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ON THE ZEROES OF THE ALEXANDER
POLYNOMIAL OF A LORENZ KNOT

by Pierre DEHORNOY

Abstract. — We show that the zeroes of the Alexander polynomial of a Lorenz
knot all lie in some annulus whose width depends explicitly on the genus and the
braid index of the considered knot.
Résumé. — On montre que les racines du polynome d’Alexander d’un nœud

de Lorenz sont situées dans un anneau dont l’épaisseur dépend explicitement du
genre et de l’indice de tresse du nœud considéré.

Lorenz knots [5] are a family of knots that arise in the context of dynam-
ical systems as isotopy classes of periodic orbits of the Lorenz flow [23],
a particular flow in R3. They received much attention in the recent years
because they form a relatively large family that includes all torus knots and
all algebraic knots and, at the same time, they are not too complicated and
their geometric origin in dynamical systems provides specific tools to study
them [4, 7, 17]. On the other hand, the Alexander polynomial is a classical
knot invariant, that is, a polynomial which only depends on the topological
type of the knot. It is known that any polynomial ∆ with integer coeffi-
cients that is symmetric, in the sense that the inverse of every zero is also
a zero, and sastisfying |∆(1)| = 1, is the Alexander polynomial of at least
one knot [20]. Therefore it seems hard to expect much in the direction of
controlling the zeroes of the Alexander polynomial of an arbitrary knot.
By contrast, the result we prove in this paper asserts that, in the case of
a Lorenz knot, the zeroes of the Alexander polynomial must lie in some
definite annulus depending on the genus of the knot (that is, the smallest
genus of a surface spanning the knot) and the braid index (that is, the
smallest number of strands of a braid whose closure is the knot):

Keywords: Lorenz knot, Alexander polynomial, monodromy, surface homeomorphism.
Math. classification: 57M27, 34C25, 37B40, 37E15, 57M25.



510 Pierre DEHORNOY

Theorem A. — Let K be a Lorenz knot. Let g denote its genus and b
its braid index. Then the zeroes of the Alexander polynomial of K lie in
the annulus {

z ∈ C
∣∣ (2g)−4/(b−1) 6 |z| 6 (2g)4/(b−1)

}
.

This implies in particular that, among the Lorenz knots that can be rep-
resented by an orbit of length at most t, the proportion of knots for which
all zeroes of the Alexander polynomial lie in an annulus of diameter O(tc/t)
tends to 1 when t goes to infinity (Corollary 3.1.8).
The possible interest of Theorem A is double. First, it provides an ef-

fective, computable criterion for proving that a knot is not a Lorenz knot
(Corollary 3.1.7).

Second, Theorem A may be seen as a first step in the direction of under-
standing Alexander polynomials of orbits of general flows. Given a flow Φ
in R3, it is natural to look at its periodic orbits as knots, and to wonder
how these knots caracterize the flow [15]. Let us call k(x, t) the piece of
length t of the orbit of Φ starting at x, closed with the geodesic segment
connecting Φt(x) to x. Then k(x, t) is a loop. In most cases, this loop has no
double points, thus yielding a knot. Arnold [1] studied the linking number
of two such knots. In the case of an ergodic volume-preserving vector field,
he showed that the limit limt1,t2→∞ lk(k(x1, t1), k(x2, t2))/t1t2 exists and
is independent of the points x1, x2, thus yielding a topological invariant
for the flow. It turns out that this knot-theoretical invariant coincides with
the helicity of the vector field. Later, Gambaudo and Ghys in the case of
ω-signatures [14] and Baader and Marché in the case of Vassiliev invari-
ants [2] established similar asymptotic behaviours, with all involved con-
stants proportional to helicity. It is then natural to wonder whether other
knot-theoretical invariants have analogous behaviours, and, if so, whether
the constants are connected with the helicity. For instance, numerical ex-
periments suggest that the 3-genus might obey a different scheme, but no
proof is known so far. On the other hand, the Alexander polynomial is a sort
of intermediate step between signatures and genus: its degree is bounded
from below by all signatures, and from above by twice the genus. Therefore,
controlling the asymptotic behaviour of the Alexander polynomial and its
zeroes is a natural task in this program. It is known that the zeroes on the
unit circle are determined by the collection of all ω-signatures, but nothing
was known for other zeroes, and this is what Theorem A provides, in the
case of Lorenz knots.
The principle of the proof of Theorem A consists in interpreting the

modulus of the largest zero of the Alexander polynomial of a Lorenz knot
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ALEXANDER POLYNOMIAL OF A LORENZ KNOT 511

as the growth rate of the associated homological monodromy. More pre-
cisely, as every Lorenz knot K is the closure of a positive braid of a certain
type [5], we start from the standard Seifert surface Σ associated with this
braid. As the involved braid is necessarily positive, Σ can be realized as
an iterated Murasugi sum [25] of positive Hopf bands. Then, we interpret
the Alexander polynomial of K as the characteristic polynomial of the ho-
mological monodromy h∗ of K, an endomorphism of the first homology
group H1(Σ;Z), which is well defined because K is fibered with fiber Σ.
From here, our goal is then to bound the growth rate of h∗. To this end,
we use the decomposition of Σ as an iterated Murasugi sum to express the
geometric monodromy of K as a product of positive Dehn twists, and we
deduce an expression of the homological monodromy h∗ as a product of
transvections. The hypothesis that the knot is a Lorenz knot implies that
the pattern describing how the Hopf bands are glued in the Murasugi de-
composition of Σ is very special. By using this particularity and choosing a
(tricky) adapted basis of H1(Σ;Z), we control the growth of the `1-norm of
a cycle when the monodromy is iterated. Finally, the bound on the `1-norm
induces a bound on the eigenvalues of h∗, and, from there, a bound on the
zeroes of the Alexander polynomial of K.
It may be worth noting that our main argument is more delicate than

what one could a priori expect. Indeed, using the standard Murasugi de-
composition of the Seifert surface, which is obtained by attaching all disks
behind the diagram (Figure 1.11), cannot work for our purpose. Instead we
must consider a non-standard decomposition also obtained by applying the
Seifert algorithm, but by attaching half of the disks in front of the diagram
and half of the disks behind (Figure 2.4).

As suggested by the above sketch of proof, Theorem A can be interpreted
in terms of growth rate of surface homeomorphisms. Namely, if K is a
Lorenz knot with Seifert surface Σ and monodromy h, then what we do
is to control the growth rate of the induced action h∗ on homology. If
one consider directly the action of h on curves on Σ, then Thurston [9, 27]
defined a number that control how curves are stretched by h. It is called the
dilatation of h. The dilatation has been the subject of intense studies, and in
particular determining the minimal possible dilatation on a surface of fixed
genus is still an open problem [3, 18, 19, 21, 26]. In general, the homological
growth rate is smaller than the dilatation, so that our main result has no
consequences related to the dilatation. However, as an important tool of our
proof (Lemma 2.1.3) holds also for curves, we formulate a similar conjecture
for the dilatation, see Section 3.2.

TOME 65 (2015), FASCICULE 2



512 Pierre DEHORNOY

Computer experiments played an important role during the preparation
of this paper. Propositions 1.4.2 and 2.2.3 below lead to an algorithm for
computing the homological monodromy of Lorenz knots, and we ran it on
large samples of thousands of knots. Using Bar-Natan’s package KnotAt-
las(1) to double-check the value of the Alexander polynomial, we obtained
strong evidence for the formulas of Sections 2.1 and 2.3 before their proof
was completed. Also, the choice of the surface Σ̃D in Section 2.2 was directly
inspired by the computer experiments.
The plan of the paper is as follows. In Section 1, we recall the definitions

of Lorenz knots, Lorenz braids, and the associated Young diagrams. Then
we describe Murasugi sums, and explain how they preserve fiberedness
and compose monodromies. Finally, we construct for every Lorenz knot a
standard Seifert surface using an iterated Murasugi sum of Hopf bands,
and deduce an explicit formula for the monodromy. In Section 2, starting
from the standard decomposition of the Seifert surface, we first develop a
combinatorial analysis of the homological monodromy, and explain what is
missing to derive a bound for the growth rate. Then we consider another
Murasugi decomposition, and show how to adapt the combinatorial analysis
of the monodromy. In Section 3, we use the latter analysis for bounding
the eigenvalues of the monodromy, thus proving Theorem A. We then give
some examples and conclude with a few questions and further observations.

1. Preliminaries

The aim of this section is to express the homological monodromy of every
Lorenz knot as an explicit product of transvections (Proposition 1.4.3).

It is organized as follows. We first recall the basic definitions about Lorenz
knots starting from Young diagrams. Then, we describe the Murasugi sum
in Section 1.2 and the iterated Murasugi sum in Section 1.3. Finally, we
use the Murasugi sum in Section 1.4 to give a geometric construction of
the Seifert surface associated to a Lorenz knot and derive the expected
expression of the homological monodromy.

1.1. Lorenz knots, Lorenz braids, and Young diagrams

Lorenz knots and links were introduced by Birman and Williams [5] as
isotopy classes of sets of periodic orbits of the geometric Lorenz flow [23]

(1) http://katlas.org/
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ALEXANDER POLYNOMIAL OF A LORENZ KNOT 513

in R3. They are closure of Lorenz braids. It is explained in [7] how to
associate a Young diagram with every Lorenz braid. Here we shall go the
other way and introduce Lorenz braids starting from Young diagrams.

Definition 1.1.1. — Let D be a Young diagram, supposed to be drawn
as in Figure 1.1 left; extend the edges both up and down so that it looks
like the projection of a braid, orient the strands from top to bottom, and
desingularize all crossings positively. The braid bD so obtained (Figure 1.1
right) is called the Lorenz braid associated with D, and its closure KD is
called the Lorenz knot associated with D.

Figure 1.1. How to transform a young diagram into a Lorenz braid.

Example 1.1.2. — Consider the Young diagram with columns of
heights 2, 1, 1 respectively. Then the associated Lorenz braid is
σ4σ3σ5σ2σ4σ6σ1σ3σ5σ2. Its closure turns out to be the (5, 2)-torus knot,
which is therefore a Lorenz knot.

It may happen that the closure of a Lorenz braid has more than one
component, and should therefore be called a Lorenz link, instead of a knot.
Many properties of Lorenz knots are shared by Lorenz links, but their
complement can admit several non isotopic fibrations. This is a problem
for our approach. Therefore, in the sequel, we always implicitely refer to
Young diagrams and Lorenz braids which give rise to Lorenz knots, and
not to Lorenz links.
Let us introduce some additional notation. Let D be a Young diagram.

We give coordinates to cells (see Figure 1.2) by declaring the top cell to
be (0, 0), by adding (−1, 1) when going on an adjacent SW -cell, and by
adding (1, 1) when going on an adjacent SE-cell. Thus coordinates always
have the same parity. The cth column consists of the cells whose first coor-
dinate is c. Integers tc, bc are defined so that (c, tc) is the top cell, and (c, bc)
the bottom cell, of the cth column. Observe that we always have tc = |c|.

TOME 65 (2015), FASCICULE 2



514 Pierre DEHORNOY

The column on the left of the diagram is denoted by cl. Observe that it
contains the cell (cl,−cl) only. Similarly the column on the right is denoted
by cr, and it contains the cell (cr, cr) only.

(0, 0)

(1, 5)

(11, 11)
(cl,−cl)

(c, bc)

(c, tc)

Figure 1.2. Coordinates in a Young diagram. The cth column, with c = −4,
is in grey.

1.2. Murasugi sum, fibered links and monodromy

By definition, Lorenz knots are closures of positive braids. An important
consequence is that they are fibered [5], and that the monodromy homeo-
morphism is a product of positive Dehn twists. In order to understand and
use these properties, we recall a simple and very geometric operation: the
Murasugi sum [25, 12, 13]. The idea is to iteratively construct the fibration
of the complement of a knot by adding the crossings of the braid one by
one. For this, we use two-component Hopf links as building blocks, and the
Murasugi sum as a gluing tool.

From now on, we work in the sphere S3, identified with R3 ∪ {∞}.

Definition 1.2.1. —
(i) A positive Dehn twist is a map from [0, 1] × S1 into itself isotopic

to τ defined by τ(r, θ) = (r, θ + r).
(ii) Let Σ be a surface and γ be an immersed smooth curve in Σ. Con-

sider a tubular neighbourhood A of γ in Σ, and parametrize it
by [0, 1] × S1 so that the orientations coincide. A positive Dehn
twist along γ is the class of the homeomorphism τγ of Σ that coin-
cides with a positive twist of the annulus A and that is the identity
outside.

ANNALES DE L’INSTITUT FOURIER
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(iii) By extension, A positive Dehn twist along γ is the induced auto-
morphism τγ of the module H1(Σ, ∂Σ;Z).

When the surface Σ in an annulus, a natural basis for H1(Σ, ∂Σ;Z) is
made of the core of the annulus, and a transversal radius. Then, the matrix

of a positive Dehn twist is
(

1 1
0 1

)
, so that the homological twist is a

transvection (Figure 1.3 right).

Proposition 1.2.2. — The complement of a positive, two-component
Hopf link in S3 fibers over S1, the fiber being an annulus and the mon-
odromy a positive Dehn twist.

Proof. — We use Figure 1.3 for the proof: on the left, a positive Hopf
link is depicted as the boundary of an annulus, both being drawn on the
boundary of a solid torus. In the center left, we see one half of the mon-
odromy, corresponding to what happens on one meridian disk inside the
solid torus. Since the complement of the solid torus in S3 is another solid
torus — meridians and parallels being exchanged — the monodromy is the
composition of the map from the green annulus to the white one, and of its
analog from the white annulus to the green one obtained by a 90◦-rotation.
It is the positive Dehn twist depicted on the center right. The action on
cycles is displayed on the right: the core (in green) remains unchanged,
while the radius (in red) is mapped on a curve winding once along the core
(in orange). �

Figure 1.3. On the left, a positive Hopf link as the boundary of an annulus.
In the center left, one half of the monodromy. On the right, the action of
the monodromy on cycles.

Definition 1.2.3. — (See Figure 1.4.) Let Σ1 and Σ2 be two oriented
surfaces embedded in S3 with respective boundaries K1 and K2. Let Π be
an embedded sphere (seen as the horizontal plane in R3 ∪ {∞}). Call B1
and B2 the open balls that Π separates. Suppose that

(i) the surface Σ1 is included in the closure of the ball B1, and Σ2 in
the closure of B2;

TOME 65 (2015), FASCICULE 2



516 Pierre DEHORNOY

(ii) the intersection Σ1 ∩ Σ2 is a 2n-gon, denoted P , contained in Π
with the orientations of Σ1 and Σ2 on P coinciding and pointing
into B2;

(iii) the links K1 and K2 intersect at the vertices of P , that we denote
by x1, . . . , x2n.

We then define the Murasugi sum Σ1 #P Σ2 of Σ1 and Σ2 along P as
their union Σ1 ∪Σ2. We define the Murasugi sum K1 #P K2 of K1 and K2
along P as the link K1 ∪K2 r

⋃
]xi, xi+1[.

More generally, we define the Murasugi sum of two disjoint surfaces Σi,i=
1, 2 along two polygons Pi with one specified vertex as the isotopy class of
the Murasugi sum of two isotopic copies of Σi respecting conditions (i), (ii)
and (iii) of Definition 1.2.3 and such that the polygons Pi and the specified
vertices coincide. As we might expect, this surface is unique up to isotopy.
We denote it by Σ1 #P1∼P2 Σ2.

Figure 1.4. The Murasugi sum of two surfaces with boundary.

The Murasugi sum generalizes the connected sum, which corresponds
to the case n = 1 in the definition. It also generalizes plumbing, which
corresponds to n = 2. It is a natural geometric operation for surfaces —
and for the links they bound — in the sense that it preserves important
properties, like, for instance, being incompressible, being a minimal genus
spanning surface, or being a fibered link (see [12, 13, 7] and below).

Theorem 1.2.4. — Let K1 and K2 be two fibered links in S3 with
respective fibers Σ1 and Σ2. Let h1 and h2 be the class of their respective
geometric monodromies. Let P1 (resp. P2) be a 2n-gon on Σ1 (resp. Σ2)
whose even (resp. odd) edges are included in the boundary K1 (resp. K2)
of Σ1 (resp. Σ2). Then

ANNALES DE L’INSTITUT FOURIER
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(i) the Murasugi sum K1 #P1∼P2K2 is fibered with fiber Σ1 #P1∼P2 Σ2;
(ii) the monodromy of K1 #P1∼P2 K2 is h1 ◦ h2, where h1 (resp. h2) is

extended as an application of Σ1 #P1∼P2 Σ2 by the identity on the
complement Σ2 r Σ1 (resp. Σ1 r Σ2).

Proof (sketch, see [7] for details). — First apply an isotopy to the
links K1,K2 and to the surfaces Σ1,Σ2 in order to place them in a good
position, namely place K1 and Σ1 in the upper half space, and K2 and Σ2
in the lower half space (Figure 1.4). Then zoom on the neighbourhood of P1
(resp. P2) and rescale time so that the fibration, denoted θ1 (resp. θ2), of the
complement of K1 (resp. K2) on the circle becomes trivial in the lower half
space (resp. upper half space) and takes time [0, π] (resp. [π, 2π]), see Fig-
ure 1.5. Finally consider the function θ of the complement of K1 #P1∼P2 K2
which is equal to θ1 on the upper half space, to θ2 on the lower half space
(Figure 1.6), and is defined according to Figure 1.7 around the sides of P .
Check that θ has no singularity and that the 0-level is Σ1 #P1∼P2 Σ2. Then
θ induces fibration over the circle of the complement of K1 #P1∼P2 K2 with
fiber Σ1 #P1∼P2 Σ2. As for the monodromy, a curve on Σ1 #P1∼P2 Σ2 is first
transformed in the lower half space according to h2, and then in the upper
half space according to h1, so that the monodromy is the composition. �

t

t

t+ ε
0

π

Figure 1.5. Deformation of the fibration of K2 so that it becomes trivial in
the upper half space. It is obtained by zooming on a small neighbourhood
of the polygon P

TOME 65 (2015), FASCICULE 2



518 Pierre DEHORNOY

Figure 1.6. Global picture for the gluing of two fibrations in good positions
in order to obtain a fibration for the Murasugi sum.

Figure 1.7. How to define the fibration θ around the sides of the polygon P .
On the left, the levels of the fibrations θ1 and θ2 in their respective half
spaces. On the top right, the part on which θ get a new definition. It is a
union of disjoint cylinders with prescribed boundary values. On the bottom
right, a foliation of a cylinder obeying this constraint.

1.3. Iterated Murasugi sum

We can now glue several fibered links together. In order to obtain a
decomposition for the monodromy, we have to keep track on the order of
the gluing operations, and on the top/bottom positions of the surfaces.
A first example is displayed on Figure 1.8, showing that a Murasugi sum
of two Hopf bands yields a Seifert surface and a fibration for the trefoil
knot. We can then iterate, and see that the closure of the braid σn1 is
the Murasugi sum of n − 1 Hopf bands, each of them associated to two
consecutive crossings. The monodromy of the resulting link is the product

ANNALES DE L’INSTITUT FOURIER



ALEXANDER POLYNOMIAL OF A LORENZ KNOT 519

of n− 1 Dehn twists along the cores of the bands, performed starting from
the bottom to the top of the braid. Then, by gluing two braids side by side
as displayed on Figure 1.9, one obtains more complicated knots.

Figure 1.8. How to glue two Hopf bands and obtain a fibration for the
closure of the braid σn1 .

Figure 1.9. The Murasugi sum of the closures of two positive braids.

Definition 1.3.1. — An annulus embedded in S3 whose boundary is a
positive Hopf link is called a Hopf band.
A surface Σ with boundary is an iterated Murasugi sum if there exists

Hopf bands H1, . . . , Hn, an increasing sequence of surfaces with bound-
ary H1 = Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ, and two sequences of polygons Ω1 ⊂
Σ1, . . . ,Ωn−1 ⊂ Σn−1 and Ω′2 ⊂ H2, . . . ,Ω′n ⊂ Hn such that, for every i be-
tween 1 and n−1, the surface Σi+1 is the Murasugi sum Hi+1 #Ω′

i+1∼Ωi Σi.
The sequence Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ is called a Murasugi realisation
of Σ.

All surfaces with boundary in S3 are not iterated Murasugi sums. Indeed,
the boundary of such a sum is a fibered link. This is therefore a very pecular
situation.

TOME 65 (2015), FASCICULE 2
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1 2

3

H1

H2

H3

H4

Figure 1.10. A realisation of the standard Seifert surface for the torus
knot T (4, 3). At each step, one takes the result of the previous step, and
one glues on it a Hopf band along the colored polygon. The band H1 comes
first, then H2... so that the Murasugi order (Definition 1.3.2) associated to
this realisation is H1 ≺ H2 ≺ H3 ≺ H4.

Let Σ be a surface admitting a Murasugi realisation Σ1 ⊂ Σ2 ⊂ · · · ⊂
Σn = Σ along polygons Ω1, . . . ,Ωn. If two consecutive polygons Ωi and
Ωi+1 are disjoint in Σi+1, then we can first glue Hi+2 along Ωi+1, and
then Hi+1 along Ωi, and obtain the same surface Σi+2 after these two
steps. This means that we can change the order in which the bands Hi+1
and Hi+2 are glued without changing the resulting surface.

ANNALES DE L’INSTITUT FOURIER
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Thus, for a fixed surface Σ, there exists several possible orders for gluing
the bands and realise Σ. Nevertheless, some bands need to be glued before
some others. For example if the gluing polygon Ωj intersects the band Hi,
then the band Hj+1 has to be glued after Hi.

Definition 1.3.2. — Let Σ be an iterated Murasugi sum of n bands,
denoted H1, · · · ,Hn. We say that the band Hi precedes the band Hj in
the Murasugi order associated to Σ if, for all possible realisations of Σ, the
band Hi is glued before Hj . We then write Hi ≺ Hj .

For every surface Σ, the Murasugi order is a partial order on the set of
Hopf bands whose union is Σ.

Proposition 1.3.3. — Let K be an oriented link and ΣK be a Seifert
surface for K which is a Murasugi sum of Hopf bands H1, . . . ,Hn.
Let γ1, . . . , γn be curves representing the cores of the bands H1, . . . ,Hn.

(i) The link K is fibered with fiber ΣK .
(ii) Let π be a permutation of {1, · · · , n} preserving Murasugi order,

i.e., such that Hi ≺ Hj implies π(i) < π(j). Then the geometric
monodromy of K is the composition of the positive Dehn
twists τγπ(n) ◦ · · · ◦ τγπ(1) .

Proof. — By definition, the sequence Hπ(1), . . . ,Hπ(n) induces a Mura-
sugi realisation of ΣK . Since the monodromy of each Hopf band Hπ(i) is
the Dehn twist τγπ(i) , Theorem 1.2.4 implies that the link K is fibered, and
that its monodromy is the composition τγπ(n) ◦ · · · ◦ τγπ(1) . �

1.4. Standard surface for Lorenz knots

Definition 1.4.1. — (See Figure 1.11.) Let D be a Young diagram and
KD the associated Lorenz knot. The spanning surface ΣD for KD obtained
by gluing a disk beyond each strand and a ribbon at each crossing is called
the standard Seifert surface.

We now summarize the construction.

Proposition 1.4.2. — Let D be a Young diagram with n cells and KD

the associated Lorenz link.
(i) The standard Seifert surface ΣD is the iterated Murasugi sum of

n Hopf bands Hi,j , each of them being associated with one of the
n cells (i, j) de D.

TOME 65 (2015), FASCICULE 2
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Figure 1.11. The standard Seifert surface associated to the Young dia-
gram [3, 2, 1], and the cores of the six Hopf bands that form a Murasugi
realisation of the surface.

(ii) The band Hi1,j1 precedes Hi2,j2 in the Murasugi order if and only
if we have i1 > i2, i1 + j1 > i2 + j2, and (i1, j1) 6= (i2, j2).

(iii) For all cells (i, j) of D, we choose a curve γi,j along the core of
the band Hi,j . Then the family of classes {[γi,j ]}(i,j)∈D forms a
basis of H1(ΣD;Z) seen as a Z-module. The intersection number〈
γi1,j1

∣∣ γi2,j2

〉
is

+1 if (i2, j2) = (i1+1, j1+1), (i1, j1−2), or (i1−1, j1+1),
−1 if (i2, j2) = (i1+1, j1−1), (i1, j1+2), or (i1−1, j1−1),
0 otherwise.

(iv) For every sequence Hi1,j1 � · · · � Hin,jn preserving the Murasugi
order, the geometric monodromy of K is the product τγi1,j1

◦ · · · ◦
τγin,jn , and the homological monodromy is the product τγi1,j1

◦· · ·◦
τγin,jn .

Proof. — For (i) and (ii), Figure 1.10 shows how to glue n Hopf bands
and obtain the surface ΣD. We see that the band Hi,j is glued along a
polygon included in the union of the three bands Hi+1,j−1, Hi+1,j+1 and
Hi,j+2. Therefore these bands need to be glued before adding Hi,j . We
obtain the result by induction.

(iii) Given a cell (i, j) of D, the homology of the band Hi,j is gener-
ated by the class [γi,j ]. Since the surface ΣD is the union of these Hopf
bands, its homology is generated by {[γi,j ]}(i,j)∈D. A computation of Euler
characteristic of ΣD shows that these class form indeed a basis. We see on
Figure 1.11 that two curves γi1,j1 , γi2,j2 intersect only if the associated cells
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(i1, j1) and (i2, j2) of D are neighbours. The rule for signs is depicted on
Figure 1.12.

(iv) follows from (i) et Proposition 1.4.2. �

+1

−1
+1

−1

+1
−1

Figure 1.12. On the left, the curves γi,j , γi,j+2 and γi+1,j+1 on the sur-
face ΣD. Intersection points are dotted. On the right, values of the intersec-
tion between γi,j and curves associated with adjacent cells.

We now deduce the combinatorial form of the monodromy that we will
rely on.

Proposition 1.4.3 (see Figure 1.13). — Let D be a Young diagram
and K the associated Lorenz knot. Then the homological monodromy as-
sociated to the standard Seifert surface is the composition

cl∏
c=cr

tc∏
j=bc

τγc,j .

Proof. — By Proposition 1.4.2(ii), we have Hcr,cr � · · · � Hc,bc �
Hc,bc−2,� · · · � Hc,tc � Hc−1,bc−1 . . . The result then follows from Propo-
sition 1.4.2(iv). �

2. Combinatorics of the monodromy

Starting from a Lorenz knot K, we obtained in Section 1 a presentation
for the monodromy h of K as a product of transvections. In this section,
we analyze the image of particular cycles of the fiber of K under h. Our
goal is to find a basis of H1(Σ;Z) that splits into two families B1, B2 so
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Figure 1.13. A Murasugi order for the monodromy of a Lorenz link: we
perform Dehn twists from right to left, and, in each column, from bottom
to top.

that the image under h of a cycle of B1 is another single cycle of B1 or
B2, and that the iterated images under h of a cycle of B2 stay in B1 for
a number of steps with a uniform lower bound. We shall see in Section 3
that the existence of such a basis implies that the `1-norm of a cycle cannot
grow too fast when the monodromy is iterated.
We proceed in two steps. In Section 2.1, we develop a first, relatively sim-

ple combinatorial analysis based on the standard Murasugi decomposition,
and explain why it fails to provide a convenient basis. In Section 2.2, we
introduce a new, more suitable Murasugi decomposition. Finally, in Sec-
tion 2.3, we complete the analysis for the latter decomposition and exhibit
the expected basis.

2.1. A first attempt

From now on, we fix a Young diagram D. We call KD the associated
Lorenz link, ΣD the associated standard spanning surface forKD, viewed as
an iterated Murasugi sum of n positive Hopf bands Hi,j . For every cell (i, j)
in D, we fix a curve γi,j that is the core of the Hopf band Hi,j embedded
into ΣD. By Proposition 1.4.2(iii), the classes {[γi,j ]}(i,j)∈D form a basis
of the group H1(ΣD;Z). We write hD for the homological monodromy
associated with ΣD, i.e., the endomorphism of H1(ΣD;Z) induced by the
geometrical monodromy. In order to improve readability, we write [i, j] for
the cycle [γi,j ] and τ [i, j] for the transvection of H1(ΣD;Z) induced by a
positive Dehn twist along the curve γi,j . We adopt the convention that, if
(i, j) are the coordinates of no cell of the diagram D, then the curve [i, j]
is empty, and the twist τ [i, j] is the identity map on ΣD.

ANNALES DE L’INSTITUT FOURIER



ALEXANDER POLYNOMIAL OF A LORENZ KNOT 525

Lemma 2.1.1. — Let γ be a curve on ΣD. Suppose that its homology
class admits the decomposition [γ] =

∑
k,l

xk,l[k, l]. Then for all cells (i, j)

of D, we have

τ [i, j] ([γ]) = [γ] +
〈
γ
∣∣ [i, j]〉 [i, j]

= [γ] + (−xi+1,j+1 + xi,j+2 − xi−1,j+1 + xi−1,j−1 − xi,j−2

+ xi+1,j−1)[i, j].

Proof. — The first equality comes from the definition of Dehn twists. The
second one comes from the intersection numbers as computed in Proposi-
tion 1.4.2(iii). �

For most cells in the diagram D, the action of the monodromy hD on the
associated cycle is simple: it is sent on the cycle associated to an adjacent
cell. The cells thus sent on adjcent cells are those that have a adjacent cell
in SE-position.

Definition 2.1.2. — A cell with coordinates (i, j) in D is called inter-
nal if D contains a cell with coordinates (i+ 1, j + 1). It is called external
otherwise.

Lemma 2.1.3. — For every (i, j) that refers to an internal cell of D, we
have

hD([i, j]) = [i+1, j+1].

Proof. — Using the decomposition of hD as a product of Dehn twists
given by Proposition 1.4.3, we see that the image of the cycle [i, j] is given
by

[i, j] τ [cr,cr]7−→ [i, j] τ [cr−1,bcr−1]7−→ · · · τ [i+1,j+2]7−→ [i, j](2.1)
τ [i+1,j+1]7−→ [i, j]+[i+1, j+1](2.2)
τ [i+1,j−1]7−→ ([i, j]− [i+1, j−1]) + ([i+1, j+1] + [i+1, j−1])(2.3)

= [i, j] + [i+1, j+1](2.4)
τ [i+1,j−3]7−→ [i, j] + [i+1, j+1] τ [i+1,j−5]7−→ . . .(2.5)

. . .
τ [i,j+4]7−→ [i, j] + [i+1, j+1]

τ [i,j+2]7−→ ([i, j]− [i, j+2]) + ([i+1, j+1] + [i, j+2])(2.6)
= [i, j] + [i+1, j+1](2.7)

τ [i,j]7−→ [i, j] + ([i+1, j+1]− [i, j]) = [i+1, j+1](2.8)
τ [i,j−2]7−→ [i+1, j+1] τ [i,j−4]7−→ · · · τ [cl,|cl|]7−→ [i+1, j+1].(2.9)
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Relation (2.1) comes from the fact that, for i′ > i+1 and for all j′, and for
i′ = i+1 and j′ > j+1, the intersection number 〈[i, j] | [i′, j′]〉 is zero. In
the same way, for i′ < i and for all j′, and for i′ = i and j′ < j, we have
〈[i+1, j+1] | [i′, j′]〉 = 0, implying (2.9). Relation (2.2) follows from the
equality

〈
[i, j]

∣∣ [i+1, j+1]
〉

= 1 stated in Proposition 1.4.2(iii) and from
Lemma 2.1.1. The other relations follow from similar observations. �

Figure 2.1. The image of a cycle associated to an internal cell under the
monodromy hD.

Let us turn to external cells, i.e. cells (i, j) such that (i+1, j+1) is not a
cell of D.

Definition 2.1.4. — Let (i1, j1) and (i2, j2) be two cells of diagram D

satisfying i1 6 i2 and i1+j1 > i2+j2 — geometrically this means that the
cell (i2, j2) lies in the NNE-octant with respect to the cell (i1, j1). Then
the rectangle Ri2,j2

i1,j1
is defined as the set of cells{

(k, l) ∈ D
∣∣ i1 6 k 6 i2 and i1 + j1 > k + l > i2 + j2

}
.

In this case, the cells (i1, j1) and (i2, j2) are called the SW- and NE-
corners of the rectangle respectively, and are denoted SW(Ri2,j2

i1,j1
)

and NE(Ri2,j2
i1,j1

).

Definition 2.1.5. — (See Figure 2.2.) Let (i, j) be an external cell of
the Young diagramD. Form = 1, 2, · · · , we recursively define the accessible
rectangle Am(i, j) as follows
(i) A1(i, j) = R

i+1,|i+1|
i+1,j−1 = {(i+ 1, j − 1), (i+ 1, j − 3), · · · , (i+ 1, |i+ 1|)};

(ii) if NW(Am(i, j))+(−1,−1) is a cell of D, then Am+1(i, j) is the rectan-
gle whose SE-corner is the cell NW(Am(i, j)) + (−1,−1), and whose NE-
and SW-corners are on the boundary of the diagram D (this means that
the cells NE(Am+1(i, j)) + (0,−2) and SW(Am+1(i, j)) + (−1, 1) are not
in the diagram); else the construction stops and the rectangle Am′(i, j) is
empty for all m′ > m.
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Figure 2.2. The image of a cycle associated with an external cell under the
monodromy.

Note that Definition 2.1.5 implies that, for every column, either no cell
of the column lies in an accessible retangle, or some do, in which case they
are adjacent, i.e., of the form (c, t), (c, t+ 2), . . . , (c, b), and they all belong
to the same accessible rectangle.

Lemma 2.1.6. — Let D be a Young diagram, KD be the associated
Lorenz link, and hD be the associated monodromy. Assume that (i, j) is
an external of D. Then we have

hD([i, j]) =
∑
m>1

∑
(k,l)∈Am(i,j)

(−1)m[k, l].

Proof. — For every column c of the diagram D, we introduce a truncated
product hcD by

hcD =
cr∏
k=c

bk∏
l=tk

τ [k, l];

remember that cr refers to the rightmost column of D, and bk and tk
denote the bottom and top cells of the column k. For every c, by definition
we have hcD =

∏bc
l=tc τ [c, l] ◦ hc−1

D , and Lemma 1.4.3 implies hD = hclD. We
will then evaluate each of terms hcD([i, j]) one after the other, for c going
down from cr to cl.
First suppose c > i + 1. Then for every k > c and for every l, the

intersection number
〈
[i, j]

∣∣ [k, l]〉 is zero. We simply get hcD([i, j]) = [i, j].
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Now suppose c = i+ 1. Owing to the decomposition hcD =
∏bc
l=tc τ [c, l] ◦

hc−1
D , we find

[i, j] τ [i+1,j−1]7−→ [i, j]− [i+1, j−1] τ [i+1,j−3]7−→ [i, j]− ([i+1, j−1] + [i+1, j−3])
τ [i+1,j−5]7−→ [i, j]− [i+1, j−1]− ([i+1, j−3] + [i+1, j−3]) τ [i+1,j−7]7−→ · · ·
τ [i+1,|i|+1]7−→ [i, j]− [i+1, j−1]− [i+1, j−3]− · · · − [i+1, |i|+1],

where hi+1
D ([i, j]) = [i, j] +

∑
(k,l)∈A1(i,j)−[k, l].

Let us turn to the case c = i. We obtain similarly

[i, j]− [i+1, j−1]− [i+1, j−3]− · · · − [i+1, |i|+1]
τ [i,j]7−→ [i, j]− ([i+1, j−1] + [i, j])− [i+1, j−3]− · · · − [i+1, |i|+1]
= −[i+1, j−1]− [i+1, j−3]− · · · − [i+1, |i|+1]

τ [i,j−2]7−→ −([i+1, j−1]− [i, j−2])− ([i+1, j−3] + [i, j−2])− · · ·
· · · − [i+1, |i|+1]

= −[i+1, j−1]− [i+1, j−3]− · · · − [i+1, |i|+1] τ [i,j−4]7−→ · · ·
τ [i,|i|+2]7−→ −[i+1, j−1]− [i+1, j−3]− · · ·

· · · − [i, |i|+2]− ([i+1, |i|+1] + [i, |i|+2])
= −[i+1, |i|+1]− [i+1, j−1]− [i+1, j−3]− · · · − [i+1, |i|+1]

τ [i,|i|]7−→ −[i+1, j−1]− · · · − [i+1, |i|+1]− ([i+1, |i|+1]− [i, |i|])

= [i, |i|] +
∑

(k,l)∈A1(i,j)

−[k, l]

hence hiD([i, j]) = [i, |i|] +
∑

(k,l)∈A1(i,j)−[k, l]. Observe that the latter ex-
pression can be written

∑
m>1

∑
(k,l)∈Am(i,j),k>i(−1)m[k, l].

We now look at the case c < i. On the shape of the last expression, let
us show that for every c < i we have

(2.10) hcD([i, j]) =
∑
m>1

∑
(k,l)∈Am

K
(i,j),k>c

(−1)m[k, l].

We use a induction with c going down from i−1 to cl. There are two cases.

Case 1. — There exists an index r so that at least one cell of the c+1st
column lies in the rectangle Ar(i, j). Let (c+1, tr), (c+1, tr+2), · · ·, (c+1, br)
denote the cells of this column lying in Ar(i, j). When transforming
hc+1
D ([i, j]) into hcD([i, j]), we perform Dehn twists along curves associated

to the cth column. Since the only cycles in hc+1
D ([i, j]) having non-zero in-

tersection with curves associated to the cth column are of the form [c+1, l],
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these are the only cycles that are modified when transforming hc+1
D ([i, j])

into hcD([i, j]). By induction hypothesis, we have

(2.11) hc+1
D ([i, j]) =

∑
m>1

∑
(k,l)∈Am

K
(i,j),k>c+1

(−1)m[k, l] +
br∑
l=tr

(−1)r[c+1, l].

Call Sc the first term in the right-hand side of (2.11). We just noted that
Dehn twists along curves of the cth column do not modify Sc. There-
fore we only consider the action of the composition

∏bc
l=tc τ [c, l] on the

cycle
∑br
l=tr [c+1, l]. In order to evaluate the result, we again separate two

cases, depending on whether the c+1st column contains the west-border of
a rectangle or not.

Subcase 1.1. — The cells (c+1, tr), (c+1, tr+2), · · · , (c+1, br) are not
on the west side of the rectangle Ar(i, j). We apply the twists associated
to the cells of the cth column, and get

[c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]
τ [c,bc]7−→ [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]
τ [c,bc−2]7−→ · · ·
τ [c,br+1]7−→ ([c+1, br] + [c, br+1]) + [c+1, br−2] + · · ·+ [c+1, tr]

= [c+1, br] + [c+1, br−2] + · · ·+ [c, br+1]
τ [c,br−1]7−→ ([c+1, br]− [c, br−1]) + ([c+1, br−2] + [c, br−1]) + · · ·

· · ·+ [c+1, tr] + ([c+1, br+1] + [c, br−1])
= [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr] + [c, br+1] + [c, br−1]

τ [c,br−3]7−→ [c+1, br] + ([c+1, br−2]− [c, br−3]) + ([c+1, br−4] + [c, br−3])
+ · · ·+ [c+1, tr] + [c, br+1] + ([c, br−1] + [c, br−3])

= [c+1, br] + [c+1, br−2] + · · ·
· · ·+ [c+1, tr] + [c, br+1] + [c, br−1] + [c, br−3]

τ [c,br−5]7−→ · · ·
τ [c,tr−1]7−→ [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr] + [c, br+1]

+[c, br−1] + · · ·+ [c, tr+1]
τ [c,tr−1]7−→ [c+1, br] + [c+ 1, br − 2] + · · ·+ ([c+ 1, tr]− [c, tr − 1])

+[c, br + 1] + [c, br − 1] + · · ·+ ([c, tr+1] + [c, tr−1])
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= [c+1, br] + [c+1, br − 2] + · · ·+ [c+ 1, tr]
+[c, br + 1] + · · ·+ [c, tr + 1]

τ [c,tr−3]7−→ · · ·
τ [c,|c|]7−→ [c+1, br] + [c+ 1, br − 2] + · · ·+ [c+ 1, tr] + [c, br + 1]

+[c, br − 1] + · · ·+ [c, tr + 1].

By adding the unchanged term Sc, we get (2.10), as expected.

Subcase 1.2. — The cells (c+1, tr), (c+1, tr+2), · · · , (c+1, br) are on the
west side of the rectangle Ar(i, j). Then the cell (c, bc) lies in the rectan-
gle Ar−1(i, j), and by the definition of Ar(i, j) the diagram D contains no
cell in position (c+1, bc+1), implying br > bc. The cells of the cth column
that lie in Ar+1(i, j) are of the form (c, br+1), (c, br+1 + 2), · · · , (c, tr+1).
Moreover by the definition of Ar+1(i, j) we have br+1 = tr+1 and tr+1 = |c|.
We deduce

[c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]
τ [c,bc]7−→ [c+1, br] + [c+1, br−2] + · · ·+ ([c+1, bc + 1]− [c, bc])

+([c+1, bc−1] + [c, bc]) + · · ·+ [c+1, tr]
= [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]

τ [c,bc−2]7−→ · · ·
τ [c,br+1+2]7−→ [c+1, br] + [c+1, br−2] + · · ·+ ([c+1, tr+2]− [c, br+1+2])

+([c+1, tr] + [c, br+1+2])
= [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]

τ [c,br+1]7−→ [c+1, br] + [c+1, br−2] + · · ·+ ([c+1, tr]− [c, br+1])
= [c+1, br] + [c+1, br − 2] + · · ·+ [c+1, tr]− [c, br+1]

τ [c,br+1−2]7−→ [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]
−([c, br+1] + [c, br+1−2])

τ [c,br+1−4]7−→ · · ·
τ [c,tc]7−→ [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]− [c, br+1]

−[c, br+1−2]− · · · − ([c, tc+2] + [c, tc])
= [c+1, br] + [c+1, br−2] + · · ·+ [c+1, tr]− [c, br+1]

−[c, br+1−2]− · · · − [c, tc],
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and once again, by adding the unchanged term Sc, we get (2.10).

Case 2. — No cell of the c+1st column lies in an accessible rectangle.
Then the Dehn twists associated to the cells of the cth column do not
modify the cycles of hc+1

D ([i, j]), implying hcD([i, j]) = hc+1
D ([i, j]).

The induction is complete. Since the expression of hclD([i, j]) coincides
with the desired expression for hD([i, j]), the proof is complete. �

2.2. Other spanning surfaces for positive links

Our strategy for finding bounds on the eigenvalues of the homological
monodromy hD associated to a Young diagram D is to bound the growth
rate of all elements of H1(ΣD;Z) when iterating the endomorphism hD.
Using the combinatorial information given by Lemmas 2.1.3 and 2.1.6, one
can devise the following plan. The `1-norm of a cycle increases under hD
only if it has non-zero coordinates corresponding to external cells, in which
case the norm is multiplied by at most n, where n is the number of cells
of the diagram D. Thus, if we could find a lower bound t0 for the time
needed for the first external cell to appear in the iterates htD(c), then we
would deduce that the `1-norm grows asymptotically like nt/t0 . This would
imply that the moduli of the eigenvalues of hD are lower than (logn)/t0.
Unfortunately, the information we have on the monodromy so far does not
enable us to have such a lower bound on the “time of first return in an
external cell”.
The goal for the end of the section is to take advantage of the flexibility in

the choice of the spanning surface — actually the choice in the presentation
of the surface — to obtain another expression for the monodromy, and to
let the strategy work.

Let b be a braid and let K be its closure. The standard way of drawing K
consists in connecting the top and bottom extremities of b with strands be-
hind b (Figure 1.11 again). However, we may as well connect with strands
in front of b, or even use a combination of back and front connections, with-
out changing the isotopy class of K. As displayed on Figure 2.3, a spanning
surface of K is associated with every such combination. This spanning sur-
face is always an iterated Murasugi sum, but the Murasugi order of the
Hopf bands depends on the choice of a front or a back connection for each
strand, and so does the presentation of the monodromy of K.

Definition 2.2.1. — Let b be a braid with s strands, and σ be an
element of {+,−}s. We define b̂σ to be the diagram obtained from b by
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Figure 2.3. The spanning surface associated to the diagram [3, 2, 1] and to
the choice σ = {+,+,−,−,−,+,−,−}.

connecting the top and bottom ends of the ith strand in front the braid b
if the ith element of σ is +, and beyond b if it is −. We define Σσb to be
the surface obtained by applying the Seifert algorithm to b̂σ, i.e. by adding
s disks filling the connecting strands of b̂σ, and connecting them to their
neighbours with ribbons attached at each crossing (see Figure 2.3 for an
example).

The knot defined by b̂σ does not depend on σ, since we can move strands
from ahead to behind using isotopies. But there is no reason that these
isotopies extend to the surfaces Σσb . Nethertheless, because the knot K is
fibered, it admits a unique spanning surface of minimal genus, and, there-
fore, all surfaces associated to various choices σ must be isotopic.

For every σ, the surface Σσb is an iterated Murasugi sum of Hopf bands.
While this surface is similar to Σ, the combinatorics associated with Σσb is
in general different from the one associated with Σ. It turns out that the
following choice enables us to realise our strategy for finding bounds on
eigenvalues.

Definition 2.2.2. — (See Figure 2.4.) Let D be a Young diagram. Let
b denote the associated Lorenz braid, s its number of strands, and K its
closure. Remember that we write cl (resp. cr) for the index of the left (resp.
right) column ofD. Let σD denote the element (+,+, . . . ,−, . . .) of {+,−}s,
with cl+1 +signs and cr+1 −signs. We define the mixed Seifert surface Σ̃D
of K to be the surface ΣσDb .

We can now derive an analog of Proposition 1.4.2 for the mixed sur-
face. In the sequel, it will be necessary to consider the inverse h−1

D of the
monodromy instead of hD, the advantage being that external cells will be
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Figure 2.4. The mixed Seifert surface associated to the diagram [3, 2, 1].

replaced by central cells, whose images under h−1
D are better controlled

than the images of external cells under hD.

Proposition 2.2.3. — Let D be a Young diagram with n cells. Let KD

be the associated Lorenz knot and Σ̃D be associated mixed Seifert surface.
(i) The surface Σ̃D is an iterated Murasugi sum of n Hopf bands H̃i,j ,

each of them associated to one of the n cells of D.
(ii) The band H̃i1,j1 is before H̃i2,j2 in Murasugi order if and only if we

have

i1, i2 > 0, i1 > i2, i1 + j1 > i2 + j2, and (i1, j1) 6= (i2, j2)
or i1, i2 6 0, |i1| > |i2|, |i1|+ j1 > |i2|+ j2, and (i1, j1) 6= (i2, j2).

(iii) For each cell (i, j) ofD, choose a curve γ̃i,j that is the core of the an-
nulus H̃i,j . Then the cycles {[γ̃i,j ]}(i,j)∈D form a basis ofH1(Σ̃D;Z).
The intersection number

〈
γ̃i1,j1

∣∣ γ̃i2,j2

〉
is

+1 if (i2, j2) = (i1 + 1, j1 + 1), (i1, j1 − 2), or (i1 − 1, j1 + 1),
−1 if (i2, j2) = (i1 + 1, j1 − 1), (i1, j1 + 2), or (i1 − 1, j1 − 1),
0 otherwise.

(iv) Denote by τ̃ [i, j] the Dehn twist of The monodromy hD of K satis-
fies

hD =
1∏

c=cr

tc∏
j=bc

τ [c, j]σ ◦
−1∏
c=cl

tc∏
j=bc

τ [c, j]σ ◦
t0∏
j=b0

τ [0, j]σ,

h−1
D =

b0∏
j=t0

τ [0, j]σ−1 ◦
cl∏

c=−1

bc∏
j=tc

τ [c, j]σ−1 ◦
cr∏
c=1

bc∏
j=tc

τ [c, j]σ−1
.
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Proof. — The proof of (i), (ii), (iii) is similar to the proof of their coun-
terparts in Proposition 2.2.3. As for (iv), Dehn twists are performed in
the order depicted in Figure 2.5. It is compatible with the Murasugi order
of (ii). The expression for hD then follows from Proposition 1.3.3. �

Figure 2.5. The order of Dehn twists for (the inverse of) the monodromy;
this order is compatible with the Murasugi order associated to the mixed
Seifert surfaces.

2.3. Combinatorics of the monodromy: second attempt

All results of Section 2.1 can now be restated in the context of mixed
Seifert surface. The cells of the Young diagram can no longer be parti-
tioned into internal and external cells, but, instead, we use the five types
displayed on Figure 3.1. Hereafter we shall complete the computation for
the inverse h−1

D of the monodromy, which turns out to be (slightly) simpler
that the computation of hD.
In this part, we fix a Young diagram D with n cells. Let K be the

associated Lorenz knot, and Σ̃D be the associated mixed Seifert surface,
seen as an iterated Murasugi sum of n Hopf bands. Let {[γi,j ]}(i,j)∈D be
a family of curves on Σ̃D, each of them being the core of one of the Hopf
bands. We write [i, j]σ for the class of γi,j in H1(Σ̃D;Z).

The analog of Lemma 2.1.1 is

Lemma 2.3.1. — Let γ be a curve on Σ̃D. Suppose that its class [γ]σ
in H1(Σ̃D;Z) is equal to

∑
k,l

xk,l[k, l]σ. Then for every cell (i, j) of D, we

have

τ [i, j]−1
σ ([γ]σ)

=[γ]σ −
〈
[h]σ

∣∣ [i, j]σ〉 [i, j]σ
=[γ]σ + (xi+1,j+1 − xi,j+2 + xi−1,j+1 − xi−1,j−1 + xi,j−2 − xi+1,j−1) [i, j]σ
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The analog of internal cells — the cells whose image under h−1
D is an

adjacent cell — are the peripheral cells.

Definition 2.3.2. — A cell of D with coordinates (i, j) is called central
for i = 0, right medial for i = 1, left medial for i = −1, right peripheral for
i > 1, and left peripheral for i < −1.

Lemma 2.3.3. — Assume that (i, j) is a right (resp. left) peripheral cell
of D. Then we have

h−1
D ([i, j]σ) = [i−1, j−1]σ (resp. [i+1, j−1]σ).

The proof mimics the one of Lemma 2.1.3.

Figure 2.6. Images of peripheral cells under the inverse of the monodromy.

Now, we are looking for an expression of the images under h−1
D of central,

right medial and left medial cells. Actually, rather than central cells, we look
at another family of cycles, whose image is simpler.

Definition 2.3.4. — Let (0, j) denote a central cell of D, we call try
square the set Ej of cells

{
(0, j), (−1, j−1), (1, j−1), (−2, j−2), (2, j−2), · · ·

· · · , (−j/2, j/2), (j/2, j/2)
}
.

Lemma 2.3.5. — Let Ej be a try square of D. Then we have

h−1
D

( ∑
(k,l)∈Ej

[k, l]σ
)

=
∑

(k,l)∈Ej−1

[k, l]σ.

Proof. — Lemma 2.3.3 describes the images of all cells of the try
square Ej under h−1

D , except the cells (0, j), (−1, j−1) and (1, j−1). It is
therefore sufficient to show the equality

h−1
D

(
[0, j]σ + [−1, j−1]σ + [1, j−1]σ

)
= [0, j−2]σ.
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Using Proposition 2.2.3(iv), and considering only the twists that modify
the cycle we are considering, we obtain

[0, j]σ + [−1, j−1]σ + [1, j−1]σ
τ [0,j−2]σ7−→ ([0, j]σ − [0, j−2]σ) + ([−1, j−1]σ + [0, j−2]σ)

+([1, j−1]σ + [0, j−2]σ)
= [0, j−2]σ + [0, j]σ + ([−1, j−1]σ + [1, j−1]σ

τ [0,j]σ7−→ ([0, j−2]σ + [0, j]σ) + [0, j]σ + [−1, j−1]σ − [0, j]σ)
+([1, j−1]σ − [0, j]σ)

= [0, j−2]σ + [−1, j−1]σ + [1, j−1]σ
τ [1,j−3]σ7−→ ([0, j−2]σ + [1, j−3]σ) + [−1, j−1]σ + ([1, j−1]σ − [1, j−3]σ)

= [0, j−2]σ + [−1, j−1]σ + [1, j−1]σ
τ [1,j−1]σ7−→ ([0, j−2]σ − [1, j−3]σ) + [−1, j−1]σ + [1, j−1]σ

= [0, j−2]σ + [−1, j−1]σ
τ [−1,j−1]σ7−→ [0, j−2]σ,

as expected. �

Accessible rectangles also have an analog: accessible rays.

Definition 2.3.6. — Let (i, j) be the coordinates of a cell of the Young
diagram. Then the left rayR↖i,j is defined as the set of cells {(k, l)

∣∣ k 6 i and
k + l = i + j}, the right ray R↗i,j is defined as the set{(k, l)

∣∣ k > i and
k− l = i−j}, and the vertical ray R↓i,j as the set

{
(k, l)

∣∣ l > j and k = i
}
.

The top and bottom cells of a ray are defined in the obvious way, and are
denoted t(R↖i,j) and b(R↖i,j) respectively.

Lemma 2.3.7. — Let (1, j) be a right medial cell of the diagram D.
Then we recursively define the accessible sets Am(1, j) as follows:

(i) the set A0(1, j) is the ray R↖0,j−1;
(ii) the set A1(1, j) is the ray R↓

t(A0
K

(1,j))+(−1,1);
(iii) as long as b(A2m−1(1, j)) + (−1, 1) is in D, we set A2m(1, j) =

R↖
b(A2m−1

K
(1,j))+(−1,1), otherwise the construction stops;

(iv) the set A2m+1(1, j) is the ray R↓
t(A2m

K
(1,j))+(−1,1).

Then we have

(2.12) h−1
D ([1, j]σ) =

∑
m>0

∑
(k,l)∈Am(1,j)

(−1)m[k, l]σ.
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We define accessible sets of right medial cells in the same way, and we
have

(2.13) h−1
D ([−1, j]σ) =

∑
m>0

∑
(k,l)∈Am(1,j)

(−1)m[k, l]σ.

The proof is a computation similar to that in the proof of Lemma 2.1.6.
We skip it.
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Figure 2.7. On the left, the image of a left medial cell under the inverse of
the monodromy. On the right, the image of a central cell.

In the same vein, we have

Lemma 2.3.8. — Let (0, j) be a central cell of D with j > 0. For all
m > 1, define the accessible set Am(0, j) to be the union Am(1, j − 1) ∪
Am(−1, j − 1). Then we have

(2.14) h−1
D ([0, j]σ) = −

∑
(k,l)∈Ej−2

[k, l]σ +
∑
m>1

∑
(k,l)∈Am

K
(0,j)

(−1)m+1[k, l]σ.

The key point, which has no counterpart in the case of the standard
Seifert surface, is as follows. We recall that n stands for the number of cells
of the diagram D, and that b−j/2 is the vertical coordinate of the bottom
cell of the column with abscissa −j/2.

Lemma 2.3.9. — Let (1, j) be a right medial cell of the diagram D.
Then the cycle h−2

D ([1, j]σ) is the sum of at most n elementary cycles [k, l]σ
all satisfying k + l 6 −j/2− b−j/2.

Proof. — Using (2.12), we obtain

h−1
D ([1, j]σ) = [0, j − 1]σ + [−1, j − 2]σ +

∑
(k,l)∈A0

K
(−1,j),k6−2

[k, l]σ

−
∑

(k,l)∈A1
K

(−1,j)

[k, l]σ +
∑
m>2

∑
(k,l)∈Am

K
(−1,j)

(−1)m[k, l]σ
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Comparing (2.12) and (2.14), and looking at Figure 2.7, one sees that the
part of h−1

D ([0, j−1]σ) in the right columns coincides with−h−1
D ([−1, j−2]σ).

Hence both contributions vanish, and we find

h−2
D ([1, j]σ)

= h−1
D ([0, j−1]σ + [−1, j−2]σ) +

∑
(k,l)∈A0

K
(1,j),k>2

h−1
D ([k, l]σ)

−
∑

(k,l)∈A1
K

(1,j)

h−1
D ([k, l]σ) +

∑
m>2

∑
(k,l)∈Am

K
(1,j)

(−1)mh−1
D ([k, l]σ)

= −
∑

(k,l)∈A0
K

(1,j−2),k6−1

[k, l]σ +
∑

(k,l)∈A1
K

(1,j−2)

[k, l]σ

+
∑
m>2

∑
(k,l)∈Am

K
(1,j−2)

(−1)m+1[k, l]σ +
∑

(k,l)∈A0
K

(1,j),k6−2

h−1
D ([k, l]σ)([k, l]σ)

−
∑

(k,l)∈A1
K

(1,j)

h−1
D +

∑
m>2

∑
(k,l)∈Am

K
(1,j)

(−1)mh−1
D ([k, l]σ).

Since we have h−1
D ([k, l]σ) = [k+ 1, l−1]σ for every k 6 −2, the first two

terms in the parenthesis vanish when added to the first one outside, whence

h−2
D ([1, j]σ) =

∑
m>2

∑
(k,l)∈Am

K
(1,j−2)

(−1)m+1[k, l]σ

+
∑
m>2

∑
(k,l)∈Am

K
(1,j)

(−1)m[k+1, l−1]σ

Depending on whether the iterative constructions of the sets Am(1, j−2)
and Am(1, j) stop or not, some other terms might vanish. In all cases, at
most n cycles [k, l]σ remain, all of them lying in the part at the bottom
left of Am(1, j−2), and therefore satisfying k + l 6 −j/2 − b−j/2. This
completes the proof. �

There is one cell whose image has not yet been determined, namely the
cell (0, 0). It is the subject of the last lemma of this section.

Lemma 2.3.10. — (See Figure 2.8.) We recursively define accessible
sets Bm(0, 0) and Cm(0, 0) as follows

(i) we put B0(0, 0) = C0(0, 0) = R↓0,0;
(ii) b(B2m−2(0, 0)) + (−1, 1) is a cell of D, we set B2m−1(0, 0) =

R↖b(B2m−2(0,0))+(−1,1), otherwise the construction stops;
(iii) we set B2m(0, 0) = R↓t(B2m−1(0,0))+(−1,1);
(iv) similarly, while b(C2m−2(0, 0))+(1, 1) is in D, we set C2m−1(0, 0) =

R↗b(C2m−2(0,0))+(1,1), otherwise the construction stops;
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(v) we set C2m(0, 0) = R↓t(C2m−1(0,0))+(1,1).

Then we have

h−1
D ([0, 0]σ) =

∑
(k,l)∈B0(0,0)

[k, l]σ +
∑
m>1

∑
(k,l)∈Bm(0,0)

(−1)m[k, l]σ

+
∑
m>1

∑
(k,l)∈Cm(0,0)

(−1)m[k, l]σ,

and

h−2
D ([0, 0]σ) = −

∑
(k,l)∈Eb0

[k, l]σ +
∑
m>2

∑
(k,l)∈Bm(0,0)

(−1)m[k+1, l−1]σ

+
∑
m>2

∑
(k,l)∈Cm(0,0)

(−1)m[k−1, l−1]σ.

Once again the proof is a computation similar to the proof of Lemma 2.1.6.
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Figure 2.8. On the left, the image of the cycle [0, 0]σ under the inverse of
the monodromy. On the right, its image under the square of the inverse.

3. The spectral radius of the monodromy

In this final section, we use the results of Section 2.3 to establish a bound
on the `1-norm of the inverse of the monodromy. We then deduce bounds
for the eigenvalues of the monodromy and, from there, on the zeroes of the
Alexander polynomial. We then illustrate the result with a few examples
and conclude with questions.
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3.1. Proof of the main result

We now use the analysis of Section 2.3 to precisely describe the iteration
of the monodromy on the various cycles according to their position in the
Young diagram. It turns out that finitely many patterns only can appear.

Definition 3.1.1. — Let D be a Young diagram with n cells, and Σ̃D
be the associated mixed Seifert surface. We recall that the central column
has b0 + 1 cells. Then the cycle [i, j]σ associated with the cell with coordi-
nates (i, j) is said to be of type



Iα if the cell (i, j) is central with j 6 b0/2,
Iβ if the cell (i, j) is central with j > b0/2,
IIα if the cell (i, j) is medial (left or right) with j 6 b0/2,
IIβ if the cell (i, j) is medial (left or right) with j > b0/2,
III if we have |i| > b0/4,
IV if we have |i| 6 b0/4 and j − |i| > b0/2,
X otherwise.

A cycle associated to a try square Ej is said to be of type
Vα (resp. Vβ) if j 6 b0/2 (resp. j > b0/2).

Lemma 3.1.2. — Let D be a Young diagram, and Σ̃D be the associated
mixed Seifert surface. Then the cycles of type IIα, IIβ , III, IV,X, Vα and
Vβ form a basis of H1(Σ̃D;Z).

Proof. — Owing to Proposition 2.2.3, the cycles of type Iα, Iβ , IIα, IIβ ,
III, IV and X form a basis of H1(Σ̃D;Z). Since a try square Ej is the sum
of the cell (0, j) and of several cells of types III and X, we keep a basis
when replacing the cycle [0, j]σ by

∑
(k,l)∈Ej [k, l]σ for every j. �

We now collect all information on different types of cells.

Lemma 3.1.3. — (See Figure 3.2.) Let D be a Young diagram, KD be
the associated Lorenz knot, Σ̃D be the associated mixed Seifert surface,
and hD be the homological monodromy of KD. Let c be a basic cycle
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Iα

IIα

Iβ IIβ

Vα

III III
IV

X

IV

X

Figure 3.1. Cell types in a Young diagram.

of H1(Σ̃D;Z). Then for c of type

III there exists tc > b0/4 such that h−tcD (c) is of type IIα or IIβ ;
IV there exists tc 6 b0/4 such that h−tcD ([c]) is of type IIβ ;
Vα there exists tc 6 b0/4 such that h−tcD ([c]) is the cycle [0, 0]σ;
Vβ there exists tc > b0/4 such that h−tcD ([c]) is the cycle [0, 0]σ;
IIα the cycle h−2

D (c) is the sum of at most n cycles of type III or IV ;
IIβ the cycle h−2

D (c) is the sum of at most n cycles of type III.

Also the cycle h−2
D ([0, 0]σ) is the sum of one cycle of type Vβ and of at most

n cycles of type III.

Proof. — If c is of type III or IV , then c corresponds to a peripheral cell,
and Lemma 2.3.3 implies that iterated images of c under h−1

D go step by
step to the center, jumping from one cell to an adjacent one closer to the
center of D. The time needed is then prescribed by the distance between
the initial cell and the three central columns of D.
For c is of type Vα or Vβ , Lemma 2.3.5 describes its iterated images. They

are of type V until they reach the cycle [0, 0]σ, and the time needed is half
the initial height. For c of type II, the key-case, Lemma 2.3.7 describes its
image by h−2

D which, again, has the expected form. Finally, Lemma 2.3.10
describes the image of [0, 0]σ. �
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We can now state the main result.

Proposition 3.1.4. — Let D be a Young diagram with n cells, whose
central column has b0/2 cells. Let KD be the associated Lorenz knot.
Then all eigenvalues of the homological monodromy of KD lie in the annu-
lus
{
z ∈ C

∣∣ n−8/b0 6 |z| 6 n8/b0
}
.

Vα

Vβ

IIα

IIβ

III IV

X

[0, 0]σ

Figure 3.2. Growth of the `1-norm of cycles when the monodromy is it-
erated. Bold arrows mean that the number of cycles may be multipied by
at most n. Small consecutive arrows mean that at least b0/4 iterations are
needed in order to reach the final cell. The key point is that every path
containing at least three bold arrows must include a sequence of small ar-
rows.

Proof. — (See Figure 3.2) Let Σ̃D be the mixed Seifert surface associated
with D. Let c be a basic cycle of H1(Σ̃D;Z). By Lemma 3.1.3, the inverse of
the monodromy h−1

D can increase the `1-norm of c only if c is of type IIα, IIβ ,
or if c is the cycle [0, 0]σ. Figure 3.2 shows that this cannot happen too
often: after two iterations, the cycle [0, 0]σ and all cycles of type IIβ are
transformed into at most n cycles of type III, whose norm will not grow in
the next b0/4 iterations of h−1

D . If c is of type IIα, then there may be two
iterations that increase the norm, but the limitation arises: all subsequent
cycles are of type III. Therefore, the norm can be multiplied by at most n2

in a time b0/4. Then there exists a constant A so that for every cycle c and
every time t, we have∣∣ log

(
‖h−tD (c)‖1

) ∣∣ 6 8 logn
b0

t+A.
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It follows that the eigenvalues of h−1
D lie in the disk

{
z
∣∣ |z| 6 n8/b0

}
.

On the other hand, the map hD preserves the intersection form on Σ̃D,
which is a symplectic form [8, chapter 6]. This implies that the spectrum
of hD is symmetric with respect to the unit circle [10, chapter 1]. We deduce
that the eigenvalues of hD lie in the annulus

{
z
∣∣ n−8/b0 6 |z| 6 n8/b0

}
. �

We can now conclude.
Proof of Theorem A. — As Lorenz knots are fibered, the zeroes of their

Alexander polynomial are eigenvalues of the homological monodromy [24].
The genus of a Lorenz knot is half the number of cells in every associated
Young diagrams [7, Corollary 2.4], and its braid index is the number of
cells of the central column plus one [11, main theorem]. The result therefore
follows from applying Proposition 3.1.4 with n = 2g and b0 = 2b− 2. �

Example 3.1.5. — It is known that every algebraic knot is a Lorenz
knot [5], and that the zeroes of the Alexander polynomial of an algebraic
knot all lie on the unit circle. Therefore they a fortiori lie in the annulus
given by Theorem A.
The first Lorenz knot whose Alexander polynomial has at least one

zero outside the unit circle is the knot associated with the Young dia-
gram (4, 4, 2) (see the census [6] of the Lorenz knots with period at most 21).
Its genus is 5 and its braid index is 3. One can indeed check that the 10 ze-
roes of the Alexander polynomial satisfy 20−4/2 6 |z| 6 204/2, as prescribed
by Theorem A.
The zeroes of the Alexander polynomials of two generic Lorenz knots

with respective braid index 40 and 100 are displayed on Figure 3.3. As
asserted in Theorem A, all zeroes lie in some annulus around the unit circle,
and the width of the annulus decreases when the braid index increases.
Experiments involving large samples of random Young diagrams suggest
that the pictures of Figure 3.3 are typical for Lorenz knots of the considered
size, i.e., that the width of the annulus is roughly determined by the braid
index.

We now mention two direct consequences of Theorem A. The first one is
a criterion for proving that a knot is not a Lorenz knot.

Definition 3.1.6. — Assume that K is a knot. Let b be its braid index,
g be its genus, and m be the maximal modulus of a zero of its Alexander
polynomial. Then define the invariant r(K) as the quotient

(b− 1) log(m)
log(2g) .
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Figure 3.3. Positions of the zeroes of the Alexander polynomial of two
generic Lorenz knots, with braid index 40 and genus 100 on the left, and
with braid index 100 and genus 625 on the right. Green dots correspond
to zeroes outside the unit circle, whereas blue and red dots correspond to
zeroes on the circle. The annulus containing the zeroes is smaller on the
right, as stated by Corollary 3.1.8 for typical Lorenz knots.

Corollary 3.1.7. — Let K be a knot. If r(K) > 1 holds, then K is
not a Lorenz knot.

Indeed, if r(K) is larger than 1, then at least one zero of the Alexander
polynomial of K does not lie in the annulus of Theorem A, so that the
knot cannot be a Lorenz knot. Using the tables of Livingstone [22] for knot
invariants up to 11 crossings, we could check in this way that 18 out of
the 502 knots are not of Lorenz type (according to [16, 6], there are only 8
Lorenz knots in the above range).
The second consequence of Theorem A involves the asymptotical position

of the zeroes of the Alexander polynomials of a closed orbit of the Lorenz
flow, when the length of the orbit goes to infinity. For all t, they are only
finitely many closed orbits whose period lies in the interval [ t, (1+ε) t ]. The
result states that the longer the orbit, the closer its roots to the unit circle.

Corollary 3.1.8. — For every ε, there exist c, c′ so that the proportion
of Lorenz knots with period in the interval [ t, (1+ε) t ] and with zeroes of
the Alexander polynomial all lying in the annulus {z ∈ C

∣∣ c t−c′/t 6 |z| 6
c tc
′/t} tends to 1 as t goes to infinity.

Proof. — There exists a constant d such that a generic length t orbit of
the Lorenz flow crosses the axes of the Lorenz template (see [7, Figure 1]) at
least dt times. Therefore the sum of the width and the height of the Young
diagrams associated to generic orbits is at least dt. The braid index of the
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knot being the size of the largest square sitting inside the Young diagram,
it is at least dt/4 for a generic period t orbit. The genus of the knot being
half the number of cells of the diagram, it is at most (dt)2/8. Therefore
the width of the annulus of Theorem A associated to generic orbits of the
Lorenz flow is at most (dt/2)8/dt. �

3.2. Further questions

We conclude with a few more speculative remarks.
First, by Corollary 3.1.7, for every Lorenz knot K, the invariant r(K)

is smaller than 1. Numerical experiments indicate that, for Lorenz knots,
r(K) might tend to a number close to 0.15 when both the braid index
and the genus tend to infinity. This suggests that the order of magnitude
exhibited in Theorem A is optimal, but that the constant in the exponent
could be improved. More generally, this refers to

Question 3.2.1. — Is the lower bound of Theorem A optimal?

A vast abundance of articles [3, 18, 19, 21, 26] are more interested by
the dilatation of surface homeomorphisms, which controls the action of
the homeomorphism on curves, rather than cycles. Unless the underlying
train tracks are orientable — a very strong restriction pointed out to us
by J. Birman and not achieved in general by Lorenz knots — these two
invariants do not coincide, the geometrical growth rate being larger, so that
our main result does not allow to control the dilatation of the monodromies
of the Lorenz knots. However, the key-lemma 2.1.3 also holds for curves.
Indeed, the image of a curve surrounding an internal cell of a Lorenz knot
is a curve surrounding a neighbouring cell. This suggests that curves might
also be stretched at a slow rate by the monodromy.

Question 3.2.2. — Does the dilatation of the monodromy of a Lorenz
knot admit bounds similar to Thereom A?

For generic Lorenz knots, the braid index is of the order of the square
root of the genus, so that the value of the parameter log(m) is of the
order of log(g)/√g, a value coherent with the above mentioned computer
experiments. By contrast, a theorem of Penner [26] says that the dilatation
of a pseudo-Anosov map on a surface of genus g is bounded from below by a
function of the order of 1/g, an optimal bound. Therefore, the monodromies
of generic Lorenz knots do not seem to be pseudo-Anosov homeomorphisms
with minimal growth rate. Nevertheless, the situation could be different for
particular subfamilies:
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Question 3.2.3. — Is there an infinite family of Lorenz knots admitting
monodromies with a homological growth rate of the order of 1/g?

In a totally different direction, Figure 3.4 shows the location of the zeroes
of the Alexander polynomial of random positive braids with braid index
3, 4, and 5, respectively, and of a non-positive random braid. When the
braid index has a fixed value b and we consider positive braids with in-
creasing length, the majority of the roots seem to accumulate on a specific
curve, which depends on the braid index and on the probabilities of the
generators σi, and which is smooth except at some singular points whose
arguments are multiples of 2π/b. This situation contrasts with Theorem A
radically, and no explanation is known so far.
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Figure 3.4. The zeroes of the Alexander polynomial of random braids of
length 200. From left to right: a positive braid of index 3, a positive braid
of index 4, a positive braid of index 5, and a braid with both positive and
negative crossings of index 5; in each case the generators σi are chosen with a
uniform distribution. In the first three cases, the zeroes seem to accumulate
on very particular curves.

Via the Burau representation, the Alexander polynomial of the closure
of a length ` braid of index n can be expressed as the determinant of a
matrix of the formMi1Mi2 · · ·Mi`−In, whereM1, . . . ,Mn are the matrices
ofMn(Z[z]) that correspond to the length one braids σi. Then, a complex
number z is a zero of the Alexander polynomial if and only if 1 is an
eigenvalue of the corresponding product of matrices. Looking at Figure 25
leads to

Question 3.2.4. — Let M1, . . . ,Mm be fixed invertible matrices
in Mn(Z[z]). Form the product Π`(z) = Mi1Mi2 · · ·Mi` where i1, . . . , i`
are independent and equidistributed random variables in {1, . . . ,m}, and
let D` be the set of z such that 1 is an eigenvalue of Π`(z). When does D`

admit a Hausdorff limit? And, if so, what does the limit look like?
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