process of tiling Rd with the reflected images of K.

A key element of the proof is the fact that each reflection about a wall of
K happens to be an involution of the root lattice Lroot. Thus, the reflection
of a root lattice point m ∈ Lroot about a wall of K gives us another root
lattice point (of the same norm), and therefore the corresponding theta
function of any reflected copy of K is again equal to ΦK(τ). If we ignore
the boundary issues, then we see that therefore ΦK(τ) times the order
of the Weyl group equals

∑
n∈2Lroot

eπiτ ||n||
2 , a classical theta function of

weight k = d
2 , by the remark 3.1 above. However, this last identity is not

quite true, due to the boundary effects that occur when we reflect K and
paste together all of the reflected images of K.
We can, however, correct for the intersections of the reflected images of

K along the boundary of K, by invoking the inclusion-exclusion principle.
From the definition of a root system, we also know that any subspace of
Rd intersects the root system in a lower-dimensional root system, so that
we may conclude that each wall of K is a (d− 1)-dimensional chamber for
some (d−1)-dimensional finite Weyl group. Proceeding with this inclusion-
exclusion process to the next, (d − 2)-dimensional faces of K, we can add
and subtract various lower-dimensional Weyl chambers, and we know by
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the induction hypothesis that each of them gives us a corresponding cone
theta function that already lies in R. �

4. The q-expansion principle and the non-modularity of
the cone theta function ΦK,L

The “q-expansion principle”, due to Deligne and Rapoport [3, Théorème
3.9, p.304], tells us that if an integer weight modular form f on a congruence
subgroup Γ has rational Fourier coefficients at the cusp i∞, then the Fourier
expansion of f at the cusp zero must also have rational coefficients, provided
that both cusps are defined over Q. This, for example, is true if Γ = Γ0(N).
In general, a “generic” polyhedral cone K should intuitively have an ir-

rational solid angle ω at its vertex. We therefore work under this generic
assumption of an irrational solid angle, and we will obtain a nice contra-
diction with the q-expansion principle.
Although it is straightforward, given the q-expansion principle, to prove

that ΦK is not a modular form of weight d
2 , it appears to be a much more

subtle question of whether it may be a form of higher weight. To handle
all possible weights, we need a preliminary Lemma.

Lemma 4.1. — Suppose that ΦK,L(τ) is a modular form on Γ0(N) for
some N , with Dirichlet character χ, and of (integral or half integral) weight
k. Then necessarily k = d

2 .

Proof. — We have, by Lemma 2.1:

(4.1) lim
t→0

t
d
2 ΦK,L(it) = ωK

|detA| > 0,

where L := A(Zd). Since ΦK,L is by hypothesis modular of weight k, it
must be holomorphic at the cusp 0, so in particular

(4.2) b0 := lim
t→0

tkΦK,L(it)

exists and is finite.

Case 1. — If k < d
2 , then by (4.1) we conclude that b0 = ∞, a contra-

diction.

Case 1. — Now suppose that k > d
2 . The remainder of the proof is

devoted to deriving a contradiction for this case. From (4.1) we deduce
that

(4.3) b0 = 0.
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We choose a large even positive integer h such that F := ΦhK,L has trivial
character and is of even integral weight k′ := kh > 2. We then have, by
(4.3), that

(4.4) c0 := lim
t→0

tk
′
F (it) = 0.

Note that c0 (up to a non-zero constant) is the constant term of the modular
form

F |k′WN (τ) := N−k
′/2τ−k

′
F (−1/Nτ),

where WN :=
( 0 −1
N 0

)
is the Fricke involution. Let us write F (z) =∑

n>0 ane
πinz and observe that a0 = 1 because K is a closed polyhe-

dral cone. We denote by LF (s) =
∑
n>1 ann

−s (Re(s) � 1), the Hecke
L-series of F . By a classical result of Hecke (see [12]), we know that LF (s)
has meromorphic continuation to all of C and is holomorphic except for a
possible simple pole at s = k′ with residue equal to c0 = 0.
On the other hand, LF (s) is a Dirichlet series with non-negative coeffi-

cients, hence by a well-known theorem of Landau must converge up to the
first singularity, i.e. must converge for all s ∈ C. In particular it follows
that an = O(nc) for any c 6 (k − 1)/2. It was proven in [8] and [15] that
if the Fourier coefficients of a modular form F on Γ0(N) of even integral
weight greater than or equal to 2 satisfy Deligne’s bound Oε

(
n

k−1
2 +ε

)
for

any ε > 0, then F must already be a cusp form. Thus we deduce that F is
cuspidal, so we conclude that a0 = 0, a contradiction. �

Proof of Theorem 1.4. — Suppose first that d > 3, and ΦK,L(τ) is a
modular form of integer weight k > 2 on Γ0(N). All of the coefficients of
ΦK,L(τ) at i∞ are, by definition, rational numbers. Then by Lemma 4.1
we must have that the weight of ΦK,L(τ) equals d

2 . If we now consider the
expansion of ΦK,L at the cusp 0, we have by Lemma 2.1 that the constant
term is limt→0 t

d/2ΦK(it) = ωK

| detA| . Because the constant term ωK

| detA| is
an irrational real number, we obtain a contradiction, by the q-expansion
principle.
The remaining cases to consider are the cases in which d = 3 and ΦK,L(τ)

is of half integer weight k > 3/2, and the case in which d = 1 or 2, so that
ΦK,L(τ) is of weight k ∈ 1

2Z, k > 1/2. Non-modularity follows exactly as
in the argument given above, after considering the following remarks.

i) In addition to [3], for the q-expansion principle, in particular the
half-integral weight case > 3/2, we refer to [1].

ii) We note that the q-expansion principle is also valid in weight 1/2
resp. weight 1. Indeed, we may just multiply with a normalized
Eisenstein series of weight > 4 of level 1 (which has rational Fourier
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coefficients) to immediately deduce the result from the result in the
higher weight case.

�

We remark that the hypothesis of Theorem 1.4 above is satisfied, for
example, if L is an even integral lattice, and ωK is not a quadratic irrational.

5. Integer polyhedral cones in R2 and their cone theta
functions

We exhibit a concrete class of cone theta functions in R2, which in general
do indeed have irrational solid angles, so that Theorem 1.4 applies to them.
Namely, we consider cones in R2 which have integer edge vectors, called
integer cones. First, we prove a diophantine-type Lemma concerning these
cones, which we will make use of in the main theorem of this section.

Lemma 5.1.
i) Suppose we are given two integers m and n, with n 6= 0, n even,

and m odd. Then the equation

(5.1) m

n
= 〈w1, w2〉
||w1||||w2||

has no solutions in non-zero integer vectors w1, w2 ∈ Z2.
ii) Suppose that m and n are integers with n 6= 0 and m odd. Then

the equation

(5.2) m

2
√
n

= 〈w1, w2〉
||w1||||w2||

has no solutions in non-zero integer vectors w1, w2 ∈ Z2.

Proof.
i) Suppose that w1 = (a, b) ∈ Z2 and w2 = (f, g) ∈ Z2 are a solution to

(5.1). Removing the greatest common divisors, we may assume without
loss of generality that w1 and w2 are primitive vectors, i.e. gcd(a, b) =
gcd(f, g) = 1. From (5.1) we get

(5.3) m2(a2 + b2)(f2 + g2) = n2(af + bg)2.

We know m is odd and n is even, so we have

(5.4) 4 | (a2 + b2)(f2 + g2).

If 4 | a2 +b2, then we must have either 2 | a and 2 | b, or else 4 | a and
4 | b. In either case, this conclusion contradicts our assumption that a

ANNALES DE L’INSTITUT FOURIER



CONE THETA FUNCTIONS 1147

and b are coprime. The only possibility left, by (5.4), is that 2 | a2 + b2

and 2 | f2 + g2. In this case, we must have both a and b odd, and both
f and g odd. But then af + bg is even, so that we have 4 | (af + bg)2

and hence by 5.3 (using n even), we get 8 | (a2 + b2)(f2 + g2), which we
already know is a contradiction.

ii) Suppose we do have a solution, which again we may assume to consist
of primitive vectors. Then from (5.2) we find

(5.5) m2(a2 + b2)(f2 + g2) = 4n(af + bg)2.

Since m is odd we again conclude that 4|(a2 + b2)(f2 + g2), and the
same argument as in case i) again gives us a contradiction.

�

Proof of Theorem 1.5. — We first note that the solid angle ωK of K
in this case may be expressed as ωK = ϑ/2π, where ϑ is the usual 2-
dimensional angle, measured in radians. For “most” K, we will argue as in
the proof of Theorem 1.4 using the q-expansion principle, hence will show
that ϑ 6∈ 2πQ (hen ce ωK 6∈ Q). For some K however, ϑ ∈ 2πQ and we
are not able to use the q-expansion principle. In these cases we shall use
Lemma 5.1 and a similar argument as in Example 1.6, respectively. We
begin by addressing these exceptional cases.

Case 1. — Suppose K ⊂ R2 gives rise to ϑ/2π in the exceptional set

E :=
{
c0,

c1
2 ,

c2
4 ,

c3
8 | cj ∈ Z, 0 6 j 6 3, and c1, c2, c3 odd

}
.

We will consider three separate cases (i-iii) below.

i. (ϑ = 2πc0 or ϑ = 2πc1/2, c1 odd) We are able to immediately dismiss
these cases, as they imply that w1 and w2 are integer multiples of one
another, and hence they are not linearly independent.

ii. (ϑ = 2πc2/4, c2 odd) In this case, w1 and w2 are orthogonal. The case in
which w1 and w2 span the first quadrant do not give rise to a modular
form as was discussed in Example 1.6. In more generality, suppose w1 =
(a, b), w2 = r(−b, a) where r is a positive integer, and a, b ∈ Z satisfy
(without loss of generality) gcd(a, b) = 1. In this case the cone theta
function is equal to Φ0(Nz)Φ0(Nrz), where Φ0 is the cone function
attached to the positive orthant in d = 1 and N = a2 + b2. As in
Example 1.6, this cone theta function is in the graded ring, but is not
modular.

iii. (ϑ = 2πc3/8, c3 odd) For the case in which c3/8 = 1/8, the cone K
forms a Weyl chamber for the root system BC2, of Example 3.1, and
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as we showed in that case, the cone theta function ΦK is not modular
because it is explicitly exhibited as a nontrivial linear combination of
theta functions of different weights. For the case in which c3/8 = 3/8,
the relevant cone K consists of three contiguous copies of a fundamental
domain of the root system BC2, and is again not modular for the same
reason as the case c/d = 1/8. The general situation in which ϑ = 2πc3/8
with c3 odd follows similarly.

Case 2. — Next we assume that K ⊂ R2 gives rise to ϑ/2π = c/d ∈
Q \ E . We assume d > 0, for if d < 0 we write c/d = (−c)/(−d) with
−d > 0. We also use the 2-dimensional inner product to write

ϑ = cos−1
(
〈w1, w2〉
||w1||||w2||

)
,

where without loss of generality we take cos−1 : [−1, 1] → [0, π], as cos
is ±1 periodic with period π. Thus we have that ϑ = cos−1(n/

√
m), with

n,m ∈ Z, m > 0, and also that 0 6 c 6 d/2, d > 0. We may further
assume c > 0, for 0 ∈ E . Note that by definition of E we must only consider
d > 3, d 6= 4, d 6= 8.
First, we consider those d > 3 that are in the set

F := {3, 5, 6, 10, 12}.

Without loss of generality, we may assume that for such d ∈ F and c

satisfying 0 < c 6 d/2, we have that gcd(c, d) = 1. This follows from the
fact that any c′/d′ with d′ ∈ F and 0 < c′ 6 d′/2 with gcd(c′, d′) > 1 may
be written as c/d where c = c′/ gcd(c′, d′) and d = d′/ gcd(c′, d′) so that
gcd(c, d) = 1. Moreover, because 0 < c′ 6 d′/2, we have 0 < c 6 d/2, and
it is easy to verify that either d ∈ F or d = 2, 4, the latter of which has
been addressed in Case 1 above.
i. If d = 5 we must have c = 1, and if d = 10, we must have c = 1 or
c = 3. For such c/d, we have cos(2πc/d) = ±(

√
5− 1)/4 or (

√
5 + 1)/4,

and these values are not of the form n/
√
m (m > 0).

ii. If d = 3 and d = 6 we must have c = 1, so that in these two cases,
cos(2πc/d) = ±1/2. By Lemma 5.1 i) we see there are no non-zero
integer vector solutions w1, w2.

iii. If d = 12, the acceptable values of c are c = 1, 5, and we have that
cos(2πc/12) = ±3/(2

√
3). By Lemma 5.1 ii), again we see there are no

non-zero integer vector solutions w1, w2.
Finally, we consider all integers d > 3, with d 6∈ F ∪ {4, 8}. For d 6∈

F ∪ {4, 8} and corresponding 0 < c 6 d/2 with gcd(c, d) = 1, cyclotomic
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theory shows that [
Q
(

1
2
(
ζcd + ζ−cd

))
: Q
]

= ϕ(d)
2 > 2,

where ϕ : N → N denotes Euler’s ϕ function, and ζd := e2πi/d. Thus, for
such d we have

cos
(

2πc
d

)
= 1

2
(
ζcd + ζ−cd

)
6∈ Q(

√
a)

for any non-negative integer a, hence ϑ = cos−1(n/
√
m) 6= 2πc/d.

This exhausts all cases, and we now argue as in the proof of Theorem 1.4
with the q-expansion principle, using the irrationality of ωK . The statement
of the theorem now follows. �

6. Open problems

Problem 6.1. — What are the necessary and sufficient conditions on
the geometry of the cones K whose cone theta function belongs to the
graded ring R?

Problem 6.2. — For the case that ωK

| detA| ∈ Q, we don’t yet have any
proofs of non-modularity for ΦK,L, where L := A(Zd), except in the very
special cases treated in the proof of Theorem 1.5, for d = 2.

Problem 6.3. — Although problem 1.1 above appears to be too dif-
ficult to solve in general dimension at this point, can we answer it in di-
mension d = 3? In other words, which integer 3-dimensional cones have
a rational spherical volume? This is rather close to the Cheeger-Simons
rational simplex conjecture, so it is most likely quite challenging.

BIBLIOGRAPHY

[1] J. H. Bruinier, “Nonvanishing modulo l of Fourier coefficients of half-integral
weight modular forms”, Duke Math. J. 98 (1999), no. 3, p. 595-611.

[2] J. H. Bruinier, G. van der Geer, G. Harder & D. Zagier, The 1-2-3 of mod-
ular forms, Universitext, Springer-Verlag, Berlin, 2008, Lectures from the Summer
School on Modular Forms and their Applications held in Nordfjordeid, June 2004,
Edited by Kristian Ranestad, x+266 pages.

[3] P. Deligne & M. Rapoport, “Les schémas de modules de courbes elliptiques”,
in Modular functions of one variable, II (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 143-316. Lecture Notes in
Math., Vol. 349.

[4] D. Desario & S. Robins, “Generalized solid-angle theory for real polytopes”, Q.
J. Math. 62 (2011), no. 4, p. 1003-1015.

TOME 65 (2015), FASCICULE 3



1150 Amanda FOLSOM, Winfried KOHNEN & Sinai ROBINS

[5] J. L. Dupont & C.-H. Sah, “Three questions about simplices in spherical and
hyperbolic 3-space”, in The Gelfand Mathematical Seminars, 1996–1999, Gelfand
Math. Sem., Birkhäuser Boston, Boston, MA, 2000, p. 49-76.

[6] L. C. Grove & C. T. Benson, Finite reflection groups, second ed., Graduate Texts
in Mathematics, vol. 99, Springer-Verlag, New York, 1985, x+133 pages.

[7] L. Guo, S. Paycha & B. Zhang, “Conical zeta values and their double subdivision
relations”, http://arxiv.org/abs/1301.3370.

[8] W. Kohnen, “On certain generalized modular forms”, Funct. Approx. Comment.
Math. 43 (2010), no. part 1, p. 23-29.

[9] P. McMullen, “Non-linear angle-sum relations for polyhedral cones and poly-
topes”, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, p. 247-261.

[10] ———, “Valuations and Euler-type relations on certain classes of convex poly-
topes”, Proc. London Math. Soc. (3) 35 (1977), no. 1, p. 113-135.

[11] W. Nahm, “Conformal field theory and torsion elements of the Bloch group”, in
Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, p. 67-
132.

[12] A. Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-
Amsterdam, 1969, xvi+173 pp. (not consecutively paged) paperbound pages.

[13] M. A. Perles & G. C. Shephard, “Angle sums of convex polytopes”, Math. Scand.
21 (1967), p. 199-218 (1969).

[14] S. Robins, “An extension of the Gram relations, using cone theta functions”,
preprint.

[15] S. D. Schmoll, “Eine Charakterisierung von Spitzenformen”, PhD Thesis, Heidel-
berg (Germany), 2011.

[16] B. Schoeneberg, Elliptic modular functions: an introduction, Springer-Verlag,
New York-Heidelberg, 1974, Translated from the German by J. R. Smart and
E. A. Schwandt, Die Grundlehren der mathematischen Wissenschaften, Band 203,
viii+233 pages.

[17] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Pub-
lications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers,
Tokyo; Princeton University Press, Princeton, N.J., 1971, Kanô Memorial Lectures,
No. 1, xiv+267 pages.

[18] ———, “On modular forms of half integral weight”, Ann. of Math. (2) 97 (1973),
p. 440-481.

[19] R. P. Stanley, “Decompositions of rational convex polytopes”, Ann. Discrete
Math. 6 (1980), p. 333-342, Combinatorial mathematics, optimal designs and their
applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State
Univ., Fort Collins, Colo., 1978).

[20] M. Vlasenko & S. Zwegers, “Nahm’s conjecture: asymptotic computations and
counterexamples”, preprint.

[21] D. Zagier, “The dilogarithm function”, in Frontiers in number theory, physics, and
geometry. II, Springer, Berlin, 2007, p. 3-65.

Manuscrit reçu le 7 mai 2013,
accepté le 13 juin 2014.

Amanda FOLSOM
Yale University
Mathematics Department
P.O. Box 208283, New Haven
Connecticut 06520-8283 (USA)
amanda.folsom@yale.edu

ANNALES DE L’INSTITUT FOURIER

http://arxiv.org/abs/1301.3370
mailto:amanda.folsom@yale.edu


CONE THETA FUNCTIONS 1151

Winfried KOHNEN
Ruprecht-Karls-Universität Heidelberg
Mathematisches Institut
Im Neuenheimer Feld 288
69120 Heidelberg (Germany)
winfried@mathi.uni-heidelberg.de
Sinai ROBINS
Brown University
Mathematics Department
Box 1917, 151 Thayer Street
Providence, RI 02912 (USA)
sinai.robins@math.brown.edu

TOME 65 (2015), FASCICULE 3

mailto:winfried@mathi.uni-heidelberg.de
mailto:sinai.robins@math.brown.edu

	1. Introduction.
	2. The solid angle K
	3. The cone theta function K() is ``almost'' modular when K is a Weyl chamber
	4. The q-expansion principle and the non-modularity of the cone theta function K, L
	5. Integer polyhedral cones in R2 and their cone theta functions
	6. Open problems
	Bibliography

